JP2008073865A - Foam evaluation method for injection foam molding - Google Patents
Foam evaluation method for injection foam molding Download PDFInfo
- Publication number
- JP2008073865A JP2008073865A JP2006252298A JP2006252298A JP2008073865A JP 2008073865 A JP2008073865 A JP 2008073865A JP 2006252298 A JP2006252298 A JP 2006252298A JP 2006252298 A JP2006252298 A JP 2006252298A JP 2008073865 A JP2008073865 A JP 2008073865A
- Authority
- JP
- Japan
- Prior art keywords
- injection molded
- injection
- molded body
- coordinate axis
- approximate curve
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Injection Moulding Of Plastics Or The Like (AREA)
Abstract
【課題】射出成形体に含有される気泡の平均体積を得て射出成形体に含有される気泡の径の増加の程度を求める方法、および、気泡の発生点および発生頻度を求める方法を提供する。
【解決手段】樹脂と発泡成分とを含有する樹脂組成物を射出成形して得られる射出成形体に含有される気泡の平均体積をX線コンピュータートモグラフィーによって求め、射出成形体における位置と平均体積の関係を近似曲線で表わし、その近似曲線の微分式を用いて気泡の径の増加の程度を求める。 また、射出成形体に含有される気泡の数密度をX線コンピュータートモグラフィーによって求め、射出成形体における位置と数密度の関係を近似曲線で表わし、その近似曲線を用いて気泡の発生開始点を求め、また、その近似曲線の微分式を用いて気泡の発生頻度を求める。
【選択図】図1The present invention provides a method for obtaining an average volume of bubbles contained in an injection-molded product to determine the degree of increase in the diameter of the bubbles contained in the injection-molded product, and a method for obtaining the generation point and frequency of bubbles. .
An average volume of bubbles contained in an injection molded product obtained by injection molding a resin composition containing a resin and a foaming component is determined by X-ray computer tomography, and the position and average volume of the injection molded product are determined. The relationship is represented by an approximate curve, and the degree of increase in bubble diameter is determined using the differential equation of the approximate curve. Also, the number density of bubbles contained in the injection-molded product is obtained by X-ray computer tomography, the relationship between the position and number density in the injection-molded product is represented by an approximate curve, and the bubble generation start point is obtained using the approximate curve. Further, the bubble generation frequency is obtained using the differential equation of the approximate curve.
[Selection] Figure 1
Description
本発明は、射出成形体の発泡評価方法に関するものである。さらに詳しくは、X線コンピュータートモグラフィーによって射出成形体に含有される気泡の平均体積を得て射出成形体に含有される気泡の径の増加の程度を求める方法に関するものであり、
また、X線コンピュータートモグラフィーによって射出成形体に含有される数密度を得て射出成形体に含有される気泡の発生点および発生頻度を求める方法に関するものである。
The present invention relates to a method for evaluating foaming of an injection molded article. More specifically, the present invention relates to a method for obtaining an average volume of bubbles contained in an injection-molded product by X-ray computer tomography and obtaining a degree of increase in the diameter of bubbles contained in the injection-molded product,
Further, the present invention relates to a method for obtaining the number density contained in the injection molded article by X-ray computer tomography and determining the generation point and frequency of bubbles contained in the injection molded article.
従来から、射出成形体の剛性向上や外観改良あるいは軽量化を図るために、樹脂と発泡成分とを含有する樹脂組成物を射出成形する方法が用いられており、射出成形体の発泡特性を評価する方法が知られている。 Conventionally, a method of injection molding a resin composition containing a resin and a foaming component has been used to improve the rigidity, appearance, or weight of an injection molded body, and evaluate the foaming characteristics of the injection molded body. How to do is known.
例えば、特開2000−61982号公報には、ポリプロピレン系樹脂発泡体のヘタリや表面荒れを改良する手段として、射出成形型にポリプロピレン系樹脂発泡体を挿入型締めしたのち、前記ポリプロピレン系樹脂発泡体の表面に特定の方法で溶融樹脂を流展させて製造され、表面から0.5mmまでの表層部分の平均気泡径が200μm以下であるポリプロピレン系樹脂発泡体複合成形品が記載されている。そして、平均気泡径の測定方法として、SEMで発泡体の表層部分を50〜100倍に拡大し、最も大きい長手方向の気泡断面を写真撮影して測定する方法が記載されている。 For example, in Japanese Patent Laid-Open No. 2000-61982, as a means for improving the settling and surface roughness of a polypropylene resin foam, after inserting the polypropylene resin foam into an injection mold and clamping the mold, the polypropylene resin foam There is described a polypropylene resin foam composite molded article which is manufactured by flowing a molten resin on the surface of the resin layer in a specific method and has an average cell diameter of 200 μm or less in the surface layer portion from the surface to 0.5 mm. As a method for measuring the average cell diameter, a method is described in which the surface layer portion of the foam is magnified 50 to 100 times with SEM, and the largest cell cross section in the longitudinal direction is photographed and measured.
