JP2008006406A - Iron-based catalyst for Fischer-Tropsch synthesis reaction, method for producing the same, and method for producing hydrocarbons using the same - Google Patents
Iron-based catalyst for Fischer-Tropsch synthesis reaction, method for producing the same, and method for producing hydrocarbons using the same Download PDFInfo
- Publication number
- JP2008006406A JP2008006406A JP2006181588A JP2006181588A JP2008006406A JP 2008006406 A JP2008006406 A JP 2008006406A JP 2006181588 A JP2006181588 A JP 2006181588A JP 2006181588 A JP2006181588 A JP 2006181588A JP 2008006406 A JP2008006406 A JP 2008006406A
- Authority
- JP
- Japan
- Prior art keywords
- iron
- based catalyst
- catalyst
- fischer
- silica
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Landscapes
- Catalysts (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Abstract
【課題】鉄系触媒をFT反応用触媒として使用し、構成ガスから炭化水素を合成する際に、燃料油として好適な炭素数5以上の炭化水素の生成比率を高くすることにある。
【解決手段】硫酸鉄水溶液から水酸化鉄の沈殿を生成し、この沈殿物を焼成して鉄系触媒を得る。硫酸鉄水溶液には、シリカ前駆体またはシリカ前駆体と活性炭が含まれていてもよい。得られた鉄系触媒では、マグネタイト構造の酸化鉄粒子とヘマタイト構造の酸化鉄粒子が含まれ、また、シリカまたはシリカと活性炭が含まれている。
【選択図】なしAn object of the present invention is to increase the production ratio of hydrocarbons having 5 or more carbon atoms suitable as fuel oil when an iron-based catalyst is used as a catalyst for FT reaction and hydrocarbons are synthesized from constituent gases.
An iron hydroxide catalyst is produced from an iron sulfate aqueous solution, and the precipitate is calcined to obtain an iron-based catalyst. The iron sulfate aqueous solution may contain a silica precursor or a silica precursor and activated carbon. The obtained iron-based catalyst includes magnetite-structured iron oxide particles and hematite-structured iron oxide particles, and also includes silica or silica and activated carbon.
[Selection figure] None
Description
この発明は、フィッシャートロプシュ合成反応に用いられる鉄系触媒、その製造方法およびこの鉄系触媒を用いた炭化水素の製造方法に関する。 The present invention relates to an iron-based catalyst used in a Fischer-Tropsch synthesis reaction, a method for producing the same, and a method for producing hydrocarbons using the iron-based catalyst.
フィッシャートロプシュ合成反応(以下、FT反応と言う)は、一酸化炭素と水素を含む合成ガスを原料として炭化水素を製造する反応であって、炭素数5以上の燃料油などの炭化水素を製造することができるものである。
このFT反応に用いられる触媒としては、鉄系触媒、コバルト触媒、ルテニウム触媒などが知られている。
Fischer-Tropsch synthesis reaction (hereinafter referred to as FT reaction) is a reaction for producing hydrocarbons using synthesis gas containing carbon monoxide and hydrogen as raw materials, and produces hydrocarbons such as fuel oil having 5 or more carbon atoms. It is something that can be done.
As a catalyst used for this FT reaction, an iron-based catalyst, a cobalt catalyst, a ruthenium catalyst, and the like are known.
これらの触媒のうち、鉄系触媒は、ヘマタイト構造の酸化鉄粒子を主体とし、これに助触媒として、銅、カリウムなどの金属を少量含むものである。
従来、この鉄系触媒の製造は、硝酸第2鉄などの硝酸鉄水溶液に硝酸銅水溶液、炭酸カリウム水溶液を混合し、この水溶液のpHを中性〜弱アルカリ性として、水酸化鉄の沈殿を生成し、この水酸化鉄の沈殿に銅、カリウムを共沈させ、この沈殿物を焼成する方法で行われている。
そして、この製造方法によって製造された鉄系触媒にあっては、これを構成する酸化鉄は、ヘマタイト構造の酸化鉄粒子を主体とするものである。
Among these catalysts, the iron-based catalyst is mainly composed of iron oxide particles having a hematite structure, and contains a small amount of a metal such as copper or potassium as a co-catalyst.
Conventionally, this iron-based catalyst is produced by mixing an aqueous iron nitrate solution such as ferric nitrate with an aqueous copper nitrate solution and an aqueous potassium carbonate solution, and adjusting the pH of the aqueous solution to neutral to weak alkaline to produce an iron hydroxide precipitate. Then, copper and potassium are co-precipitated in the iron hydroxide precipitate, and the precipitate is fired.
And in the iron-type catalyst manufactured by this manufacturing method, the iron oxide which comprises this mainly consists of iron oxide particles having a hematite structure.
この従来の鉄系触媒を用いたFT反応では、合成された炭化水素のうち、燃料油として好適な炭素数5以上の液状炭化水素の生成割合が十分ではなく、燃料油の合成比率が低いと言う問題があった。
FT反応用鉄系触媒に関する公知文献としては、以下のようなものがある。
The following are known literatures related to the iron-based catalyst for the FT reaction.
よって、本発明における課題は、鉄系触媒をFT反応用触媒として使用し、合成ガスから炭化水素を合成する際に、燃料油として好適な炭素数5以上の炭化水素の生成比率を高くすることや従来の調製にかかるコストを低減させ、より実用性の高い工夫をすることにある。 Therefore, the problem in the present invention is to use an iron-based catalyst as an FT reaction catalyst and increase the production ratio of hydrocarbons having 5 or more carbon atoms suitable as fuel oil when synthesizing hydrocarbons from synthesis gas. In other words, the cost of conventional preparation is reduced, and a more practical device is devised.
かかる課題を解決するため、
請求項1にかかる発明は、マグネタイト構造の酸化鉄粒子とヘマタイト構造の酸化鉄粒子が含まれていることを特徴とするフィッシャートロプシュ合成反応用鉄系触媒である。
To solve this problem,
The invention according to claim 1 is an iron-based catalyst for a Fischer-Tropsch synthesis reaction characterized by including iron oxide particles having a magnetite structure and iron oxide particles having a hematite structure.
