[go: up one dir, main page]

JP2008083395A - Liquid crystal display element - Google Patents

Liquid crystal display element Download PDF

Info

Publication number
JP2008083395A
JP2008083395A JP2006263343A JP2006263343A JP2008083395A JP 2008083395 A JP2008083395 A JP 2008083395A JP 2006263343 A JP2006263343 A JP 2006263343A JP 2006263343 A JP2006263343 A JP 2006263343A JP 2008083395 A JP2008083395 A JP 2008083395A
Authority
JP
Japan
Prior art keywords
electrode
liquid crystal
elongated
electric field
pixel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006263343A
Other languages
Japanese (ja)
Inventor
Kunpei Kobayashi
君平 小林
Norihiro Arai
則博 荒井
Toshiharu Nishino
利晴 西野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Casio Computer Co Ltd
Original Assignee
Casio Computer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Casio Computer Co Ltd filed Critical Casio Computer Co Ltd
Priority to JP2006263343A priority Critical patent/JP2008083395A/en
Publication of JP2008083395A publication Critical patent/JP2008083395A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)

Abstract

【課題】広視野で、しかも表示むらを生じることがない良好な表示品質の横電界制御型液晶表示素子を提供する。
【解決手段】互いに対向する内面それぞれに、互いに平行で且つ逆向き方向の配向処理が施された一対の基板間に、負の誘電異方性を有するネマティック液晶からなる液晶層を封入し、一方の基板2の内面に、1つの画素を形成するための予め定めた単位領域に、細長形状の複数の電極部41が間隔を設けて並列に形成され、且つその複数の細長電極部41がそれぞれ、実質的に“く”の字形状に屈曲し、その2つの細長辺部42a,42bがそれぞれ配向処理方向1a,2aに対して実質的に同じ角度で交差した形状に形成された複数の画素電極4と、それよりも基板2側に前記画素電極4と絶縁して配置され、画素電極4の複数の細長電極部41との間に横電界を生成する対向電極5とを設けた。
【選択図】図1
A lateral electric field control type liquid crystal display device having a wide field of view and good display quality without causing display unevenness is provided.
A liquid crystal layer made of a nematic liquid crystal having negative dielectric anisotropy is sealed between a pair of substrates that are parallel to each other and subjected to orientation treatment in opposite directions on each of inner surfaces facing each other. A plurality of elongated electrode portions 41 are formed in parallel in a predetermined unit region for forming one pixel on the inner surface of the substrate 2 at intervals, and the plurality of elongated electrode portions 41 are respectively formed A plurality of pixels which are bent into a substantially “<” shape and whose two elongated sides 42 a and 42 b intersect with the alignment processing directions 1 a and 2 a at substantially the same angle. An electrode 4 and a counter electrode 5 that is disposed on the substrate 2 side of the electrode 4 and is insulated from the pixel electrode 4 and generates a lateral electric field between the plurality of elongated electrode portions 41 of the pixel electrode 4 are provided.
[Selection] Figure 1

Description

この発明は、横電界制御型の液晶表示素子に関する。   The present invention relates to a lateral electric field control type liquid crystal display element.

液晶表示素子として、予め定めた間隙を設けて対向配置され、互いに対向する内面それぞれに、互いに平行で且つ逆向き方向の配向処理が施された一対の基板間の間隙に、正の誘電異方性を有するネマティック液晶からなる液晶層を、液晶分子の分子長軸を前記配向処理方向に揃えて前記基板面と実質的に平行に配列させて封入し、前記一対の基板のうちの一方の基板の内面に、1つの画素を形成するための予め定めた単位領域に、細長形状の複数の細長電極部が間隔を設けて並列に形成された第1の電極と、前記第1の電極よりも前記一方の基板側に前記第1の電極と絶縁して配置され、前記第1の電極との間への電圧の印加により、前記第1の電極の複数の細長電極部との間に、前記液晶分子の分子長軸の向きを前記基板面と実質的に平行な方向に変化させる横電界を生成する第2の電極とを設けた横電界制御型のものがある。   As a liquid crystal display element, a positive dielectric anisotropy is provided in a gap between a pair of substrates that are arranged opposite to each other with a predetermined gap and that are parallel to each other and subjected to orientation treatment in opposite directions on the inner surfaces facing each other. A liquid crystal layer composed of a nematic liquid crystal having the property of being aligned with the molecular major axis of liquid crystal molecules aligned in the alignment treatment direction and substantially parallel to the substrate surface, and being one of the pair of substrates A plurality of elongated electrode portions formed in parallel in a predetermined unit region for forming one pixel on the inner surface of the inner surface of the inner surface of the inner surface of the first electrode; Between the plurality of elongated electrode portions of the first electrode by applying a voltage between the first electrode and the first electrode. The orientation of the molecular long axis of the liquid crystal molecules is substantially flat with the substrate surface. There is a lateral electric field control type provided with a second electrode for generating a transverse electric field is changed to a direction.

この横電界制御型液晶表示素子は、前記第1の電極の複数の細長電極部と第2の電極と電極間に表示データに対応した横電界を生成することにより、前記第1と第2の電極とが対応する領域からなる複数の画素の液晶分子の分子長軸の向きを、前記基板面と実質的に平行な面内において制御して画像を表示する。   The lateral electric field control type liquid crystal display element generates the lateral electric field corresponding to display data between the plurality of elongated electrode portions of the first electrode, the second electrode, and the electrodes, thereby the first and second electrodes. An image is displayed by controlling the orientation of the molecular major axis of the liquid crystal molecules of a plurality of pixels composed of regions corresponding to the electrodes in a plane substantially parallel to the substrate surface.

ところで、前記横電界制御型液晶表示素子においては、視野角による色ずれが無い広視野の表示を行なうために、前記第1の電極の複数の細長電極部を、“く”の字形状に屈曲した形状に形成し、その屈曲部を挟む2つの細長辺部のうちの一方の細長辺部と前記第2の電極との間に生成する横電界の向きと、他方の細長辺部と前記第2の電極との間に生成する横電界の向きとを互いに異ならせることにより、各画素内において液晶分子を異なる2つの方向に配列させることが望まれている(特許文献1参照)。
特開2002−182230号公報
By the way, in the lateral electric field control type liquid crystal display element, a plurality of elongated electrode portions of the first electrode are bent into a “<” shape in order to display a wide field of view without a color shift due to a viewing angle. The direction of the transverse electric field generated between one of the two elongated sides and the second electrode sandwiching the bent portion and the second electrode, and the other elongated side and the first It is desired to arrange liquid crystal molecules in two different directions in each pixel by making the directions of the transverse electric field generated between the two electrodes different from each other (see Patent Document 1).
JP 2002-182230 A

しかし、前記第1の電極の複数の細長電極部を“く”の字形状に屈曲した形状に形成した横電界制御型液晶表示素子は、強い横電界を生成したときに、前記細長電極部の一方の細長辺部の一側縁に沿った領域の液晶分子と、前記細長電極部の他方の細長辺部の他側縁に沿った領域の液晶分子が、基板内面の配向処理によるプレチルトの傾きとは逆の傾きにチルトし、表示むらを生じるという問題をもっている。   However, a lateral electric field control type liquid crystal display element formed by bending a plurality of elongated electrode portions of the first electrode into a “<” shape is formed when the strong lateral electric field is generated. The liquid crystal molecules in the region along one side edge of one elongated side portion and the liquid crystal molecules in the region along the other side edge of the other elongated side portion of the elongated electrode portion are inclined by a pretilt due to the alignment treatment on the inner surface of the substrate. It has the problem of tilting in the opposite direction to causing display unevenness.

この発明は、広視野で、しかも表示むらの無い良好な表示品質の横電界制御型液晶表示素子を提供することを目的としたものである。   An object of the present invention is to provide a lateral electric field control type liquid crystal display element having a wide field of view and good display quality without display unevenness.