また、特開2001−288293号公報には、熱可塑性樹脂発泡体に、均一微細な発泡セルを均一に分散させる手段として、熱可塑性樹脂及び層状珪酸塩を主成分として含み、平均気泡径と発泡倍率が特定の関係にある熱可塑性樹脂発泡体が記載されている。そして、発泡セル径の測定方法として、発泡体を2次電子反射式電子顕微鏡により観察し、観測された発泡セル50個の平均を発泡セル径とする方法が記載されている。 Japanese Patent Laid-Open No. 2001-288293 includes a thermoplastic resin and a layered silicate as main components as means for uniformly dispersing uniform fine foam cells in a thermoplastic resin foam, and has an average cell diameter and foam. A thermoplastic resin foam having a specific relationship in magnification is described. As a method for measuring the foam cell diameter, a method is described in which the foam is observed with a secondary electron reflection electron microscope, and the average of 50 observed foam cells is used as the foam cell diameter.
さらに、特開2003−313352号公報には、ポリアミド発泡体に含有される発泡構造を均一にする手段として、密度と硬度のそれぞれが特定の範囲にあり、発泡サイズが20〜200μmであるポリアミド発泡体が記載されている。そして、発泡体の気泡サイズの測定方法として、発泡体の断面を走査型電子顕微鏡により写真撮影し、写真上で測定されたサイズと撮影時の倍率から平均気泡サイズを計算する方法が記載されている。 Furthermore, in Japanese Patent Application Laid-Open No. 2003-313352, as a means for making the foam structure contained in the polyamide foam uniform, each of the density and hardness is in a specific range, and a foamed polyamide having a foam size of 20 to 200 μm. The body is listed. As a method for measuring the bubble size of the foam, a method is described in which a cross-section of the foam is photographed with a scanning electron microscope, and the average bubble size is calculated from the size measured on the photograph and the magnification at the time of photographing. Yes.
しかし、上記公報等に記載の方法においても、射出成形体に含有される気泡の径の増加の程度や気泡の発生点および発生頻度などの発泡特性に関わる現象を解明することは難しく、その改良が求められていた。 However, even in the method described in the above publications, it is difficult to elucidate phenomena related to foaming characteristics such as the degree of increase in the diameter of bubbles contained in an injection-molded product, the generation point and generation frequency of bubbles, and the improvement Was demanded.
本発明の目的は、X線コンピュータートモグラフィーを用いて、射出成形体に含有される気泡の平均体積を得て射出成形体に含有される気泡の径の増加の程度を求める方法を提供することにあり、
また、X線コンピュータートモグラフィーを用いて、射出成形体に含有される気泡の発生点および発生頻度を求める方法を提供することにある。
An object of the present invention is to provide a method for obtaining an average volume of bubbles contained in an injection-molded body by using X-ray computer tomography and obtaining a degree of increase in the diameter of the bubbles contained in the injection-molded body. Yes,
It is another object of the present invention to provide a method for determining the generation point and generation frequency of bubbles contained in an injection molded article using X-ray computer tomography.
本発明者らは、このような実情に鑑み、鋭意検討の結果、本発明が、上記課題を解決できる事を見出し、本発明の完成に至った。
すなわち、本発明の一は、
樹脂と発泡成分とを含有する樹脂組成物を射出成形して得られる射出成形体について、下記の(1−1)の操作に次いで、(1−2)の操作を行うことによって、射出成形体に含有される気泡の径の増加の程度を求める方法に係るものである。
(1−1)ゲート部に対応する射出成形体の端部を0、樹脂流れ方向における流動末端を100として射出成形体に座標軸を定義して、座標軸の位置0から位置100の間の射出成形体に含有される気泡の平均体積を、X線コンピュータートモグラフィーによって得る。
(1−2)射出成形体の座標軸の位置に対する平均体積の関係を近似曲線で表わし、その近似曲線の微分式を求め、射出成形体の座標軸の位置に対する前記微分式の傾きを射出成形体に含有される気泡の径の増加の程度として求める。
In light of such circumstances, the present inventors have found that the present invention can solve the above-mentioned problems as a result of intensive studies, and have completed the present invention.
That is, one aspect of the present invention is
An injection-molded article obtained by injection-molding a resin composition containing a resin and a foam component by performing the operation (1-2) following the operation (1-1) described below. This relates to a method for determining the degree of increase in the diameter of the bubbles contained in.
(1-1) Define the coordinate axis of the injection molded body with 0 as the end of the injection molded body corresponding to the gate portion and 100 as the flow end in the resin flow direction, and injection molding between
(1-2) The relationship of the average volume with respect to the coordinate axis position of the injection molded body is represented by an approximate curve, a differential expression of the approximate curve is obtained, and the gradient of the differential expression with respect to the position of the coordinate axis of the injection molded body is given to the injection molded body. Calculated as the degree of increase in the diameter of the contained bubbles.