請求項2にかかる発明は、さらに、シリカが含まれていることを特徴とする請求項1記載のフィッシャートロプシュ合成反応用鉄系触媒である。
請求項3にかかる発明は、さらに、シリカと活性炭が含まれていることを特徴とする請求項1記載のフィッシャートロプシュ合成反応用鉄系触媒である。
The invention according to claim 2 is the iron-based catalyst for Fischer-Tropsch synthesis reaction according to claim 1, further comprising silica.
The invention according to claim 3 is the iron-based catalyst for Fischer-Tropsch synthesis reaction according to claim 1, further comprising silica and activated carbon.
請求項4にかかる発明は、硫酸鉄水溶液から水酸化鉄の沈殿を生成し、この沈殿物を焼成することを特徴とするフィッシャートロプシュ合成反応用鉄系触媒の製造方法である。 The invention according to claim 4 is a method for producing an iron-based catalyst for a Fischer-Tropsch synthesis reaction, wherein a precipitate of iron hydroxide is produced from an aqueous iron sulfate solution and the precipitate is calcined.
請求項5にかかる発明は、硫酸鉄水溶液には、シリカ前駆体またはシリカ前駆体と活性炭が含まれていることを特徴とする請求項4記載のフィッシャートロプシュ合成反応用鉄系触媒の製造方法である。 The invention according to claim 5 is the method for producing an iron-based catalyst for Fischer-Tropsch synthesis reaction according to claim 4, wherein the iron sulfate aqueous solution contains a silica precursor or a silica precursor and activated carbon. is there.
請求項6にかかる発明は、請求項1ないし3のいずれかに記載のフィッシャートロプシュ合成反応用鉄系触媒を用い、一酸化炭素と水素を含む合成ガスから炭化水素を合成することを特徴とする炭化水素の製造方法である。 The invention according to claim 6 is characterized in that the Fischer-Tropsch synthesis reaction iron catalyst according to any one of claims 1 to 3 is used to synthesize hydrocarbons from synthesis gas containing carbon monoxide and hydrogen. This is a method for producing hydrocarbons.
本発明の鉄系触媒にあっては、マグネタイト構造の酸化鉄粒子とヘマタイト構造の酸化鉄粒子が含まれているため、これをFT反応用触媒として用いることにより、炭素数5以上の液状炭化水素の生成割合が高くなり、従来の触媒と比べてより効率的に燃料油を合成することができる。 In the iron-based catalyst of the present invention, magnetite-structured iron oxide particles and hematite-structured iron oxide particles are included. By using this as an FT reaction catalyst, a liquid hydrocarbon having 5 or more carbon atoms is obtained. As a result, the fuel oil can be synthesized more efficiently than the conventional catalyst.
また、シリカまたはシリカと活性炭が含まれるものでは、触媒自体の機械的強度ならびに表面積が高くなるとともに、上記触媒と比べてよりコストパフォーマンスが優れたものとなる。 Further, when silica or silica and activated carbon are contained, the mechanical strength and surface area of the catalyst itself are increased, and the cost performance is more excellent than that of the catalyst.
さらに、本発明の鉄系触媒の製造方法によれば、上述のマグネタイト構造の酸化鉄粒子とヘマタイト構造の酸化鉄粒子が含まれている鉄系触媒を製造することができる。 Furthermore, according to the method for producing an iron-based catalyst of the present invention, an iron-based catalyst containing the above-described magnetite-structured iron oxide particles and hematite-structured iron oxide particles can be produced.
本発明のFT反応用鉄系触媒は、この触媒の使用前に行われる活性化処理(還元処理)前の状態において、マグネタイト構造の酸化鉄粒子とヘマタイト構造の酸化鉄粒子が含まれ、これに銅、カリウム、白金、パラジウムなどの金属からなる1種または2種以上の助触媒成分が含まれるものである。
また、上記助触媒成分の他にシリカまたはシリカと活性炭が含まれているものである。
The iron-based catalyst for FT reaction of the present invention includes magnetite-structured iron oxide particles and hematite-structured iron oxide particles before the activation treatment (reduction treatment) performed before using the catalyst. One or two or more promoter components composed of metals such as copper, potassium, platinum, and palladium are included.
In addition to the above-mentioned promoter component, silica or silica and activated carbon are contained.
本発明の鉄系触媒では、従来の硝酸鉄を原料として沈殿法で得られたものとは異なり、マグネタイト構造の酸化鉄粒子とヘマタイト構造の酸化鉄粒子とが共存しているものである。従来の鉄系触媒では、ヘマタイト構造の酸化鉄粒子のみからなるものである。
このように、マグネタイト構造の酸化鉄粒子とヘマタイト構造の酸化鉄粒子とが共に存在することにより、FT反応で得られる炭素数5以上の液状炭化水素の生成割合が高くなるものと予想される。
In the iron-based catalyst of the present invention, magnetite-structured iron oxide particles and hematite-structured iron oxide particles coexist, unlike those obtained by precipitation using conventional iron nitrate as a raw material. Conventional iron-based catalysts are composed only of iron oxide particles having a hematite structure.
Thus, the presence of both magnetite-structured iron oxide particles and hematite-structured iron oxide particles is expected to increase the production rate of liquid hydrocarbons having 5 or more carbon atoms obtained by the FT reaction.
本発明の鉄系触媒の酸化鉄中に占めるマグネタイト構造の酸化鉄粒子の割合は、好ましくは重量比で10〜99%、さらに好ましくは50〜99%である。マグネタイト構造の酸化鉄粒子が10%未満ではパフォーマンスが十分発揮できず、また99%を越えると同時に添加する助触媒成分の効果が若干低くなる傾向がある。
また、本発明の鉄系触媒の酸化鉄には、マグネタイト構造の酸化鉄粒子およびヘマタイト構造の酸化鉄粒子以外に、これら以外の構造の酸化鉄が存在してもよいが、少なくともマグネタイト構造の酸化鉄粒子の割合が、上述の範囲であればよい。
The ratio of the iron oxide particles having a magnetite structure in the iron oxide of the iron-based catalyst of the present invention is preferably 10 to 99% by weight, and more preferably 50 to 99%. When the iron oxide particle having a magnetite structure is less than 10%, the performance cannot be sufficiently exhibited, and when it exceeds 99%, the effect of the promoter component to be added tends to be slightly lowered.