この発明の液晶表示素子は、
予め定めた間隙を設けて対向配置され、互いに対向する内面それぞれに、互いに平行で且つ逆向き方向の配向処理が施された一対の基板と、
前記一対の基板間の間隙に封入され、負の誘電異方性を有するネマティック液晶からなり、その液晶分子が、分子長軸を前記配向処理方向に揃えて前記基板面と実質的に平行に配列した液晶層と、
前記一対の基板の互いに対向する内面のうちの一方の基板の内面に設けられ、1つの画素を形成するための予め定めた単位領域に、細長形状の複数の電極部が間隔を設けて並列に形成され、且つ前記複数の細長電極部それぞれが前記配向処理の方向に対して異なる角度で延びる2つの細長辺部をそれぞれの一方端で互いに交差する形状に形成された第1の電極と、
一方の基板の内面の前記第1の電極よりも前記一方の基板側に前記第1の電極と絶縁して配置され、前記第1の電極との間への電圧の印加により、前記第1の電極の前記複数の細長電極部との間に、前記液晶分子の分子長軸の向きを前記基板面と実質的に平行な方向に変化させる横電界を生成する第2の電極と、
を備えたことを特徴とする。
The liquid crystal display element of the present invention is
A pair of substrates that are arranged opposite to each other with a predetermined gap, and each of the inner surfaces facing each other is subjected to alignment treatment in parallel and in opposite directions;
The nematic liquid crystal is sealed in the gap between the pair of substrates and has negative dielectric anisotropy, and the liquid crystal molecules are aligned substantially parallel to the substrate surface with the molecular long axes aligned with the alignment treatment direction. Liquid crystal layer,
A plurality of elongated electrode portions are arranged in parallel in a predetermined unit region for forming one pixel, which is provided on the inner surface of one of the pair of substrates facing each other. A first electrode formed in a shape intersecting each other at one end of two elongated side portions that are formed and each of the plurality of elongated electrode portions extends at a different angle with respect to the direction of the alignment treatment;
The first electrode on the inner surface of one substrate is disposed closer to the first substrate than the first electrode, and the first electrode is applied by applying a voltage between the first electrode and the first electrode. A second electrode that generates a transverse electric field that changes the direction of the molecular major axis of the liquid crystal molecules in a direction substantially parallel to the substrate surface between the plurality of elongated electrode portions of the electrode;
It is provided with.

この発明の液晶表示素子によれば、液晶分子が、前記配向処理によるプレチルトの傾きとは逆の傾きにチルトする配向ムラが抑制され、表示むらの無い良好な表示品質を得ることができる。   According to the liquid crystal display element of the present invention, the alignment unevenness in which the liquid crystal molecules are tilted at a tilt opposite to the pretilt tilt by the alignment treatment is suppressed, and a good display quality without display unevenness can be obtained.

図1〜図6はこの発明の一実施例を示しており、図1は液晶表示素子の一方の基板の一部分の平面図、図2は前記液晶表示素子の図1のII−II線に沿う断面図である。   1 to 6 show an embodiment of the present invention. FIG. 1 is a plan view of a part of one substrate of a liquid crystal display element, and FIG. 2 is taken along the line II-II in FIG. It is sectional drawing.

この液晶表示素子は、図1及び図2のように、予め定めた間隙を設けて対向配置された観察側(図2において上側)及びその反対側の一対の透明基板1,2と、前記一対の基板1,2間の間隙に封入された液晶層3と、前記一対の基板1,2の互いに対向する内面のうちの一方の基板の内面、例えば観察側とは反対側の基板2の内面に、互いに絶縁して設けられ、電圧の印加により前記基板1,2面と実質的に平行な横電界を生成し、この横電界によって前記液晶層3の液晶分子の分子長軸の向きを制御する複数の画素100をマトリックス状に配列させて形成するための第1と第2の透明電極44と、前記一対の基板1,2の外面にそれぞれ配置された観察側及びその反対側の一対の偏光板19,20とを備えている。   As shown in FIGS. 1 and 2, the liquid crystal display element includes a pair of transparent substrates 1 and 2 on the observation side (upper side in FIG. 2) and the opposite side arranged opposite to each other with a predetermined gap therebetween. Liquid crystal layer 3 sealed in the gap between the substrates 1 and 2 and the inner surface of one of the opposing inner surfaces of the pair of substrates 1 and 2, for example, the inner surface of the substrate 2 opposite to the observation side In addition, a lateral electric field substantially parallel to the surfaces of the substrates 1 and 2 is generated by applying a voltage, and the orientation of the molecular major axis of the liquid crystal molecules of the liquid crystal layer 3 is controlled by the lateral electric field. First and second transparent electrodes 44 for forming a plurality of pixels 100 arranged in a matrix, and a pair of observation sides and opposite pairs arranged on the outer surfaces of the pair of substrates 1 and 2, respectively. Polarizing plates 19 and 20 are provided.

以下、前記観察側の基板1を前基板、観察側とは反対側の基板2を後基板、前記前基板1の外面に配置された観察側の偏光板19を前側偏光板、前記後基板2の外面に配置された反対側の偏光板20を後側偏光板という。   Hereinafter, the substrate 1 on the observation side is the front substrate, the substrate 2 on the opposite side to the observation side is the rear substrate, the polarizing plate 19 on the observation side arranged on the outer surface of the front substrate 1 is the front polarizing plate, and the rear substrate 2 The polarizing plate 20 on the opposite side disposed on the outer surface is referred to as a rear polarizing plate.

前記一対の基板1,2は、図示しない枠状のシール材を介して接合されており、前記液晶層3は、前記一対の基板1,2間の間隙の前記シール材により囲まれた領域に封入されている。   The pair of substrates 1 and 2 are joined via a frame-shaped sealing material (not shown), and the liquid crystal layer 3 is in a region surrounded by the sealing material in the gap between the pair of substrates 1 and 2. It is enclosed.

この液晶表示素子は、アクティブマトリックス液晶表示素子であり、前記後基板2の内面に互いに絶縁して設けられた第1と第2の電極44のうち、第1の電極4は、行方向(画面の左右方向)及び列方向(画面の上下方向)にマトリックス状に配列させて配置された複数の画素電極、第2の電極5は、前記各行毎に、その行の各画素電極4に対応させて配置された対向電極である。   This liquid crystal display element is an active matrix liquid crystal display element. Of the first and second electrodes 44 provided on the inner surface of the rear substrate 2 so as to be insulated from each other, the first electrode 4 has a row direction (screen). A plurality of pixel electrodes and second electrodes 5 arranged in a matrix in the column direction (vertical direction of the screen) correspond to each pixel electrode 4 in that row for each row. It is the counter electrode arrange | positioned.

そして、前記前記後基板2の内面には、前記複数の画素電極4と前記対向電極5とが対応する領域からなる複数の画素100にそれぞれ対応させて配置された複数の能動素子6と、前記行方向に配列された複数の画素100からなる各画素行毎に配置された複数の走査線12と、前記列方向に配列された複数の画素100からなる各画素列毎に配置された複数の信号線13とが設けられている。   A plurality of active elements 6 disposed on the inner surface of the rear substrate 2 so as to correspond to the plurality of pixels 100 each having a region corresponding to the plurality of pixel electrodes 4 and the counter electrode 5; A plurality of scanning lines 12 arranged for each pixel row composed of a plurality of pixels 100 arranged in the row direction, and a plurality of scanning lines arranged for each pixel column composed of the plurality of pixels 100 arranged in the column direction. A signal line 13 is provided.

前記能動素子6は、信号の入力電極10及び出力電極11と、前記入力電極10と出力電極11との間の導通を制御する制御電極7とを有しており、前記制御電極7が各行毎に走査線12に接続され、前記入力電極10が各列毎に信号線13に接続され、前記出力電極11が前記画素電極4に接続されている。   The active element 6 includes a signal input electrode 10 and an output electrode 11, and a control electrode 7 that controls conduction between the input electrode 10 and the output electrode 11. The control electrode 7 is provided for each row. Are connected to the scanning line 12, the input electrode 10 is connected to the signal line 13 for each column, and the output electrode 11 is connected to the pixel electrode 4.

前記能動素子6は、例えばTFT(薄膜トランジスタ)であり、前記後基板2の基板面上に形成されたゲート電極(制御電極)7と、前記ゲート電極7を覆って後基板2の略全面に形成された透明なゲート絶縁膜8と、このゲート絶縁膜8の上に前記ゲート電極7と対向させて形成されたi型半導体膜9と、前記i型半導体膜9の両側部の上にn型半導体膜(図示せず)を介して設けられたドレイン電極(入力電極)10及びソース電極(出力電極)11とからなっている。   The active element 6 is, for example, a TFT (thin film transistor), and is formed on a substantially entire surface of the rear substrate 2 covering the gate electrode 7 and a gate electrode (control electrode) 7 formed on the substrate surface of the rear substrate 2. The transparent gate insulating film 8 formed, the i-type semiconductor film 9 formed on the gate insulating film 8 so as to face the gate electrode 7, and the n-type on both sides of the i-type semiconductor film 9 It consists of a drain electrode (input electrode) 10 and a source electrode (output electrode) 11 provided via a semiconductor film (not shown).