また、本発明の二は、
樹脂と発泡成分とを含有する樹脂組成物を射出成形して得られる射出成形体について、下記の(2−1)の操作に次いで、(2−2)の操作を行うことによって、射出成形体に含有される気泡の発生点を求める方法に係るものである。
(2−1)ゲート部に対応する射出成形体の端部を0、樹脂流れ方向における流動末端を100として射出成形体に座標軸を定義して、座標軸の位置0から位置100の間の射出成形体に含有される気泡の数密度を、X線コンピュータートモグラフィーによって得る。
(2−2)射出成形体の座標軸の位置に対する数密度の関係を近似曲線で表わし、その近似曲線において、数密度が0となる射出成形体の位置を、気泡の発生開始点として求める。
The second aspect of the present invention is
An injection molded article obtained by injection molding of a resin composition containing a resin and a foaming component is subjected to the operation (2-2) following the operation (2-1) below. This relates to a method for obtaining the generation point of bubbles contained in the.
(2-1) The coordinate axis is defined in the injection molded body where the end of the injection molded body corresponding to the gate portion is 0 and the flow end in the resin flow direction is 100, and the injection molding between
(2-2) The relationship of the number density with respect to the position of the coordinate axis of the injection molded body is represented by an approximate curve, and the position of the injection molded body where the number density is 0 in the approximate curve is obtained as a bubble generation start point.
そして、本発明の三は、
樹脂と発泡成分とを含有する樹脂組成物を射出成形して得られる射出成形体について、下記の(3−1)の操作に次いで、(3−2)の操作を行うことによって、射出成形体に含有される気泡の発生頻度を求める方法に係るものである。
(3−1)ゲート部に対応する射出成形体の端部を0、樹脂流れ方向における流動末端を100として射出成形体に座標軸を定義して、座標軸の位置0から位置100の間の射出成形体に含有される気泡の数密度を、X線コンピュータートモグラフィーによって得る。
(3−2)射出成形体の座標軸の位置に対する気泡の数密度の関係を近似曲線で表わし、その近似曲線の微分式を求め、射出成形体の座標軸の位置に対する前記微分式の傾きを単位時間あたりの気泡の発生頻度として求める。
And three of the present invention is
An injection molded article obtained by injection molding a resin composition containing a resin and a foaming component is subjected to the operation (3-2) following the operation (3-1) below. This relates to a method for determining the frequency of occurrence of bubbles contained in the.
(3-1) The coordinate axis is defined in the injection molded body with the end of the injection molded body corresponding to the gate portion as 0 and the flow end in the resin flow direction as 100, and the injection molding between
(3-2) The relationship between the number density of bubbles with respect to the position of the coordinate axis of the injection molded body is expressed by an approximate curve, a differential expression of the approximate curve is obtained, and the slope of the differential expression with respect to the position of the coordinate axis of the injection molded body is expressed in unit time. Obtained as the frequency of occurrence of bubbles.
さらに、本発明は、
スパイラルフロー射出成形体について前記本発明の一の方法により、スパイラルフロー射出成形体に含有される気泡の径の増加の程度を求める方法に係るものであり、
また、スパイラルフロー射出成形体について前記本発明の二の方法により、スパイラルフロー射出成形体に含有される気泡の発生点を求める方法に係るものであり、
そして、スパイラルフロー射出成形体について前記本発明の三の方法により、スパイラルフロー射出成形体に含有される気泡の発生頻度を求める方法に係るものである。
Furthermore, the present invention provides:
Regarding the spiral flow injection molded article, according to the method of the present invention, the method relates to a method for obtaining a degree of increase in the diameter of bubbles contained in the spiral flow injection molded article,
The spiral flow injection molded article relates to a method for obtaining the generation point of bubbles contained in the spiral flow injection molded article by the two methods of the present invention,
The spiral flow injection molded article relates to a method for determining the occurrence frequency of bubbles contained in the spiral flow injection molded article by the three methods of the present invention.
本発明の方法によれば、X線コンピュータートモグラフィーを用いて、射出成形体に含有される気泡の平均体積を得ることにより、射出成形体に含有される気泡の径の増加の程度を求めることができ、また、X線コンピュータートモグラフィーを用いて、射出成形体に含有される気泡の数密度を得ることにより、射出成形体に含有される気泡の発生開始点および発生頻度を求めることができる。 According to the method of the present invention, the degree of increase in the diameter of the bubbles contained in the injection-molded product can be obtained by obtaining the average volume of the bubbles contained in the injection-molded product using X-ray computed tomography. Moreover, the generation | occurrence | production start point and generation frequency of the bubble contained in an injection molded object can be calculated | required by obtaining the number density of the bubble contained in an injection molded object using X-ray computer tomography.
本発明で用いられる射出成形体における位置は、ゲート部に対応する射出成形体の端部を0、樹脂流れ方向における流動末端を100として射出成形体に座標軸を定義することによって定める。 The position in the injection-molded product used in the present invention is determined by defining the coordinate axis of the injection-molded product with 0 as the end of the injection-molded product corresponding to the gate portion and 100 as the flow end in the resin flow direction.
射出成形体は、樹脂が一定圧力で金型へ射出されるものであり、樹脂の射出量が射出速度に比例し、射出量は射出成形体の樹脂流れ方向の長さに比例するため、ゲート部に対応する射出成形体の端部を0、樹脂流れ方向における流動末端を100として射出成形体の位置を定義して、射出成形体の樹脂流れ方向の長さを数値化、または、規格化することにより、長さを時間に換算することもできる。 The injection molded body is one in which the resin is injected into the mold at a constant pressure, and the injection amount of the resin is proportional to the injection speed, and the injection amount is proportional to the length of the injection molded body in the resin flow direction. Define the position of the injection molded body by defining the end of the injection molded body corresponding to the part as 0 and the flow end in the resin flow direction as 100, and quantifying or standardizing the length of the injection molded body in the resin flow direction By doing so, the length can be converted into time.
