[go: up one dir, main page]

JP2008028734A - Surface mounting antenna and communication apparatus mounting it - Google Patents

Surface mounting antenna and communication apparatus mounting it Download PDF

Info

Publication number
JP2008028734A
JP2008028734A JP2006199629A JP2006199629A JP2008028734A JP 2008028734 A JP2008028734 A JP 2008028734A JP 2006199629 A JP2006199629 A JP 2006199629A JP 2006199629 A JP2006199629 A JP 2006199629A JP 2008028734 A JP2008028734 A JP 2008028734A
Authority
JP
Japan
Prior art keywords
radiation electrode
electrode
antenna
shape
ground
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006199629A
Other languages
Japanese (ja)
Inventor
Hiroshi Aoyama
博志 青山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2006199629A priority Critical patent/JP2008028734A/en
Publication of JP2008028734A publication Critical patent/JP2008028734A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Details Of Aerials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an antenna which is used in the case to mount a plurality of bands on one portable terminal apparatus and obtains a high gain and a non-directional property in a wide bandwidth. <P>SOLUTION: A small-sized surface mounting antenna to make impedance matching easy and to have the high gain and the non-directional property in the wide bandwidth thereby is obtained by making a radiation electrode of the antenna line-symmetrical with regard to a symmetrical axis of its shape and by giving an impedance matching function with an inductance other than each capacitance between the radiation electrode and a ground electrode, between the radiation electrode and a power feeding electrode and to the radiation electrode. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明はセラミックスや樹脂等を基材として利用した誘電体又は磁性体を基体とする小型アンテナに関し、特にアンテナ素子形状を対称にし、インピーダンス整合機能を別途付与した表面実装型アンテナ及びそれを搭載し通信機器に関する。   The present invention relates to a small antenna based on a dielectric or magnetic material using ceramics, resin, or the like as a base material, and in particular, a surface-mounted antenna provided with a symmetrical antenna element shape and separately provided with an impedance matching function, and the like. It relates to communication equipment.

UHF帯の電波を搬送波とする携帯端末機器の分野に於いてGSM帯、DCS帯、PCS帯、UMTS帯などの複数バンドを一つの携帯端末機器で使用できる技術が求められている。この携帯端末機器に使用されるアンテナ回路には表面実装型アンテナが使用されている。携帯端末機器の小型化と多バンド化は急激なスピードで進められており、表面実装型アンテナも広帯域に於いて放射効率が良く、かつ無指向性であることが要求されている。しかしながら従来の表面実装型アンテナは、広帯域で使用すると特に高い周波数でアンテナ利得の低下や指向性の乱れが起こってくるので、十分な利得と無指向性を広帯域で実現するには必ずしも満足なものではなかった。これは広帯域に於いて複数のバンドで各々十分な利得と無指向性を得るためにアンテナと送信回路のインピーダンス整合を取ることが難しいためで、更には小型化してインピーダンス整合の問題を解決することはより困難であった。   In the field of mobile terminal devices that use UHF radio waves as a carrier wave, there is a need for a technology that can use multiple bands such as GSM, DCS, PCS, and UMTS bands in a single mobile terminal device. A surface mount antenna is used for an antenna circuit used in the portable terminal device. Miniaturization and multibanding of portable terminal devices are progressing at a rapid speed, and surface-mounted antennas are also required to have good radiation efficiency over a wide band and be non-directional. However, conventional surface mount antennas are not always satisfactory for realizing sufficient gain and omnidirectional characteristics in a wide band because the antenna gain decreases and the directivity is disturbed at a particularly high frequency when used in a wide band. It wasn't. This is because it is difficult to achieve impedance matching between the antenna and the transmitter circuit in order to obtain sufficient gain and omnidirectional characteristics in multiple bands in a wide band, and further miniaturization to solve the problem of impedance matching. Was more difficult.

例えば、特願2001−295743号公報に記載の表面実装型アンテナは、その放射電極が中心部に関して略対称に設けられているアンテナを開示している。このアンテナは放射電極の略対称性により主偏波方向が揃うので無指向性を保つことができる。しかし放射電極の給電側のインピーダンス整合は給電導体線を放射電極に接続する位置、給電導体線の引き回し方、及びそれらの間隔の調整によって行なうので最適な整合を取るにはその位置関係、間隔の組み合わせは無数にあって最適点を見出すのに多くのパターンで性能を検証しなければならなかった。一方、放射電極の接地点側は直接接続せずにキャパシタンスのみによる結合をしており、インピーダンス整合にインダクタンスは利用されていない。このためアンテナを小型低背化すると、インピーダンス整合が取りにくかった。その結果、広帯域に於いて高特性のアンテナとすることができないという問題点があった。   For example, a surface-mounted antenna described in Japanese Patent Application No. 2001-295743 discloses an antenna in which the radiation electrode is provided substantially symmetrically with respect to the central portion. This antenna can maintain omnidirectionality because the main polarization direction is aligned due to the substantially symmetry of the radiation electrode. However, impedance matching on the feeding side of the radiating electrode is performed by adjusting the position where the feeding conductor line is connected to the radiating electrode, how the feeding conductor line is routed, and the distance between them. There were an infinite number of combinations, and the performance had to be verified with many patterns to find the optimum point. On the other hand, the grounding point side of the radiation electrode is not directly connected but is coupled only by capacitance, and inductance is not used for impedance matching. For this reason, when the antenna is reduced in size and height, impedance matching is difficult to achieve. As a result, there has been a problem that a high-performance antenna cannot be obtained in a wide band.

また、例えば特開2003−179426号公報に記載の表面実装型アンテナは、アンテナの給電部と無線回路との間にのみ共振回路を挿入したアンテナを開示している。しかしながら、これでは共振回路が給電部と無線回路との間にしかないので特定の帯域ではインピーダンス整合を取ることは容易であるが、複数の帯域でアンテナ性能を劣化させることなくインピーダンス整合を取ることが難しい。その結果、アンテナ利得や無指向性を維持するならば広帯域にしにくく、特に広帯域にすると高い周波数でのアンテナの指向性に於いて利得の落ち込む点であるヌルが生じやすくなり無指向性が維持しにくくなるという問題があった。   Further, for example, a surface-mounted antenna described in Japanese Patent Application Laid-Open No. 2003-179426 discloses an antenna in which a resonance circuit is inserted only between a power feeding unit of the antenna and a radio circuit. However, in this case, since the resonance circuit is only between the power feeding unit and the radio circuit, it is easy to achieve impedance matching in a specific band, but impedance matching can be achieved without degrading antenna performance in a plurality of bands. difficult. As a result, if the antenna gain and omnidirectionality are maintained, it will be difficult to achieve a wide band. In particular, if the band is widened, nulls are likely to occur, and the omnidirectionality will be maintained. There was a problem of becoming difficult.

特願2001−295743号公報Japanese Patent Application No. 2001-295743

特開2003−179426号公報JP 2003-179426 A

従来の表面実装型アンテナでは、複数のバンドを一つの携帯端末機器に搭載する場合に小型低背でありながらインピーダンス整合が容易で、広帯域でアンテナ特性の高いものを得ることが出来ていなかった。しかし、携帯電話等に利用するアンテナでは広帯域で利得が高く、無指向性が維持されるものが必要である。従来、この点での配慮や検討が十分ではなかった。本発明の目的は、放射電極形状をその対称軸に関して線対称とし、放射電極の接地端と接地電極との間にキャパシタンス及びインダクタンスによるインピーダンス整合部を設け、かつ放射電極の給電端と給電電極との間にもキャパシタンス及びインダクタンスによるインピーダンス整合部を設けると共に、放射電極の形状にキャパシタンスとインダクタンスの整合機能をもたせてインピーダンス整合が容易で小型化できるアンテナであって、特に複数のバンドを一つの携帯通信機器に搭載する携帯電話等に適しており、広帯域に於いて高利得、かつ無指向性を有する表面実装型アンテナを提供することである。 本発明のもう一つの目的は、この表面実装型アンテナを搭載したヘッドフォン、パソコン、ノートパソコン、デジタルカメラ等用の通信機器を提供することである。   In the conventional surface mount antenna, when a plurality of bands are mounted on one portable terminal device, impedance matching is easy while being small and low in profile, and a broadband antenna with high antenna characteristics cannot be obtained. However, an antenna used for a cellular phone or the like needs to have a wide band and a high gain and maintain omnidirectionality. Conventionally, consideration and examination on this point have not been sufficient. An object of the present invention is to make the shape of the radiation electrode line-symmetric with respect to the axis of symmetry, provide an impedance matching portion by capacitance and inductance between the ground end of the radiation electrode and the ground electrode, and In addition, an impedance matching portion is provided between the capacitor and the inductance, and the antenna has a matching function between the capacitance and the inductance in the shape of the radiation electrode. An object of the present invention is to provide a surface mount antenna that is suitable for a mobile phone or the like mounted on a communication device, and has high gain and omnidirectionality in a wide band. Another object of the present invention is to provide a communication device for a headphone, a personal computer, a notebook computer, a digital camera or the like equipped with this surface mount antenna.

上記目的に鑑み鋭意研究の結果、放射電極をその形状の対称軸に関して線対称とし、放射電極と接地電極の間と、放射電極と給電電極の間に各々キャパシタンスの他にインダクタンスを有するインピーダンス整合機能を付与することで、インピーダンス整合が容易で広帯域に於いて高利得、無指向性を有する小型の表面実装型アンテナが得られることを発見し、本発明に想到した。   As a result of diligent research in view of the above object, the impedance matching function has the radiation electrode symmetrical with respect to the axis of symmetry of the shape, and has inductance in addition to capacitance between the radiation electrode and the ground electrode and between the radiation electrode and the feeding electrode. Thus, the present inventors have found that a small surface-mount antenna having impedance matching, high gain and omnidirectional characteristics in a wide band can be obtained.

回路基板の少なくとも上面に設けられた放射電極と、前記放射電極の一端に面するように前記回路基板に設けられた接地電極と、前記放射電極の他端に面するように前記回路基板に設けられた給電電極とを具備する表面実装型アンテナであって、前記放射電極はその形状の対称軸に関して線対称であり、前記放射電極の一端は接地端であり、他端は給電端であり、前記接地端と前記接地電極との間にキャパシタンス及びインダクタンスにより構成される装荷素子であるインピーダンス整合部を有し、かつ前記給電端と前記給電電極との間にもキャパシタンス及びインダクタンスにより構成される装荷素子であるインピーダンス整合部を有することを特徴とする。このインピーダンス整合部は1つのポートからなり、放射電極の接地端と給電端に各々接続されるのが好ましい。   A radiation electrode provided on at least the upper surface of the circuit board, a ground electrode provided on the circuit board so as to face one end of the radiation electrode, and provided on the circuit board so as to face the other end of the radiation electrode The radiation electrode is line symmetric with respect to the axis of symmetry of the shape, one end of the radiation electrode is a ground end, and the other end is a feed end, A load having an impedance matching portion which is a loading element configured by capacitance and inductance between the ground end and the ground electrode, and is also configured by capacitance and inductance between the power supply end and the power supply electrode. It has the impedance matching part which is an element, It is characterized by the above-mentioned. This impedance matching section is composed of one port, and is preferably connected to the grounding end and the feeding end of the radiation electrode.

