[go: up one dir, main page]

JP2008094698A - Method for producing cerium-based oxide - Google Patents

Method for producing cerium-based oxide Download PDF

Info

Publication number
JP2008094698A
JP2008094698A JP2006305935A JP2006305935A JP2008094698A JP 2008094698 A JP2008094698 A JP 2008094698A JP 2006305935 A JP2006305935 A JP 2006305935A JP 2006305935 A JP2006305935 A JP 2006305935A JP 2008094698 A JP2008094698 A JP 2008094698A
Authority
JP
Japan
Prior art keywords
cerium
urea
based oxide
surface area
specific surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006305935A
Other languages
Japanese (ja)
Other versions
JP5279183B2 (en
Inventor
Hiroyuki Hayashida
裕幸 林田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daiichi Kigenso Kagaku Kogyo Co Ltd
Original Assignee
Daiichi Kigenso Kagaku Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiichi Kigenso Kagaku Kogyo Co Ltd filed Critical Daiichi Kigenso Kagaku Kogyo Co Ltd
Priority to JP2006305935A priority Critical patent/JP5279183B2/en
Publication of JP2008094698A publication Critical patent/JP2008094698A/en
Application granted granted Critical
Publication of JP5279183B2 publication Critical patent/JP5279183B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

【課題】 安価な設備で、比表面積の耐熱性に優れた酸化第二セリウムを安定して製造できる、セリウム系酸化物の製造方法を提供する。
【解決手段】
(1)セリウム塩含有溶液のフリーの酸濃度を調整する工程、(2)該溶液に尿素を添加・溶解する工程、(3)該溶液を加熱することにより、水酸化セリウムを生成させる工程、(4)水酸化セリウムをろ過する工程及び(5)水酸化セリウムを焼成する工程、を少なくとも有するセリウム系酸化物の製造方法において、前記(2)の工程における尿素添加当量をX[X(当量)={(尿素添加量)−(フリーの酸を中和するのに必要な尿素量)}/(水酸化セリウムを生成させるのに必要な尿素量)]とした時、Xを3以上とすることを特徴とする。
【選択図】なし
PROBLEM TO BE SOLVED: To provide a cerium-based oxide production method capable of stably producing ceric oxide having a specific surface area and excellent heat resistance with an inexpensive facility.
[Solution]
(1) a step of adjusting the free acid concentration of the cerium salt-containing solution, (2) a step of adding / dissolving urea to the solution, (3) a step of generating cerium hydroxide by heating the solution, (4) In the method for producing a cerium-based oxide having at least the step of filtering cerium hydroxide and (5) the step of firing cerium hydroxide, the urea addition equivalent in the step (2) is X [X (equivalent ) = {(Amount of urea added) − (amount of urea necessary to neutralize free acid)} / (amount of urea necessary to produce cerium hydroxide)]] It is characterized by doing.
[Selection figure] None

Description

本発明は、セリウム系酸化物の製造方法に関する。  The present invention relates to a method for producing a cerium-based oxide.

酸化セリウムは、Ce4+とCe3+の酸化還元電位が約1.6Vと小さく、下式の反応が可逆的に進行するため、酸素貯蔵能力(Oxygen Strage Capacity:OSC)を有しており、又、純粋な酸化セリウムを自動車用の三元触媒の助触媒或いは触媒担体として用いた場合、貴金属、特には、白金を坦持させた場合にその分散性が非常に良い、すなわち、白金粒子の高温での凝集を抑制できる、という優れた特性を持っているため、自動車用の三元触媒の助触媒或いは触媒担体として用いられている。
CeO⇔CeO2−X+X/2O(X=0〜0.5)
しかしながら、酸化セリウムは大気の温度から高速・高負荷の900℃を超える温度に晒されると、酸化セリウムの焼結が進行し、その結果、比表面積が小さくなり、その上に存在する貴金属の粒成長を促進させることになり、酸化セリウムのOSCが低下すると共に触媒の活性が低下することとなる。
そこで、最近では、このような高温の雰囲気中においても、高比表面積を保持できる、すなわち、比表面積の耐熱性に優れた酸化セリウムが求められるようになってきている。
Cerium oxide has an oxygen storage capacity (Oxygen Storage Capacity: OSC) because the redox potential of Ce 4+ and Ce 3+ is as low as about 1.6 V, and the reaction of the following formula proceeds reversibly. When pure cerium oxide is used as a co-catalyst or catalyst support for a three-way catalyst for automobiles, its dispersibility is very good when platinum is supported, that is, the high temperature of platinum particles. Therefore, it is used as a co-catalyst or catalyst carrier for a three-way catalyst for automobiles.
CeO 2 ⇔CeO 2-X + X / 2O 2 (X = 0 to 0.5)
However, when cerium oxide is exposed to a temperature exceeding 900 ° C, which is high speed and high load, from the atmospheric temperature, sintering of cerium proceeds, and as a result, the specific surface area becomes small, and noble metal particles present on the cerium oxide. Growth is promoted, and the OSC of cerium oxide decreases and the activity of the catalyst decreases.
Therefore, recently, cerium oxide that can maintain a high specific surface area even in such a high-temperature atmosphere, that is, excellent in heat resistance of the specific surface area, has been demanded.

特許文献1には、「セリウム(IV)の塩の水溶液を酸性媒体中で加水分解し、得られた沈殿をろ過し、洗浄し、場合によってはそれを乾燥し、次いで焼成することにより製造された、400〜450℃の間の温度で6時間焼成した後に100〜130m/gの比表面積(BET法で測定)を有することを特徴とする酸化第二セリウム」が記載されている。Patent Document 1 describes a product prepared by hydrolyzing an aqueous solution of a cerium (IV) salt in an acidic medium, filtering the resulting precipitate, washing, and optionally drying and then calcining. Furthermore, “cerium oxide characterized by having a specific surface area (measured by the BET method) of 100 to 130 m 2 / g after calcination at a temperature between 400 to 450 ° C. for 6 hours” is described.