X線トモグラフィー測定を行う射出成形体の測定位置は、座標軸の位置0と位置100の範囲内であればよい。測定位置の数は、測定時間が多大にならない範囲で、多ければ多いほど好ましく、また、測定位置の間隔は細かければ細かいほど好ましい。
The measurement position of the injection molded body that performs X-ray tomography measurement may be within the range of the
X線トモグラフィー測定は、樹脂と気泡のコントラストが十分に得られる電流値および電圧値で測定を行う。また、得られる観察像の倍率は、注目する気泡粒径の範囲で気泡が明瞭に観察される倍率である。倍率を高くすることによって検出される気泡の数が少なくなる場合には、測定位置の極近傍で測定視野を数箇所変更して同様の測定を実施し、得られた複数のデータの平均処理をすることによって精度を向上させることが好ましい。 The X-ray tomography measurement is performed with a current value and a voltage value at which a sufficient contrast between the resin and bubbles can be obtained. Further, the magnification of the obtained observation image is a magnification at which the bubbles are clearly observed within the range of the bubble particle size of interest. When the number of bubbles detected by increasing the magnification decreases, the same measurement is performed by changing several measurement fields in the immediate vicinity of the measurement position, and the average processing of a plurality of obtained data is performed. It is preferable to improve the accuracy.
気泡の径を得るために使用するソフトウェアは、上記X線トモグラフィー測定で得た写真データの樹脂部分と気泡部分を2値化し、測定領域内の気泡体積と気泡数を得ることができるソフトウェアであれば良い。 The software used to obtain the bubble diameter should be software that can binarize the resin part and bubble part of the photographic data obtained by the X-ray tomography measurement and obtain the bubble volume and bubble number in the measurement area. It ’s fine.
射出成形体の位置に対する平均体積または数密度をプロットして、射出成形体の座標軸の位置と平均体積との関係を近似曲線で表わし、その近似曲線の微分式を求め、その微分式の傾きを求めるソフトウェアや、
射出成形体の座標軸の位置と数密度との関係を近似曲線で表わし、数密度が0となる射出成形体の位置と、その近似曲線の微分式を求め、その微分式の傾きを求めるソフトウェアは、市販のソフトウェアを用いればよい。
また、近似曲線を求めるために用いる関数は、フィティングの精度に応じて、二次関数や指数関数など用いれば良い。
Plot the average volume or number density against the position of the injection-molded body, express the relationship between the coordinate axis position of the injection-molded body and the average volume with an approximate curve, find the differential equation of the approximate curve, and calculate the slope of the differential equation The software you want,
The relationship between the position of the coordinate axis of the injection molded body and the number density is represented by an approximate curve, the position of the injection molded body where the number density is 0, the differential equation of the approximate curve is obtained, and the software for obtaining the slope of the differential equation is Commercially available software may be used.
A function used for obtaining an approximate curve may be a quadratic function, an exponential function, or the like depending on the accuracy of fitting.
〔射出成形体の組成〕
射出成形体に用いたプロピレン系樹脂の種類と発泡成分と、それらの組成を次の表1に示した。
[Composition of injection molded product]
Table 1 below shows the types of propylene-based resins used in the injection-molded products, the foaming components, and their compositions.
〔プロピレン系重合体Aの製造〕
プロピレン系重合体Aは、以下のように製造した。
ホモポリマー92重量部と2.5ジメチル−2.5ジ(ターシャリーブチル パーオキシ)ヘキセン8重量部の混合物を住友化学社製プロピレン エチレン−αオレフィンブロック共重合体 AY564 100重量部に対し0.8重量部添加し、二軸混練押出機(日本製鋼所社製TEX44SS 30BW−2V型)を用いて、バレル温度250℃、押出量を30〜50kg/hr、スクリュー回転数を350rpmで分子量調節した組成物を製造し、この樹脂75重量部に対し、さらにデュポンダウエラストマー社製 エチレン−オクテン共重合体 ENGAGE8407を25重量部加え、二軸混練押出機(日本製鋼所社製TEX44SS 30BW−2V型)で、バレル温度200℃、押出量を30〜50kg/hr、スクリュー回転数を350rpmで混合することにより得た。
[Production of Propylene Polymer A]
The propylene polymer A was produced as follows.