前記複数の走査線12は、前記後基板2の基板面上に、前記各画素行の一側(図1において下側)に沿わせて前記画素行と平行に形成され、各行のTFT6のゲート電極7にそれぞれ接続されており、前記複数の信号線13は、前記ゲート絶縁膜8の上に、前記各画素列の一側(図1において左側)に沿わせて前記画素列と平行に形成され、各列のTFT6のドレイン電極10にそれぞれ接続されている。   The plurality of scanning lines 12 are formed on the substrate surface of the rear substrate 2 along one side (lower side in FIG. 1) of each pixel row in parallel with the pixel row, and the gate of the TFT 6 in each row. The plurality of signal lines 13 connected to the electrodes 7 are formed on the gate insulating film 8 in parallel with the pixel columns along one side (left side in FIG. 1) of the pixel columns. And connected to the drain electrode 10 of the TFT 6 in each column.

なお、前記後基板2の縁部には、前記前基板1の外方に張出す端子配列部(図示せず)が形成されており、前記複数の走査線12及び複数の信号線13は、前記端子配列部に設けられた複数の走査線端子及び信号線端子に接続されている。   Note that a terminal array portion (not shown) extending outward from the front substrate 1 is formed at the edge of the rear substrate 2, and the plurality of scanning lines 12 and the plurality of signal lines 13 are A plurality of scanning line terminals and signal line terminals provided in the terminal array portion are connected.

そして、前記複数の画素電極4は、前記複数のTFT6及び信号線13を覆って前記後基板2の略全面に形成された透明な層間絶縁膜14の上に形成されており、前記対向電極5は、前記ゲート絶縁膜8の上に形成されている。すなわち、前記対向電極5は、前記複数の画素電極4よりも前記後基板2側に、前記層間絶縁膜14により前記複数の画素電極4と絶縁して配置されている。   The plurality of pixel electrodes 4 are formed on a transparent interlayer insulating film 14 formed on substantially the entire surface of the rear substrate 2 so as to cover the plurality of TFTs 6 and the signal lines 13. Is formed on the gate insulating film 8. In other words, the counter electrode 5 is disposed on the rear substrate 2 side of the plurality of pixel electrodes 4 so as to be insulated from the plurality of pixel electrodes 4 by the interlayer insulating film 14.

前記複数の画素電極4は、それぞれ、1つの画素100を形成するための予め定めた単位領域、例えば画面の上下方向に沿う縦幅が、前記画面の左右方向に沿う横幅よりも大きい縦長の矩形形状の領域に、前記単位領域の縦幅方向の略全長にわたる長さを有する細長形状の複数の複数の電極部41が間隔を設けて並列に形成された第1の透明導電膜(例えばITO膜)40からなっている。   Each of the plurality of pixel electrodes 4 is a predetermined unit region for forming one pixel 100, for example, a vertically long rectangle whose vertical width along the vertical direction of the screen is larger than the horizontal width along the horizontal direction of the screen. A first transparent conductive film (for example, an ITO film) in which a plurality of elongated electrode portions 41 having a length extending over substantially the entire length in the vertical width direction of the unit region are formed in parallel in the shape region at intervals. 40).

なお、前記画素電極4の複数の細長電極部41は、前記第1の導電膜40の一端縁に形成された共通接続部43に接続されており、前記第1の導電膜40の前記共通接続部43の一端側は、前記TFT6のソース電極11上に前記層間絶縁膜14を介して重ねられ、前記層間絶縁膜14に設けられた図示しないコンタクト孔において前記ソース電極11に接続されている。   Note that the plurality of elongated electrode portions 41 of the pixel electrode 4 are connected to a common connection portion 43 formed at one end edge of the first conductive film 40, and the common connection of the first conductive film 40. One end of the portion 43 is overlaid on the source electrode 11 of the TFT 6 via the interlayer insulating film 14 and is connected to the source electrode 11 in a contact hole (not shown) provided in the interlayer insulating film 14.

また、前記対向電極5は、前記各画素行毎にその全長にわたって設けられ、各行の複数の画素100の全域に対応する形状に形成された第2の透明導電膜(例えばITO膜)50からなっている。   The counter electrode 5 includes a second transparent conductive film (for example, an ITO film) 50 provided over the entire length of each pixel row and formed in a shape corresponding to the entire area of the plurality of pixels 100 in each row. ing.

なお、この実施例では、前記第2の導電膜50を、図1のように、前記各行の複数の画素100にそれぞれ対応する領域を、画素形状に対応した縦長矩形状の電極部51にパターニングし、これらの矩形状電極部51を、その一端側(走査線12が設けられた側とは反対側)において共通接続部52により接続した形状に形成しているが、この第2の導電膜50は、前記画素行の全長にわたって前記画素100の縦幅に対応する幅に形成してもよい。   In this embodiment, as shown in FIG. 1, the second conductive film 50 is patterned into a vertically-long rectangular electrode portion 51 corresponding to the pixel shape in a region corresponding to each of the plurality of pixels 100 in each row. These rectangular electrode portions 51 are formed in a shape connected by a common connection portion 52 at one end side (the side opposite to the side where the scanning line 12 is provided). 50 may be formed to have a width corresponding to the vertical width of the pixel 100 over the entire length of the pixel row.

前記第2の導電膜50は、前記複数の信号線13の上を横切って形成されており、この導電膜50と前記信号線13との交差部は、前記信号線13を覆って設けられた図示しない絶縁膜により絶縁されている。   The second conductive film 50 is formed across the plurality of signal lines 13, and an intersection between the conductive film 50 and the signal lines 13 is provided so as to cover the signal lines 13. It is insulated by an insulating film (not shown).

そして、前記各画素行にそれぞれ対応する複数の第2の導電膜50は、前記複数の画素電極4の配列領域の一端側の外側において共通接続されており(図示せず)、その共通接続部は、前記後基板2の前記端子配列部に設けられた対向電極端子に接続されている。   The plurality of second conductive films 50 corresponding to the respective pixel rows are commonly connected (not shown) outside one end side of the arrangement region of the plurality of pixel electrodes 4, and the common connection portion Is connected to a counter electrode terminal provided in the terminal array portion of the rear substrate 2.

前記第2の導電膜50からなる対向電極5は、前記画素電極4との間への電圧の印加により、前記画素電極4の複数の細長電極部41との間に、前記液晶分子3aの分子長軸の向きを前記基板1,2面と実質的に平行な方向に変化させる横電界を生成する。   The counter electrode 5 made of the second conductive film 50 is connected to the plurality of elongated electrode portions 41 of the pixel electrode 4 by applying a voltage between the counter electrode 5 and the pixel electrode 4. A transverse electric field that changes the direction of the major axis in a direction substantially parallel to the surfaces of the substrates 1 and 2 is generated.

一方、前記前基板1の内面には、前記複数の画素100の間の領域及び前記複数のTFT6に対応する遮光膜15が形成されており、その上に、前記複数の画素100にそれぞれ対応させて、赤、緑、青の3色のカラーフィルタ16R,16G,16Bが設けられている。   On the other hand, a light shielding film 15 corresponding to the regions between the plurality of pixels 100 and the plurality of TFTs 6 is formed on the inner surface of the front substrate 1, and the light shielding films 15 corresponding to the plurality of pixels 100 are respectively formed thereon. In addition, three color filters 16R, 16G, and 16B of red, green, and blue are provided.

さらに、前記一対の基板1,2の内面にはそれぞれ、前記前基板1に設けられたカラーフィルタ16R,16G,16B及び前記後基板2に設けられた複数の画素電極4を覆って、前記液晶層3の液晶分子3aを、前記基板1,2面と実質的に平行な方向に分子長軸を向けて配向させる配向性を有するポリイミド膜等の水平配向膜17,18が形成されている。   Further, the inner surfaces of the pair of substrates 1 and 2 cover the color filters 16R, 16G, and 16B provided on the front substrate 1 and the plurality of pixel electrodes 4 provided on the rear substrate 2, respectively. Horizontal alignment films 17 and 18 such as a polyimide film having an orientation for aligning the liquid crystal molecules 3a of the layer 3 with the molecular major axis in a direction substantially parallel to the surfaces of the substrates 1 and 2 are formed.

そして、前記一対の基板1,2の内面はそれぞれ、前記配向膜17,18の膜面をそれぞれ予め定めた方向にラビングすることにより、互いに平行で且つ逆向き方向に配向処理されている。   The inner surfaces of the pair of substrates 1 and 2 are aligned in parallel and in opposite directions by rubbing the film surfaces of the alignment films 17 and 18 in predetermined directions, respectively.