In addition to the magnetite-structured iron oxide particles and hematite-structured iron oxide particles, the iron-based catalyst of the present invention may contain iron oxides having other structures, but at least the oxidation of the magnetite structure. The ratio of iron particles should just be the above-mentioned range.
また、助触媒成分の添加割合は、重量比で、鉄100に対して0.1〜10が好ましい。0.1未満では触媒の還元性が、また10を越えると反応性がそれぞれ低くなる傾向にある。 Moreover, the addition ratio of the promoter component is preferably 0.1 to 10 with respect to iron 100 in terms of weight ratio. If it is less than 0.1, the reducing property of the catalyst tends to be low, and if it exceeds 10, the reactivity tends to be low.
シリカまたは活性炭は、触媒自体の機械的強度を高め、かつ触媒の表面積を大きくし、さらにはコストパフォーマンスを向上させるために添加される。シリカまたは活性炭は、酸化鉄と助触媒成分からなる触媒本体と弱い相互作用あるいは部分的な化学的な結合をしていると思われ、これによって触媒性能が変化する。 Silica or activated carbon is added to increase the mechanical strength of the catalyst itself, increase the surface area of the catalyst, and further improve cost performance. Silica or activated carbon appears to have a weak interaction or partial chemical bond with the catalyst body composed of iron oxide and a promoter component, thereby changing the catalyst performance.
シリカまたはシリカと活性炭の添加量は、シリカ単独では重量比で鉄100に対して15〜30が好ましい。15未満では比表面積が低く、液状炭化水素の選択率が低くなる傾向があり、30を越えると相対的に鉄の量が減少してしまうため、反応性が低くなる傾向にある。シリカと活性炭を添加するものでは、同じく15〜60が好ましく、15未満ではコストパーフォーマンスでシリカ単独との差が小さくなり、60を越えると相対的に鉄の量が減少してしまうため、反応性が低くなる傾向がある。 The addition amount of silica or silica and activated carbon is preferably 15 to 30 with respect to iron 100 in terms of weight ratio when silica alone is used. If it is less than 15, the specific surface area is low and the selectivity of the liquid hydrocarbon tends to be low, and if it exceeds 30, the amount of iron is relatively reduced, so that the reactivity tends to be low. In the case of adding silica and activated carbon, 15 to 60 is also preferable, and if it is less than 15, the difference from the silica alone is reduced in cost performance, and if it exceeds 60, the amount of iron is relatively reduced. Tend to be low.
次に、本発明の鉄系触媒の製造方法を説明する。
本発明の鉄系触媒の製造方法は、出発原料として硫酸鉄を用いる点に特徴がある。
具体的には、硫酸第1鉄水溶液を調製する。
Next, the manufacturing method of the iron-type catalyst of this invention is demonstrated.
The iron-based catalyst production method of the present invention is characterized in that iron sulfate is used as a starting material.
Specifically, a ferrous sulfate aqueous solution is prepared.
この硫酸第1鉄水溶液に硫酸銅水溶液などの助触媒成分となる金属塩水溶液を加え、さらに炭酸ナトリウム水溶液などのpH調整用のアルカリ性水溶液を加えてpHを7.9〜8.2、好ましくは8.0〜8.1の弱アルカリ性に調整する。
これにより、水酸化鉄のゲル状の沈殿物が生成し、この沈殿物には銅イオンなどの助触媒成分となる金属イオンが同伴される。
A metal salt aqueous solution serving as a promoter component such as a copper sulfate aqueous solution is added to the ferrous sulfate aqueous solution, and an alkaline aqueous solution for pH adjustment such as a sodium carbonate aqueous solution is further added to adjust the pH to 7.9 to 8.2, preferably Adjust to a weak alkalinity of 8.0 to 8.1.
As a result, a gel-like precipitate of iron hydroxide is generated, and this precipitate is accompanied by metal ions that serve as promoter components such as copper ions.
沈殿物をろ過し、水洗したのち、必要に応じて、これに炭酸カリウム水溶液などの助触媒成分となる金属塩水溶液を含浸し、乾燥する。さらに、これを温度350〜450℃、時間1〜10時間、大気中で焼成する。得られた焼成物を所定の粒径になるように粉砕、篩い分けを行う。
これにより、本発明の鉄系触媒を製造することができる。
After the precipitate is filtered and washed with water, it is impregnated with an aqueous metal salt solution as a promoter component such as an aqueous potassium carbonate solution and dried as necessary. Furthermore, this is baked in the air at a temperature of 350 to 450 ° C. for 1 to 10 hours. The fired product obtained is pulverized and sieved to a predetermined particle size.
Thereby, the iron-type catalyst of this invention can be manufactured.
また、シリカまたはシリカと活性炭を含む鉄系触媒では、硫酸第1鉄水溶液に水ガラスなどのシリカの前駆体またはこのシリカ前駆体と活性炭を添加しておくことで製造することができる。シリカ前駆体としては、焼成後に酸化ケイ素となるものであれば特に限定されるものではない。
活性炭としては、特に限定されないが、例えば火力発電所の排煙脱硫剤等に使用される高機能性活性炭、またそれらを使用後に再利用される排ガス処理用粉状リサイクル活性炭、石炭ガス化プロセスにて発生する活性チャーなどを利用すれば、コストパフォーマンスが高く、さらに好適である。活性炭の粒径は60μm以下が好ましく、表面積はBETで50〜400m2/g程度が好ましい。
An iron-based catalyst containing silica or silica and activated carbon can be produced by adding a silica precursor such as water glass or this silica precursor and activated carbon to a ferrous sulfate aqueous solution. The silica precursor is not particularly limited as long as it becomes silicon oxide after firing.
The activated carbon is not particularly limited. For example, high-performance activated carbon used as a flue gas desulfurization agent in a thermal power plant, powdered recycled activated carbon for exhaust gas treatment that is reused after use, and coal gasification process. The use of an activated char generated in this way is preferable because of high cost performance. The particle size of the activated carbon is preferably 60 μm or less, and the surface area is preferably about 50 to 400 m 2 / g in BET.