A mixture of 92 parts by weight of homopolymer and 8 parts by weight of 2.5 dimethyl-2.5 di (tertiary butyl peroxy) hexene was 0.8 per 100 parts by weight of propylene ethylene-α olefin block copolymer AY564 manufactured by Sumitomo Chemical Co., Ltd. The composition which added the weight part, and adjusted the molecular weight with the barrel temperature of 250 degreeC, the extrusion amount of 30-50 kg / hr, and the screw rotation speed at 350 rpm using the twin-screw kneading extruder (TEX44SS 30BW-2V type made by Nippon Steel Works). 25 parts by weight of ethylene-octene copolymer ENGAGE8407 manufactured by DuPont Dow Elastomer Co., Ltd. was added to 75 parts by weight of this resin, and a twin-screw kneading extruder (TEX44SS 30BW-2V manufactured by Nippon Steel Works) was used. ,
〔プロピレン系重合体と発泡剤の混合方法〕
化学発泡剤の含量が20〜80重量%になるように実施例1〜3のプロピレン系重合体のそれぞれに練りこみ、マスターバッチとし、該マスターバッチを実施例1〜3のプロピレン系重合体のそれぞれに、さらにブレンドした。
[Method of mixing propylene polymer and foaming agent]
It knead | mixes each of the propylene-type polymer of Examples 1-3 so that the content of a chemical foaming agent may be 20 to 80 weight%, it was set as the masterbatch, and this masterbatch was used for the propylene-type polymer of Examples 1-3. Each blended further.
〔スパイラルフロー射出成形法〕
射出成形方法としてスパイラルフロー成形を行った。成形機として住友重機械工業(株)製ネオマット5151/150を用いた。この成形機にスパイラルフロー金型を装着し、バレル温度200℃、金型温度50℃、射出圧力40kgG、冷却時間30秒の条件で成形を行って、スパイラルフロー射出成形体を得た。
[Spiral flow injection molding method]
Spiral flow molding was performed as an injection molding method. As a molding machine, Neomat 5151/150 manufactured by Sumitomo Heavy Industries, Ltd. was used. A spiral flow mold was mounted on this molding machine, and molding was performed under the conditions of a barrel temperature of 200 ° C., a mold temperature of 50 ° C., an injection pressure of 40 kgG, and a cooling time of 30 seconds to obtain a spiral flow injection molded body.
〔射出発泡成形体の作成法〕
射出発泡成形体は、以下の方法によって作成した。
理論射出容量750ccのインライン式射出機に、厚さ2mmの円盤状のキャビティを有しそのキャビティ表面が平滑なスパイラルフロー射出成形用金型を取り付けた。射出成形機バレル温度200℃で約130g計量した。金型温度を50℃に保ち、溶融樹脂を金型内に約1.5秒で射出、充填した。充填完了1秒後にキャビティ厚みが増す方向に金型の開放を開始し、約2秒後にキャビティ厚みが3.6mmとなったときにキャビティの開放動作を停止した。その状態を維持したまま30秒間発泡体を冷却した後、金型を開放し、厚さ3mmポリプロピレン系樹脂のスパイラルフロー射出発泡成形体を得た。
[Production method of injection foam molding]
The injection foam molding was prepared by the following method.
A spiral flow injection mold having a disk-shaped cavity having a thickness of 2 mm and a smooth cavity surface was attached to an in-line type injection machine having a theoretical injection capacity of 750 cc. About 130 g was measured at an injection molding machine barrel temperature of 200 ° C. The mold temperature was kept at 50 ° C., and the molten resin was injected and filled in the mold in about 1.5 seconds. The mold opening was started in the direction of increasing the
〔X線コンピュータートモグラフィー像撮像法〕
撮像条件は、成形体内の注目する範囲の粒子体積の気泡が明瞭に観察されるものであれば良く、本実施例では、X線コンピュータートモグラフィー(以下、X線CT)装置の分解能と同程度である10μmの直径を有する気泡を観察できる高倍率の撮像条件で実施した。本実施例の使用装置、測定条件および測定領域は以下のとおりであった。
[X-ray computed tomography imaging method]
The imaging conditions are not particularly limited as long as bubbles of a particle volume in a range of interest in the molded body can be clearly observed. In this embodiment, the imaging conditions are approximately the same as the resolution of an X-ray computed tomography (hereinafter, X-ray CT) apparatus. The measurement was performed under high-magnification imaging conditions in which bubbles having a diameter of 10 μm could be observed. The apparatus used, the measurement conditions, and the measurement area of this example were as follows.
〔使用装置〕
島津製 X線CT装置 SMX−130CT
〔測定条件〕
光学系
X線源−試料間距離 60mm
X線源−検出器距離 570mm
電流値96μA、電圧値39kV
精細モード
コーンCTモード(1.5mm幅の領域を観測した。)
[Device used]
Shimadzu X-ray CT system SMX-130CT
〔Measurement condition〕
Optical system X-ray source-sample distance 60mm
X-ray source-detector distance 570mm
Current value 96μA, voltage value 39kV
Fine mode Cone CT mode (A 1.5 mm wide region was observed.)