図3は前記画素電極4及び対向電極5の一部分の拡大平面図であり、図1及び図3において、1aは前基板1の内面の配向処理方向(配向膜17のラビング方向)、2aは後基板1の内面の配向処理方向(配向膜18のラビング方向)を示している。   FIG. 3 is an enlarged plan view of a part of the pixel electrode 4 and the counter electrode 5. In FIGS. 1 and 3, reference numeral 1a denotes an alignment treatment direction (rubbing direction of the alignment film 17) on the inner surface of the front substrate 1, and reference numeral 2a denotes a rear surface. The orientation processing direction (the rubbing direction of the orientation film 18) on the inner surface of the substrate 1 is shown.

この実施例では、前基板1の内面を、画面の右方向から左方向に向かって前記画面の左右方向と平行に配向処理し、後基板2の内面を、画面の左方向から右方向に向かって前記画面の左右方向と平行に配向処理している。   In this embodiment, the inner surface of the front substrate 1 is oriented in parallel with the left-right direction of the screen from the right direction of the screen to the left direction, and the inner surface of the rear substrate 2 is directed from the left direction of the screen to the right direction. Orientation processing in parallel with the horizontal direction of the screen.

そして、前記画素電極4の複数の細長電極部41はそれぞれ、図3のように、2つの細長辺部42a,42bがそれぞれ前記配向処理方向1a,2aに対して異なる角度で交差させて形成され、前記矩形形状の単位領域の縦幅方向の中央部において、2つの細長辺部42a,42bが互いに交差する部分で繋がった実質的に“く”の字形状に屈曲した形状に形成されている。   Each of the plurality of elongated electrode portions 41 of the pixel electrode 4 is formed by crossing two elongated side portions 42a and 42b at different angles with respect to the alignment processing directions 1a and 2a, respectively, as shown in FIG. In the central portion of the rectangular unit region in the vertical width direction, the two elongated sides 42a and 42b are substantially bent into a "<" shape connected at the intersecting portions. .

なお、前記細長電極部41の前記2つの細長辺部42a,42bは、実質的に同じ幅に形成されており、その一方の細長辺部42aの幅Wと、隣合う細長電極部41の前記一方の細長辺部42a,42a間の間隔Dとの比D/W、及び他方の細長辺部42bの幅Wと、隣合う細長電極部41の前記他方の細長辺部42b,42b間の間隔Dとの比D/Wは、それぞれ、1/3〜3/1、好ましくは1/1に設定されている。 The two elongated side portions 42a and 42b of the elongated electrode portion 41 are formed to have substantially the same width, and the width W1 of one elongated side portion 42a and the adjacent elongated electrode portion 41 are adjacent to each other. the one of the elongated side portion 42a, the ratio D 1 / W 1, and the width W 2 of the other elongate side portion 42b of the spacing D 1 of the inter-42a, adjacent elongate the other elongate side portion 42b of the electrode portion 41 , 42b, the ratio D 2 / W 2 to the distance D 2 is set to 1/3 to 3/1, preferably 1/1.

また、前記画素電極4の複数の細長電極部41の2つの細長辺部42a,42bの前記配向処理方向1a,2a(画面の左右方向)に対する傾き角は、その傾き角をθとしたとき、
70°<θ<90°
に設定されている。
The inclination angle of the two elongated side portions 42a and 42b of the plurality of elongated electrode portions 41 of the pixel electrode 4 with respect to the alignment processing directions 1a and 2a (left and right direction of the screen) is θ.
70 ° <θ <90 °
Is set to

前記細長辺部42a,42bの前記配向処理方向1a,2aに対する傾き角θは、80°±5°、より望ましくは80°±2°に設定するのが望ましい。   The inclination angle θ of the elongated side portions 42a, 42b with respect to the alignment processing directions 1a, 2a is preferably set to 80 ° ± 5 °, more preferably 80 ° ± 2 °.

また、前記液晶層3は、負の誘電異方性を有するネマティック液晶からなっており、この液晶層3の液晶分子3aは、その分子長軸を前記配向処理方向1a,2aに揃えて前記基板1,2面と実質的に平行に配列している。   The liquid crystal layer 3 is made of nematic liquid crystal having negative dielectric anisotropy, and the liquid crystal molecules 3a of the liquid crystal layer 3 have the molecular major axis aligned with the alignment treatment directions 1a and 2a. It is arranged substantially parallel to the first and second surfaces.

図4は、図3のV−V線に沿うハッチングを省略した拡大断面図であり、前記液晶分子3aは、図3及び図4のように、分子長軸を前記配向処理方向1a,2aに揃え、且つ一方の基板面、例えば後基板2面に対して、前記後基板2の内面の配向処理方向2aに向かって前記後基板2から離れる方向に一様にプレチルトした状態で前記基板1,2面と実質的に平行に配列している。   FIG. 4 is an enlarged cross-sectional view in which hatching along the line VV in FIG. 3 is omitted. As shown in FIGS. 3 and 4, the liquid crystal molecules 3a have molecular long axes in the alignment treatment directions 1a and 2a. The substrate 1 in a state of being aligned and pretilted in a direction away from the rear substrate 2 toward the orientation processing direction 2a of the inner surface of the rear substrate 2 with respect to one substrate surface, for example, the rear substrate 2 surface. They are arranged substantially parallel to the two surfaces.

また、前記前基板1とその外面に配置された前側偏光板19との間には、前記前基板1の全面にわたって、外部からの静電気を遮断するための一枚膜状の透明な静電気遮断導電膜21が設けられている。   Further, between the front substrate 1 and the front polarizing plate 19 disposed on the outer surface thereof, a single film-like transparent static electricity shielding conductive material for shielding static electricity from the outside over the entire surface of the front substrate 1. A membrane 21 is provided.

この液晶表示素子は、前記複数の画素100の画素電極4と対向電極5との間に、表示データに対応した駆動電圧を印加することにより、前記画素電極4の複数の細長電極部41と前記対向電極5との間に、前記液晶分子3aの分子長軸の向きを前記基板1,2面と実質的に平行な方向に変化させる横電界を生成し、この横電界によって前記複数の画素100の液晶分子3aの分子長軸の向きを、前記基板1,2面と実質的に平行な面内において制御して画像を表示する。   The liquid crystal display element applies a driving voltage corresponding to display data between the pixel electrode 4 and the counter electrode 5 of the plurality of pixels 100, whereby the plurality of elongated electrode portions 41 of the pixel electrode 4 A transverse electric field is generated between the counter electrode 5 and the major axis of the liquid crystal molecules 3 a in a direction substantially parallel to the surfaces of the substrates 1 and 2. The direction of the molecular long axis of the liquid crystal molecules 3a is controlled in a plane substantially parallel to the surfaces of the substrates 1 and 2 to display an image.

前記画素電極4と対向電極5との間に印加する駆動電圧は、表示データに応じて、前記横電界を生成しない実質的に0Vの最小値から、前記画素電極4の細長電極部41の細長辺部42a,42bに沿った領域の液晶分子3aを、前記配向処理方向1a,2aに対して実質的に45°の方向に分子長軸を向けて配列させる強さの横電界を生成する最大値の範囲で制御される。   The drive voltage applied between the pixel electrode 4 and the counter electrode 5 is from the minimum value of substantially 0V that does not generate the lateral electric field according to display data, and the elongated electrode portion 41 of the pixel electrode 4 is elongated. The maximum generation of a lateral electric field with a strength that aligns the liquid crystal molecules 3a in the region along the side portions 42a and 42b with the molecular major axis in a direction substantially 45 ° with respect to the alignment processing directions 1a and 2a. Controlled by a range of values.