本発明において、前記放射電極は、前記回路基板に搭載された板状または略直方体状の基体の表面に設けられた導体パターンからなるアンテナであることが好ましい。基体の形状は略直方体状に限るものでなく断面形状がコの字状、ロの字状、L字状、台形状或いは基体の長手方向の断面形状がコの字状、ロの字状、弧状など適宜の形状がある。基体の材質は磁性体、誘電体、またこれらの積層体としても良い。ここで基体は磁性体や誘電体であるので、基体を使用することにより誘電率が高くなり導体パターンからなる放射電極を基体に巻回する場合、基体を使用しない場合に比べ放射電極の全体長さを短くすることが出来る。よってアンテナ全体を小さくすることが出来る。また、前記放射電極は前記回路基板の表面に載置された副基板に設けられた導体パターンからなるアンテナであってもよい。前記放射電極は、前記回路基板の送受信回路側にある接地導体の縁部に対してギャップを介して接地導体が存在しない領域に配置され、前記給電電極は送受信回路側に配置されていることが好ましい。   In this invention, it is preferable that the said radiation electrode is an antenna which consists of a conductor pattern provided in the surface of the plate-shaped or substantially rectangular parallelepiped base | substrate mounted in the said circuit board. The shape of the substrate is not limited to a substantially rectangular parallelepiped shape, and the cross-sectional shape is a U shape, a B shape, an L shape, a trapezoidal shape, or a cross section shape in the longitudinal direction of the substrate is a U shape, a B shape, There are appropriate shapes such as arcs. The base material may be a magnetic material, a dielectric material, or a laminate thereof. Here, since the substrate is a magnetic material or a dielectric, the dielectric constant is increased by using the substrate, and when the radiating electrode made of a conductor pattern is wound around the substrate, the entire length of the radiating electrode is longer than when the substrate is not used. The length can be shortened. Therefore, the entire antenna can be reduced. The radiation electrode may be an antenna formed of a conductor pattern provided on a sub-board placed on the surface of the circuit board. The radiation electrode is disposed in a region where no ground conductor exists through a gap with respect to an edge of the ground conductor on the transmission / reception circuit side of the circuit board, and the feeding electrode is disposed on the transmission / reception circuit side. preferable.

本発明の好ましい他の実施例では、前記放射電極の形状及び配置する位置を変えることによりキャパシタンス及びインダクタンスを調整し、もってインピーダンス整合を行うことができることが好ましい。前記放射電極は、ループ状であり、その形状の対称軸に関して線対称となる形状をなし、前記ループ状の放射電極の一部分には、コの字状、U字状、若しくはクランク軸状のいずれかの形状を有し、この部分に於ける相対する放射電極間のキャパシタンスや放射電極の長さ分によるインダクタンスによりインピーダンスの整合機能を有することが好ましい。前記放射電極は、その長さが送受信に使用される電波の1/2もしくは1/4波長であることが好ましい。   In another preferred embodiment of the present invention, it is preferable that impedance matching can be performed by adjusting capacitance and inductance by changing the shape and position of the radiation electrode. The radiating electrode has a loop shape and has a shape that is line symmetric with respect to the symmetry axis of the shape, and a part of the radiating electrode of the loop has any of a U shape, a U shape, or a crankshaft shape. It is preferable to have an impedance matching function by the capacitance between the opposing radiation electrodes in this portion and the inductance due to the length of the radiation electrode. The length of the radiation electrode is preferably 1/2 or 1/4 wavelength of the radio wave used for transmission / reception.

本発明の好ましい別の実施例では、前記放射電極の一端は接地端であり、他端は給電端であり、前記接地端と接地電極との間にあるキャパシタンス及びインダクタンスによるインピーダンス整合部と、前記給電端と前記給電電極との間にあるキャパシタンス及びインダクタンスによるインピーダンス整合部は、回路基板の表面に導体パターンで形成されている。アンテナを回路基板の接地導体がない回路基板面に実装すれば最大の特性が期待できるが、アンテナ性能は若干やや劣るが接地導体面上に実装することも可能である。   In another preferred embodiment of the present invention, one end of the radiation electrode is a ground end, the other end is a power supply end, and an impedance matching unit with capacitance and inductance between the ground end and the ground electrode; The impedance matching portion by capacitance and inductance between the power supply end and the power supply electrode is formed on the surface of the circuit board with a conductor pattern. If the antenna is mounted on the circuit board surface without the ground conductor of the circuit board, the maximum characteristics can be expected, but the antenna performance is slightly inferior, but it can be mounted on the ground conductor surface.

以上のように本発明によれば、従来実現できなかった複数のバンドを一つの機器に搭載する場合に、小型低背でありながらインピーダンス整合が容易で、広帯域において高利得、無指向性を有するアンテナ装置を得ることができる。また、携帯電話だけでなくGPSや無線LAN等に用いた場合に機器の性能を充分引き出した携帯通信機器とすることができる。   As described above, according to the present invention, when a plurality of bands that could not be realized in the past are mounted on one device, impedance matching is easy while being small and low-profile, and high gain and omnidirectionality are achieved in a wide band. An antenna device can be obtained. In addition, when used for not only a mobile phone but also a GPS, a wireless LAN, or the like, it is possible to provide a mobile communication device that sufficiently draws out the performance of the device.

以下、本発明を図面に示す実施形態と共に詳細に説明する。 まず、インピーダンス整合が困難になる理由について述べておく。基板に放射電極、接地電極及び給電電極等を配置すると、各電極間にキャパシタンスが生成される。給電電極と放射電極との間のキャパシタンスの増大は入力インピーダンスを低下させ、インピーダンスの不整合を引き起こす。   Hereinafter, the present invention will be described in detail with embodiments shown in the drawings. First, the reason why impedance matching becomes difficult will be described. When a radiation electrode, a ground electrode, a power supply electrode, and the like are arranged on the substrate, a capacitance is generated between the electrodes. Increasing the capacitance between the feed electrode and the radiating electrode lowers the input impedance and causes impedance mismatch.

図1は本発明の回路基板上に導体パターンで放射電極が形成され、放射電極の両端にそれぞれ装荷素子であるインピーダンス整合部が接続された2ポート方式アンテナであるアンテナ装置の実施形態の一例を示す図である。図1において2Aは2ポート方式の導体パターンアンテナであるアンテナ装置、24は装荷素子を示す。図17は装荷素子24の一例を示す図である。   FIG. 1 shows an example of an embodiment of an antenna device which is a two-port antenna in which a radiation electrode is formed in a conductor pattern on a circuit board of the present invention, and impedance matching portions as loading elements are connected to both ends of the radiation electrode. FIG. In FIG. 1, 2A denotes an antenna device which is a 2-port type conductor pattern antenna, and 24 denotes a loading element. FIG. 17 is a diagram illustrating an example of the loading element 24.

本実施例の放射電極の接地端と給電端に装荷素子であるインピーダンス整合部のポートを各々有する2ポート方式のアンテナ装置は放射電極22を回路基板1の接地導体が存在しない領域1aに、その形状の対称軸mに関して線対称に導体パターンを印刷して形成する。したがって、アンテナ装置は接地導体が存在しない領域1aに導体パターンで形成した放射電極22と、放射電極22の接地端23bに接続された装荷素子24bと、放射電極22の給電端23aに接続された装荷素子24aとで構成される。装荷素子24bは接地端23bと接地電極25bとの間にあるキャパシタンス及びインダクタンスによるインピーダンス整合部であり、装荷素子24aは給電端23aと給電電極25aとの間にあるキャパシタンス及びインダクタンスによるインピーダンス整合部である。放射電極22の配置位置及び形状は各周波数帯域で十分な利得と無指向性が得られるようにインピーダンス整合を取って決める。この場合、接地導体が存在しない領域1aと回路基板1は、ほぼ同じ厚さとすることができ本発明を利用した携帯通信機器の高さを大幅に低くすることもできる。   In the two-port antenna device having the impedance matching portion port which is a loading element at the grounding end and the feeding end of the radiation electrode of this embodiment, the radiation electrode 22 is placed in the region 1a of the circuit board 1 where the ground conductor does not exist. The conductor pattern is printed and formed in line symmetry with respect to the symmetry axis m of the shape. Therefore, the antenna device is connected to the radiation electrode 22 formed in a conductor pattern in the region 1 a where no ground conductor exists, the loading element 24 b connected to the ground end 23 b of the radiation electrode 22, and the feeding end 23 a of the radiation electrode 22. And a loading element 24a. The loading element 24b is an impedance matching portion due to capacitance and inductance between the ground end 23b and the ground electrode 25b, and the loading element 24a is an impedance matching portion due to capacitance and inductance between the feeding end 23a and the feeding electrode 25a. is there. The position and shape of the radiation electrode 22 are determined by impedance matching so that sufficient gain and omnidirectionality can be obtained in each frequency band. In this case, the area 1a where the ground conductor does not exist and the circuit board 1 can have substantially the same thickness, and the height of the portable communication device using the present invention can be significantly reduced.

また、この例では装荷素子としてキャパシタンス及びインダクタンス素子を示しているが、装荷素子も回路基板に印刷した導体のパターンとすることも可能で、この場合装荷素子が印刷された部分においても基板は、ほぼ同じ厚さとすることができ、もって本発明である携帯通信機器の高さを大幅に低くすることもできる。   In this example, capacitance and inductance elements are shown as loading elements. However, the loading elements can also be a conductor pattern printed on the circuit board. In this case, the board is also printed on the portion where the loading elements are printed. The thickness can be made substantially the same, and the height of the portable communication device according to the present invention can be greatly reduced.

本発明の2ポート方式であるアンテナ装置は、放射電極をその形状の対称軸に関して線対称に形成するとともに、放射電極の一端である接地端と接地電極との間にキャパシタンス及びインダクタンスによるインピーダンス整合部を挿入し、放射電極の他端である給電端と給電電極との間にもキャパシタンス及びインダクタンスによるインピーダンス整合部を挿入することによりインピーダンス整合を図るものである。従来のこの種のアンテナでは、等価回路上のキャパシタンスのみを与える構成であったが、本発明により等価回路上キャパシタンスに加えインダクタンスが獲得できる装荷素子を放射電極の一端と接地電極間及び放射電極の他端と給電電極間に実装したことにより広帯域でインピーダンス整合がより容易になったところに本願発明の大きな特徴のひとつがある。   The antenna device of the two-port system according to the present invention is configured such that the radiation electrode is formed line-symmetrically with respect to the symmetry axis of the shape, and the impedance matching portion by capacitance and inductance is provided between the ground end which is one end of the radiation electrode and the ground electrode. The impedance matching is achieved by inserting an impedance matching portion based on capacitance and inductance between the feeding end and the feeding electrode, which is the other end of the radiation electrode. In the conventional antenna of this type, only the capacitance on the equivalent circuit is provided. However, according to the present invention, the loading element that can acquire the inductance in addition to the capacitance on the equivalent circuit is provided between one end of the radiation electrode and the ground electrode and between the radiation electrode. One of the major features of the present invention is that impedance matching is made easier in a wide band by mounting between the other end and the feeding electrode.