〔測定領域〕
スパイラルフロー射出成形体の気泡分布の測定試料は、スパイラルフロー射出成形機のゲート部に対応する射出成形体の位置0から、樹脂流れ方向における流動末端の位置100までの範囲において、約2〜3mm幅の切片を切り出して得た。測定は、切り出されたスパイラルフロー射出成形体の切片の中央部(観測領域体積は8mm3程度)について行った。
[Measurement area]
The measurement sample of the bubble distribution of the spiral flow injection molding is about 2 to 3 mm in the range from the
〔X線CT測定で得られたデータの解析〕
本実施例では、ラトックシステムエンジニアリング(株)から販売されている3D骨梁構造解析ソフトウェア「3Dボーン for Win NT/2000」を用いた。該ソフトウェアを用いて、CT測定で得られた像を2値化して発泡空孔の領域を選択した。そして、選択した領域のうち直径10μm以下の微小な空隙はノイズとして消去し、残った気泡の径について解析を行うことにより、平均体積、解析視野内の気泡の数を求めた。
[Analysis of data obtained by X-ray CT measurement]
In this embodiment, 3D trabecular structure analysis software “3D bone for Win NT / 2000” sold by Ratok System Engineering Co., Ltd. was used. Using this software, the image obtained by CT measurement was binarized to select the region of the foam pores. Then, a minute void having a diameter of 10 μm or less in the selected region was erased as noise, and the remaining bubble diameter was analyzed to obtain the average volume and the number of bubbles in the analysis field.
ゲート部に対応する射出成形体の位置0、樹脂流れ方向における流動末端の位置100の間に、発泡成分を含有するさまざまな樹脂組成物のスパイラルフロー射出成形体の少なくとも6つの位置に対して、X線CT測定および気泡について解析を行い、(株)ヒューリンクスから販売されているソフトウェアIgor Proを用いて、気泡の観察位置を横軸、平均体積を縦軸として図1、図2および図3を作成し、
図1から近似曲線としてフィティング関数:y=0.0007×exp(0.078×(x−99.0))を求め、
図2から近似曲線としてフィティング関数:y=0.0023×exp(0.011×(x−51.6))+0.002を求め、
図3から近似曲線としてフィティング関数:y=0.0038×exp(0.017×(x+127.6))−0.005を求めた。
それぞれのフィティング関数を図1から図3のそれぞれに示した。
Between the
A fitting function: y = 0.007 × exp (0.078 × (x−99.0)) is obtained as an approximate curve from FIG.
From FIG. 2, a fitting function: y = 0.0003 × exp (0.011 × (x−51.6)) + 0.002 is obtained as an approximate curve,
From FIG. 3, the fitting function: y = 0.0038 × exp (0.017 × (x + 127.6)) − 0.005 was obtained as an approximate curve.
The respective fitting functions are shown in FIGS. 1 to 3, respectively.
図4に、図1から図3で近似曲線として得られたフィティング関数のそれぞれの微分式を表示した。図4に示したそれぞれの微分式において、スパイラルフロー射出成形体の座標軸の各位置に対するそれぞれの微分式の傾きが、気泡の径の増加の程度を表す。 FIG. 4 shows the differential equations of the fitting functions obtained as approximate curves in FIGS. 1 to 3. In each differential equation shown in FIG. 4, the gradient of each differential equation with respect to each position of the coordinate axis of the spiral flow injection molded body represents the degree of increase in the bubble diameter.
射出成形体の位置を横軸とし、数密度を縦軸として、図5、図6および図7を作成し、
図5から近似曲線としてフィティング関数:19.1×exp(0.061×(x−93.2))−3.0を求め、
図6から近似曲線としてフィティング関数:35.6×exp(0.0066×(x−62.7))−20.3を求め、図7から近似曲線としてフィティング関数:50.4×exp(0.017×(x−65.2))−31.6を求めた。
図5から図7で近似曲線として得られたフィティング関数のX軸切片の値が、気泡の発生開始点の位置であり、それぞれの気泡の発生開始点を表2に示した。
With the position of the injection molded body as the horizontal axis and the number density as the vertical axis, FIG. 5, FIG. 6 and FIG.
From FIG. 5, a fitting function: 19.1 × exp (0.061 × (x−93.2)) − 3.0 is obtained as an approximate curve,
The fitting function: 35.6 × exp (0.0066 × (x−62.7)) − 20.3 is obtained from FIG. 6 as an approximate curve, and the fitting function: 50.4 × exp as an approximate curve from FIG. (0.017x (x-65.2))-31.6 was determined.
The value of the X-axis intercept of the fitting function obtained as an approximate curve in FIGS. 5 to 7 is the position of the bubble generation start point, and Table 2 shows the bubble generation start point.
また、図8に、図5から図7で近似曲線として得られたフィティング関数のそれぞれの微分式を表示した。図8に示したそれぞれの微分式において、スパイラルフロー射出成形体の座標軸の各位置に対するそれぞれの微分式の傾きが、気泡の発生頻度を表す。 Further, FIG. 8 shows the differential equations of the fitting functions obtained as the approximate curves in FIGS. In each differential expression shown in FIG. 8, the slope of each differential expression with respect to each position of the coordinate axis of the spiral flow injection molded body represents the frequency of bubble generation.
〔射出発泡成形体の発泡特性〕
また、得られた実施例1〜3のスパイラルフロー射出成形体の特徴を表2にまとめた。表2に示したとおり、本発明の方法によって、射出成形体に含有される気泡の径の増加の程度や気泡の発生開始点および発生頻度を、定量的に求めることができる。
[Foaming characteristics of injection foam moldings]
The characteristics of the obtained spiral flow injection molded articles of Examples 1 to 3 are summarized in Table 2. As shown in Table 2, by the method of the present invention, it is possible to quantitatively determine the degree of increase in the diameter of bubbles contained in the injection-molded product, the generation start point and generation frequency of bubbles.