なお、硫酸第1鉄などの各構成成分の濃度、配合量は、製造する鉄系触媒の組成に対応して適宜決めることができる。 In addition, the density | concentration and compounding quantity of each structural component, such as ferrous sulfate, can be suitably determined according to the composition of the iron-type catalyst to manufacture.
このような製造方法によれば、硫酸第1鉄から得られた水酸化鉄の沈殿物を焼成することで、マグネタイト構造の酸化鉄粒子とヘマタイト構造の酸化鉄粒子の混合物が得られる。
従来の鉄系触媒の製造方法では、硝酸第1鉄を出発原料とし、これの水酸化鉄の沈殿物を焼成しており、この製法では、酸化鉄の結晶構造はすべてヘマタイト構造となる。
このような差異により、触媒としての機能、特性に差がでるものと考えられる。
According to such a production method, a mixture of iron oxide particles having a magnetite structure and iron oxide particles having a hematite structure can be obtained by firing a precipitate of iron hydroxide obtained from ferrous sulfate.
In the conventional method for producing an iron-based catalyst, ferrous nitrate is used as a starting material, and the precipitate of iron hydroxide is calcined. In this production method, all of the crystal structure of iron oxide has a hematite structure.
Such a difference is considered to cause a difference in function and characteristics as a catalyst.
次に、本発明の鉄系触媒を用いた炭化水素の製造方法を説明する。
本発明の炭化水素の製造方法は、一酸化炭素(CO)と水素(H2)を含む合成ガスを原料とし、上述の鉄系触媒を用い、FT反応により、炭化水素を合成するものである。
Next, a hydrocarbon production method using the iron-based catalyst of the present invention will be described.
The hydrocarbon production method of the present invention synthesizes a hydrocarbon by a FT reaction using a synthesis gas containing carbon monoxide (CO) and hydrogen (H 2 ) as a raw material and using the iron-based catalyst described above. .
合成ガスには、メタンガス、天然ガス、石炭ガスなどのガス状炭化水素をリフォーミング(改質)して得られるものなどが用いられる。合成ガス中の水素/一酸化炭素の割合は、体積比で通常0.7〜1とされるが、この範囲外であっても良い。
反応方式は、本発明の鉄系触媒を充填した反応器に合成ガスを吹き込んで反応させる固定床(気相)方式でもよいし、本発明の鉄系触媒を溶媒に分散させたスラリー中に合成ガスを吹き込んで反応させるスラリー床(液相)方式でもよい。
As the synthesis gas, those obtained by reforming (reforming) gaseous hydrocarbons such as methane gas, natural gas, and coal gas are used. The ratio of hydrogen / carbon monoxide in the synthesis gas is usually 0.7 to 1 in volume ratio, but may be outside this range.
The reaction system may be a fixed bed (gas phase) system in which synthesis gas is blown into the reactor filled with the iron-based catalyst of the present invention and reacted, or synthesized in a slurry in which the iron-based catalyst of the present invention is dispersed in a solvent. A slurry bed (liquid phase) system in which gas is blown to react may be used.
FT反応に先立って、鉄系触媒を活性化処理(還元処理)する必要がある。還元処理は、合成ガスまたは水素、一酸化炭素などの還元性ガスを鉄系触媒に温度300℃程度で、3時間程度接触させることで行われる。還元処理時においての反応形式は、固定床方式でもスラリー床方式でもよい。還元処理により、鉄系触媒を構成する酸化鉄が活性種の金属鉄または鉄カーバイトとなる。 Prior to the FT reaction, the iron-based catalyst needs to be activated (reduced). The reduction treatment is performed by bringing a reducing gas such as synthesis gas or hydrogen or carbon monoxide into contact with an iron-based catalyst at a temperature of about 300 ° C. for about 3 hours. The reaction mode during the reduction treatment may be a fixed bed method or a slurry bed method. By the reduction treatment, the iron oxide constituting the iron-based catalyst becomes active metallic iron or iron carbide.
FT反応における圧力は0.5〜5MPaが好ましく、温度は220〜300℃が好ましい。
反応生成物には、炭素数1〜100以上までの広い範囲にわたる炭化水素が含まれ、炭素数5〜18の液状炭化水素が燃料油などの用いられ、炭素数19以上のワックス分は別途水素化分解して燃料油とすることができる。
The pressure in the FT reaction is preferably 0.5 to 5 MPa, and the temperature is preferably 220 to 300 ° C.
The reaction product includes a wide range of hydrocarbons having 1 to 100 or more carbon atoms, liquid hydrocarbons having 5 to 18 carbon atoms are used as fuel oil, and the wax content having 19 or more carbon atoms is separately hydrogenated. It can be converted into fuel oil.
このような炭化水素の製造方法によれば、上述の鉄系触媒を用いることにより、炭素数5以上の液状炭化水素の生成割合が高くなり、効率的に燃料油を合成することができる。シリカまたはシリカと活性炭が含まれる鉄系触媒では、炭化水素合成の際のコストパフォーマンスも高いものとなる。 According to such a hydrocarbon production method, by using the above-described iron-based catalyst, the production ratio of liquid hydrocarbons having 5 or more carbon atoms is increased, and fuel oil can be efficiently synthesized. An iron-based catalyst containing silica or silica and activated carbon also has high cost performance during hydrocarbon synthesis.
以下、具体例を示すが、本発明はこの具体例に限定されるものではない。
(1)実施例A、B、Cの鉄系触媒の調製
以下の水溶液を用意した。
・溶液A 硫酸第1鉄七水和物水溶液 濃度1モル/リットル
・溶液B 硫酸銅五水和物水溶液 濃度0.5モル/リットル
・溶液C 炭酸カリウム水溶液 濃度1モル/リットル
・溶液D 炭酸ナトリウム水溶液(pH調整用) 濃度2モル/リットル
Hereinafter, although a specific example is shown, this invention is not limited to this specific example.
(1) Preparation of iron-based catalysts of Examples A, B, and C The following aqueous solutions were prepared.