また本発明の2ポート方式のアンテナ装置には用途に応じて種々の形態があるので、インピーダンス整合条件は、それらの広汎な要件を満足する必要がある。このため放射電極はインダクタンスの並列成分L(i=1,2,3)とキャパシタンスの並列成分Cとの組合せと見なせるので、この放射電極をループ状にして、さらにその放射電極の途中にコの字状、U字状、クランク軸状、又はこれらを組合せた形の屈曲形状をなす放射電極部分を形成することにより、インダクタンスとキャパシタンスを任意に設定できる。インダクタンスは放射電極の長さに比例し、キャパシタンスは接地電極と放射電極、または放射電極とその放射電極の別の部分との対向長さの関数である。従って、本発明の放射電極を用いてインピーダンス整合を行う場合は、まず等価回路中のL、Cのうちどれをどの程度とすべきかをおおよそ決める。次にLは放射電極の長さに比例し、Cは放射電極と接地電極、または放射電極とその放射電極の別な部分との対向長さの関数であることを利用すると、インピーダンス整合のために望ましいパラメータを満足する放射電極の形状を容易に設定することができる。 Further, since the two-port antenna device of the present invention has various forms depending on the application, the impedance matching condition needs to satisfy these extensive requirements. For this reason, since the radiation electrode can be regarded as a combination of the parallel component L i (i = 1, 2, 3) of the inductance and the parallel component C i of the capacitance, the radiation electrode is formed in a loop shape and further in the middle of the radiation electrode. Inductance and capacitance can be arbitrarily set by forming a radiating electrode portion having a U-shape, U-shape, crankshaft shape, or a combination thereof. Inductance is proportional to the length of the radiating electrode, and capacitance is a function of the opposing length of the ground electrode and the radiating electrode, or the radiating electrode and another portion of the radiating electrode. Therefore, when impedance matching is performed using the radiation electrode of the present invention, first, it is roughly determined which one of L i and C i in the equivalent circuit should be. Next, L i is proportional to the length of the radiating electrode, and C i is a function of the opposing length of the radiating electrode and the ground electrode or the radiating electrode and another portion of the radiating electrode. Therefore, it is possible to easily set the shape of the radiation electrode that satisfies the desired parameters.

本発明の2ポート方式のアンテナ装置であるアンテナの全体長さ、屈曲部分の形状、長さなどを決めるには、上記のようなインピーダンス整合条件を考慮し、各周波数帯におけるアンテナの共振周波数を決める必要がある。まずループ状に形成する放電電極の全長を決めるが、低い周波数帯であるGSM帯に1/4波長で共振する長さにする。次にループ状に形成した放射電極において、その形状の中心点に関して略対称となるような位置にコの字状やU字状の屈曲部分を設ける。一方、その屈曲形状をなす放射電極部分をショートパスして合計した放電電極の長さが、高い周波数帯のDCS/PCS帯に1/2波長で共振する長さとなるようにその屈曲形状をなす放射電極部分を除いて全長を決める。これにより複数帯域に共振させる基本的なアンテナの長さの条件を決めることができる。   In order to determine the overall length of the antenna, which is the 2-port antenna device of the present invention, the shape of the bent portion, the length, etc., considering the impedance matching conditions as described above, the resonance frequency of the antenna in each frequency band is It is necessary to decide. First, the overall length of the discharge electrode formed in a loop shape is determined, and it is set to a length that resonates at a quarter wavelength in the GSM band which is a low frequency band. Next, in the radiation electrode formed in a loop shape, a U-shaped or U-shaped bent portion is provided at a position that is substantially symmetrical with respect to the center point of the shape. On the other hand, the length of the discharge electrode obtained by short-passing the radiation electrode portion having the bent shape is made to be a length that resonates at a ½ wavelength in the DCS / PCS band of the high frequency band. The total length is determined excluding the radiation electrode part. As a result, the basic antenna length condition for resonating in a plurality of bands can be determined.

一方、放射電極から電波を空中に効率よく指向性の乱れが少なく、すなわちヌル点を生じさせること無く放射させるためには、放射電極の接地端でのインピーダンスはGSM帯で使用する場合はハイインピーダンスとなり、DCS/PCS帯で使用する場合はローインピーダンス(特性インピーダンス:50Ω)となると共に、放射電極の給電端ではGSM帯、DCS/PCS帯共にローインピーダンスとなる必要がある。このようにインピーダンス整合させるためには放射電極の全長と屈曲部分の形状を決めた後、まずGSM帯で送受信回路を作動させ接地端でハイインピーダンスとなるように、DCS/PCS帯で送受信回路を作動させ接地端でローインピーダンスとなるように接地点端と接地電極の間に挿入されている装荷素子のLとCを増減させて調整し、LとCの値をおよそ決める。しかしこのLとCの値を決めた段階では接地端においては整合が取れたものの給電端においてはインピーダンスにずれを生じている。そこで送受信回路からの高周波電力が、回路基板の給電線を介して給電電極に伝達されたとき、給電端において電圧反射が生じないようにする必要があるが、GSM帯、DCS/PCS帯共にローインピーダンスとなるように給電端と給電電極の間に挿入されている装荷素子のLとCを再度増減させて調整し、LとCの値を決定する。この整合が取れた目安としては対象とする周波数帯で電圧定在波比(以下VSWRとする)がおよそ3以下になることである。   On the other hand, in order to efficiently radiate radio waves from the radiation electrode in the air without causing a disturbance of directivity, that is, without causing a null point, the impedance at the ground end of the radiation electrode is high impedance when used in the GSM band. Therefore, when used in the DCS / PCS band, the impedance becomes low impedance (characteristic impedance: 50Ω), and both the GSM band and the DCS / PCS band need to have low impedance at the feeding end of the radiation electrode. In order to achieve impedance matching in this manner, after determining the overall length of the radiation electrode and the shape of the bent portion, first the transmitter / receiver circuit is operated in the GSM band and the transmitter / receiver circuit in the DCS / PCS band is set to have high impedance at the ground end. The L and C of the loading element inserted between the ground point end and the ground electrode are adjusted so as to be low impedance at the ground end, and the values of L and C are roughly determined. However, at the stage where the values of L and C are determined, there is a match at the ground end, but there is a shift in impedance at the feed end. Therefore, when high-frequency power from the transmission / reception circuit is transmitted to the power supply electrode via the power supply line of the circuit board, it is necessary to prevent voltage reflection from occurring at the power supply end, but both the GSM band and the DCS / PCS band are low. The values of L and C are determined by adjusting L and C of the loading element inserted between the power supply end and the power supply electrode again and again so as to be impedance. A standard for achieving this matching is that the voltage standing wave ratio (hereinafter referred to as VSWR) is about 3 or less in the target frequency band.

更には、本発明では放射電極の長さや形状を適宜設定するだけでなくループ状に形成した放射電極上にその形状の対称軸に関して線対称となるような位置にコの字状やU字状の屈曲形状をなす部分を設け、この屈曲形状をなす部分で形成されるLとCを増減させることにより複数帯域でのインピーダンス整合を容易にしており、これにより帯域幅BWを任意に設定できる。この屈曲形状をなす部分で形成されるLとCは並列共振とみなせるので帯域幅BWとQ及びC/Lの間にはBW ∝1/Q及びQ=1/R√(C/L)の関係があることになり、屈曲形状をなす部分で形成されるLとCを増減させることによりC又はC/Lを制御すれば、帯域幅BWを広げることができる。例えば、屈曲形状をなす部分の導体パターンの対向する部分を長くすればインダクタンス分(L)とキャパシタンス分(C)を大きくとることができる。また屈曲形状をなす部分の導体パターンの対向する部分を離せばインダクタンス分(L)は大きくすることができるが、キャパシタンス分(C)は小さくすることができる。このことによって、DCS/PCS帯より少し高い周波数帯であるUMTS帯までを含む広帯域においてもインピーダンス整合を容易にすることができ、よってGSM帯、DCS/PCS帯、UMTS帯である4つの帯域を含む広帯域に於いて高利得、かつ無指向性を有するアンテナとすることができる。つまり、本発明によるアンテナ装置2Aである導体パターンアンテナは図2に示す等価回路を有する。   Furthermore, in the present invention, not only the length and shape of the radiation electrode are set appropriately, but also a U-shape or U-shape on the radiation electrode formed in a loop shape at a position that is line symmetric with respect to the symmetry axis of the shape. A portion having a bent shape is provided, and impedance matching in a plurality of bands is facilitated by increasing / decreasing L and C formed in the bent portion, whereby the bandwidth BW can be arbitrarily set. Since L and C formed in the bent portion can be regarded as parallel resonance, BW∝1 / Q and Q = 1 / R√ (C / L) between the bandwidths BW and Q and C / L. There is a relationship, and if C or C / L is controlled by increasing or decreasing L and C formed in the bent portion, the bandwidth BW can be widened. For example, if the portion where the conductor pattern of the bent portion is opposed is lengthened, the inductance (L) and capacitance (C) can be increased. Further, if the part of the conductor pattern that forms the bent shape is separated, the inductance (L) can be increased, but the capacitance (C) can be decreased. As a result, impedance matching can be facilitated even in a wide band including up to the UMTS band, which is a slightly higher frequency band than the DCS / PCS band. Therefore, the four bands of the GSM band, the DCS / PCS band, and the UMTS band can be reduced. An antenna having high gain and omnidirectionality in a wide band including the antenna can be obtained. That is, the conductor pattern antenna which is the antenna device 2A according to the present invention has an equivalent circuit shown in FIG.