以上、詳述したとおり、本発明の方法によれば、X線コンピュータートモグラフィーを用いて、射出成形体に含有される気泡の平均体積を得ることにより、射出成形体に含有される気泡の径の増加の程度を求めることができ、また、X線コンピュータートモグラフィーを用いて、射出成形体に含有される気泡の数密度を得ることにより、射出成形体に含有される気泡の発生開始点および発生頻度を求めることができる。 As described above in detail, according to the method of the present invention, by using X-ray computed tomography, by obtaining the average volume of the bubbles contained in the injection molded article, the diameter of the bubbles contained in the injection molded article is obtained. The degree of increase can be determined, and by using X-ray computed tomography to obtain the number density of bubbles contained in the injection molded article, the generation start point and frequency of bubbles contained in the injection molded article are obtained. Can be requested.
また、異なる樹脂組成物を同一条件で射出成形して射出成形体を作成し、それぞれの射出成形体の気泡の径の増加の程度、気泡発生開始点および気泡の発生頻度を比較することによって、異なる樹脂組成物の発泡特性を検討することができる。 In addition, different resin compositions are injection molded under the same conditions to create an injection molded body, and by comparing the degree of increase in the bubble diameter of each injection molded body, the bubble generation start point and the bubble generation frequency, The foaming characteristics of different resin compositions can be examined.
また、例えば、同一の樹脂組成物を用いて、異なる射出成形条件で射出成形体を成形し、それぞれの射出成形体の気泡の径の増加の程度、気泡発生開始点および気泡の発生頻度を比較することによって、異なる射出成形条件が射出成形体に与える影響を検討することができる。そして、異なる樹脂組成物のそれぞれの発泡状態を同じ発泡状態に近づけるために必要な成形条件を検討することもできる。 Also, for example, using the same resin composition, injection molded products are molded under different injection molding conditions, and the degree of increase in bubble diameter, bubble generation start point, and bubble generation frequency of each injection molded product are compared. By doing so, it is possible to examine the influence of different injection molding conditions on the injection molded body. And the molding conditions required in order to make each foaming state of a different resin composition approach the same foaming state can also be examined.
Claims (6)
(1−1)ゲート部に対応する射出成形体の端部を0、樹脂流れ方向における流動末端を100として射出成形体に座標軸を定義して、座標軸の位置0から位置100の間の射出成形体に含有される気泡の平均体積を、X線コンピュータートモグラフィーによって得る。
(1−2)射出成形体の座標軸の位置に対する平均体積の関係を近似曲線で表わし、その近似曲線の微分式を求め、射出成形体の座標軸の位置に対する前記微分式の傾きを射出成形体に含有される気泡の径の増加の程度として求める。 An injection-molded article obtained by injection-molding a resin composition containing a resin and a foam component by performing the operation (1-2) following the operation (1-1) described below. The method of calculating | requiring the grade of the increase in the diameter of the bubble contained in.
(1-1) Define the coordinate axis of the injection molded body with 0 as the end of the injection molded body corresponding to the gate portion and 100 as the flow end in the resin flow direction, and injection molding between position 0 to position 100 of the coordinate axis. The average volume of bubbles contained in the body is obtained by X-ray computed tomography.
(1-2) The relationship of the average volume with respect to the position of the coordinate axis of the injection molded body is represented by an approximate curve, a differential expression of the approximate curve is obtained, and the slope of the differential expression with respect to the position of the coordinate axis of the injection molded body is defined in the injection molded body. Calculated as the degree of increase in the diameter of the contained bubbles.
(2−1)ゲート部に対応する射出成形体の端部を0、樹脂流れ方向における流動末端を100として射出成形体に座標軸を定義して、座標軸の位置0から位置100の間の射出成形体に含有される気泡の数密度を、X線コンピュータートモグラフィーによって得る。
(2−2)射出成形体の座標軸の位置に対する数密度の関係を近似曲線で表わし、その近似曲線において、数密度が0となる射出成形体の位置を、気泡の発生開始点として求める。 An injection molded article obtained by injection molding of a resin composition containing a resin and a foaming component is subjected to the operation (2-2) following the operation (2-1) below. Of determining the generation point of bubbles contained in the water.
(2-1) The coordinate axis is defined in the injection molded body where the end of the injection molded body corresponding to the gate portion is 0 and the flow end in the resin flow direction is 100, and the injection molding between position 0 to position 100 of the coordinate axis is performed. The number density of bubbles contained in the body is obtained by X-ray computed tomography.
(2-2) The relationship of the number density with respect to the position of the coordinate axis of the injection molded body is represented by an approximate curve, and the position of the injection molded body where the number density is 0 in the approximate curve is obtained as a bubble generation start point.
(3−1)ゲート部に対応する射出成形体の端部を0、樹脂流れ方向における流動末端を100として射出成形体に座標軸を定義して、座標軸の位置0から位置100の間の射出成形体に含有される気泡の数密度を、X線コンピュータートモグラフィーによって得る。
(3−2)射出成形体の座標軸の位置に対する気泡の数密度の関係を近似曲線で表わし、その近似曲線の微分式を求め、射出成形体の座標軸の位置に対する前記微分式の傾きを単位時間あたりの気泡の発生頻度として求める。 An injection molded article obtained by injection molding a resin composition containing a resin and a foaming component is subjected to the operation (3-2) following the operation (3-1) below. Of determining the frequency of occurrence of bubbles contained in the water.
(3-1) The coordinate axis is defined in the injection molded body with the end of the injection molded body corresponding to the gate portion as 0 and the flow end in the resin flow direction as 100, and the injection molding between position 0 to position 100 of the coordinate axis. The number density of bubbles contained in the body is obtained by X-ray computed tomography.
(3-2) The relationship between the number density of bubbles with respect to the position of the coordinate axis of the injection molded body is expressed by an approximate curve, a differential expression of the approximate curve is obtained, and the slope of the differential expression with respect to the position of the coordinate axis of the injection molded body is expressed in unit time. Obtained as the frequency of occurrence of bubbles.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2006252298A JP2008073865A (en) | 2006-09-19 | 2006-09-19 | Foam evaluation method for injection foam molding |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2006252298A JP2008073865A (en) | 2006-09-19 | 2006-09-19 | Foam evaluation method for injection foam molding |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JP2008073865A true JP2008073865A (en) | 2008-04-03 |
Family
ID=39346437
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2006252298A Pending JP2008073865A (en) | 2006-09-19 | 2006-09-19 | Foam evaluation method for injection foam molding |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP2008073865A (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN114619677A (en) * | 2020-12-11 | 2022-06-14 | 隆辉实业股份有限公司 | Quick forming method for foaming shoe material |
-
2006
- 2006-09-19 JP JP2006252298A patent/JP2008073865A/en active Pending
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN114619677A (en) * | 2020-12-11 | 2022-06-14 | 隆辉实业股份有限公司 | Quick forming method for foaming shoe material |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US11945926B2 (en) | Foamed polypropylene composition | |
| Rajpurohit et al. | Impact strength of 3D printed PLA using open source FFF-based 3D printer | |
| US11111369B2 (en) | Foamed polypropylene composition | |
| Nobe et al. | Effects of SCF content, injection speed, and CF content on the morphology and tensile properties of microcellular injection‐molded CF/PP composites | |
| Rüsenberg et al. | Mechanical and Physical Properties-A Way to Assess Quality of Laser Sintered Parts | |
| García et al. | Recycling of acrylonitrile–butadiene–styrene using injection moulding machine | |
| Bociąga et al. | The influence of the type of polypropylene and the length of the flow path on the structure and properties of injection molded parts with the weld lines | |
| Baumer et al. | Influence of calcium carbonate and slip agent addition on linear medium density polyethylene processed by rotational molding | |
| DE102018128371A1 (en) | POLYPROPYLENE RESIN COMPOSITION FOR UNPATHED MATCH PADDING | |
| JP2008073865A (en) | Foam evaluation method for injection foam molding | |
| Palutkiewicz et al. | The influence of blowing agent addition, glass fiber filler content and mold temperature on selected properties, surface state and structure of injection molded parts from Polyamide 6 | |
| Heim et al. | The effect of injection molding parameters on microcellular foam morphology | |
| Kai et al. | Understanding the link between process parameters, microstructure and mechanical properties of laser sintered PA12 parts through X-ray computed tomography | |
| Raman et al. | Preliminary study: characterization of UHMWPE and PP polymer for extrudability of PP/UHMWPE composite to FFF process | |
| Attanasio et al. | Experimental study on micro manufacturing of carbon nanotube (CNT) plastic composites | |
| Saravanan et al. | Crystallinity change and reduced warpages on thin walled parts-the effect of nano fumed silica on polyacetal | |
| KR20190041175A (en) | Method for evaluating the impact strength of the composition | |
| EP4592058A1 (en) | Three-dimensional shaped object and method for producing three-dimensional shaped object | |
| CN109942954B (en) | A kind of polypropylene composition and preparation method thereof | |
| Wang et al. | Development of structural hierarchy in injection-molded PVDF and PVDF/PMMA blends: Part III. Spatial variation of superstructure as detected by small-angle light scattering | |
| Choi | Integration of Digital Image Correlation with Dynamic Mechanical Analysis for Poisson’s Ratio Measurement | |
| Aiman et al. | Impact of UHMWPE and PP Polymer Characterization on the Blending Process for PP/UHMWPE Composite in FFF | |
| Mendoza-Cedeno | Effects of long-chain branching and molecular weight on the foamability of polypropylene in foam injection molding | |
| Gnatowski et al. | Thermomechanical and Structural Analysis of Manufactured Composite Based on Polyamide and Aluminum Recycled Material | |
| Mwania | Investigating The Re-Usability Characteristics And Limits Of Polypropylene Powder In Laser Sinter Additive Manufacturing |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| RD05 | Notification of revocation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7425 Effective date: 20080201 |
|
| RD05 | Notification of revocation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7425 Effective date: 20080515 |