なお、この実施例の液晶表示素子は、例えば、前側偏光板19と後側偏光板20の一方の透過軸を、前記配向処理方向1a,2aと実質的に平行にするか或いは実質的に直交させ、他方の偏光板の透過軸を前記一方の偏光板の透過軸に対して実質的に直交させた無電界暗表示型(以下、ノーマリーブラック型という)のものであり、前記画素電極4と対向電極5との間に横電界を生成しない無電界時、つまり液晶分子3aが図3のように前記配向処理方向1a,2aに分子長軸を揃えて配列したときに、その画素100の表示が黒になり、前記画素電極4と対向電極5との間に、前記液晶分子3aを、前記配向処理方向1a,2aに対して実質的に45°の方向に分子長軸を向けて配列させる強さの横電界を生成したときに、その画素100の表示が最も明るい明表示になる。   In the liquid crystal display element of this embodiment, for example, one transmission axis of the front polarizing plate 19 and the rear polarizing plate 20 is substantially parallel to or substantially orthogonal to the alignment processing directions 1a and 2a. And the pixel electrode 4 is of a non-electric field dark display type (hereinafter referred to as normally black type) in which the transmission axis of the other polarizing plate is substantially perpendicular to the transmission axis of the one polarizing plate. When no horizontal electric field is generated between the electrode 100 and the counter electrode 5, that is, when the liquid crystal molecules 3a are aligned in the alignment treatment directions 1a and 2a with the molecular long axes aligned as shown in FIG. The display becomes black, and the liquid crystal molecules 3a are arranged between the pixel electrode 4 and the counter electrode 5 with the molecular major axis in a direction substantially 45 ° to the alignment treatment directions 1a and 2a. When a horizontal electric field having a sufficient strength is generated, the pixel 100 Display is the brightest light display.

図5は、前記画素電極4と対向電極5との間に、前記液晶分子3aを、前記配向処理方向1a,2aに対して実質的に45°の方向に分子長軸を向けて配列させる強さの横電界を生成したときの1つの画素100内の各部の液晶分子3aの分子長軸の向きを示す平面図、図6は図5のVI−VI線に沿うハッチングを省略した拡大断面図、図7は図5のVII−VII線に沿うハッチングを省略した拡大断面図である。   FIG. 5 shows that the liquid crystal molecules 3a are arranged between the pixel electrode 4 and the counter electrode 5 so that the molecular major axis is aligned in a direction substantially 45 ° with respect to the alignment processing directions 1a and 2a. FIG. 6 is an enlarged cross-sectional view in which hatching along the line VI-VI in FIG. 5 is omitted, and FIG. 6 is a plan view showing the orientation of the molecular major axis of the liquid crystal molecules 3a of each part in one pixel 100 when a horizontal electric field is generated. 7 is an enlarged sectional view in which hatching along the line VII-VII in FIG. 5 is omitted.

図5及び図7のように、横電界Eは、前記画素電極4の複数の細長電極部41の一側縁及び他側縁と、前記対向電極5の前記細長電極部41に隣接する部分との間に生成する。   As shown in FIGS. 5 and 7, the lateral electric field E includes one side edge and the other side edge of the plurality of elongated electrode portions 41 of the pixel electrode 4, and a portion of the counter electrode 5 adjacent to the elongated electrode portion 41. Generate during.

この横電界Eは、前記画素電極4の複数の細長電極部41の側縁に対して直交する方向の電界であり、液晶分子3aは、前記横電界Eの生成により、その横電界Eの強さに応じて向きを変える。   The horizontal electric field E is an electric field in a direction orthogonal to the side edges of the plurality of elongated electrode portions 41 of the pixel electrode 4, and the liquid crystal molecules 3 a generate a strong electric field by the generation of the horizontal electric field E. Change the direction accordingly.

そして、この液晶表示素子は、前記画素電極4の複数の細長電極部41を、実質的に“く”の字形状に屈曲し、その2つの細長辺部42a,42bがそれぞれ前記一対の基板1,2の内面の配向処理方向1a,2aに対して実質的に同じ角度で交差する形状に形成しているため、図5に示したように、前記画素電極4の複数の細長電極部41の一方の細長辺部42aと前記対向電極5との間に生成する横電界Eの向きと、前記細長電極部41の他方の細長辺部42bと前記対向電極5との間に生成する横電界Eの向きとを互いに異ならせ、各画素100内において液晶分子3aを異なる2つの方向に配列させて、視野角による色ずれが無い広視野の表示を行なうことができる。   In this liquid crystal display element, the plurality of elongated electrode portions 41 of the pixel electrode 4 are bent into a substantially “<” shape, and the two elongated side portions 42 a and 42 b are respectively connected to the pair of substrates 1. , 2 are formed so as to intersect at substantially the same angle with respect to the alignment processing directions 1a, 2a of the inner surfaces of the plurality of elongated electrode portions 41 of the pixel electrode 4, as shown in FIG. The direction of the horizontal electric field E generated between one elongated side portion 42 a and the counter electrode 5 and the horizontal electric field E generated between the other elongated side portion 42 b of the elongated electrode portion 41 and the counter electrode 5. The liquid crystal molecules 3a are arranged in two different directions in each pixel 100 so that a wide-field display without color shift due to the viewing angle can be performed.

しかも、この液晶表示素子は、前記一対の基板1,2間の間隙に、負の誘電異方性を有するネマティック液晶からなる液晶層3を、液晶分子3aの分子長軸を前記配向処理方向1a,2aに揃えて前記基板1,2面と実質的に平行に配列させて封入しているため、前記画素電極4と対向電極5との間に、前記液晶分子3aを、前記配向処理方向1a,2aに対して実質的に45°或いはそれに近い方向に分子長軸を向けて配列させる強い横電界Eを生成したときも、液晶分子3aが、前記配向処理によるプレチルトの傾きとは逆の傾きにチルトすることは無い。   In addition, in this liquid crystal display element, the liquid crystal layer 3 made of nematic liquid crystal having negative dielectric anisotropy is formed in the gap between the pair of substrates 1 and 2, and the molecular major axis of the liquid crystal molecules 3a is set in the alignment processing direction 1a. , 2a aligned and substantially parallel to the surfaces of the substrates 1 and 2, and sealed, the liquid crystal molecules 3a are placed between the pixel electrode 4 and the counter electrode 5 in the alignment processing direction 1a. , 2a, the liquid crystal molecules 3a have a tilt opposite to the tilt of the pretilt due to the alignment process even when a strong transverse electric field E is generated with the molecular long axis oriented substantially 45 ° or close to it. Will never tilt.

すなわち、前記横電界Eは、前記画素電極4の複数の細長電極部41の一側縁及び他側縁と、前記対向電極5の前記細長電極部41に隣接する部分との間に生成するが、前記細長電極部41の一側縁と対向電極5との間に生成する横電界Eと、前記細長電極部41の他側縁と対向電極5との間に生成する横電界Eは、隣合う細長電極部41,41間の中央方向から見て、互いに逆向きの電界である。   That is, the lateral electric field E is generated between one side edge and the other side edge of the plurality of elongated electrode portions 41 of the pixel electrode 4 and a portion adjacent to the elongated electrode portion 41 of the counter electrode 5. The lateral electric field E generated between one side edge of the elongated electrode part 41 and the counter electrode 5 and the lateral electric field E generated between the other side edge of the elongated electrode part 41 and the counter electrode 5 are adjacent to each other. The electric fields are opposite to each other when viewed from the central direction between the elongated electrode portions 41 and 41 that are fitted.

また、前記画素電極4の複数の細長電極部41は、実質的に“く”の字形状に屈曲し、その2つの細長辺部42a,42bがそれぞれ前記配向処理方向1a,2aに対して実質的に同じ角度で交差する形状に形成されているため、前記細長電極部41の一方の細長辺部42aの一側縁及び他側縁と前記対向電極5との間に生成する横電界Eは、前記配向処理方向1a,2aに対して一方の方向回りに斜めに交差する方向の電界であり、前記細長電極部41の他方の細長辺部42bの一側縁及び他側縁と対向電極5との間に生成する横電界Eは、前記配向処理方向1a,2aに対して、前記一方の細長辺部42a側の横電界Eとは反対方向回りに斜めに交差する方向の電界である。   Further, the plurality of elongated electrode portions 41 of the pixel electrode 4 are bent substantially in a “<” shape, and the two elongated side portions 42 a and 42 b are substantially in the alignment processing directions 1 a and 2 a, respectively. Therefore, the transverse electric field E generated between one side edge and the other side edge of one elongated side portion 42a of the elongated electrode portion 41 and the counter electrode 5 is formed. And an electric field in a direction obliquely intersecting one direction with respect to the alignment processing directions 1a and 2a, and the one side edge and the other side edge of the other elongated side portion 42b of the elongated electrode portion 41 and the counter electrode 5 The horizontal electric field E generated between the first and second thin films 42a and 2a is an electric field that obliquely intersects with the orientation processing directions 1a and 2a in the direction opposite to the horizontal electric field E on the one long side portion 42a side.