又、特許文献2には、「塩基を添加してセリウムIV化合物の水性コロイド分散液を不安定化し、得られた沈澱を分離し、ついでこれを熱処理することにより製造された、気孔容積が0.15cm/g以上であり、かつ平均孔径が50オングストロームより大きいことを特徴とする、350〜550℃の温度で焼成した後に85m/g以上の比表面積を有する酸化第二セリウム」が記載されている。
しかしながら、特許文献1及び特許文献2に記載された酸化第二セリウムは、800℃で6時間焼成した場合、その比表面積は10m/g程度に減少してしまうという問題点がある。
Further, Patent Document 2 states that “the pore volume is 0, which is produced by adding a base to destabilize the aqueous colloidal dispersion of the cerium IV compound, separating the resulting precipitate, and then heat-treating the precipitate. “Cerium oxide having a specific surface area of 85 m 2 / g or more after firing at a temperature of 350 to 550 ° C., characterized in that the average pore diameter is greater than .15 cm 3 / g and the average pore diameter is larger than 50 angstroms” Has been.
However, the cerium oxide described in Patent Document 1 and Patent Document 2 has a problem that the specific surface area is reduced to about 10 m 2 / g when calcined at 800 ° C. for 6 hours.

一方、特許文献3には、「a)セリウム塩の溶液と塩基を要すれば酸化剤の存在下で反応させることによって水酸化第二セリウムを製造し、その際塩基の割合は反応媒質のpHが7以上であるような割合とし、次いで得られた沈殿を分離し、要すればそれを洗浄し、b)水酸化第二セリウムを水又は分解性塩基の水溶液に懸濁させ、c)これを閉鎖容器内で反応媒質の臨界温度及び臨界圧力よりもそれぞれ低い温度及び圧力まで加熱し、d)反応混合物を冷却し、大気圧まで戻し、e)そのように処理された水酸化第二セリウムを分離し、f)次いでそれを焼成する、ことにより製造された、800〜900℃の間の温度で少なくとも2時間焼成した後に測定して少なくとも15m/gの比表面積を示すことを特徴とする酸化第二セリウム」が記載されている。On the other hand, Patent Document 3 discloses that “a) cerium hydroxide is produced by reacting in the presence of an oxidizing agent if a cerium salt solution and a base are required, and the ratio of the base is determined according to the pH of the reaction medium. And then separating the resulting precipitate, washing it if necessary, b) suspending ceric hydroxide in water or an aqueous solution of a degradable base, c) Is heated in a closed vessel to a temperature and pressure lower than the critical temperature and pressure of the reaction medium, respectively, d) the reaction mixture is cooled and returned to atmospheric pressure, and e) so-treated ceric hydroxide. F) and then calcining it, characterized by exhibiting a specific surface area of at least 15 m 2 / g measured after calcining for at least 2 hours at a temperature between 800 and 900 ° C. Second cerium oxide "I have been described.

更に、特許文献4には、「分解性の塩基の水溶液中に次の一般式(I)Ce(M)(OH)(NO(I)(ここで、Mは第四アンモニウム基を表わし、xは0.01〜0.2であり、yはy=4−z+xであるようなものであり、zは0.4〜0.77である)に相当する水酸化第二セリウムを懸濁させ、この懸濁液を閉鎖容器内で媒体の臨界温度及び臨界圧力よりもそれぞれ低い温度及び圧力まで加熱し、反応媒体を冷却し、大気圧に戻し、このように処理された水酸化第二セリウムを分離し、次いでこれを焼成する、ことにより製造された、350℃〜450℃の温度で少なくとも2時間焼成し後に測定して少なくとも190m/gの比表面積を示すこと及び800〜900℃の温度で少なくとも2時間焼成したときに少なくとも15m/gの比表面積を維持することを特徴とする酸化第二セリウム」が記載されている。
しかしながら、特許文献3及び特許文献4に記載された方法では、高価な密閉容器(オートクレーブ)を用いる必要があり、又、得られる酸化第二セリウムの比表面積の耐熱性の再現性が悪い、すなわち、比表面積の耐熱性を持つものが安定して製造することができない、という問題点があることが明らかになりつつある。
Further, Patent Document 4 states that “in an aqueous solution of a decomposable base, the following general formula (I) Ce (M) x (OH) y (NO 3 ) z (I)” (where M is quaternary ammonium A second hydroxyl group corresponding to x, wherein 0.01 is from 0.2 to 0.2, y is such that y = 4-z + x, and z is from 0.4 to 0.77. The cerium was suspended and the suspension was heated in a closed vessel to a temperature and pressure lower than the critical temperature and critical pressure of the medium, respectively, the reaction medium was cooled and returned to atmospheric pressure, and thus treated. Producing a specific surface area of at least 190 m < 2 > / g measured after calcining at a temperature of 350 [deg.] C. to 450 [deg.] C., produced by separating ceric hydroxide and then calcining it, and When baked at a temperature of 800 to 900 ° C. for at least 2 hours Cerium oxide characterized by maintaining a specific surface area of at least 15 m 2 / g.
However, in the methods described in Patent Document 3 and Patent Document 4, it is necessary to use an expensive closed container (autoclave), and the heat resistance reproducibility of the specific surface area of the obtained cerium oxide is poor, that is, However, it is becoming clear that there is a problem that a product having heat resistance with a specific surface area cannot be stably produced.

特許第2655138号公報  Japanese Patent No. 2655138 特公平6−92253号公報  Japanese Patent Publication No. 6-92253 特公平8−18833号公報  Japanese Patent Publication No. 8-18833 特公平8−32555号公報  Japanese Patent Publication No. 8-32555

本発明は上記の問題点に鑑み成されたものであって、その目的とするところは、安価な設備で、比表面積の耐熱性に優れた酸化第二セリウムを安定して製造できる、セリウム系酸化物の製造方法を提供することにある。  The present invention has been made in view of the above-mentioned problems, and the object thereof is a cerium-based material that can stably produce ceric oxide having excellent specific surface area heat resistance with inexpensive equipment. The object is to provide a method for producing an oxide.