・ Solution A Ferrous sulfate heptahydrate aqueous solution concentration 1 mol / liter ・ Solution B Copper sulfate pentahydrate aqueous solution concentration 0.5 mol / liter ・ Solution C Potassium carbonate aqueous solution concentration 1 mol / liter ・ Solution D Sodium carbonate Aqueous solution (for pH adjustment) Concentration 2 mol / liter
3リットルビーカーにイオン交換水300mlを用意し、60〜70℃に加温した。予め、溶液A360mlと溶液B6.3mlとを混合し、この混合液と溶液Dを同時にビーカーに滴下しながら、温度60〜70℃、pH8.0〜8.1に保持しつつ撹拌する。温度を60〜70℃に保って撹拌しながら3時間熟成させた。 300 ml of ion exchange water was prepared in a 3 liter beaker and heated to 60 to 70 ° C. In advance, 360 ml of the solution A and 6.3 ml of the solution B are mixed, and the mixture and the solution D are added dropwise to the beaker at the same time, and stirred while maintaining the temperature at 60 to 70 ° C. and pH 8.0 to 8.1. The temperature was kept at 60 to 70 ° C. and aged for 3 hours with stirring.
生成した水酸化鉄の沈殿物をろ過し、イオン交換水で洗浄した。ついで、溶液Cを5.1ml洗浄後の沈殿物に含浸してよく混合した。ついで、この沈殿物を110℃で12時間乾燥し、400℃で3時間、大気中で焼成した。焼成物を粒径60μmの篩に通るように粉砕、整粒して、実施例Aの触媒とした。 The produced iron hydroxide precipitate was filtered and washed with ion-exchanged water. Subsequently, 5.1 ml of the washed precipitate was impregnated with the solution C and mixed well. The precipitate was then dried at 110 ° C. for 12 hours and calcined in the atmosphere at 400 ° C. for 3 hours. The fired product was pulverized and sized so as to pass through a sieve having a particle size of 60 μm, and the catalyst of Example A was obtained.
また、上記イオン交換水300mlに水ガラス溶液(SiO2として3.6g)を混合した以外は、同様の操作により、実施例Bの触媒を得た。
さらに、上記イオン交換水300mlに水ガラス溶液(SiO2として3.6g)と活性コークス3.6gを混合した以外は、同様の操作により、実施例Cの触媒を得た。
Also, except for mixing the ion-exchanged water 300ml water glass solution (3.6 g as SiO 2) it is the same manner to obtain a catalyst of Example B.
Further, a catalyst of Example C was obtained by the same operation except that 300 ml of the ion-exchanged water was mixed with a water glass solution (3.6 g as SiO 2 ) and 3.6 g of activated coke.
(2)比較例D、E、Fの鉄系触媒の調製
以下の水溶液を用意した。
・溶液E 硝酸第1鉄九水和物水溶液 濃度1モル/リットル
・溶液F 硫酸銅三水和物水溶液 濃度0.5モル/リットル
・溶液C 炭酸カリウム水溶液 濃度1モル/リットル
・溶液G 炭酸アンモニウム水溶液(pH調整用) 濃度2モル/リットル
(2) Preparation of iron-based catalysts of Comparative Examples D, E, and F The following aqueous solutions were prepared.
・ Solution E Ferrous nitrate nonahydrate concentration 1 mol / liter ・ Solution F Copper sulfate trihydrate aqueous solution concentration 0.5 mol / liter ・ Solution C Potassium carbonate aqueous solution concentration 1 mol / liter ・ Solution G Ammonium carbonate Aqueous solution (for pH adjustment) Concentration 2 mol / liter
3リットルビーカーにイオン交換水300mlを用意し、60〜70℃に加温した。予め、溶液E360mlと溶液F6.3mlとを混合し、この混合液と溶液Gを同時にビーカーに滴下しながら、温度60〜70℃、pH8.0〜8.1に保持しつつ撹拌した。温度を60〜70℃に保って撹拌しながら3時間熟成させた。 300 ml of ion exchange water was prepared in a 3 liter beaker and heated to 60 to 70 ° C. In advance, 360 ml of the solution E and 6.3 ml of the solution F were mixed, and the mixture and the solution G were added dropwise to a beaker at the same time while stirring at a temperature of 60 to 70 ° C. and a pH of 8.0 to 8.1. The temperature was kept at 60 to 70 ° C. and aged for 3 hours with stirring.
生成した水酸化鉄の沈殿物をろ過し、イオン交換水で洗浄した。ついで、溶液Cを5.1ml洗浄後の沈殿物に含浸してよく混合した。ついで、この沈殿物を110℃で12時間乾燥し、400℃で3時間、大気中で焼成した。焼成物を粒径60μmの篩に通るように粉砕、整粒して、比較例Dの触媒とした。 The produced iron hydroxide precipitate was filtered and washed with ion-exchanged water. Subsequently, 5.1 ml of the washed precipitate was impregnated with the solution C and mixed well. The precipitate was then dried at 110 ° C. for 12 hours and calcined in the atmosphere at 400 ° C. for 3 hours. The fired product was pulverized and sized so as to pass through a sieve having a particle size of 60 μm to obtain a catalyst of Comparative Example D.
また、上記イオン交換水300mlに水ガラス溶液(SiO2として3.6g)を混合した以外は、同様の操作により、比較例Eの触媒を得た。
さらに、上記イオン交換水300mlに水ガラス溶液(SiO2として3.6g)と活性コークス3.6gを混合した以外は、同様の操作により、実施例Fの触媒を得た。
Also, except for mixing the ion-exchanged water 300ml water glass solution (3.6 g as SiO 2) it is the same manner to obtain a catalyst of Comparative Example E.
Further, a catalyst of Example F was obtained by the same operation except that 300 ml of the above ion-exchanged water was mixed with a water glass solution (3.6 g as SiO 2 ) and 3.6 g of activated coke.
このようにして調製された6種の鉄系触媒の物性データを表1に示す。
また、実施例A、B、Cおよび比較例D、E、Fの各触媒について、XRD(X線回折法)を測定した。そのX線回折パターンを図1および図2に示す。比較例E、Fでは鉄粒子が微細化しており、ピークが観察されないことがわかる。
Table 1 shows the physical property data of the six types of iron-based catalysts thus prepared.