つまり、前記画素電極4の細長電極部41の一方の細長辺部42aの一側縁及び他側縁と対向電極5との間に生成する横電界Eのうちの前記一側縁側に生成する横電界Eと、前記細長電極部41の他方の細長辺部42bの一側縁及び他側縁と対向電極5との間に生成する横電界Eのうちの前記他側縁側に生成する横電界Eはそれぞれ、液晶分子3aを、基板内面の配向処理によるプレチルトの傾きとは逆の傾きにチルトさせる向きの電界(以下、逆向き電界という)である。   That is, the horizontal electric field generated on the one side edge side of the horizontal electric field E generated between the one side edge and the other side edge of the elongated side part 42 a of the elongated electrode part 41 of the pixel electrode 4 and the counter electrode 5. A lateral electric field E generated on the other side edge side of an electric field E and a lateral electric field E generated between one side edge and the other side edge of the other elongated side part 42 b of the elongated electrode part 41 and the counter electrode 5. Are respectively electric fields (hereinafter referred to as reverse electric fields) in which the liquid crystal molecules 3a are tilted at a tilt opposite to the tilt of the pretilt by the alignment treatment of the inner surface of the substrate.

一方、横電界Eによる液晶分子の分子長軸の向きの変化方向(配向処理方向1a,2aに分子長軸を向けて配列した無電界状態からの変化方向)は、液晶の誘電異方性によって異なり、液晶の誘電異方性が正であるときは、液晶分子が、前記横電界Eの向きに対する分子長軸の角度が小さくなる方向に向きを変える。   On the other hand, the direction of change in the direction of the molecular long axis of the liquid crystal molecules due to the transverse electric field E (the direction of change from the no-field state in which the molecular long axes are aligned in the alignment treatment directions 1a and 2a) In contrast, when the dielectric anisotropy of the liquid crystal is positive, the liquid crystal molecules change the direction in which the angle of the molecular major axis with respect to the direction of the transverse electric field E decreases.

図8は、画素電極4を上記実施例と同じ形状に形成し、一対の基板1,2の内面を画面の上下方向と平行な方向に配向処理するとともに、前記一対の基板1,2間の間隙に、正の誘電異方性を有するネマティック液晶からなる液晶層を封入した比較例における、前記画素電極4と対向電極5との間に、液晶分子を、前記配向処理方向1a,2aに対して実質的に45°の方向に分子長軸を向けて配列させる強さの横電界を生成したときの1つの画素100内の各部の液晶分子の分子長軸の向きを示す平面図、図9は図8のIX−IX線に沿うハッチングを省略した拡大断面図、図10は図8のX−X線に沿うハッチングを省略した拡大断面図である。   In FIG. 8, the pixel electrode 4 is formed in the same shape as in the above embodiment, the inner surfaces of the pair of substrates 1 and 2 are aligned in a direction parallel to the vertical direction of the screen, and between the pair of substrates 1 and 2. In a comparative example in which a liquid crystal layer made of nematic liquid crystal having positive dielectric anisotropy is sealed in the gap, liquid crystal molecules are placed between the pixel electrode 4 and the counter electrode 5 in the alignment processing directions 1a and 2a. FIG. 9 is a plan view showing the orientation of the molecular major axis of the liquid crystal molecules in each part in one pixel 100 when a transverse electric field having a strength to align the molecular major axis in a substantially 45 ° direction is generated. FIG. 10 is an enlarged sectional view in which hatching along the line IX-IX in FIG. 8 is omitted, and FIG. 10 is an enlarged sectional view in which hatching along the line XX in FIG. 8 is omitted.

図8のように、液晶の誘電異方性が正であるときは、その液晶分子3bが、前記横電界Eの生成により、前記横電界Eの向きに対する分子長軸の角度が小さくなる方向、つまり図8において左回り方向に向きを変える。   As shown in FIG. 8, when the dielectric anisotropy of the liquid crystal is positive, the liquid crystal molecules 3b have a direction in which the angle of the molecular major axis with respect to the direction of the transverse electric field E decreases due to the generation of the transverse electric field E. That is, the direction is changed in the counterclockwise direction in FIG.

そして、前記横電界Eが、液晶分子3bの分子長軸方向を前記配向処理方向1a,2aに対して小さい角度で変化させる弱い電界であるとき、つまり液晶分子3bに作用する横電界Eのチルト配向力が基板内面の配向処理によるプレチルト配向力(配向膜17,18の配向力)よりも弱いときは、液晶分子3bが、基板内面の配向力により、前記逆向き電界生成領域においても、前記基板内面の配向処理によるプレチルトの傾き方向にチルトした状態で向きを変える。   When the transverse electric field E is a weak electric field that changes the molecular major axis direction of the liquid crystal molecules 3b at a small angle with respect to the alignment treatment directions 1a and 2a, that is, the tilt of the transverse electric field E acting on the liquid crystal molecules 3b. When the alignment force is weaker than the pretilt alignment force (alignment force of the alignment films 17 and 18) obtained by the alignment treatment on the inner surface of the substrate, the liquid crystal molecules 3b are also in the reverse electric field generating region due to the alignment force on the inner surface of the substrate. The direction is changed in a tilted state in the tilt direction of the pretilt by the alignment treatment of the substrate inner surface.

しかし、前記横電界Eが、液晶分子3bの分子長軸方向を前記配向処理方向1a,2aに対して大きい角度で変化させる強い電界であるときは、液晶分子3bに作用する横電界Eのチルト配向力が、前記基板内面の配向処理によるプレチルト配向力よりも強くなり、図8において上側の細長辺部42aの右側縁に沿った逆向き電界生成領域S1の液晶分子3bと、下側の細長辺部42bの左側縁に沿った逆向き電界生成領域S2の液晶分子3bが、前記配向処理によるプレチルトの傾き(図において、太く塗りつぶした分子端側から見て斜め右下方向に向かって後基板2から離れる方向の傾き)とは逆の傾き(斜め左上方向に向かって後基板2から離れる方向の傾き)にチルトする。   However, when the lateral electric field E is a strong electric field that changes the molecular major axis direction of the liquid crystal molecules 3b at a large angle with respect to the alignment processing directions 1a and 2a, the tilt of the lateral electric field E acting on the liquid crystal molecules 3b. The alignment force becomes stronger than the pretilt alignment force due to the alignment process on the inner surface of the substrate, and in FIG. 8, the liquid crystal molecules 3b in the reverse electric field generation region S1 along the right edge of the upper elongated side portion 42a and the lower elongated shape. The liquid crystal molecules 3b in the reverse electric field generating region S2 along the left edge of the side portion 42b are inclined by the pre-tilt due to the alignment process (in the figure, obliquely downward to the right when viewed from the end of the thickly painted molecule). Tilt to an inclination opposite to the inclination away from 2) (an inclination away from the rear substrate 2 toward the diagonally upper left direction).

そのため、この比較例では、画素電極4と対向電極5との間に強い横電界Eを生成したときに、画素内の各逆向き電界生成領域S1,S2に、液晶分子3aの逆チルト(プレチルトの傾きとは逆の傾きのチルト)による表示むらを生じる。   For this reason, in this comparative example, when a strong lateral electric field E is generated between the pixel electrode 4 and the counter electrode 5, the reverse tilt (pretilt) of the liquid crystal molecules 3a is applied to the reverse electric field generation regions S1 and S2 in the pixel. Display unevenness due to a tilt that is opposite to the tilt of.

この比較例に対し、上記実施例の液晶表示素子は、画素電極4を上記のような形状に形成し、一対の基板1,2の内面を画面の上下方向に対して直交する方向に配向処理するとともに、前記一対の基板1,2間の間隙に、負の誘電異方性を有するネマティック液晶からなる液晶層3を封入しているため、前記液晶層3の液晶分子3bが、前記横電界Eの生成により、前記横電界Eの向きに対する分子長軸の角度が大きくなる方向、つまり図5において右回り方向に向きを変える。   In contrast to this comparative example, in the liquid crystal display element of the above embodiment, the pixel electrode 4 is formed in the shape as described above, and the inner surfaces of the pair of substrates 1 and 2 are aligned in a direction perpendicular to the vertical direction of the screen. In addition, since the liquid crystal layer 3 made of nematic liquid crystal having negative dielectric anisotropy is sealed in the gap between the pair of substrates 1 and 2, the liquid crystal molecules 3b of the liquid crystal layer 3 are The generation of E changes the direction in which the angle of the molecular long axis with respect to the direction of the transverse electric field E increases, that is, the clockwise direction in FIG.

そのため、この液晶表示素子は、画素電極4と対向電極5との間に、液晶分子3aを、前記配向処理方向1a,2aに対して実質的に45°の方向に分子長軸を向けて配列させる最も強い横電界Eを生成したときでも、前記配向処理方向1a,2aに対する分子長軸方向の角度ψa(45°)は、前記横電界Eの向きに対する液晶分子3aの分子長軸方向の角度ψbよりも小さい。   Therefore, in this liquid crystal display element, the liquid crystal molecules 3a are arranged between the pixel electrode 4 and the counter electrode 5 with the molecular major axis in a direction substantially 45 ° with respect to the alignment treatment directions 1a and 2a. Even when the strongest transverse electric field E to be generated is generated, the angle ψa (45 °) in the molecular major axis direction with respect to the alignment treatment directions 1a and 2a is the angle in the molecular major axis direction of the liquid crystal molecules 3a with respect to the direction of the lateral electric field E. It is smaller than ψb.

そのため、前記画素電極4と対向電極5との間に、前記液晶分子3aを、前記配向処理方向1a,2aに対して実質的に45°或いはそれに近い方向に分子長軸を向けて配列させる強い横電界Eを生成したときも、前記画素電極4の細長電極部41の一方の細長辺部42aの一側縁及び他側縁に沿った領域、つまり液晶分子3aを基板内面の配向処理によるプレチルトの傾き方向と同じ傾きにチルトさせる向きの横電界Eが生成する領域と、液晶分子3aを基板内面の配向処理によるプレチルトの傾き方向とは逆の傾きにチルトさせる逆向きの横電界Eが生成する領域の両方の液晶分子3aが、前記横電界Eによる逆チルトを生じること無く、前記配向処理によるプレチルトの傾き方向にチルトした状態で分子長軸方向を変える。   For this reason, the liquid crystal molecules 3a are arranged between the pixel electrode 4 and the counter electrode 5 with the molecular major axis oriented substantially at 45 ° or close to the alignment processing directions 1a and 2a. Even when the horizontal electric field E is generated, a region along one side edge and the other side edge of the elongate electrode portion 41a of the elongate electrode portion 41 of the pixel electrode 4, that is, the liquid crystal molecules 3a is pre-tilted by the alignment treatment on the inner surface of the substrate. A region in which a lateral electric field E is generated that is tilted to the same tilt direction as the tilt direction and a lateral electric field E in a reverse direction that tilts the liquid crystal molecules 3a to a tilt opposite to the tilt direction of the pretilt by the alignment treatment on the inner surface of the substrate is generated. Both the liquid crystal molecules 3a in the region to be changed change the molecular major axis direction in a state where the liquid crystal molecules 3a are tilted in the tilt direction of the pretilt by the alignment treatment without causing reverse tilt due to the lateral electric field E.

このように、この液晶表示素子は、前記画素電極4と対向電極5との間に強い横電界Eを生成したときも、液晶分子3aが、前記配向処理によるプレチルトの傾きとは逆の傾きにチルトすることは無く、したがって、図5〜図7のように、前記画素電極4の複数の細長電極部41の全長にわたって、その一側縁及び他側縁に沿った領域の液晶分子3aのチルト方向を同じにし、表示むらの無い良好な表示品質を得ることができる。   As described above, in the liquid crystal display element, even when a strong lateral electric field E is generated between the pixel electrode 4 and the counter electrode 5, the liquid crystal molecules 3a have an inclination opposite to the inclination of the pretilt due to the alignment treatment. Therefore, as shown in FIGS. 5 to 7, the tilt of the liquid crystal molecules 3 a in the region along the one side edge and the other side edge over the entire length of the plurality of elongated electrode portions 41 of the pixel electrode 4, as shown in FIGS. It is possible to obtain a good display quality with the same direction and no display unevenness.

また、この液晶表示素子は、前記画素電極4の複数の細長電極部41の2つの細長辺部42a,42aの前記配向処理方向1a,2aに対する傾き角θを、
70°<θa<90°
に設定しているため、前記横電界による液晶分子の逆チルトを、効果的に無くすことができる。
Further, the liquid crystal display element has an inclination angle θ with respect to the alignment processing directions 1a and 2a of the two elongated side portions 42a and 42a of the plurality of elongated electrode portions 41 of the pixel electrode 4,
70 ° <θa <90 °
Therefore, the reverse tilt of the liquid crystal molecules due to the lateral electric field can be effectively eliminated.

前記細長辺部42a,42bの前記配向処理方向1a,2aに対する傾き角θは、80°±5°、より望ましくは80°±2°に設定するのが望ましく、このようにすることにより、前記横電界Eによる液晶分子3aの逆チルトを、より確実に無くすことができる。   The inclination angle θ of the elongated side portions 42a, 42b with respect to the alignment processing directions 1a, 2a is preferably set to 80 ° ± 5 °, more preferably 80 ° ± 2 °. The reverse tilt of the liquid crystal molecules 3a due to the lateral electric field E can be eliminated more reliably.

なお、上記実施例では、前記画素電極4の複数の細長電極部41を、それぞれの一端(TFT6に接続する側の端部)において共通接続しているが、前記複数の細長電極部41は、その両端において共通接続してもよい。   In the above embodiment, the plurality of elongated electrode portions 41 of the pixel electrode 4 are commonly connected at one end (the end portion on the side connected to the TFT 6). You may connect in common at the both ends.

また、上記実施例では、対向電極5を、画素100の全域に対応する形状に形成しているが、この対向電極5は、前記画素電極4の少なくとも複数の細長電極部41,41の間に対応していればよい。   In the above embodiment, the counter electrode 5 is formed in a shape corresponding to the entire area of the pixel 100, but the counter electrode 5 is interposed between at least the plurality of elongated electrode portions 41, 41 of the pixel electrode 4. It only needs to be compatible.

さらに、上記実施例の液晶表示素子は、後基板2の内面に互いに絶縁して設けられた第1と第2の電極のうちの液晶層3側の第1の電極を、マトリックス状に配列された複数の画素電極4とし、それよりも後基板2側の第2の電極を対向電極5としているが、それと逆に、液晶層3側の第1の電極を対向電極とし、それよりも後基板2側の第2の電極をマトリックス状に配列された複数の画素電極としてもよく、その場合は、前記対向電極に複数の細長電極部を形成し、前記画素電極を、画素の全域に対応する形状または前記対向電極の複数の細長電極部の間に対応する形状に形成すればよい。   Further, in the liquid crystal display element of the above embodiment, the first electrode on the liquid crystal layer 3 side of the first and second electrodes provided on the inner surface of the rear substrate 2 is arranged in a matrix. The plurality of pixel electrodes 4 and the second electrode on the rear substrate 2 side as the counter electrode 5 are used as the counter electrode 5, but conversely, the first electrode on the liquid crystal layer 3 side is used as the counter electrode and the back side thereof. The second electrode on the substrate 2 side may be a plurality of pixel electrodes arranged in a matrix. In that case, a plurality of elongated electrode portions are formed on the counter electrode, and the pixel electrode is applied to the entire area of the pixel. Or a shape corresponding to between the plurality of elongated electrode portions of the counter electrode.

また、上記実施例では、前記第1と第2の電極を後基板2の内面に設けているが、前記第1と第2の電極は、前基板1の内面に設けてもよい。   In the above embodiment, the first and second electrodes are provided on the inner surface of the rear substrate 2. However, the first and second electrodes may be provided on the inner surface of the front substrate 1.

この発明の一実施例を示す液晶表示素子の一方の基板の一部分の平面図。The top view of a part of one board | substrate of the liquid crystal display element which shows one Example of this invention. 前記液晶表示素子の図1のII−II線に沿う断面図。Sectional drawing which follows the II-II line | wire of FIG. 1 of the said liquid crystal display element. 前記液晶表示素子の画素電極及び対向電極の一部分の拡大平面図。FIG. 3 is an enlarged plan view of a part of a pixel electrode and a counter electrode of the liquid crystal display element. 前記画素電極の1つの細長電極部の拡大平面図。The enlarged plan view of one elongate electrode part of the said pixel electrode. 前記画素電極と対向電極との間に横電界を生成したときの1つの画素内の各部の液晶分子の分子長軸の向きを示す平面図。The top view which shows direction of the molecular long axis of the liquid crystal molecule of each part in one pixel when a horizontal electric field is produced | generated between the said pixel electrode and a counter electrode. 図5のVI−VI線に沿うハッチングを省略した拡大断面図。The expanded sectional view which abbreviate | omitted hatching along the VI-VI line of FIG. 図5のVII−VII線に沿うハッチングを省略した拡大断面図。The expanded sectional view which abbreviate | omitted hatching along the VII-VII line of FIG. 基板間に正の誘電異方性を有するネマティック液晶からなる液晶層を封入した比較例における、画素電極と対向電極との間に横電界を生成したときの1つの画素内の各部の液晶分子の分子長軸の向きを示す平面図。In a comparative example in which a liquid crystal layer made of nematic liquid crystal having positive dielectric anisotropy is sealed between substrates, liquid crystal molecules in each part in one pixel when a horizontal electric field is generated between the pixel electrode and the counter electrode The top view which shows direction of a molecular long axis. 図8のIX−IX線に沿うハッチングを省略した拡大断面図。The expanded sectional view which abbreviate | omitted hatching along the IX-IX line of FIG. 図8のX−X線に沿うハッチングを省略した拡大断面図。The expanded sectional view which abbreviate | omitted hatching along the XX line of FIG.