図3は本発明の第2の実施例に記載の2ポート方式の基体を使用したチップアンテナで構成されるアンテナ装置2Bを搭載した状態を示す平面図である。このアンテナは、直方体状の基体21の上面に配設された放射電極22と、放射電極22の接地端23bに接続された装荷素子24bと、放射電極22の給電端23aに接続された装荷素子24aとを有する。チップアンテナに使用される基体21の形状は略直方体で、その断面形状がコの字状、ロの字状、L字状、台形状であったり、長手方向断面形状がコの字状、ロの字状、湾曲状の直方体であっても良い。本発明の第2の実施例に記載のアンテナ装置2Bは特開2003−179426号公報に記載の表面実装型アンテナに於いて給電端と給電電極間に装荷素子を挿入した点で似た構成を有するが、装荷素子24bが放射電極22の接地端23bと接地電極25bの間と、装荷素子24aが放射電極22の給電端23aと給電電極25aの間に各々挿入されている点で異なる。基体21の底面21aには半田付け用電極以外の電極は配置されておらず、またチップアンテナで構成されるアンテナ装置2Bも回路基板1上の接地導体が存在しない領域1aに実装されるので、接地導体との静電容量結合が少なく、いかなる方向にもほぼ均一な放射電界パターンを示し、その結果良好な無指向性が得られる。放射電極22は、ループ状に形成された放射電極であって、放射電極22のその形状の対称軸mに関して線対称となる位置にコの字状やU字状にした放射電極22の屈曲形状をなす部分を設ける。放射電極22は一端に接地電極25bに装荷素子24bを介して接続される接地端23bを有するとともに、他端に送受信回路の給電電極25aに装荷素子24aを介して接続される給電端23aを有する。ループ状の放射電極22上に設けられた屈曲形状をなす部分の導体パターン長さ部分はGSM帯に共振させるために必要なインダクタンスを生成するとともに、放射電極22の屈曲形状をなす部分の導体パターンの対抗する長さ部分ではキャパシタンスを生成する。従って、本発明によるアンテナ装置2Bであるチップアンテナは図2に示す等価回路を有する。   FIG. 3 is a plan view showing a state in which an antenna device 2B composed of a chip antenna using the two-port type substrate described in the second embodiment of the present invention is mounted. This antenna includes a radiation electrode 22 disposed on the upper surface of a rectangular parallelepiped base 21, a loading element 24b connected to the grounding end 23b of the radiation electrode 22, and a loading element connected to the feeding end 23a of the radiation electrode 22. 24a. The base 21 used for the chip antenna has a substantially rectangular parallelepiped shape, and its cross-sectional shape is a U-shape, a B-shape, an L-shape, a trapezoidal shape, or a longitudinal cross-sectional shape is a U-shape. A rectangular shape with a letter shape or a curved shape may be used. The antenna device 2B according to the second embodiment of the present invention has a similar configuration in that a loading element is inserted between the feeding end and the feeding electrode in the surface mount antenna described in Japanese Patent Laid-Open No. 2003-179426. However, the difference is that the loading element 24b is inserted between the grounding end 23b of the radiation electrode 22 and the grounding electrode 25b, and the loading element 24a is inserted between the feeding end 23a of the radiation electrode 22 and the feeding electrode 25a. Since no electrode other than the soldering electrode is disposed on the bottom surface 21a of the base body 21 and the antenna device 2B composed of a chip antenna is mounted on the area 1a on the circuit board 1 where no ground conductor exists, There is little capacitive coupling with the ground conductor, and an almost uniform radiation electric field pattern is exhibited in any direction, resulting in good omnidirectionality. The radiation electrode 22 is a radiation electrode formed in a loop shape, and the radiation electrode 22 is bent in a U-shape or U-shape at a position that is line-symmetric with respect to the symmetry axis m of the radiation electrode 22. The part which makes is provided. The radiation electrode 22 has a grounding end 23b connected to the grounding electrode 25b via the loading element 24b at one end and a feeding end 23a connected to the feeding electrode 25a of the transmission / reception circuit via the loading element 24a at the other end. . The conductor pattern length portion of the bent shape provided on the loop-shaped radiation electrode 22 generates an inductance necessary for resonating in the GSM band, and the conductor pattern of the portion of the radiation electrode 22 forming the bent shape. Capacitance is generated in the opposite length portion. Therefore, the chip antenna which is the antenna device 2B according to the present invention has the equivalent circuit shown in FIG.

更に付け加えるならば、本発明の第2の実施例では、インダクタンスL、L、L各々放射電極22の屈曲形状をなす部分を構成する導体パターンである221、222、223に対応し、キャパシタンスCは放射電極22の導体パターン221と導体パターン223との相対する部分の間で形成される。従って、放射電極22の屈曲形状をなす部分を構成する導体パターン221、222、223の長さ及び形状を適宜設定してL、L、L及びCを変化させることにより、給電端から放射電極をみた入力インピーダンスZinを50 Ωに一致させることができる。このように入力インピーダンスの整合を放射電極の一端と接地電極間及び放射電極の他端と給電電極間に各々設けた装荷素子による整合回路とは別に、放射電極22の屈曲形状をなす部分を構成する導体パターン221、222、223のインダクタンスに加えて、放射電極22の導体パターン221と導体パターン223の長さと、導体パターン221と導体パターン223の対抗する長さ部分の間隔を調整することによりキャパシタンスを操作できることは、本発明の重要な特徴である。 In addition, in the second embodiment of the present invention, the inductances L 1 , L 2 , and L 3 correspond to the conductor patterns 221, 222, and 223 that constitute the bent portions of the radiation electrode 22, respectively. The capacitance C i is formed between the opposing portions of the conductive pattern 221 and the conductive pattern 223 of the radiation electrode 22. Therefore, by changing the set length and shape of the conductor patterns 221, 222, 223 constituting the portion forming the bent shape of the radiation electrode 22 as appropriate L 1, L 2, L 3 and C i, the feeding end the input impedance Z in viewing the radiation electrode from can be matched to 50 Omega. In this manner, the portion of the radiation electrode 22 that is bent is formed separately from the matching circuit by the loading element in which the input impedance matching is provided between one end of the radiation electrode and the ground electrode and between the other end of the radiation electrode and the feeding electrode. In addition to the inductances of the conductor patterns 221, 222, and 223, the capacitances are adjusted by adjusting the lengths of the conductor patterns 221 and 223 of the radiation electrode 22 and the distance between the opposing length portions of the conductor patterns 221 and 223. Is an important feature of the present invention.

図4、図5は本発明の第2の実施例による2ポート方式のチップアンテナで構成されるアンテナ装置2Bの基体に印刷される導体パターン形状の例を示す。回路基板上の配置スペースの関係から図4や図5などの印刷パターンが可能であるが、広帯域で良好なアンテナ性能にするには、接地導体の端面から最も離れた放射電極ループ部の直線部分の導体パターン224と、装荷素子に最も近い側の放射電極22の導体パターン221がなるべく離れた方が、電極部分間での静電容量結合を生ずる度合いが減少するので好ましい。図3と図4を比べると、図3では放射電極22のループ部の直線部分の導体パターン224(図示なし)が放射電極22の導体パターンの直線部分221が印刷されている上面と異なる図3では見えない側面に印刷されていることを示している。また図4では放射電極22のループ部の直線部分の導体パターン224が基体21の上面に印刷されていることを示している。従って、図3の放射電極22の導体パターン221と放射電極22のループ部の直線部分の導体パターン224間の距離に比べ、図4では放射電極22の導体パターン221と放射電極22のループ部の直線部分の導体パターン224間の距離が近いため静電容量がより大きい。つまり図3の方が静電容量結合は少なく、より広帯域にできる。また、図5は図3のケースで放射電極22の屈曲形状をなす部分の導体パターン221、222,223の全てが基体21の一側面にある場合であり、静電容量結合の度合いは図3よりやや大きくなる。しかし図5ではアンテナ装置2Bに必要な空間スペースとしては高さがやや高くなるものの、上から見た投影面積を小さくできるのでその分回路基板を小さくすることができる。   4 and 5 show examples of conductor pattern shapes printed on the base of an antenna device 2B constituted by a two-port chip antenna according to the second embodiment of the present invention. 4 and 5 are possible because of the arrangement space on the circuit board. However, in order to achieve a good antenna performance in a wide band, the straight line portion of the radiation electrode loop portion farthest from the end face of the ground conductor It is preferable that the conductor pattern 224 and the conductor pattern 221 of the radiation electrode 22 closest to the loading element be as far as possible because the degree of capacitive coupling between the electrode portions is reduced. 3 and FIG. 4, in FIG. 3, the conductor pattern 224 (not shown) of the linear portion of the loop portion of the radiation electrode 22 is different from the upper surface on which the linear portion 221 of the conductor pattern of the radiation electrode 22 is printed. Shows that it is printed on the invisible side. Further, FIG. 4 shows that the conductor pattern 224 of the linear portion of the loop portion of the radiation electrode 22 is printed on the upper surface of the base 21. Therefore, compared to the distance between the conductor pattern 221 of the radiation electrode 22 and the conductor pattern 224 of the loop portion of the radiation electrode 22 in FIG. 3, the conductor pattern 221 of the radiation electrode 22 and the loop portion of the radiation electrode 22 in FIG. Since the distance between the conductor patterns 224 in the straight line portion is short, the capacitance is larger. That is, the capacitive coupling in FIG. 3 is less, and a wider band can be achieved. FIG. 5 shows the case where all of the conductor patterns 221, 222, and 223 in the bent shape of the radiation electrode 22 are on one side of the base 21 in the case of FIG. 3, and the degree of capacitive coupling is shown in FIG. A little bigger. However, in FIG. 5, although the height of the space required for the antenna device 2B is slightly increased, the projected area viewed from above can be reduced, and thus the circuit board can be reduced accordingly.

図6、図7、図8は本発明の第2の実施例における他の基体形状の例を示す。図6や図7のように基体21a〜21fの断面形状はコの字状、ロの字状、L字状、台形状或いは図8のように基体21g〜21fの長手方向の断面形状がコの字状、ロの字状、弧状などであってもよい。これらのように基体21の一部分を削り取った形にすることにより誘電体の体積が減り誘電率を下げることができ、その結果静電容量が小さくなり広帯域化できる。また基体の一部分を削り取るのでその分重量を減らすこともできる。図8のように特に長手方向の断面形状がコの字状、ロの字状、弧状などの基体を使用する場合、接地導体側から最も離れた放射電極のループ部の直線部分である導体パターン224が接地導体側と、より離れるような配置にすることができるので静電容量をさらに小さくでき広帯域化できる。   6, 7 and 8 show examples of other substrate shapes in the second embodiment of the present invention. The cross-sectional shapes of the bases 21a to 21f are U-shaped, B-shaped, L-shaped, trapezoidal as shown in FIGS. 6 and 7, or the longitudinal cross-sectional shapes of the bases 21g to 21f are as shown in FIG. The shape may be a square shape, a square shape, an arc shape, or the like. In this way, by cutting away a portion of the substrate 21, the volume of the dielectric can be reduced and the dielectric constant can be lowered. As a result, the capacitance can be reduced and the bandwidth can be increased. Further, since a part of the substrate is scraped off, the weight can be reduced accordingly. As shown in FIG. 8, when using a base whose cross-sectional shape in the longitudinal direction is a U shape, a B shape, an arc shape, etc., a conductor pattern that is a straight portion of the loop portion of the radiation electrode farthest from the ground conductor side Since the 224 can be arranged so as to be further away from the ground conductor side, the capacitance can be further reduced and the bandwidth can be increased.

図9は本発明の第3の実施例による2ポート方式のアンテナ装置2Cを示す。上記実施例と同じ部分には同一符号を付し、それらの説明を省略する。このアンテナは、回路基板1の接地導体が存在しない領域1aに載置される立設された副基板31の表面に配設された放射電極22と、放射電極22の接地端23bに接続された装荷素子24bと、放射電極22の給電端23aに接続された装荷素子24aとを有する。立設された副基板31には放射電極22と立設された副基板31を固定する半田付け用電極以外の電極は配置されておらず、また立設された副基板31も回路基板1上の接地導体が存在しない領域1aに実装されるので、接地導体との静電容量結合が少なくなることにより、いかなる方向にもほぼ均一な放射電界パターンを示し、その結果良好な無指向性が得られる。副基板31の表面に配設された放射電極22は立設された副基板31の片面にあっても良いし、両面に跨っても良い。また副基板の厚さを厚くしていくと直方体状になるので、本発明の第3の実施例は本発明の第2の実施例に記載のアンテナ装置2Bであるチップアンテナの別態様でもある。放射電極22は、ループ状に形成した放射電極であって、放射電極22の形状の対称軸mに関して線対称である位置にコの字状やU字状にした放射電極22の屈曲形状をなす部分を設ける。放射電極22は一端に接地電極25bに装荷素子24bを介して接続される接地端23bを有するとともに、他端に送受信回路の給電電極25aに装荷素子24aを介して接続される給電端23aを有する。ループ状の放射電極22上に設けられた屈曲形状をなす部分の導体パターン部分はGSM帯に共振させるために必要なインダクタンスを生成するとともに、放射電極22の屈曲をなす部分の導体パターン部分における相対する部分ではキャパシタンスを生成する。このように回路基板1上の接地導体が存在ない領域1aに載置される立設された副基板31の表面に放射電極22を印刷して形成することにより、基体を使用することなく放射電極部分を構成することができるので小型で安価の携帯通信端末機器を提供することができる。従って、本発明によるアンテナ装置2Cは図2に示す等価回路を有する。   FIG. 9 shows a 2-port antenna device 2C according to a third embodiment of the present invention. The same parts as those in the above embodiment are denoted by the same reference numerals, and the description thereof is omitted. This antenna is connected to the radiation electrode 22 disposed on the surface of the standing sub-board 31 placed on the area 1 a where the ground conductor of the circuit board 1 does not exist, and to the ground end 23 b of the radiation electrode 22. It has a loading element 24b and a loading element 24a connected to the feeding end 23a of the radiation electrode 22. No electrode other than the soldering electrode for fixing the radiation electrode 22 and the standing sub-board 31 is arranged on the standing sub-board 31, and the standing sub-board 31 is also on the circuit board 1. Since it is mounted in the region 1a where no grounding conductor exists, the capacitance coupling with the grounding conductor is reduced, so that a substantially uniform radiation electric field pattern is exhibited in any direction, and as a result, good omnidirectionality is obtained. It is done. The radiation electrode 22 disposed on the surface of the sub-board 31 may be provided on one side of the sub-board 31 provided upright, or may extend over both sides. Further, since the thickness of the sub-board is increased to become a rectangular parallelepiped, the third embodiment of the present invention is another aspect of the chip antenna which is the antenna device 2B described in the second embodiment of the present invention. . The radiation electrode 22 is a radiation electrode formed in a loop shape, and is formed in a bent shape of the U-shaped or U-shaped radiation electrode 22 in a line-symmetrical position with respect to the symmetry axis m of the shape of the radiation electrode 22. Provide a part. The radiation electrode 22 has a grounding end 23b connected to the grounding electrode 25b via the loading element 24b at one end and a feeding end 23a connected to the feeding electrode 25a of the transmission / reception circuit via the loading element 24a at the other end. . The conductor pattern portion of the bent portion provided on the loop-shaped radiation electrode 22 generates an inductance necessary for resonating in the GSM band, and the relative portion of the conductor pattern portion of the portion of the radiation electrode 22 that bends. Capacitance is generated in the part to do. In this way, the radiation electrode 22 is printed and formed on the surface of the standing sub-board 31 placed on the area 1a where the ground conductor does not exist on the circuit board 1, so that the radiation electrode can be used without using a base. Since the portion can be configured, a small and inexpensive portable communication terminal device can be provided. Therefore, the antenna device 2C according to the present invention has the equivalent circuit shown in FIG.

本実施例では、第一の実施例と同様にインダクタンスL、L、Lは各々放射電極22の屈曲形状をなす部分を構成する導体パターンである221、222、223に対応し、キャパシタンスCiは放射電極22の導体パターン221と導体パターン223との相対する部分間で形成される。従って、放射電極22の屈曲形状をなす部分を構成する導体パターン221、222、223の長さ及び形状を適宜設定してL、L、L及びCiを変化させることにより、給電端から放射電極をみた入力インピーダンスZinを50Ωに一致させることができる。このように入力インピーダンスの整合を放射電極の一端と接地電極間及び放射電極の他端と給電電極間に各々設けた装荷素子による整合回路とは別に、放射電極22の屈曲形状をなす部分を構成する導体パターン221、222、223のインダクタンスに加えて、放射電極22の導体パターン221と導体パターン223の長さと、導体パターン221と導体パターン223の対抗する長さ部分での間隔を調整することによりキャパシタンスを操作できることは、広帯域に於いて高利得、無指向性を有する本発明の重要な特徴である。 In this embodiment, as in the first embodiment, the inductances L 1 , L 2 , and L 3 correspond to the conductor patterns 221, 222, and 223 that form the bent portions of the radiation electrode 22, respectively, and the capacitance C i is formed between opposite portions of the conductive pattern 221 and conductive pattern 223 of the radiation electrode 22. Therefore, by changing the set length and shape of the conductor patterns 221, 222, 223 constituting the portion forming the bent shape of the radiation electrode 22 as appropriate L 1, L 2, L 3 and C i, the feeding end the input impedance Z in viewing the radiation electrode from can be matched to 50 [Omega. In this manner, the portion of the radiation electrode 22 that is bent is formed separately from the matching circuit by the loading element in which the input impedance matching is provided between one end of the radiation electrode and the ground electrode and between the other end of the radiation electrode and the feeding electrode. In addition to the inductance of the conductor patterns 221, 222, and 223 to be adjusted, the length of the conductor pattern 221 and the conductor pattern 223 of the radiation electrode 22 and the distance between the opposing length portions of the conductor pattern 221 and the conductor pattern 223 are adjusted. The ability to manipulate the capacitance is an important feature of the present invention that has high gain and omnidirectionality over a wide band.

図10は本発明の第4の実施例による2ポート方式のアンテナ装置2Dを示す。上記実施例と同じ部分には同一符号を付し、それらの説明を省略する。このアンテナは、回路基板1の接地導体が存在しない領域1aに回路基板1と平行に一定空間を空けて回路基板1に載置される平面状の副基板41の表面に印刷された放射電極22と、放射電極22の接地端23bに接続された装荷素子24bと、放射電極22の給電端23aに接続された装荷素子24aとを有する。副基板41には放射電極22と副基板を固定する半田付け用電極以外の電極は印刷されておらず、また副基板41は回路基板1上の接地導体の存在しない領域1aに載置されるので、接地導体との静電容量結合が少なくなることにより、いかなる方向にもほぼ均一な放射電界パターンを示し、その結果良好な無指向性が得られる。副基板41の表面に印刷された放射電極22は副基板41の片面にあっても良いし、両面にあっても良い。放射電極22は、ループ状に形成された電極であって、放射電極22の形状の対称軸mに関して線対称な位置にコの字状やU字状にした放射電極22の屈曲形状をなす部分を設ける。放射電極22は一端に接地電極25bに装荷素子24bを介して接続される接地端23bを有するとともに、他端に送受信回路の給電電極25aに装荷素子24aを介して接続される給電端23aを有する。ループ状に形成された放射電極22上に設けられた屈曲形状をなす部分の導体パターン長さ部分はGSM帯に共振させるために必要なインダクタンスを生成するとともに、放射電極22の屈曲形状をなす部分の導体パターン部分の相対する部分ではキャパシタンスを生成する。このように回路基板1と平行に回路基板1上の接地導体が存在しない領域1aに載置される平面状の副基板41の表面に放射電極22を印刷して形成することにより、導体パターンが印刷された基体としてのアンテナチップを使用することなくアンテナ回路部分を構成することができるので小型で薄型の携帯通信端末機器を提供することができる。従って、本発明によるアンテナ装置2Dは図2に示す等価回路を有する。   FIG. 10 shows a 2-port antenna device 2D according to a fourth embodiment of the present invention. The same parts as those in the above embodiment are denoted by the same reference numerals, and the description thereof is omitted. This antenna has a radiation electrode 22 printed on the surface of a planar sub-board 41 placed on the circuit board 1 with a certain space in parallel to the circuit board 1 in a region 1 a where the ground conductor is not present on the circuit board 1. And a loading element 24b connected to the ground end 23b of the radiation electrode 22 and a loading element 24a connected to the power feed end 23a of the radiation electrode 22. The sub-board 41 is not printed with any electrode other than the radiation electrode 22 and the soldering electrode for fixing the sub-board, and the sub-board 41 is placed on the area 1 a where the ground conductor does not exist on the circuit board 1. Therefore, by reducing the capacitive coupling with the ground conductor, a substantially uniform radiation electric field pattern is exhibited in any direction, and as a result, good omnidirectionality can be obtained. The radiation electrode 22 printed on the surface of the sub-board 41 may be on one side of the sub-board 41 or on both sides. The radiation electrode 22 is an electrode formed in a loop shape, and is a portion that forms a bent shape of the radiation electrode 22 that is U-shaped or U-shaped at a line-symmetrical position with respect to the symmetry axis m of the shape of the radiation electrode 22. Is provided. The radiation electrode 22 has a grounding end 23b connected to the grounding electrode 25b via the loading element 24b at one end and a feeding end 23a connected to the feeding electrode 25a of the transmission / reception circuit via the loading element 24a at the other end. . The portion of the conductor pattern length of the bent portion provided on the radiation electrode 22 formed in a loop shape generates the inductance necessary for resonating in the GSM band, and the portion of the radiation electrode 22 having the bent shape Capacitance is generated in the opposite portion of the conductor pattern portion. Thus, by forming the radiation electrode 22 on the surface of the planar sub-board 41 placed in the area 1a where the ground conductor does not exist on the circuit board 1 in parallel with the circuit board 1, the conductor pattern is formed. Since the antenna circuit portion can be configured without using an antenna chip as a printed substrate, a small and thin portable communication terminal device can be provided. Therefore, the antenna device 2D according to the present invention has the equivalent circuit shown in FIG.

本実施例では、第1の実施例と同様にインダクタンスL、L、Lは各々放射電極22の屈曲形状をなす部分を構成する導体パターンである221、222、223に対応し、キャパシタンスCは放射電極22の導体パターン221と導体パターン223との対抗する長さ部分の間で形成される。従って、放射電極22の屈曲形状をなす部分を構成する導体パターン221、222、223の長さ及び形状を適宜設定してL、L、L及びCを変化させることにより、給電点から放射電極をみた入力インピーダンスZinを50Ωに一致させることができる。このように入力インピーダンスの整合を放射電極の一端と接地電極間及び放射電極の他端と給電電極間に各々設けた装荷素子による整合回路とは別に、放射電極22の屈曲形状をなす部分を構成する導体パターン221、222、223のインダクタンスに加えて、放射電極22の導体パターン221と導体パターン223の長さと、導体パターン221と導体パターン223の対抗する長さ部分での間隔を調整することによりキャパシタンスを操作できることは、広帯域に於いて高利得、無指向性を有する本発明の重要な特徴である。 In this embodiment, as in the first embodiment, the inductances L 1 , L 2 , and L 3 correspond to the conductor patterns 221, 222, and 223 that constitute the bent portions of the radiation electrode 22, respectively, and the capacitance C i is formed between the length portion against the conductor patterns 221 and the conductor patterns 223 of the radiation electrode 22. Accordingly, by changing the lengths and shapes of the conductor patterns 221, 222, and 223 that constitute the bent portion of the radiation electrode 22 and changing L 1 , L 2 , L 3, and C i , the feeding point the input impedance Z in viewing the radiation electrode from can be matched to 50 [Omega. In this manner, the portion of the radiation electrode 22 that is bent is formed separately from the matching circuit by the loading element in which the input impedance matching is provided between one end of the radiation electrode and the ground electrode and between the other end of the radiation electrode and the feeding electrode. In addition to the inductance of the conductor patterns 221, 222, and 223 to be adjusted, the length of the conductor pattern 221 and the conductor pattern 223 of the radiation electrode 22 and the distance between the opposing length portions of the conductor pattern 221 and the conductor pattern 223 are adjusted. The ability to manipulate the capacitance is an important feature of the present invention that has high gain and omnidirectionality over a wide band.

次に、本実施例の2ポート方式であるアンテナ装置の作用効果を説明する。本発明者は上述したアンテナ装置の作用効果を検証するため図1に示す実施例1および図3に示す実施例2について、アンテナの特性試験を行った。インピーダンス整合を容易にするため実施例1および実施例2については、接地端と接地電極との間と、給電端と給電電極との間に各々装荷素子によるインピーダンス整合部を設けている。また実施例2の基体21は、比誘電率εrが8のセラミックス誘電体により形成し、その基体寸法は実施例2では長さ30 mm×幅3 mm×厚さ2 mmとした。一般に実施例1の平面アンテナは実施例2のチップアンテナよりも無指向性が良好であることが確認されているため、実施例2で良好な無指向性が得られれば実施例1は実施例2より良好な無指向性が得られる。したがって、測定伝搬周波数帯は実施例1については、GSM帯、DCS/PCS帯におけるVSWR2での帯域幅BW(MHz)、平均利得(dBi)とし、実施例2については、GSM帯、DCS/PCS帯、UMTS帯として、VSWR 2での帯域幅BW (MHz)、平均利得(dBi)及び指向性を測定した。ここでVSWR を2で測定した理由は、携帯通信端末機器の性能として帯域内でVSWRが3以下であれば十分実用性が確保できるからである。   Next, the function and effect of the antenna device that is the two-port system of this embodiment will be described. The present inventor conducted antenna characteristic tests on Example 1 shown in FIG. 1 and Example 2 shown in FIG. 3 in order to verify the operational effects of the antenna device described above. In order to facilitate impedance matching, in the first and second embodiments, impedance matching portions by loading elements are provided between the ground end and the ground electrode and between the power supply end and the power supply electrode, respectively. The substrate 21 of Example 2 was formed of a ceramic dielectric having a relative dielectric constant εr of 8. In Example 2, the substrate dimensions were 30 mm long × 3 mm wide × 2 mm thick. In general, it has been confirmed that the planar antenna of the first embodiment has better omnidirectionality than the chip antenna of the second embodiment. Better than 2 is obtained. Therefore, the measurement propagation frequency band is the bandwidth BW (MHz) and the average gain (dBi) at VSWR2 in the GSM band and the DCS / PCS band for the first embodiment, and the GSM band and the DCS / PCS for the second embodiment. As the band and the UMTS band, the bandwidth BW (MHz), average gain (dBi), and directivity in VSWR 2 were measured. The reason why the VSWR is measured at 2 is that the practicality can be sufficiently secured if the VSWR is 3 or less in the band as the performance of the mobile communication terminal device.

図11は本発明の回路基板上に導体パターンで放射電極を形成し、放射電極の両端にそれぞれ装荷素子が接続された2ポート方式であるアンテナ装置2AのGSM帯、DCS/PCS帯、UMTS帯におけるVSWRの測定結果を示す図である。VSWRの測定は、アンテナ実装基板の一端に設けた給電端子と、ネットワークアナライザの入力端子とを、同軸ケーブル(特性インピーダンス50Ω)を介して接続し、前記給電端子においてネットワークアナライザ側からみた、アンテナの散乱パラメータ(Scattering Parameter)を測定することにより、この値に基いてVSWRを算出した。図11のデータでは対象とするGSM帯、DCS/PCS帯、UMTS帯において3以下のVSWRの値が得られており、アンテナに送られた電力の反射が少なく効率よくアンテナに伝わり、携帯通信端末機器の実用通信上、十分な特性が得られていることが分かる。   FIG. 11 shows a GSM band, a DCS / PCS band, and a UMTS band of an antenna device 2A that is a two-port system in which a radiation electrode is formed in a conductor pattern on a circuit board of the present invention, and loading elements are connected to both ends of the radiation electrode. It is a figure which shows the measurement result of VSWR in. The VSWR is measured by connecting the power supply terminal provided at one end of the antenna mounting board and the input terminal of the network analyzer via a coaxial cable (characteristic impedance 50 Ω), and the antenna terminal viewed from the network analyzer side at the power supply terminal. The VSWR was calculated based on this value by measuring the scattering parameter. In the data shown in FIG. 11, a value of VSWR of 3 or less is obtained in the target GSM band, DCS / PCS band, and UMTS band, and the power transmitted to the antenna is less reflected and efficiently transmitted to the antenna. It can be seen that sufficient characteristics are obtained for practical communication of the device.

図12は本発明による2ポート方式のチップアンテナで構成されるアンテナ装置2BのGSM帯における利得測定結果を示す図である。利得の測定に際しては、電波無響暗室内で被試験アンテナ(送信側)の給電端子に信号発生器を接続し、前記アンテナから放射された電力を受信用基準アンテナで受信することにより測定した。被試験アンテナからくる受信電力をPとし、既知の利得Gを有する送信用基準アンテナにより測定した受信電力をPrとすると、被試験アンテナの利得Gは、G=G×P/Pで表される。指向性については、被試験アンテナ素子を回転テーブルに搭載し、被試験アンテナを回転させながら上記の利得測定を行うことにより、図12〜14に示すように、X軸、Y軸およびZ軸を中心として回転させたときの回転角度に対する利得をGSM帯、DCS帯、UMTS帯毎にそれぞれ測定した。尚、X軸は携帯通信端末機器の操作面を正面として横方向、Y軸は携帯通信端末機器の操作面を正面として縦方向およびZ軸は携帯通信端末機器の操作面を正面として正面に垂直方向に合わせるものとする。特に携帯通信端末機器の操作はその操作形態からY軸をおおむね地面に向けて使用するケースが多く、また基地局は垂直偏波を使用するためX―Z面での垂直偏波の無指向性が重要である。その場合の利得としてはY軸の全周に亘って−6dBi以上あれば良い。図12のGSM帯における利得測定結果ではX―Z面での垂直偏波の平均利得が−0.18dBiで最大利得が0.71dBiあり、十分な垂直偏波の利得と無指向性が得られていることがわかる。同様に図13のDCS帯における利得測定結果ではX―Z面での垂直偏波の平均利得が−5.38dBiで最大利得が−3.22dBiあり、十分な垂直偏波の利得と無指向性が得られていることがわかる。同様に図14のUMTS帯における利得測定結果ではX―Z面での垂直偏波の平均利得が−5.55dBiで最大利得が−3.67dBiあり、十分な垂直偏波の利得と無指向性が得られていることがわかる。ここでDCS帯に近接するPCS帯の測定データはないが、PCS帯に近接するDCS帯とPCS帯より高い周波数帯であるUMTS帯に於いても十分な垂直偏波の利得と無指向性が得られているので、DCS帯とUMTS帯の間にあるPCS帯においても十分な垂直偏波の利得と無指向性が得られているといえる。 FIG. 12 is a diagram showing a gain measurement result in the GSM band of the antenna device 2B configured by the 2-port chip antenna according to the present invention. When measuring the gain, a signal generator was connected to the power supply terminal of the antenna under test (transmission side) in an anechoic chamber, and the power radiated from the antenna was received by a reference antenna for reception. If the received power coming from the antenna under test is P a and the received power measured by the transmission reference antenna having a known gain G r is Pr, the gain G a of the antenna under test is G a = G r × P a / Pr . For directivity, the antenna element under test is mounted on a turntable, and the gain measurement is performed while rotating the antenna under test, so that the X axis, Y axis, and Z axis can be adjusted as shown in FIGS. The gain with respect to the rotation angle when rotated as the center was measured for each of the GSM band, DCS band, and UMTS band. The X axis is the horizontal direction with the operation surface of the mobile communication terminal device as the front, the Y axis is the vertical direction with the operation surface of the mobile communication terminal device as the front, and the Z axis is vertical with the operation surface of the mobile communication terminal device as the front. Align with the direction. In particular, there are many cases where the operation of mobile communication terminal equipment is used with the Y-axis generally pointing to the ground because of its operation form, and since the base station uses vertical polarization, the omnidirectionality of vertical polarization in the XZ plane is important. The gain in that case may be -6 dBi or more over the entire circumference of the Y axis. The gain measurement result in the GSM band of FIG. 12 shows that the average gain of the vertical polarization in the XZ plane is -0.18 dBi and the maximum gain is 0.71 dBi, and sufficient vertical polarization gain and omnidirectionality can be obtained. You can see that Similarly, the gain measurement result in the DCS band in FIG. 13 shows that the average gain of the vertical polarization in the XZ plane is −5.38 dBi and the maximum gain is −3.22 dBi, and the sufficient vertical polarization gain and omnidirectionality are obtained. It can be seen that is obtained. Similarly, in the gain measurement result in the UMTS band of FIG. 14, the average gain of the vertical polarization in the XZ plane is −5.55 dBi and the maximum gain is −3.67 dBi, and the sufficient vertical polarization gain and omnidirectionality are obtained. It can be seen that is obtained. Here, there is no measurement data in the PCS band close to the DCS band, but there is sufficient vertical polarization gain and omnidirectionality even in the DCS band close to the PCS band and the UMTS band, which is a higher frequency band than the PCS band. Thus, it can be said that sufficient vertical polarization gain and omnidirectionality are obtained even in the PCS band between the DCS band and the UMTS band.

図15は本発明による2ポート方式の導体パターンで構成されるアンテナ装置2AのGSM帯におけるX―Z面での垂直偏波の平均利得測定結果であり、図16は本発明による導体パターンで構成されたアンテナ装置2AのDCS/PCS帯におけるX―Z面での垂直偏波の平均利得測定結果である。図15のGSM帯における利得測定結果ではX―Z面での垂直偏波の平均利得の下限が約−3dBiであり、図16のDCS/PCS帯、UMTS帯における利得測定結果ではX―Z面での垂直偏波の平均利得の下限が−約4dBiである。一般に導体パターンアンテナはチップアンテナに比べ指向性についての特性が良好であるため、上記導体パターンアンテナの平均利得が−6dBi以上であることからX―Z面での十分な垂直偏波の無指向性が得られているといえる。   FIG. 15 shows the result of measuring the average gain of vertical polarization in the XZ plane in the GSM band of the antenna device 2A constituted by the two-port conductor pattern according to the present invention, and FIG. 16 is constituted by the conductor pattern according to the present invention. 3 is a result of measuring the average gain of vertically polarized waves in the XZ plane in the DCS / PCS band of the antenna apparatus 2A. In the gain measurement result in the GSM band of FIG. 15, the lower limit of the average gain of the vertical polarization in the XZ plane is about −3 dBi, and in the gain measurement result in the DCS / PCS band and the UMTS band of FIG. The lower limit of the average gain of the vertical polarization at −4 dBi. Since the conductor pattern antenna generally has better directivity characteristics than the chip antenna, the average gain of the conductor pattern antenna is not less than -6 dBi, so that sufficient omnidirectionality of the vertical polarization in the XZ plane is obtained. It can be said that

以上の結果より、実施例1の2ポート方式の導体パターンで構成されたアンテナ装置2Aは、GSM帯、DCS/PCS帯、UMTS帯のいずれにおいてもVSWRが3以下となり実用通信上十分なVSWRであり、アンテナ利得もGSM帯の場合はZ−X面で−3db以上、DCS/PCS帯で−4db以上を達成して、実用通信上十分な無指向性が得られることがわかった。また実施例2のアンテナは実施例1のものに比べ放射利得がやや低いものの、特にZ−X面で利得がほぼ円に近く、実用的な無指向性が得られた。以上より実施例1、実施例2のアンテナについて帯域幅、放射利得、指向性の全てに於いてバランスのとれた良好なアンテナ性能が得られた。   From the above results, the antenna device 2A configured with the 2-port conductor pattern of Example 1 has a VSWR of 3 or less in any of the GSM band, the DCS / PCS band, and the UMTS band, which is sufficient for practical communication. In the case of the GSM band, the antenna gain was -3 db or more in the ZX plane and -4 db or more in the DCS / PCS band, and it was found that sufficient omnidirectionality for practical communication was obtained. Further, although the antenna of Example 2 had a slightly lower radiation gain than that of Example 1, the gain was almost close to a circle in the ZX plane, and practical omnidirectionality was obtained. As described above, the antennas of Example 1 and Example 2 were able to obtain good antenna performance balanced in all of the bandwidth, radiation gain, and directivity.

本発明の第1の実施例を示すアンテナ装置2Aの平面図である。It is a top view of antenna device 2A which shows the 1st example of the present invention. 本発明のアンテナ装置の等価回路図である。It is an equivalent circuit diagram of the antenna device of the present invention. 本発明の第2の実施例を示すアンテナ装置2Bの平面図である。It is a top view of the antenna apparatus 2B which shows the 2nd Example of this invention. 本発明の第2の実施例によるアンテナ装置2Bの基体に印刷される別の導体 パターン形状の例を示す斜視図であるIt is a perspective view which shows the example of another conductor pattern shape printed on the base | substrate of the antenna apparatus 2B by 2nd Example of this invention. 本発明の第2の実施例によるアンテナ装置2Bの基体に印刷される更に別の 導体パターン形状例を示す斜視図である。It is a perspective view which shows another example of conductor pattern shape printed on the base | substrate of the antenna apparatus 2B by the 2nd Example of this invention. 本発明の第2の実施例における他の基体形状の例を示す図である。It is a figure which shows the example of the other base | substrate shape in the 2nd Example of this invention. 本発明の第2の実施例における他の基体形状の例を示す図である。It is a figure which shows the example of the other base | substrate shape in the 2nd Example of this invention. 本発明の第2の実施例における他の基体形状の例を示す図である。It is a figure which shows the example of the other base | substrate shape in the 2nd Example of this invention. 本発明の第3の実施例によるアンテナ装置2Cの斜視図である。FIG. 10 is a perspective view of an antenna device 2C according to a third embodiment of the present invention. 本発明の第4の実施例によるアンテナ装置2Dの斜視図である。It is a perspective view of antenna device 2D by the 4th example of the present invention. 本発明によるアンテナ装置2AのGSM帯、DCS/PCS帯、UMTS 帯におけるVSWRの測定結果を示す図である。It is a figure which shows the measurement result of VSWR in GSM band, DCS / PCS band, and UMTS band of 2 A of antenna apparatuses by this invention. 本発明によるアンテナ装置2BのGSM帯における利得測定結果である。It is a gain measurement result in the GSM band of the antenna device 2B according to the present invention. 本発明によるアンテナ装置2BのDCS帯における利得測定結果である。It is a gain measurement result in the DCS band of the antenna device 2B according to the present invention. 本発明によるアンテナ装置2BのUMTS帯における利得測定結果である。It is a gain measurement result in the UMTS band of the antenna device 2B according to the present invention. 本発明によるアンテナ装置2AのGSM帯における利得測定結果である。It is a gain measurement result in the GSM band of 2 A of antenna apparatuses by this invention. 本発明によるアンテナ装置2AのDCS/PCS帯における利得測定結果 である。It is a gain measurement result in the DCS / PCS band of the antenna device 2A according to the present invention. 本発明のアンテナ装置に使用される装荷素子24の一例を示す図である。It is a figure which shows an example of the loading element 24 used for the antenna apparatus of this invention.

符号の説明Explanation of symbols

1:回路基板
1a:接地導体が存在しない領域
1b:接地導体が存在する領域
2A、2B、2C、2D:アンテナ装置
21、21a〜21k:基体
22:放射電極
23a:給電端
23b:接地端
24、24a、24b:装荷素子
25a:給電電極
25b:接地電極
221、222、223、224:導体パターン
31:立設された副基板
41:副基板
m:対称軸
L、L、L,L、L、L:インダクタンス
C、C:キャパシタンス
1: Circuit board 1a: Region 1b where no ground conductor exists 1b: Region 2A, 2B, 2C, 2D where ground conductor exists: Antenna devices 21, 21a to 21k: Base 22: Radiation electrode 23a: Feed end 23b: Ground end 24 24a, 24b: Loading element 25a: Feed electrode 25b: Ground electrodes 221, 222, 223, 224: Conductor pattern 31: Standing sub-board 41: Sub-board m: Symmetry axes L, L i , L 0 , L 1 , L 2 , L 3 : Inductance C, C i : Capacitance

Claims (8)

回路基板の少なくとも上面に設けられた放射電極と、前記放射電極の一端に面するように前記回路基板に設けられた接地電極と、前記放射電極の他端に面するように前記回路基板に設けられた給電電極とを具備する表面実装型アンテナであって、前記放射電極はその形状の対称軸に関して線対称であり、前記放射電極の一端は接地端であり、他端は給電端であり、前記接地端と前記接地電極との間にキャパシタンス及びインダクタンスによるインピーダンス整合部を有し、かつ前記給電端と前記給電電極との間にもキャパシタンス及びインダクタンスによるインピーダンス整合部を有することを特徴とするアンテナ装置。 A radiation electrode provided on at least the upper surface of the circuit board, a ground electrode provided on the circuit board so as to face one end of the radiation electrode, and provided on the circuit board so as to face the other end of the radiation electrode The radiation electrode is line symmetric with respect to the axis of symmetry of the shape, one end of the radiation electrode is a ground end, and the other end is a feed end, An antenna having an impedance matching portion based on capacitance and inductance between the ground end and the ground electrode, and an impedance matching portion based on capacitance and inductance between the feeding end and the feeding electrode. apparatus. 請求項1に記載の表面実装型アンテナにおいて、前記放射電極は、前記回路基板に搭載された板状または略直方体の基体の表面に設けられた導体パターンであることを特徴とするアンテナ装置。 2. The surface-mounted antenna according to claim 1, wherein the radiation electrode is a conductor pattern provided on a surface of a plate-like or substantially rectangular parallelepiped base mounted on the circuit board. 請求項1に記載の表面実装型アンテナにおいて、前記放射電極は前記回路基板上に載置された副基板に設けられた導体パターンであることを特徴とするアンテナ装置。 2. The surface-mount antenna according to claim 1, wherein the radiation electrode is a conductor pattern provided on a sub-board placed on the circuit board. 請求項1〜3のいずれかに記載のアンテナ装置において、前記放射電極の形状及び配置する位置を変えることによりキャパシタンス及びインダクタンスを調整し、もってインピーダンス整合を行うことができることを特徴とするアンテナ装置。 4. The antenna device according to claim 1, wherein impedance matching can be performed by adjusting capacitance and inductance by changing a shape and a position of the radiation electrode. 請求項1〜3のいずれかに記載のアンテナ装置において、前記放射電極はループ状の形状をなし、前記ループ状の放射電極の一部分にはコの字状、U字状、若しくはクランク軸状のいずれかの形状を有することを特徴とするアンテナ装置。 The antenna device according to any one of claims 1 to 3, wherein the radiation electrode has a loop shape, and a part of the loop radiation electrode has a U shape, a U shape, or a crankshaft shape. An antenna device having any shape. 請求項1〜5のいずれかに記載のアンテナ装置において、前記放射電極は、その長さが送受信に使用される電波の1/2波長もしくは1/4波長であることを特徴とするアンテナ装置。 6. The antenna device according to claim 1, wherein the length of the radiation electrode is 1/2 wavelength or 1/4 wavelength of a radio wave used for transmission / reception. 請求項1〜6のいずれかに記載のアンテナ装置において、前記放射電極の一端は接地端であり、他端は給電端であり、前記接地端と接地電極との間にあるキャパシタンス及びインダクタンスによるインピーダンス整合部と、前記給電端と前記給電電極との間にあるキャパシタンス及びインダクタンスによるインピーダンス整合部は、回路基板の表面に導体パターンで形成されたことを特徴とするアンテナ装置。 7. The antenna device according to claim 1, wherein one end of the radiation electrode is a ground end, the other end is a feeding end, and an impedance due to a capacitance and an inductance between the ground end and the ground electrode. The antenna device, wherein the matching portion and the impedance matching portion due to capacitance and inductance between the feeding end and the feeding electrode are formed in a conductor pattern on the surface of the circuit board. 請求項1〜7記載のアンテナ装置を内蔵したことを特徴とする携帯通信機器。





A portable communication device comprising the antenna device according to claim 1.





JP2006199629A 2006-07-21 2006-07-21 Surface mounting antenna and communication apparatus mounting it Pending JP2008028734A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006199629A JP2008028734A (en) 2006-07-21 2006-07-21 Surface mounting antenna and communication apparatus mounting it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006199629A JP2008028734A (en) 2006-07-21 2006-07-21 Surface mounting antenna and communication apparatus mounting it

Publications (1)

Publication Number Publication Date
JP2008028734A true JP2008028734A (en) 2008-02-07

Family

ID=39118925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006199629A Pending JP2008028734A (en) 2006-07-21 2006-07-21 Surface mounting antenna and communication apparatus mounting it

Country Status (1)

Country Link
JP (1) JP2008028734A (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010034906A (en) * 2008-07-29 2010-02-12 Toshiba Corp Antenna apparatus and electronic equipment
JP2010035193A (en) * 2009-09-28 2010-02-12 Toshiba Corp Antenna apparatus
WO2011024280A1 (en) * 2009-08-27 2011-03-03 株式会社 東芝 Antenna device and communication device
JP2012120038A (en) * 2010-12-02 2012-06-21 Tdk Corp Antenna device
JP2012129598A (en) * 2010-12-13 2012-07-05 Fujitsu Ltd Antenna
JP2013183179A (en) * 2012-02-29 2013-09-12 Nec Access Technica Ltd Antenna and radio apparatus
WO2013168690A1 (en) * 2012-05-11 2013-11-14 株式会社村田製作所 Antenna device
JP2014022376A (en) * 2012-07-23 2014-02-03 Lg Innotek Co Ltd Lighting device
EP2549590A4 (en) * 2010-12-01 2014-05-21 Zte Corp Multi-input multi-output antenna system
WO2014098024A1 (en) * 2012-12-21 2014-06-26 株式会社村田製作所 Antenna device and electronic device
US8836588B2 (en) 2011-08-31 2014-09-16 Kabushiki Kaisha Toshiba Antenna device and electronic apparatus including antenna device
JP3195446U (en) * 2014-10-28 2015-01-22 高橋 康文 Voltage-fed antenna device
US8941548B2 (en) 2011-08-30 2015-01-27 Kabushiki Kaisha Toshiba Antenna device and electronic apparatus including antenna device
US8988292B2 (en) 2011-03-30 2015-03-24 Kabushiki Kaisha Toshiba Antenna device and electronic device including antenna device
JP2015095820A (en) * 2013-11-13 2015-05-18 オムロンオートモーティブエレクトロニクス株式会社 Antenna and electronic component
US9404624B2 (en) 2012-07-23 2016-08-02 Lg Innotek Co., Ltd. Lighting apparatus
JP2017501634A (en) * 2013-12-31 2017-01-12 ▲華▼▲為▼▲終▼端有限公司 Loop antenna and mobile terminal
CN110380189A (en) * 2019-07-23 2019-10-25 广东以诺通讯有限公司 A kind of miniature antenna and terminal
EP3159966B1 (en) * 2014-08-08 2020-04-22 Huawei Technologies Co. Ltd. Antenna device and terminal
CN115764307A (en) * 2021-09-03 2023-03-07 荣耀终端有限公司 A Terminal Monopole Antenna

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08240624A (en) * 1995-03-01 1996-09-17 Matsushita Electric Ind Co Ltd Electromagnetic radiation measurement device
JPH08250918A (en) * 1995-03-14 1996-09-27 Casio Comput Co Ltd Antenna structure
JPH0969718A (en) * 1995-09-01 1997-03-11 Yokowo Co Ltd Transmission line type antenna and radio terminal
JPH09260918A (en) * 1996-03-25 1997-10-03 Kubota Corp Receiving planar antenna device
JP2001284935A (en) * 2000-01-25 2001-10-12 Sony Corp Antenna device
US20050128155A1 (en) * 2003-12-11 2005-06-16 Junichi Fukuda Antenna device and radio communication apparatus using the antenna device
JP2006140667A (en) * 2004-11-11 2006-06-01 Yokowo Co Ltd Antenna system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08240624A (en) * 1995-03-01 1996-09-17 Matsushita Electric Ind Co Ltd Electromagnetic radiation measurement device
JPH08250918A (en) * 1995-03-14 1996-09-27 Casio Comput Co Ltd Antenna structure
JPH0969718A (en) * 1995-09-01 1997-03-11 Yokowo Co Ltd Transmission line type antenna and radio terminal
JPH09260918A (en) * 1996-03-25 1997-10-03 Kubota Corp Receiving planar antenna device
JP2001284935A (en) * 2000-01-25 2001-10-12 Sony Corp Antenna device
US20050128155A1 (en) * 2003-12-11 2005-06-16 Junichi Fukuda Antenna device and radio communication apparatus using the antenna device
JP2006140667A (en) * 2004-11-11 2006-06-01 Yokowo Co Ltd Antenna system

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7764238B2 (en) 2008-07-29 2010-07-27 Kabushiki Kaisha Toshiba Antenna device and electronic equipment
US7982678B2 (en) 2008-07-29 2011-07-19 Kabushiki Kaisha Toshiba Antenna device and electric equipment
JP2010034906A (en) * 2008-07-29 2010-02-12 Toshiba Corp Antenna apparatus and electronic equipment
US8699964B2 (en) 2009-08-27 2014-04-15 Kabushiki Kaisha Toshiba Antenna apparatus and communication apparatus
WO2011024280A1 (en) * 2009-08-27 2011-03-03 株式会社 東芝 Antenna device and communication device
US8942641B2 (en) 2009-08-27 2015-01-27 Kabushiki Kaisha Toshiba Antenna apparatus and communication apparatus
JP5275369B2 (en) * 2009-08-27 2013-08-28 株式会社東芝 Antenna device and communication device
JP2010035193A (en) * 2009-09-28 2010-02-12 Toshiba Corp Antenna apparatus
EP2549590A4 (en) * 2010-12-01 2014-05-21 Zte Corp Multi-input multi-output antenna system
US9590297B2 (en) 2010-12-01 2017-03-07 Zte Corporation Multi-input multi-output antenna system
JP2012120038A (en) * 2010-12-02 2012-06-21 Tdk Corp Antenna device
JP2012129598A (en) * 2010-12-13 2012-07-05 Fujitsu Ltd Antenna
US8988292B2 (en) 2011-03-30 2015-03-24 Kabushiki Kaisha Toshiba Antenna device and electronic device including antenna device
US8941548B2 (en) 2011-08-30 2015-01-27 Kabushiki Kaisha Toshiba Antenna device and electronic apparatus including antenna device
US8836588B2 (en) 2011-08-31 2014-09-16 Kabushiki Kaisha Toshiba Antenna device and electronic apparatus including antenna device
JP2013183179A (en) * 2012-02-29 2013-09-12 Nec Access Technica Ltd Antenna and radio apparatus
WO2013168690A1 (en) * 2012-05-11 2013-11-14 株式会社村田製作所 Antenna device
US9404624B2 (en) 2012-07-23 2016-08-02 Lg Innotek Co., Ltd. Lighting apparatus
US10015869B2 (en) 2012-07-23 2018-07-03 Lg Innotek Co., Ltd. Lighting apparatus
JP2014022376A (en) * 2012-07-23 2014-02-03 Lg Innotek Co Ltd Lighting device
US9326361B2 (en) 2012-07-23 2016-04-26 Lg Innotek Co., Ltd. Lighting apparatus
US9253859B2 (en) 2012-07-23 2016-02-02 Lg Innotek Co., Ltd. Lighting apparatus
CN106340706B (en) * 2012-12-21 2019-04-19 株式会社村田制作所 Antenna assembly and electronic equipment
WO2014098024A1 (en) * 2012-12-21 2014-06-26 株式会社村田製作所 Antenna device and electronic device
CN106340706A (en) * 2012-12-21 2017-01-18 株式会社村田制作所 Antenna Device And Electronic Apparatus
JP2014239539A (en) * 2012-12-21 2014-12-18 株式会社村田製作所 Electronic device
CN104638349B (en) * 2012-12-21 2017-06-30 株式会社村田制作所 Antenna assembly and electronic equipment
US9705206B2 (en) 2012-12-21 2017-07-11 Murata Manufacturing Co., Ltd. Antenna device and electronic apparatus
CN104638349A (en) * 2012-12-21 2015-05-20 株式会社村田制作所 Antenna device and electronic apparatus
JP2015095820A (en) * 2013-11-13 2015-05-18 オムロンオートモーティブエレクトロニクス株式会社 Antenna and electronic component
JP2017501634A (en) * 2013-12-31 2017-01-12 ▲華▼▲為▼▲終▼端有限公司 Loop antenna and mobile terminal
EP3159966B1 (en) * 2014-08-08 2020-04-22 Huawei Technologies Co. Ltd. Antenna device and terminal
JP3195446U (en) * 2014-10-28 2015-01-22 高橋 康文 Voltage-fed antenna device
CN110380189A (en) * 2019-07-23 2019-10-25 广东以诺通讯有限公司 A kind of miniature antenna and terminal
CN115764307A (en) * 2021-09-03 2023-03-07 荣耀终端有限公司 A Terminal Monopole Antenna

Similar Documents

Publication Publication Date Title
JP2008028734A (en) Surface mounting antenna and communication apparatus mounting it
US5945959A (en) Surface mounting antenna having a dielectric base and a radiating conductor film
US7642970B2 (en) Antenna device and wireless communication apparatus using same
CN101263632B (en) broadband antenna
JP4305282B2 (en) Antenna device
US6542128B1 (en) Wide beamwidth ultra-compact antenna with multiple polarization
JP2007081712A (en) Portable radio device and antenna device
KR20030080217A (en) Miniature broadband ring-like microstrip patch antenna
JP4263972B2 (en) Surface mount antenna, antenna device, and wireless communication device
US11515648B2 (en) Dipole antenna
JPH07303005A (en) Antenna system for vehicle
JP2005012743A (en) Antenna and electronic equipment using it
CN108155460B (en) Double-frequency omni-directional coupling support-section loaded spiral antenna and manufacturing method thereof
TWI245454B (en) Low sidelobes dual band and broadband flat endfire antenna
JP4516246B2 (en) antenna
JPH05299929A (en) Antenna
JPH07288423A (en) Mobile radio antenna
JP3880295B2 (en) Chip antenna
CN100470929C (en) Low sidelobe dual band and wide band planar endfire antenna
JPH10327012A (en) Antenna system and how to use the antenna system
US6980172B2 (en) Multi-band cable antenna
US20080018538A1 (en) Surface-Mount Antenna and Radio Communication Apparatus Including the Same
JP2000134029A (en) Antenna system and communication device
JP7544386B2 (en) Antenna Device
JP2004096168A (en) Antenna device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090611

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100716

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110404

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110902