Further, XRD (X-ray diffraction method) was measured for each of the catalysts of Examples A, B, and C and Comparative Examples D, E, and F. The X-ray diffraction pattern is shown in FIGS. It can be seen that in Comparative Examples E and F, the iron particles are fine and no peak is observed.
図1および図2から、実施例A、B、Cの触媒では、マグネタイト構造とヘマタイト構造とが混在することがわかり、比較例D、Eの触媒では、ヘマタイト構造のみであることがわかる。 1 and 2, it can be seen that the catalysts of Examples A, B, and C have both a magnetite structure and a hematite structure, and the catalysts of Comparative Examples D and E have only a hematite structure.
ついで、これら6種の鉄触媒を用いて合成ガスを原料として炭化水素を合成した。
容量100mlの連続撹拌型スラリー床反応器に溶媒としてのn−ヘキサデカン50mlと上記鉄系触媒3gを投入した。
始めに還元処理を行った。還元条件は以下の通りである。
還元ガス:合成ガス(H2/CO=1)
W(触媒量):3g
F(ガス流速):150cc/min.
温度:300℃
圧力:0.5MPa
Subsequently, hydrocarbons were synthesized from these 6 kinds of iron catalysts using synthesis gas as a raw material.
50 ml of n-hexadecane as a solvent and 3 g of the iron-based catalyst were charged into a continuously stirred slurry bed reactor having a capacity of 100 ml.
First, reduction treatment was performed. The reduction conditions are as follows.
Reducing gas: synthesis gas (H 2 / CO = 1)
W (catalyst amount): 3 g
F (gas flow rate): 150 cc / min.
Temperature: 300 ° C
Pressure: 0.5 MPa
次に、FT反応を行った。反応条件は以下の通りである。
反応ガス:合成ガス(H2/CO=1)
W(触媒量):3g
F(ガス流速):150cc/min.
温度:260℃
圧力:2.0MPa
Next, FT reaction was performed. The reaction conditions are as follows.
Reaction gas: synthesis gas (H 2 / CO = 1)
W (catalyst amount): 3 g
F (gas flow rate): 150 cc / min.
Temperature: 260 ° C
Pressure: 2.0 MPa
この炭化水素の合成に際しての触媒性能評価を行い、その結果を表2に示す。 The performance of the catalyst during the synthesis of this hydrocarbon was evaluated, and the results are shown in Table 2.
表2において、
「CO転換率」とは、導入した一酸化炭素が反応して炭化水素または二酸化炭素に変化した割合である。
「CO2選択率」とは、反応ガス中の一酸化炭素が炭化水素ではなく二酸化炭素になった割合である。
「炭化水素選択率」とは、生成した炭化水素のうち、各成分の割合を示す。
「STY]とは、触媒単位量当たりのC5以上の液状炭化水素の生成割合を示す。
「原料コスト」とは、触媒の重量当たりのコスト比で、実施例Aのものについて100とした相対値で示した。
「コストパフォーマンス」とは、STYを原料コストで除したもので、実施例Aのものを100とした相対値で示した。
In Table 2,
“CO conversion rate” is the rate at which the introduced carbon monoxide reacts to change into hydrocarbons or carbon dioxide.
The “CO 2 selectivity” is a ratio in which carbon monoxide in the reaction gas becomes carbon dioxide instead of hydrocarbon.
“Hydrocarbon selectivity” indicates the proportion of each component in the generated hydrocarbon.
“STY” indicates the production rate of liquid hydrocarbons of C5 or more per unit amount of catalyst.
“Raw material cost” is a cost ratio per weight of the catalyst, and is shown as a relative value of 100 for Example A.
“Cost performance” is obtained by dividing STY by the raw material cost, and is shown as a relative value with the value of Example A as 100.
表2から、実施例A〜Cの触媒は、比較例D〜Fの触媒に比較して、スラリー床反応器にて同程度のまたはそれ以上の性能を示す。さらに、原料コスト(相対比)では、実施例A〜Cの触媒は、比較例D〜Fの触媒と比べて原料が安価であるため、触媒コスト当たりの炭素数5以上の炭化水素の製造量の割合が高く、コストパフォーマンスに優れることがわかる。 From Table 2, the catalysts of Examples A-C show comparable or better performance in the slurry bed reactor compared to the catalysts of Comparative Examples D-F. Furthermore, in terms of raw material cost (relative ratio), the catalysts of Examples A to C are less expensive than the catalysts of Comparative Examples D to F, and therefore the production amount of hydrocarbons having 5 or more carbon atoms per catalyst cost It can be seen that the ratio is high and the cost performance is excellent.