符号の説明Explanation of symbols

1,2…基板、1a,1b…配向処理方向、3…液晶層、3a…液晶分子、4…画素電極、41…細長電極部、42a,42b…細長辺部、5…対向電極、6…TFT(能動素子)、12…走査線、13…信号線、14…層間絶縁膜、15…遮光膜、16R,16G,16B…カラーフィルタ、17,18…配向膜、19,20…偏光板、21…静電気遮断導電膜、100…画素、E…横電界。   DESCRIPTION OF SYMBOLS 1, 2 ... Substrate, 1a, 1b ... Orientation process direction, 3 ... Liquid crystal layer, 3a ... Liquid crystal molecule, 4 ... Pixel electrode, 41 ... Elongate electrode part, 42a, 42b ... Elongated side part, 5 ... Counter electrode, 6 ... TFT (active element), 12 ... scanning line, 13 ... signal line, 14 ... interlayer insulating film, 15 ... light shielding film, 16R, 16G, 16B ... color filter, 17, 18 ... alignment film, 19, 20 ... polarizing plate, 21 ... Electrostatic shielding conductive film, 100 ... Pixel, E ... Lateral electric field.

Claims (2)

予め定めた間隙を設けて対向配置され、互いに対向する内面それぞれに、互いに平行で且つ逆向き方向の配向処理が施された一対の基板と、
前記一対の基板間の間隙に封入され、負の誘電異方性を有するネマティック液晶からなり、その液晶分子が、分子長軸を前記配向処理方向に揃えて前記基板面と実質的に平行に配列した液晶層と、
前記一対の基板の互いに対向する内面のうちの一方の基板の内面に設けられ、1つの画素を形成するための予め定めた単位領域に、細長形状の複数の電極部が間隔を設けて並列に形成され、且つ前記複数の細長電極部それぞれが前記配向処理の方向に対して異なる角度で延びる2つの細長辺部をそれぞれの一方端で互いに交差する形状に形成された第1の電極と、
一方の基板の内面の前記第1の電極よりも前記一方の基板側に前記第1の電極と絶縁して配置され、前記第1の電極との間への電圧の印加により、前記第1の電極の前記複数の細長電極部との間に、前記液晶分子の分子長軸の向きを前記基板面と実質的に平行な方向に変化させる横電界を生成する第2の電極と、
を備えたことを特徴とする液晶表示素子。
A pair of substrates that are arranged opposite to each other with a predetermined gap, and each of the inner surfaces facing each other is subjected to alignment treatment in parallel and in opposite directions;
The nematic liquid crystal is sealed in the gap between the pair of substrates and has negative dielectric anisotropy, and the liquid crystal molecules are aligned substantially parallel to the substrate surface with the molecular long axes aligned with the alignment treatment direction. Liquid crystal layer,
A plurality of elongated electrode portions are arranged in parallel in a predetermined unit region for forming one pixel, which is provided on the inner surface of one of the pair of substrates facing each other. A first electrode formed in a shape intersecting each other at one end of two elongated side portions that are formed and each of the plurality of elongated electrode portions extends at a different angle with respect to the direction of the alignment treatment;
The first electrode on the inner surface of one substrate is disposed closer to the first substrate than the first electrode, and the first electrode is applied by applying a voltage between the first electrode and the first electrode. A second electrode that generates a transverse electric field that changes the direction of the molecular major axis of the liquid crystal molecules in a direction substantially parallel to the substrate surface between the plurality of elongated electrode portions of the electrode;
A liquid crystal display element comprising:
第1の電極の複数の細長電極部の2つの細長辺部の配向処理方向に対する傾き角をθとしたとき、その傾き角θは、
70°<θ<90°
に設定されていることを特徴とする請求項1に記載の液晶表示素子。
When the inclination angle with respect to the orientation treatment direction of the two elongated sides of the plurality of elongated electrode portions of the first electrode is θ, the inclination angle θ is
70 ° <θ <90 °
The liquid crystal display element according to claim 1, wherein the liquid crystal display element is set as follows.
JP2006263343A 2006-09-27 2006-09-27 Liquid crystal display element Pending JP2008083395A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006263343A JP2008083395A (en) 2006-09-27 2006-09-27 Liquid crystal display element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006263343A JP2008083395A (en) 2006-09-27 2006-09-27 Liquid crystal display element

Publications (1)

Publication Number Publication Date
JP2008083395A true JP2008083395A (en) 2008-04-10

Family

ID=39354337

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006263343A Pending JP2008083395A (en) 2006-09-27 2006-09-27 Liquid crystal display element

Country Status (1)

Country Link
JP (1) JP2008083395A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010008597A (en) * 2008-06-25 2010-01-14 Epson Imaging Devices Corp Liquid crystal display device
JP2011018084A (en) * 2010-10-27 2011-01-27 Casio Computer Co Ltd Liquid crystal display element
US8004643B2 (en) 2008-03-26 2011-08-23 Casio Computer Co., Ltd. Liquid crystal display device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09311334A (en) * 1996-04-16 1997-12-02 Oobayashi Seiko Kk Liquid crystal display device
JP2000356786A (en) * 1999-06-16 2000-12-26 Nec Corp Liquid crystal display device
JP2002221726A (en) * 2000-12-05 2002-08-09 Hyundai Display Technology Inc Liquid crystal display device
JP2003015146A (en) * 2001-07-04 2003-01-15 Hitachi Ltd Liquid crystal display

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09311334A (en) * 1996-04-16 1997-12-02 Oobayashi Seiko Kk Liquid crystal display device
JP2000356786A (en) * 1999-06-16 2000-12-26 Nec Corp Liquid crystal display device
JP2002221726A (en) * 2000-12-05 2002-08-09 Hyundai Display Technology Inc Liquid crystal display device
JP2003015146A (en) * 2001-07-04 2003-01-15 Hitachi Ltd Liquid crystal display

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8004643B2 (en) 2008-03-26 2011-08-23 Casio Computer Co., Ltd. Liquid crystal display device
JP2010008597A (en) * 2008-06-25 2010-01-14 Epson Imaging Devices Corp Liquid crystal display device
JP2011018084A (en) * 2010-10-27 2011-01-27 Casio Computer Co Ltd Liquid crystal display element

Similar Documents

Publication Publication Date Title
JP4203676B2 (en) Liquid crystal display element
JP4613973B2 (en) Liquid crystal display element
JP4639968B2 (en) Liquid crystal display device
US6646707B2 (en) Fringe field switching mode LCD
JP3883244B2 (en) Liquid crystal display
JP4394114B2 (en) Liquid crystal display device and pixel electrode array thereof
JP2009181092A (en) LCD panel
JP4466596B2 (en) Orientation transition method
JP2008083395A (en) Liquid crystal display element
US7151584B2 (en) Thin film transistor liquid crystal display device for reducing color shift
JP2007133280A (en) Liquid crystal display apparatus
JP4202354B2 (en) Liquid crystal display
JP3982571B2 (en) Wide viewing angle LCD
US7268847B2 (en) In-plane switching mode thin film transistor liquid crystal display device with two domains
JP2011141487A (en) Liquid crystal display element
JP2009229970A (en) Liquid crystal display panel
JP4923916B2 (en) Liquid crystal display element
JP2002040457A (en) Liquid crystal display device
JP5286974B2 (en) Liquid crystal display element
HK1115451B (en) In plane, switching type liquid crystal display device
KR102273501B1 (en) Liquid crystal display device and manufacturing method thereof
KR101001490B1 (en) LCD Display
JP4645190B2 (en) Liquid crystal display element
KR20080059868A (en) Manufacturing apparatus of liquid crystal display panel, liquid crystal display panel using same and manufacturing method thereof
JP2007140053A (en) Liquid crystal display

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090803

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120508

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120529

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121211

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130226