本発明者等は、上記目的を達成するため鋭意研究した結果、セリウム塩を尿素を用いた均一沈殿法により水酸化セリウムを生成させ、これを焼成することによりセリウム系酸化物を製造する方法において、尿素を特定当量以上添加することにより、意外にも、比表面積の耐熱性に優れたセリウム系酸化物を安定して製造できることを見出した。
この知見に基づき、本発明は、
(1)▲1▼セリウム塩含有溶液のフリーの酸濃度を調整する工程、▲2▼該溶液に尿素を添加・溶解する工程、▲3▼該溶液を加熱することにより、水酸化セリウムを生成させる工程、▲4▼水酸化セリウムをろ過する工程及び▲5▼水酸化セリウムを焼成する工程、を少なくとも有するセリウム系酸化物の製造方法において、前記(2)の工程における尿素添加当量をX[X(当量)={(尿素添加量)−(フリーの酸を中和するのに必要な尿素量)}/(水酸化セリウムを生成させるのに必要な尿素量)]とした時、Xを3以上とすることを特徴とするセリウム系酸化物の製造方法。
(2)前記▲4▼の工程の尿素含有ろ液を前記▲2▼の工程へ繰り返すことを特徴とする前記(1)記載のセリウム系酸化物の製造方法。
(3)セリウム系酸化物の350℃×10時間焼成後の比表面積が、120m/g以上であることを特徴とする前記(1)又は前記(2)記載のセリウム系酸化物の製造方法。
(4)セリウム系酸化物の800℃×4時間焼成後の比表面積が、40m/g以上であることを特徴とする前記(1)〜前記(3)記載のセリウム系酸化物の製造方法。
(5)セリウム系酸化物の900℃×4時間焼成後の比表面積が、25m/g以上であることを特徴とする前記(1)〜前記(4)記載のセリウム系酸化物の製造方法。
(6)セリウム系酸化物がTi、Y、Sc、Zr、希土類元素を含む遷移金属、アルカリ金属、アルカリ土類金属、Al、Si、から選ばれる少なくとも1種以上の金属酸化物を0.01〜30%含有していることを特徴とする前記(1)〜前記(5)記載のセリウム系酸化物の製造方法。
を提供するものである。
As a result of diligent research to achieve the above object, the present inventors have produced a cerium hydroxide from a cerium salt by a uniform precipitation method using urea, and calcining this to produce a cerium-based oxide. It has been surprisingly found that a cerium-based oxide having a specific surface area excellent in heat resistance can be stably produced by adding urea at a specific equivalent amount or more.
Based on this finding, the present invention
(1) (1) a step of adjusting the free acid concentration of the cerium salt-containing solution, (2) a step of adding and dissolving urea in the solution, and (3) heating the solution to produce cerium hydroxide. And (4) a process of filtering cerium hydroxide and (5) a process of calcining cerium hydroxide, wherein the urea addition equivalent in step (2) is X [ X (equivalent) = {(urea addition amount) − (amount of urea necessary to neutralize free acid)} / (amount of urea necessary to produce cerium hydroxide)]] A method for producing a cerium-based oxide, characterized by comprising 3 or more.
(2) The method for producing a cerium-based oxide as described in (1) above, wherein the urea-containing filtrate in the step (4) is repeated to the step (2).
(3) The method for producing a cerium-based oxide according to (1) or (2) above, wherein the specific surface area after firing the cerium-based oxide at 350 ° C. for 10 hours is 120 m 2 / g or more. .
(4) The method for producing a cerium-based oxide according to any one of (1) to (3) above, wherein the specific surface area of the cerium-based oxide after baking at 800 ° C. for 4 hours is 40 m 2 / g or more. .
(5) The method for producing a cerium-based oxide according to any one of (1) to (4) above, wherein the specific surface area of the cerium-based oxide after baking at 900 ° C. for 4 hours is 25 m 2 / g or more. .
(6) The cerium-based oxide is 0.01, at least one metal oxide selected from Ti, Y, Sc, Zr, transition metals containing rare earth elements, alkali metals, alkaline earth metals, Al, Si. The method for producing a cerium-based oxide according to any one of (1) to (5) above, wherein the content is -30%.
Is to provide.

本発明によれば、比表面積の耐熱性に優れたセリウム系酸化物を安定して製造できる簡便な製造方法を提供することができ、又、製造されたセリウム系酸化物は、自動車用の三元触媒の助触媒或いは触媒担体等として、斯界において好適に用いることが出来る。  ADVANTAGE OF THE INVENTION According to this invention, the simple manufacturing method which can manufacture stably the cerium-type oxide excellent in the heat resistance of a specific surface area can be provided, and the manufactured cerium-type oxide is three for motor vehicles. It can be suitably used in this field as a cocatalyst for the original catalyst or a catalyst carrier.

以下に本発明のセリウム系酸化物の製造方法について詳細に説明する。
なお、本発明において、「%」とは、特に断りがない場合、「重量%=質量%」を示す。
Below, the manufacturing method of the cerium-type oxide of this invention is demonstrated in detail.
In the present invention, “%” means “wt% = mass%” unless otherwise specified.

1.セリウム系酸化物の製造方法
(第一工程)
先ず、本発明においては、セリウム塩含有溶液のフリーの酸濃度を調整する。
セリウム塩としては、塩酸塩、硝酸塩、硫酸塩等が例示されるが、硝酸塩が製品への不純物の混入が少ないという見地より好ましい。なお、溶媒としては、用いるセリウム塩の種類等に応じて適宜選択すれば良いが、通常は水(好ましくは、純水又はイオン交換水)を用いることが望ましい。
セリウム塩溶液の濃度は、特に制限されないが、一般的には溶媒1000g中に酸化セリウム(CeO)として5〜200g、特に50〜100gとすることが望ましい。
フリーの酸としては、硫酸、硝酸、塩酸等が例示され、特に限定されるものではないが、硝酸が製品への不純物の混入が少ないという見地より好ましい。
フリーの酸濃度としては0.1N〜5N、好ましくは1N〜3N、特に好ましくは1.5〜2.5Nである。0.1N未満又は5Nを超えると生成した水酸化セリウムの沈降性及びろ過性が悪く、生産効率が悪くなるため好ましくない。
なお、本発明により製造されたセリウム系酸化物は、Ti、Y、Sc、Zr、希土類元素を含む遷移金属、アルカリ金属、アルカリ土類金属、Al、Si、から選ばれる少なくとも1種以上の金属酸化物を0.01〜30%含有することができるが、これらを含有させるためには、これらの水溶性塩を本工程で所定量含有させておくことが好ましい。
これらの金属酸化物を添加することにより、比表面積の耐熱性が一層向上することになる。
1. Method for producing cerium-based oxide (first step)
First, in the present invention, the free acid concentration of the cerium salt-containing solution is adjusted.
Examples of cerium salts include hydrochlorides, nitrates, sulfates, etc., but nitrates are preferred from the standpoint that impurities are less mixed into the product. The solvent may be appropriately selected according to the type of cerium salt used, but it is usually desirable to use water (preferably pure water or ion-exchanged water).
The concentration of the cerium salt solution is not particularly limited, as generally cerium oxide in the solvent 1000g (CeO 2) 5~200g, it is particularly desirable that the 50 to 100 g.
Examples of the free acid include sulfuric acid, nitric acid, hydrochloric acid and the like, and are not particularly limited. However, nitric acid is preferable from the viewpoint that impurities are not mixed into the product.
The free acid concentration is 0.1N to 5N, preferably 1N to 3N, and particularly preferably 1.5 to 2.5N. If it is less than 0.1N or exceeds 5N, the sedimentation and filterability of the produced cerium hydroxide are poor, and the production efficiency is deteriorated, which is not preferable.
The cerium-based oxide produced according to the present invention is at least one metal selected from Ti, Y, Sc, Zr, transition metals containing rare earth elements, alkali metals, alkaline earth metals, Al, Si. The oxide can be contained in an amount of 0.01 to 30%, but in order to contain these, it is preferable to contain a predetermined amount of these water-soluble salts in this step.
By adding these metal oxides, the heat resistance of the specific surface area is further improved.

(第二工程)
次に、該酸性セリウム塩含有溶液に尿素を添加・溶解する。
本工程において、尿素添加当量をX[X(当量)={(尿素添加量)−(フリーの酸を中和するのに必要な尿素量)}/(水酸化セリウムを生成させるのに必要な尿素量)]とした時、Xを3以上とすることを特徴とする。
Xは、通常、3〜20、好ましくは5〜15、さらに好ましくは8〜12である。
3未満では、生成した水酸化セリウムのろ過性が悪くなるため、不純物残存量が増加し、又、比表面積の熱安定性が低下するため、好ましくない。なお、20を超えると経済的ではないので好ましくない。
なお、第一工程でTi、Y、Sc、Zr、希土類元素を含む遷移金属、アルカリ金属、アルカリ土類金属、Al、Si、から選ばれる少なくとも1種以上の金属の水溶性塩を添加した場合には、これらの塩を水酸化物にするのに必要な量の尿素(少なくとも1当量)を更に添加する(必要に応じて、セリウム塩と同様に3〜20当量添加しても良い)ことは言うまでもない。
一方、第四工程の尿素含有ろ液を繰り返し使用する場合には、当然のことながら、ろ液中に含まれている尿素量を勘案の上、不足分の尿素を新たに添加することになる。
この様に、尿素を大過剰添加する理由については、次工程で詳述する。
(Second step)
Next, urea is added and dissolved in the acidic cerium salt-containing solution.
In this step, the urea addition equivalent is X [X (equivalent) = {(urea addition amount) − (urea amount necessary for neutralizing free acid)} / (necessary for producing cerium hydroxide. (Urea amount)], X is 3 or more.
X is usually from 3 to 20, preferably from 5 to 15, and more preferably from 8 to 12.
If it is less than 3, the filterability of the produced cerium hydroxide is deteriorated, the residual amount of impurities is increased, and the thermal stability of the specific surface area is decreased, which is not preferable. In addition, since it is not economical when it exceeds 20, it is not preferable.
When a water-soluble salt of at least one metal selected from Ti, Y, Sc, Zr, transition metals containing rare earth elements, alkali metals, alkaline earth metals, Al, Si is added in the first step In addition, an amount of urea (at least 1 equivalent) necessary to make these salts into hydroxides is further added (3 to 20 equivalents may be added as required for cerium salts). Needless to say.
On the other hand, when the urea-containing filtrate in the fourth step is repeatedly used, it is a matter of course that a deficient amount of urea is newly added in consideration of the amount of urea contained in the filtrate. .
Thus, the reason why urea is added excessively will be described in detail in the next step.

(第三工程)
そして、第二工程で作製された、尿素含有酸性セリウム塩溶液を加熱することにより、水酸化セリウムを生成させる。
加熱温度としては、70℃以上、好ましくは95℃以上である。
70未満では、尿素の分解が遅なり、生産効率が低下するため、好ましくない。
70℃以上で液中の尿素(CHO)が、アンモニアガスと二酸化炭素ガスに分解し、以下の反応が進むことになる(反応式としては、硝酸セリウムを用いた場合を例示する)。
Ce(NO+2CHO+6HO=Ce(OH)+4NHNO+2CO
この尿素の分解反応を利用した水酸化物の製造方法は、均一沈殿法として良く知られた方法であるが、工業的にはほとんど実施されていない。
この方法の良い点としては、アンモニアガス、すなわち、発生期のアンモニアガスがセリウムイオンと反応することになり、反応速度が非常に早く、その結果、非常に微細で均一な大きさの水酸化セリウムを生成させることができる点にある。
(Third process)
And cerium hydroxide is produced | generated by heating the urea containing acidic cerium salt solution produced at the 2nd process.
The heating temperature is 70 ° C. or higher, preferably 95 ° C. or higher.
If it is less than 70, decomposition of urea is delayed, and production efficiency is lowered, which is not preferable.
Urea (CH 4 N 2 O) in the liquid is decomposed into ammonia gas and carbon dioxide gas at a temperature of 70 ° C. or higher, and the following reaction proceeds (the reaction formula is exemplified when cerium nitrate is used). ).
Ce (NO 3 ) 4 + 2CH 4 N 2 O + 6H 2 O = Ce (OH) 4 + 4NH 4 NO 3 + 2CO 2
This method for producing hydroxide using the decomposition reaction of urea is a well-known method as a uniform precipitation method, but is hardly carried out industrially.
The good point of this method is that ammonia gas, that is, nascent ammonia gas reacts with cerium ions, the reaction rate is very fast, and as a result, cerium hydroxide of very fine and uniform size Can be generated.

そして、本発明方法の特徴は、上記で説明したように、尿素の分解反応を行うに当り、セリウムイオンが水酸化セリウムとなるのに必要な尿素量の3〜20当量添加しておき、その内、少なくとも3当量を反応させることにある。
すなわち、少なくとも2当量以上の尿素を余分に分解させると共にこの分解を短時間で行い、大量のアンモニアガスを発生させ、大量の水酸化セリウムを生成させることにより、非常に微細で均一な大きさの水酸化セリウムを生成させることができる。
詳細な理由は、現時点では判明していないが、このような操作で、非常に微細で均一な大きさの水酸化セリウムを生成させることにより、比表面積の耐熱性に優れた酸化セリウムを製造することができる。
すなわち、▲1▼350℃×10時間焼成後の比表面積が、120m/g以上、好ましくは150m/g以上、▲2▼800℃×4時間焼成後の比表面積が、40m/g以上、好ましくは50m/g以上及び▲3▼900℃×4時間焼成後の比表面積が、25m/g以上、好ましくは30m/g以上、の比表面積の耐熱性を持ったものが、安定して生産することができる。
なお、加熱時間は、加熱温度により異なるが、通常、0.5〜5時間、好ましくは、1〜2時間である。
And, as described above, the characteristic of the method of the present invention is that, in performing the decomposition reaction of urea, 3 to 20 equivalents of urea amount necessary for cerium ions to become cerium hydroxide is added, Of these, at least 3 equivalents are to be reacted.
That is, at least 2 equivalents or more of urea is excessively decomposed and this decomposition is performed in a short time, a large amount of ammonia gas is generated, and a large amount of cerium hydroxide is generated. Cerium hydroxide can be produced.
The detailed reason has not been clarified at the present time, but by producing cerium hydroxide having a very fine and uniform size by such an operation, cerium oxide excellent in heat resistance of specific surface area is produced. be able to.
That is, (1) the specific surface area after firing at 350 ° C. for 10 hours is 120 m 2 / g or more, preferably 150 m 2 / g or more, (2) the specific surface area after firing at 800 ° C. for 4 hours is 40 m 2 / g Above, preferably 50 m 2 / g or more and (3) a specific surface area after firing at 900 ° C. × 4 hours, having a specific surface area of 25 m 2 / g or more, preferably 30 m 2 / g or more, having heat resistance Can be produced stably.
In addition, although heating time changes with heating temperature, it is 0.5 to 5 hours normally, Preferably, it is 1-2 hours.

(第四工程)
続いて、第四工程において、水酸化セリウムをろ過する。
なお、中和反応終了後、水酸化セリウム含有溶液を60〜100℃未満で1時間以上保持することが、得られた沈殿を熟成し、ろ別しやすくするという観点から好ましい。
そして、生成した水酸化セリウムからなる沈殿物を固液分離法により回収する。
固液分離法は、例えば濾過、遠心分離、デカンテーション等の公知の方法に従えば良い。
ろ液には、尿素がまだ含まれているため、溶液中に含まれている不純物濃度にもよるが、第二工程に繰り返すことが好ましい。
回収後、必要に応じて水酸化セリウムを水洗し、付着している不純物を除去することが好ましい。
なお、得られた水酸化セリウムは、さらに必要に応じて乾燥させても良い。乾燥方法は、公知の方法に従えば良く、例えば自然乾燥、加熱乾燥等のいずれであっても良い。又、必要であれば、乾燥処理後に粉砕処理、分級処理等を実施しても良い。
(Fourth process)
Subsequently, in the fourth step, cerium hydroxide is filtered.
In addition, after completion | finish of neutralization reaction, it is preferable from a viewpoint of making the obtained precipitation age | cure and filter-separating to hold | maintain a cerium hydroxide containing solution at 60-100 degrees C or less for 1 hour or more.
And the deposit which consists of produced | generated cerium hydroxide is collect | recovered by the solid-liquid separation method.
The solid-liquid separation method may be a known method such as filtration, centrifugation, decantation, or the like.
Since the filtrate still contains urea, it is preferable to repeat the second step depending on the concentration of impurities contained in the solution.
After the collection, it is preferable to wash the cerium hydroxide with water as necessary to remove adhering impurities.
In addition, you may dry the obtained cerium hydroxide further as needed. The drying method may follow a well-known method, for example, any of natural drying, heat drying, etc. may be sufficient. If necessary, a pulverization process, a classification process, or the like may be performed after the drying process.