Claims (6)
A method for producing hydrocarbons, comprising synthesizing hydrocarbons from synthesis gas containing carbon monoxide and hydrogen using the iron-based catalyst for Fischer-Tropsch synthesis reaction according to any one of claims 1 to 3.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2006181588A JP4747339B2 (en) | 2006-06-30 | 2006-06-30 | Iron-based catalyst for Fischer-Tropsch synthesis reaction, method for producing the same, and method for producing hydrocarbons using the same |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2006181588A JP4747339B2 (en) | 2006-06-30 | 2006-06-30 | Iron-based catalyst for Fischer-Tropsch synthesis reaction, method for producing the same, and method for producing hydrocarbons using the same |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JP2008006406A true JP2008006406A (en) | 2008-01-17 |
| JP4747339B2 JP4747339B2 (en) | 2011-08-17 |
Family
ID=39065103
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2006181588A Active JP4747339B2 (en) | 2006-06-30 | 2006-06-30 | Iron-based catalyst for Fischer-Tropsch synthesis reaction, method for producing the same, and method for producing hydrocarbons using the same |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP4747339B2 (en) |
Cited By (17)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR100933062B1 (en) | 2008-06-20 | 2009-12-21 | 한국화학연구원 | Catalyst Wye Production Method for Producing Light Olefin Directly from Syngas |
| JP2011111511A (en) * | 2009-11-25 | 2011-06-09 | Micro Energy:Kk | Regeneration treatment method of carbon compound, gasification apparatus and regeneration treatment system |
| WO2013062803A1 (en) * | 2011-10-26 | 2013-05-02 | Rentech, Inc. | Iron-based fischer-tropsch catalyst |
| JP2013517923A (en) * | 2010-01-25 | 2013-05-20 | コンパクトジーティーエル パブリック リミテッド カンパニー | Catalytic reactor treatment method |
| JP2013146652A (en) * | 2012-01-17 | 2013-08-01 | Kitakyushu Foundation For The Advancement Of Industry Science & Technology | Fischer-tropsch synthesis catalyst and method for producing the same |
| KR101405090B1 (en) * | 2013-03-19 | 2014-06-11 | 한국에너지기술연구원 | Hydrocarbons by Fischer-Tropsch synthesis and Method for preparing of hydrocarbons thereof |
| KR101418911B1 (en) | 2014-04-17 | 2014-07-14 | 한국에너지기술연구원 | Hydrocarbons by Fischer-Tropsch synthesis and Method for preparing of hydrocarbons thereof |
| WO2014115931A1 (en) * | 2013-01-24 | 2014-07-31 | 한국에너지기술연구원 | Method for manufacturing hydrocarbon compound using fischer-tropsch synthesis |
| WO2014115930A1 (en) * | 2013-01-24 | 2014-07-31 | 한국에너지기술연구원 | Catalyst reduction reactor for fischer-tropsch synthesis |
| WO2014115932A1 (en) * | 2013-01-24 | 2014-07-31 | 한국에너지기술연구원 | System for manufacturing hydrocarbon compound using fischer-tropsch synthesis |
| WO2014148680A1 (en) * | 2013-03-19 | 2014-09-25 | 한국에너지기술연구원 | Hydrocarbon compound using fischer-tropsch synthesis reaction and preparation method therefor |
| WO2014148681A1 (en) * | 2013-03-19 | 2014-09-25 | 한국에너지기술연구원 | Hydrocarbon compound using fischer-tropsch synthesis reaction and preparation method therefor |
| KR101561627B1 (en) | 2014-04-21 | 2015-10-22 | 한국에너지기술연구원 | preparing method of hydrocarbons for Hydrocarbons by Fischer-Tropsch synthesis |
| US9776175B2 (en) | 2013-03-19 | 2017-10-03 | Korea Institute Of Energy Research | Iron-based catalyst and method for preparing the same and use thereof |
| US10081008B2 (en) | 2014-05-16 | 2018-09-25 | Korea Institute Of Energy Research | Porous iron-silicate with radially developed branch, and iron-carbide/silica composite catalyst prepared therefrom |
| JP2021528225A (en) * | 2018-04-02 | 2021-10-21 | 国家能源投資集団有限責任公司China Energy Investment Corporation Limited | Pure phase ε / ε'iron carbide catalyst for Fischer-Tropsch synthesis reaction, its production method and Fischer-Tropsch synthesis method |
| JP2022102704A (en) * | 2020-12-25 | 2022-07-07 | Eneos株式会社 | Reactor |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS5621648A (en) * | 1979-07-13 | 1981-02-28 | Shell Int Research | Manufacture of fischerrtropsch catalyst |
| JP2006510470A (en) * | 2002-05-15 | 2006-03-30 | ジュート−ヒェミー アクチェンゲゼルシャフト | Fischer-Tropsch catalyst made with high purity iron precursor |
| JP2006263614A (en) * | 2005-03-24 | 2006-10-05 | Nippon Steel Corp | Catalyst for producing hydrocarbons from synthesis gas, method for producing the catalyst, and method for producing hydrocarbons from synthesis gas using the catalyst |
-
2006
- 2006-06-30 JP JP2006181588A patent/JP4747339B2/en active Active
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS5621648A (en) * | 1979-07-13 | 1981-02-28 | Shell Int Research | Manufacture of fischerrtropsch catalyst |
| JP2006510470A (en) * | 2002-05-15 | 2006-03-30 | ジュート−ヒェミー アクチェンゲゼルシャフト | Fischer-Tropsch catalyst made with high purity iron precursor |
| JP2006263614A (en) * | 2005-03-24 | 2006-10-05 | Nippon Steel Corp | Catalyst for producing hydrocarbons from synthesis gas, method for producing the catalyst, and method for producing hydrocarbons from synthesis gas using the catalyst |
Cited By (25)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR100933062B1 (en) | 2008-06-20 | 2009-12-21 | 한국화학연구원 | Catalyst Wye Production Method for Producing Light Olefin Directly from Syngas |
| JP2011111511A (en) * | 2009-11-25 | 2011-06-09 | Micro Energy:Kk | Regeneration treatment method of carbon compound, gasification apparatus and regeneration treatment system |
| JP2013517923A (en) * | 2010-01-25 | 2013-05-20 | コンパクトジーティーエル パブリック リミテッド カンパニー | Catalytic reactor treatment method |
| US8809225B2 (en) | 2011-10-26 | 2014-08-19 | Rentech, Inc | Iron-based fischer-tropsch catalyst |
| WO2013062803A1 (en) * | 2011-10-26 | 2013-05-02 | Rentech, Inc. | Iron-based fischer-tropsch catalyst |
| EA028460B1 (en) * | 2011-10-26 | 2017-11-30 | Рес Сша Ллс | Iron-based fischer-tropsch catalyst |
| JP2013146652A (en) * | 2012-01-17 | 2013-08-01 | Kitakyushu Foundation For The Advancement Of Industry Science & Technology | Fischer-tropsch synthesis catalyst and method for producing the same |
| WO2014115931A1 (en) * | 2013-01-24 | 2014-07-31 | 한국에너지기술연구원 | Method for manufacturing hydrocarbon compound using fischer-tropsch synthesis |
| WO2014115930A1 (en) * | 2013-01-24 | 2014-07-31 | 한국에너지기술연구원 | Catalyst reduction reactor for fischer-tropsch synthesis |