(第五工程)
最後に、水酸化セリウムを熱処理することにより、酸化セリウム系酸化物とする。
熱処理温度は、特に限定されないが、通常は300〜900℃程度で1Hr〜10Hr行う。
熱処理雰囲気は、特に限定されないが、通常大気中又は酸化性雰囲気中とすれば良い。
なお、この様にして得られた複合酸化物は、必要に応じて、粉砕することができる。粉砕については、特に限定されないが、遊星ミル、ボールミルまたはジェットミル等の粉砕機で粉砕することができる。
(Fifth process)
Finally, cerium hydroxide is heat-treated to obtain a cerium oxide-based oxide.
Although heat processing temperature is not specifically limited, Usually, 1Hr-10Hr are performed at about 300-900 degreeC.
Although the heat treatment atmosphere is not particularly limited, it may be usually in the air or an oxidizing atmosphere.
The composite oxide obtained in this way can be pulverized as necessary. Although it does not specifically limit about grinding | pulverization, It can grind | pulverize with grinders, such as a planetary mill, a ball mill, or a jet mill.

以下に実施例を示し、本発明の特徴を一層明確にする。なお、本発明は、これらの実施例の態様に限定されるものではない。  Examples are given below to further clarify the features of the present invention. In addition, this invention is not limited to the aspect of these Examples.

実施例中における各物性は以下の方法により測定した。
(1)比表面積
比表面積計(「フローソーブ−II」マイクロメリティクス製)を用い、BET法により測定した。
Each physical property in the examples was measured by the following methods.
(1) Specific surface area Using a specific surface area meter (“Flowsorb-II” manufactured by Micromeritics), the specific surface area was measured by the BET method.

〔実施例1〕
硝酸セリウム(IV)溶液(CeOとして100g含有)412.5gへ純水を986g、濃度63%の硝酸を30.3g、尿素を600g添加した(水酸化セリウムとするのに必要な量の約8.5倍)。
これを97℃に昇温後3時間保持し中和させ、水酸化セリウムを生成させた(尿素は、水酸化セリウムとするのに必要な量の約4倍反応した)。
このスラリーをろ過した後、水洗を行い、水酸化物を得た。
この水酸化物を350℃で10時間焼成し酸化セリウム粉末を得た。その比表面積が179m/gで、これを更に、▲1▼800℃で4時間熱処理したときの比表面積が50m/g、▲2▼900℃で4時間熱処理したときの比表面積が33m/gであった。
なお、800℃で4時間焼成して得られた酸化セリウム粉末の結晶子径は、170Åであった。
[Example 1]
986 g of pure water, 30.3 g of 63% nitric acid, and 600 g of urea were added to 412.5 g of a cerium (IV) nitrate solution (containing 100 g of CeO 2 ) (about the amount necessary to make cerium hydroxide). 8.5 times).
This was heated to 97 ° C. and maintained for 3 hours for neutralization to produce cerium hydroxide (urea was reacted about 4 times as much as that required for cerium hydroxide).
The slurry was filtered and then washed with water to obtain a hydroxide.
This hydroxide was calcined at 350 ° C. for 10 hours to obtain a cerium oxide powder. The specific surface area was 179 m 2 / g, and the specific surface area when further heat-treated at 800 ° C. for 4 hours was 50 m 2 / g, and the specific surface area when heat-treated at 900 ° C. for 4 hours was 33 m. 2 / g.
The crystallite diameter of the cerium oxide powder obtained by baking at 800 ° C. for 4 hours was 170 mm.

〔実施例2〕
調合時に添加した純水986gの替わりに、中和反応後の上澄み液(尿素=280g含有)と純水100gを用い、尿素添加量を320gとしたこと以外は〔実施例1〕と同様にして水酸化物を得た。
この水酸化物を350℃で10時間焼成し酸化セリウム粉末を得た。その比表面積が182m/gで、これを更に、▲1▼800℃で4時間熱処理したときの比表面積が50m/g、▲2▼900℃で4時間熱処理したときの比表面積が30m/gであった。
なお、800℃で4時間焼成して得られた酸化セリウム粉末の結晶子径は、172Åであった。
[Example 2]
Instead of 986 g of pure water added at the time of preparation, the supernatant liquid after neutralization reaction (containing urea = 280 g) and 100 g of pure water were used, and the amount of urea added was changed to 320 g, as in [Example 1]. A hydroxide was obtained.
This hydroxide was calcined at 350 ° C. for 10 hours to obtain a cerium oxide powder. The specific surface area was 182 m 2 / g, and the specific surface area when further heat-treated at 800 ° C. for 4 hours was 50 m 2 / g, and the specific surface area when heat-treated at 900 ° C. for 4 hours was 30 m. 2 / g.
The crystallite diameter of the cerium oxide powder obtained by firing at 800 ° C. for 4 hours was 172 mm.

〔比較例1〕
尿素添加量を149g(水酸化セリウムとするのに必要な量の約2倍)とした以外は、実施例1と同様にして、水酸化物を得た(尿素は全量反応した)。
この水酸化物を350℃で10時間焼成し酸化セリウム粉末を得た。その比表面積が68m/gで、これを更に、▲1▼800℃で4時間熱処理したときの比表面積が2.1m/g、▲2▼900℃で4時間熱処理したときの比表面積が0.7m/gであった。
なお、800℃で4時間焼成して得られた酸化セリウム粉末の結晶子径は、381Åであった。
[Comparative Example 1]
A hydroxide was obtained in the same manner as in Example 1 except that the amount of urea added was 149 g (about twice the amount necessary for cerium hydroxide) (the urea reacted in its entirety).
This hydroxide was calcined at 350 ° C. for 10 hours to obtain a cerium oxide powder. The specific surface area is 68 m 2 / g, and the specific surface area is 2.1 m 2 / g when heat-treated at 800 ° C. for 4 hours and the specific surface area when heat-treated at 900 ° C. for 4 hours. Was 0.7 m 2 / g.
The crystallite diameter of the cerium oxide powder obtained by baking at 800 ° C. for 4 hours was 381 mm.

実施例1及び比較例1の結果から明らかなように、尿素添加量をX[X(当量)={(尿素添加量)−(フリーの酸を中和するのに必要な尿素量)}/(水酸化セリウムを生成させるのに必要な尿素量)]とした時、Xを3以上とし、かつ、3当量以上反応させることにより、非常に微細で均一な大きさの水酸化セリウムとし、これを酸化セリウムとすることにより、比表面積の耐熱性に優れたセリウム系酸化物を簡便な方法で再現性良く製造できることがわかる。  As is clear from the results of Example 1 and Comparative Example 1, the amount of urea added is X [X (equivalent) = {(urea added amount) − (urea amount necessary for neutralizing free acid)} / (The amount of urea necessary to produce cerium hydroxide)], X is 3 or more, and by reacting 3 equivalents or more, very fine and uniform cerium hydroxide is obtained. It turns out that cerium-type oxide excellent in heat resistance of a specific surface area can be manufactured by a simple method with good reproducibility by using as cerium oxide.

Claims (6)

(1)セリウム塩含有溶液のフリーの酸濃度を調整する工程、(2)該溶液に尿素を添加・溶解する工程、(3)該溶液を加熱することにより、水酸化セリウムを生成させる工程、(4)水酸化セリウムをろ過する工程及び(5)水酸化セリウムを焼成する工程、を少なくとも有するセリウム系酸化物の製造方法において、前記(2)の工程における尿素添加当量をX[X(当量)={(尿素添加量)−(フリーの酸を中和するのに必要な尿素量)}/(水酸化セリウムを生成させるのに必要な尿素量)]とした時、Xを3以上とすることを特徴とするセリウム系酸化物の製造方法。  (1) a step of adjusting the free acid concentration of the cerium salt-containing solution, (2) a step of adding / dissolving urea to the solution, (3) a step of generating cerium hydroxide by heating the solution, (4) In the method for producing a cerium-based oxide having at least the step of filtering cerium hydroxide and (5) the step of firing cerium hydroxide, the urea addition equivalent in the step (2) is X [X (equivalent ) = {(Amount of urea added) − (amount of urea necessary to neutralize free acid)} / (amount of urea necessary to produce cerium hydroxide)]] A method for producing a cerium-based oxide. 前記(4)の工程の尿素含有ろ液を前記(2)の工程へ繰り返すことを特徴とする請求項1記載のセリウム系酸化物の製造方法。  The method for producing a cerium-based oxide according to claim 1, wherein the urea-containing filtrate in the step (4) is repeated to the step (2). セリウム系酸化物の350℃×10時間焼成後の比表面積が、120m/g以上であることを特徴とする請求項1又は請求項2記載のセリウム系酸化物の製造方法。The method for producing a cerium-based oxide according to claim 1 or 2 , wherein the specific surface area of the cerium-based oxide after baking at 350 ° C for 10 hours is 120 m 2 / g or more. セリウム系酸化物の800℃×4時間焼成後の比表面積が、40m/g以上であることを特徴とする請求項1〜請求項3記載のセリウム系酸化物の製造方法。The method for producing a cerium-based oxide according to any one of claims 1 to 3, wherein the specific surface area of the cerium-based oxide after firing at 800 ° C for 4 hours is 40 m 2 / g or more. セリウム系酸化物の900℃×4時間焼成後の比表面積が、25m/g以上であることを特徴とする請求項1〜請求項4記載のセリウム系酸化物の製造方法。5. The method for producing a cerium-based oxide according to claim 1, wherein a specific surface area of the cerium-based oxide after firing at 900 ° C. for 4 hours is 25 m 2 / g or more. セリウム系酸化物がTi、Y、Sc、Zr、希土類元素を含む遷移金属、アルカリ金属、アルカリ土類金属、Al、Si、から選ばれる少なくとも1種以上の金属酸化物を0.01〜30%含有していることを特徴とする請求項1〜請求項5記載のセリウム系酸化物の製造方法。  The cerium-based oxide contains 0.01 to 30% of at least one metal oxide selected from Ti, Y, Sc, Zr, transition metals containing rare earth elements, alkali metals, alkaline earth metals, Al and Si. It contains, The manufacturing method of the cerium type oxide of Claims 1-5 characterized by the above-mentioned.
JP2006305935A 2006-10-12 2006-10-12 Method for producing cerium-based oxide Active JP5279183B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006305935A JP5279183B2 (en) 2006-10-12 2006-10-12 Method for producing cerium-based oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006305935A JP5279183B2 (en) 2006-10-12 2006-10-12 Method for producing cerium-based oxide

Publications (2)

Publication Number Publication Date
JP2008094698A true JP2008094698A (en) 2008-04-24
JP5279183B2 JP5279183B2 (en) 2013-09-04

Family

ID=39377929

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006305935A Active JP5279183B2 (en) 2006-10-12 2006-10-12 Method for producing cerium-based oxide

Country Status (1)

Country Link
JP (1) JP5279183B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008156219A1 (en) * 2007-06-20 2008-12-24 Anan Kasei Co., Ltd High specific surface area mixed oxide of cerium and of another rare earth, preparation method and use in catalysis
WO2010013913A3 (en) * 2008-07-29 2010-05-06 주식회사 엘지화학 Method for preparing cerium carbonate and method for preparing cerium oxide powder

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62162621A (en) * 1985-11-08 1987-07-18 ロ−ヌ−プ−ラン・スペシアリテ・シミ−ク Improved manufacture of rare earth element hydroxide by treating ore containing rare earth element phosphate
JPS62275022A (en) * 1986-03-26 1987-11-30 ロ−ヌ−プ−ラン・シミ Ceric oxide with novel morphologic characteristics and manufacture
JPS6465018A (en) * 1987-06-29 1989-03-10 Rhone Poulenc Chimie Ceric oxide having novel morphological characteristics and manufacture
JPH05208816A (en) * 1992-01-28 1993-08-20 Sumitomo Metal Mining Co Ltd Method for producing cerium hydroxide and cerium oxide
JPH05270824A (en) * 1991-12-09 1993-10-19 Rhone Poulenc Chim Compositions based on cerium oxide, their preparation and use
JPH0797211A (en) * 1993-09-27 1995-04-11 Shin Etsu Chem Co Ltd Method for producing rare earth oxide
JPH07315835A (en) * 1994-05-20 1995-12-05 Shin Etsu Chem Co Ltd Rare earth element oxide acicular particles and method for producing the same
JPH08310812A (en) * 1984-02-20 1996-11-26 Rhone Poulenc Spec Chim Cerium(ii) oxide with new morphological feature
JP2002265932A (en) * 2001-03-05 2002-09-18 Eternal Chemical Co Ltd Composition and method for producing celium oxide abrasive particle
JP2007245054A (en) * 2006-03-17 2007-09-27 Dowa Holdings Co Ltd Cerium oxide powder for catalyst, its manufacturing method and dpf

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08310812A (en) * 1984-02-20 1996-11-26 Rhone Poulenc Spec Chim Cerium(ii) oxide with new morphological feature
JPS62162621A (en) * 1985-11-08 1987-07-18 ロ−ヌ−プ−ラン・スペシアリテ・シミ−ク Improved manufacture of rare earth element hydroxide by treating ore containing rare earth element phosphate
JPS62275022A (en) * 1986-03-26 1987-11-30 ロ−ヌ−プ−ラン・シミ Ceric oxide with novel morphologic characteristics and manufacture
JPS6465018A (en) * 1987-06-29 1989-03-10 Rhone Poulenc Chimie Ceric oxide having novel morphological characteristics and manufacture
JPS6465017A (en) * 1987-06-29 1989-03-10 Rhone Poulenc Chimie Manufacture of ceric oxide
JPH05270824A (en) * 1991-12-09 1993-10-19 Rhone Poulenc Chim Compositions based on cerium oxide, their preparation and use
JPH05208816A (en) * 1992-01-28 1993-08-20 Sumitomo Metal Mining Co Ltd Method for producing cerium hydroxide and cerium oxide
JPH0797211A (en) * 1993-09-27 1995-04-11 Shin Etsu Chem Co Ltd Method for producing rare earth oxide
JPH07315835A (en) * 1994-05-20 1995-12-05 Shin Etsu Chem Co Ltd Rare earth element oxide acicular particles and method for producing the same
JP2002265932A (en) * 2001-03-05 2002-09-18 Eternal Chemical Co Ltd Composition and method for producing celium oxide abrasive particle
JP2007245054A (en) * 2006-03-17 2007-09-27 Dowa Holdings Co Ltd Cerium oxide powder for catalyst, its manufacturing method and dpf

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008156219A1 (en) * 2007-06-20 2008-12-24 Anan Kasei Co., Ltd High specific surface area mixed oxide of cerium and of another rare earth, preparation method and use in catalysis
JP2010530343A (en) * 2007-06-20 2010-09-09 阿南化成株式会社 High specific surface area cerium and other rare earth mixed oxides, preparation methods and use in catalysis
US8435919B2 (en) 2007-06-20 2013-05-07 Anan Kasei Co., Ltd. High specific surface area mixed oxide of cerium and of another rare earth, preparation method and use in catalysis
WO2010013913A3 (en) * 2008-07-29 2010-05-06 주식회사 엘지화학 Method for preparing cerium carbonate and method for preparing cerium oxide powder
JP2011529020A (en) * 2008-07-29 2011-12-01 エルジー・ケム・リミテッド Method for producing cerium carbonate and method for producing cerium oxide powder
US8114370B2 (en) 2008-07-29 2012-02-14 Lg Chem, Ltd. Method for preparing cerium carbonate and method for preparing cerium oxide powder

Also Published As

Publication number Publication date
JP5279183B2 (en) 2013-09-04

Similar Documents

Publication Publication Date Title
JP4382482B2 (en) Ceric oxide, method for producing the same, and catalyst for exhaust gas purification
US7795171B2 (en) Cerium-zirconium based compound oxide and production method thereof
EP1894620B2 (en) Method to produce a porous zirconia powder
JP4789794B2 (en) Cerium-zirconium composite oxide and method for producing the same
JP5100244B2 (en) Zirconia / ceria / yttria composite oxide and method for producing the same
JP5344805B2 (en) Zirconia-based composite oxide and method for producing the same
CN101096012B (en) Cerium oxide-zirconium oxide-based mixed oxide and method for producing thereof
US5011671A (en) Ceric oxide with new morphological characteristics and method for obtaining same
EP0460738B1 (en) High surface area zirconia
JP2008081392A (en) Porous zirconia-based powder and method for producing the same
KR910004834B1 (en) Process for obtaining a rare earth oxide and product obtained thereby
EP2543638B1 (en) Cerium oxide-zirconium oxide composite oxide and method for producing the same
JP6991384B1 (en) Zirconia-based porous body and method for producing zirconia-based porous body
JP2017081812A (en) Manganese-zirconium composite oxide, method for producing the same, and use thereof
JP5279183B2 (en) Method for producing cerium-based oxide
US4812302A (en) Process for preparing high purity Mn3 O4
CN103977783B (en) A kind of zirconium class rare earth oxygen storage material and preparation method thereof
JPH08696B2 (en) Process and product for producing precursor of oxygen-containing derivative of rare earth element
JPH08333117A (en) Production of porous globular titanium oxide particle
KR102659037B1 (en) Materials, methods and techniques for producing doped cerium oxide
JPH05132311A (en) Production of sol of ceric oxide
CN107253737B (en) A kind of environment protecting nano material and preparation method thereof can be used for nitrogen oxide in automobile exhaust catalytic purification
KR20220049928A (en) Manufacturing method for ceria powder and ceria powder
HK1162457A (en) Novel zirconia ceria compositions

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090901

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120926

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130430

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130521

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5279183

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250