| WO2014115932A1 (en) * | 2013-01-24 | 2014-07-31 | 한국에너지기술연구원 | System for manufacturing hydrocarbon compound using fischer-tropsch synthesis |
| WO2014148680A1 (en) * | 2013-03-19 | 2014-09-25 | 한국에너지기술연구원 | Hydrocarbon compound using fischer-tropsch synthesis reaction and preparation method therefor |
| US9776175B2 (en) | 2013-03-19 | 2017-10-03 | Korea Institute Of Energy Research | Iron-based catalyst and method for preparing the same and use thereof |
| KR101405090B1 (en) * | 2013-03-19 | 2014-06-11 | 한국에너지기술연구원 | Hydrocarbons by Fischer-Tropsch synthesis and Method for preparing of hydrocarbons thereof |
| WO2014148681A1 (en) * | 2013-03-19 | 2014-09-25 | 한국에너지기술연구원 | Hydrocarbon compound using fischer-tropsch synthesis reaction and preparation method therefor |
| KR101458762B1 (en) * | 2013-03-19 | 2014-11-12 | 한국에너지기술연구원 | Hydrocarbons by Fischer-Tropsch synthesis and Method for preparing of hydrocarbons thereof |
| KR101524750B1 (en) * | 2013-03-19 | 2015-06-01 | 한국에너지기술연구원 | Hydrocarbons by Fischer-Tropsch synthesis and Method for preparing of hydrocarbons thereof |
| WO2014148679A1 (en) * | 2013-03-19 | 2014-09-25 | 한국에너지기술연구원 | Hydrocarbon compound using fischer-tropsch synthesis reaction and preparation method therefor |
| KR101418911B1 (en) | 2014-04-17 | 2014-07-14 | 한국에너지기술연구원 | Hydrocarbons by Fischer-Tropsch synthesis and Method for preparing of hydrocarbons thereof |
| KR101561627B1 (en) | 2014-04-21 | 2015-10-22 | 한국에너지기술연구원 | preparing method of hydrocarbons for Hydrocarbons by Fischer-Tropsch synthesis |
| US10081008B2 (en) | 2014-05-16 | 2018-09-25 | Korea Institute Of Energy Research | Porous iron-silicate with radially developed branch, and iron-carbide/silica composite catalyst prepared therefrom |
| JP2021528225A (en) * | 2018-04-02 | 2021-10-21 | 国家能源投資集団有限責任公司China Energy Investment Corporation Limited | Pure phase ε / ε'iron carbide catalyst for Fischer-Tropsch synthesis reaction, its production method and Fischer-Tropsch synthesis method |
| JP7098747B2 (en) | 2018-04-02 | 2022-07-11 | 国家能源投資集団有限責任公司 | Pure phase ε / ε'iron carbide catalyst for Fischer-Tropsch synthesis reaction, its production method and Fischer-Tropsch synthesis method |
| US11471872B2 (en) | 2018-04-02 | 2022-10-18 | China Energy Investment Corporation Limited | Pure phase ε/ε' iron carbide catalyst for Fischer-Tropsch synthesis reaction, preparation method thereof and Fischer-Tropsch synthesis process |
| JP2022102704A (en) * | 2020-12-25 | 2022-07-07 | Eneos株式会社 | Reactor |
| JP7731195B2 (en) | 2020-12-25 | 2025-08-29 | Eneos株式会社 | Reactor |
Also Published As
| Publication number | Publication date |
|---|---|
| JP4747339B2 (en) | 2011-08-17 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP4747339B2 (en) | Iron-based catalyst for Fischer-Tropsch synthesis reaction, method for producing the same, and method for producing hydrocarbons using the same | |
| AU2020257578B2 (en) | Catalysts containing copper, zinc oxide, alumina and silica | |
| AU2005215337B2 (en) | Catalyst for producing hydrocarbons, method for preparing the same, and method for producing hydrocarbons using the same | |
| Rezaei et al. | Dry reforming over mesoporous nanocrystalline 5% Ni/M-MgAl2O4 (M: CeO2, ZrO2, La2O3) catalysts | |
| JP4355047B2 (en) | Reforming catalyst and method for producing synthesis gas using the same | |
| JP3118565B2 (en) | Catalyst for synthesizing methanol and method for synthesizing methanol | |
| JP4335356B2 (en) | Nickel-based catalyst for reforming and production method of synthesis gas using the same | |
| CN112169799A (en) | Method for synthesizing light olefins by hydrogenation of carbon dioxide using iron-based catalysts | |
| US20040106517A1 (en) | Chemicals from synthesis gas | |
| WO2012031330A1 (en) | Catalyst and method for producing same | |
| KR101847549B1 (en) | Methods of manufacturing iron-base catalysts and methods of manufacturing hydrocarbons using iron-base catalysts made by the method | |
| KR20140122117A (en) | Catalysts for carbon dioxide reforming of hydrocarbons | |
| KR101594901B1 (en) | Cokes oven gas reforming catalyst for manufacturing synthesis gas, method for preparing the same and method for manufacturing synthesis gas from cokes oven gas using the same | |
| JP4262798B2 (en) | Cobalt catalyst for reforming and synthesis gas production method using the same | |
| JP4505126B2 (en) | Reforming catalyst manufacturing method | |
| JP2009241036A (en) | Carbon monoxide conversion catalyst comprising composition for carbon monoxide conversion catalyst, and method of removing carbon monoxide using the same | |
| KR101724287B1 (en) | Ni-based Reforming Catalysts to Produce the Reduction Gas for Iron Ore | |
| WO2001089686A2 (en) | Chemicals from synthesis gas | |
| JP4773116B2 (en) | Method for producing catalyst for producing hydrocarbons from synthesis gas, and method for producing hydrocarbons from synthesis gas using the catalyst | |
| KR102841555B1 (en) | Iron-based catalyst, method for preparing the same and method for producing hydrocarbons using the same | |
| JP4421913B2 (en) | Method for producing catalyst for producing hydrocarbons and method for producing hydrocarbons using the catalyst | |
| JP4505123B2 (en) | Reforming catalyst manufacturing method | |
| JP4267482B2 (en) | Hydrocarbon production catalyst and method for producing hydrocarbons using the catalyst | |
| JP4505122B2 (en) | Method for producing reforming catalyst | |
| JPH0311813B2 (en) |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090514 |
|
| A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20090514 |
|
| A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110117 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110125 |
|
| A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110325 |
|
| TRDD | Decision of grant or rejection written | ||
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110419 |
|
| A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110427 |
|
| R150 | Certificate of patent or registration of utility model |
Ref document number: 4747339 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140527 Year of fee payment: 3 |
|
| S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140527 Year of fee payment: 3 |
|
| R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |