[go: up one dir, main page]

JP2008140498A - Manufacturing method of glass substrate for recording medium, glass substrate for recording medium and recording medium - Google Patents

Manufacturing method of glass substrate for recording medium, glass substrate for recording medium and recording medium Download PDF

Info

Publication number
JP2008140498A
JP2008140498A JP2006326931A JP2006326931A JP2008140498A JP 2008140498 A JP2008140498 A JP 2008140498A JP 2006326931 A JP2006326931 A JP 2006326931A JP 2006326931 A JP2006326931 A JP 2006326931A JP 2008140498 A JP2008140498 A JP 2008140498A
Authority
JP
Japan
Prior art keywords
glass substrate
chemical strengthening
recording medium
glass
alkali metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006326931A
Other languages
Japanese (ja)
Inventor
Yukitoshi Nakatsuji
幸敏 中辻
Kenichi Sasaki
賢一 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Opto Inc
Original Assignee
Konica Minolta Opto Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Opto Inc filed Critical Konica Minolta Opto Inc
Priority to JP2006326931A priority Critical patent/JP2008140498A/en
Publication of JP2008140498A publication Critical patent/JP2008140498A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Surface Treatment Of Glass (AREA)
  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of a glass substrate for a recording medium free from a fissure, a crack and deformation and having satisfactory strength. <P>SOLUTION: In the manufacturing method of the glass substrate for the recording medium having a chemical strengthening step for bringing the glass substrate into contact with a chemical strengthening liquid and replacing alkali metal ions on the surface of the glass substrate with alkali metal ions contained in the chemical strengthening liquid and each having an ion diameter larger than that of the alkali metal ion on the surface of the glass substrate to perform chemical strengthening, the chemical strengthening step has a chemical strengthening liquid immersion step for immersing the glass substrate in the chemical strengthening liquid and a water immersion step for immersing the glass substrate taken out from the chemical strengthening liquid in water after the glass substrate is made to wait for 1 sec or longer in atmosphere. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、記録媒体用ガラス基板の製造方法、記録媒体用ガラス基板及び記録媒体に関する。   The present invention relates to a method for manufacturing a glass substrate for recording medium, a glass substrate for recording medium, and a recording medium.

従来、記録媒体用基板としては、デスクトップ用コンピュータやサーバなどの据え置き型の情報機器にはアルミニウム合金が使用され、ノート型コンピュータやモバイル型コンピュータなどの携帯型の情報機器にはガラス基板が一般に使用されていた。アルミニウム合金は変形しやすく、また硬さが不十分であるため研磨後の基板表面の平滑性が十分とは言えなかった。さらに、記録用ヘッドが機械的に磁気ディスクに接触する際、磁性膜が基板から剥離しやすいという問題もあった。そこで、変形が少なく、平滑性が良好で、かつ機械的強度の大きいガラス基板が、携帯型のみならず据え置き型の情報機器やその他のテレビ等の家庭用機器にも今後広く使用されていくものと予測されている。   Conventionally, as a recording medium substrate, aluminum alloys are used for stationary information devices such as desktop computers and servers, and glass substrates are generally used for portable information devices such as notebook computers and mobile computers. It had been. Since the aluminum alloy is easily deformed and has insufficient hardness, the smoothness of the substrate surface after polishing cannot be said to be sufficient. Further, when the recording head mechanically contacts the magnetic disk, there is a problem that the magnetic film is easily peeled off from the substrate. Therefore, glass substrates with little deformation, good smoothness, and high mechanical strength will be widely used not only for portable devices but also for home-use devices such as stationary information devices and other televisions in the future. It is predicted.

記録媒体用ガラス基板の機械的強度を向上させるために、化学強化処理が従来から広く行われている。この化学強化処理は、化学強化処理槽内に貯留された化学強化液中にガラス基板を浸漬させて、ガラス基板表面のアルカリ金属イオンを、その金属イオンよりも大きなイオン径のアルカリ金属イオンと置換することにより圧縮歪みを発生させ、機械的強度を向上させるものである。化学強化液としては、加熱溶融した硝酸カリウムや硝酸ナトリウムなどの硝酸溶融塩が一般に用いられる。   In order to improve the mechanical strength of the glass substrate for recording media, chemical strengthening treatment has been widely performed. In this chemical strengthening treatment, a glass substrate is immersed in a chemical strengthening solution stored in a chemical strengthening treatment tank, and alkali metal ions on the surface of the glass substrate are replaced with alkali metal ions having an ion diameter larger than the metal ions. Thus, compressive strain is generated and mechanical strength is improved. As the chemical strengthening solution, a molten nitric acid salt such as potassium nitrate or sodium nitrate heated and melted is generally used.

上記の機械的強度を向上させる一方で、ガラス基板の平坦度が求められている。これは、記録媒体用ガラス基板の平坦度が不十分であると、記録媒体用ガラス基板を記録装置に組み込んで回転させた時、異常振動が発生したり、磁気ヘッドの追従が困難になるなどの問題が生じるためである。   While improving said mechanical strength, the flatness of a glass substrate is calculated | required. This is because, when the flatness of the glass substrate for recording medium is insufficient, abnormal vibration occurs or it becomes difficult to follow the magnetic head when the glass substrate for recording medium is incorporated in a recording apparatus and rotated. This is because the problem arises.

この様な化学強化液を使用して化学強化する記録媒体用ガラス基板の製造方法として、例えば以下がある。   As a method for producing a glass substrate for a recording medium that is chemically strengthened using such a chemical strengthening solution, for example, there are the following.

以下の製造工程(1)、(2)を含む記録媒体用ガラス基板の製造方法がある(特許文献1参照)。
(1)加熱した化学強化処理液(化学強化液と同じ)にガラス基板を浸漬し、ガラス基板表層のアルカリ金属イオンを化学強化処理液中のアルカリ金属イオンでイオン交換してガラス基板を化学強化する化学強化処理工程。
(2)(1)の化学強化処理工程で熱を付与された状態にあるガラス基板を溶媒に接触させることにより、ガラス基板上に付着した塩の結晶物のイオン結合を、溶媒の極性と熱エネルギーを利用して低減あるいは分離することにより、塩の結晶物を洗浄する塩の結晶物洗浄工程。
特開平10−226539号公報
There is a method for manufacturing a glass substrate for a recording medium including the following manufacturing steps (1) and (2) (see Patent Document 1).
(1) A glass substrate is immersed in a heated chemical strengthening solution (same as the chemical strengthening solution), and the glass substrate is chemically strengthened by ion exchange of alkali metal ions on the surface of the glass substrate with alkali metal ions in the chemical strengthening solution. Chemical strengthening treatment process.
(2) By bringing the glass substrate in a state where heat is applied in the chemical strengthening treatment step of (1) into contact with the solvent, the ionic bond of the crystalline substance of the salt adhered on the glass substrate is changed between the polarity of the solvent and the heat. A salt crystal washing process for washing salt crystals by reducing or separating them using energy.
JP-A-10-226539

特許文献1において、化学強化処理液からガラス基板を引き上げ、所定温度まで徐冷することが好ましく、ガラス基板を徐冷することにより、熱歪みによるダメージを回避できるとある。具体例としては、400℃に加熱されている化学強化処理液から取り出されたガラス基板を300℃の第1徐冷室に移送し約10分間保持し、次に200℃の第2徐冷室に移送しその後、溶媒である90℃の温水の温度に浸漬している。このようにして、ガラス基板とこれを浸漬する温水との温度差を緩和している。300℃及び200℃の徐冷室は、高価な設備であり、徐冷のために長時間を必要としていることから効率良くガラス基板の化学強化ができないという問題がある。また、発明者らの実験では、化学強化処理液から上記のような徐冷室を設けることなく大気中に取り出した後、水に浸漬しても問題ない場合があることが分かっている。   In Patent Document 1, it is preferable to pull up the glass substrate from the chemical strengthening treatment liquid and slowly cool it to a predetermined temperature. By slowly cooling the glass substrate, damage due to thermal distortion can be avoided. As a specific example, the glass substrate taken out from the chemical strengthening treatment liquid heated to 400 ° C. is transferred to the first annealing chamber at 300 ° C. and held for about 10 minutes, and then the second annealing chamber at 200 ° C. And then immersed in a 90 ° C. warm water temperature as a solvent. In this way, the temperature difference between the glass substrate and the hot water in which it is immersed is relaxed. The slow cooling chambers at 300 ° C. and 200 ° C. are expensive equipments and require a long time for slow cooling, and thus there is a problem that chemical strengthening of the glass substrate cannot be performed efficiently. In addition, the inventors' experiments have shown that there are cases where there is no problem even if the chemical strengthening treatment liquid is taken out into the atmosphere without providing the slow cooling chamber as described above and then immersed in water.

本発明は、上記の問題を鑑みてなされたものであって、その目的とするところは、機械的強度が十分で変形が良好な記録媒体用ガラス基板の製造方法、記録媒体用ガラス基板及び記録媒体を提供することである。   The present invention has been made in view of the above problems, and its object is to provide a method for manufacturing a glass substrate for recording medium having sufficient mechanical strength and good deformation, a glass substrate for recording medium, and a recording medium. Is to provide a medium.

上記の課題は、以下の構成により解決される。   Said subject is solved by the following structures.

1. ガラス基板を化学強化液と接触させて、前記ガラス基板の表面のアルカリ金属イオンを、前記化学強化液が含む前記アルカリ金属イオンより大きなイオン径のアルカリ金属イオンと置換する化学強化を行う化学強化工程を有する記録媒体用ガラス基板の製造方法において、
前記化学強化工程は、
前記ガラス基板を前記化学強化液に浸漬する化学強化液浸漬工程と、
前記化学強化液から取り出したガラス基板を大気中に1秒以上待機した後、水に浸漬する水浸漬工程と、を有することを特徴とする記録媒体用ガラス基板の製造方法。
1. A chemical strengthening step in which the glass substrate is brought into contact with a chemical strengthening solution and the alkali metal ions on the surface of the glass substrate are replaced with alkali metal ions having a larger ion diameter than the alkali metal ions contained in the chemical strengthening solution. In a method for producing a glass substrate for a recording medium having
The chemical strengthening step includes
A chemical strengthening solution immersion step of immersing the glass substrate in the chemical strengthening solution;
And a water immersion step of immersing the glass substrate taken out of the chemical strengthening solution in water after waiting for 1 second or more in the atmosphere.

2. 1に記載の記録媒体用ガラス基板の製造方法により製造されたことを特徴とする記録媒体用ガラス基板。   2. A glass substrate for a recording medium, which is produced by the method for producing a glass substrate for a recording medium according to 1.

3. 2に記載の記録媒体用ガラス基板の表面に磁性膜を有することを特徴とする記録媒体。   3. 3. A recording medium comprising a magnetic film on a surface of the glass substrate for recording medium according to 2.

本発明によれば、化学強化液に浸漬したガラス基板を取り出した後、大気中で1秒以上待機した後に水に浸漬する。ガラス基板をそのまま大気中に1秒以上晒すことで、ガラス基板全体の温度が均質化し、その後、水に浸漬することで化学強化ムラが押さえられ、化学強化ムラによる変形と強度の低下が抑えられる。   According to this invention, after taking out the glass substrate immersed in the chemical strengthening liquid, it waits for 1 second or more in air | atmosphere, and is immersed in water. By exposing the glass substrate to the atmosphere as it is for 1 second or more, the temperature of the entire glass substrate is homogenized, and then immersion in water suppresses uneven chemical strengthening and suppresses deformation and strength reduction due to uneven chemical strengthening. .

従って、変形が無く十分な強度を有する良好な記録媒体用ガラス基板の製造方法を提供することである。   Accordingly, it is an object of the present invention to provide a method for producing a good glass substrate for recording medium having no deformation and sufficient strength.

本発明を図示の実施の形態に基づいて説明するが、本発明は該実施の形態に限らない。   Although the present invention will be described based on the illustrated embodiment, the present invention is not limited to the embodiment.

(製造工程)
記録媒体用ガラス基板の製造方法について説明する。図1に、記録媒体用ガラス基板の製造工程の例をフロー図で示す。まず、ガラス素材を溶融し(ガラス溶融工程)、溶融ガラスを下型に流し込み、上型によってプレス成形して円盤状のガラス基板前駆体を得る(プレス成形工程)。なお、円盤状のガラス基板前駆体は、プレス成形によらず、例えばダウンドロー法やフロート法で形成したシートガラスを研削砥石で切り出して作製してもよい。
(Manufacturing process)
The manufacturing method of the glass substrate for recording media is demonstrated. FIG. 1 is a flowchart showing an example of a manufacturing process of a recording medium glass substrate. First, a glass material is melted (glass melting process), molten glass is poured into a lower mold, and press molding is performed with an upper mold to obtain a disk-shaped glass substrate precursor (press molding process). Note that the disk-shaped glass substrate precursor may be produced by cutting a sheet glass formed by, for example, a downdraw method or a float method with a grinding stone, without using press molding.

プレス成形されたガラス基板前駆体には、必要によりコアドリル等で中心部に孔が開けられる(コアリング工程)。そして、第1ラッピング工程において、ガラス基板の両表面が研磨加工され、ガラス基板の全体形状、すなわちガラス基板の平行度、平坦度および厚みが予備調整される。   In the press-molded glass substrate precursor, if necessary, a hole is formed in the central portion with a core drill or the like (coring step). In the first lapping step, both surfaces of the glass substrate are polished, and the overall shape of the glass substrate, that is, the parallelism, flatness, and thickness of the glass substrate are preliminarily adjusted.

次に、ガラス基板の外周端面および内周端面が研削され面取りされて、ガラス基板の外径寸法および真円度、孔の内径寸法、並びにガラス基板と孔との同心度が微調整される(内・外径加工工程)。その後、ガラス基板の内周端面が研磨されて微細なキズ等が除去される(内周端面加工工程)。   Next, the outer peripheral end surface and inner peripheral end surface of the glass substrate are ground and chamfered to finely adjust the outer diameter and roundness of the glass substrate, the inner diameter of the hole, and the concentricity between the glass substrate and the hole ( Inner and outer diameter machining process). Thereafter, the inner peripheral end face of the glass substrate is polished to remove fine scratches (inner peripheral end face processing step).

次に、ガラス基板の両表面が再び研磨加工されて、ガラス基板の平行度、平坦度および厚みが微調整される(第2ラッピング工程)。そして、ガラス基板の外周端面が研磨されて微細なキズ等が除去される(外周端面加工工程)。   Next, both surfaces of the glass substrate are polished again, and the parallelism, flatness, and thickness of the glass substrate are finely adjusted (second lapping step). And the outer periphery end surface of a glass substrate is grind | polished and a fine crack etc. are removed (outer periphery end surface processing process).

次に、ガラス基板が洗浄された後、後述の化学強化液にガラス基板を浸漬してガラス基板に化学強化層を形成する(化学強化工程)。この後、ガラス基板の表面を精密に仕上げる研磨加工を行う(ポリッシング工程)。そして洗浄及び検査が行われ、製品としての記録媒体用ガラス基板とされる。尚、化学強化層を形成する化学強化工程後、研磨加工を行うポリッシング工程があるが、この研磨加工前後においてのガラス基板の強度はほとんど変わらない。   Next, after the glass substrate is washed, the glass substrate is immersed in a chemical strengthening solution described later to form a chemical strengthening layer on the glass substrate (chemical strengthening step). Thereafter, polishing is performed to precisely finish the surface of the glass substrate (polishing process). Then, cleaning and inspection are performed to obtain a glass substrate for a recording medium as a product. In addition, although there exists a polishing process which grind | polishes after the chemical strengthening process which forms a chemical strengthening layer, the intensity | strength of the glass substrate before and behind this grinding | polishing process hardly changes.

上記の化学強化工程の内容を図2のフロー図に示す。洗浄されたガラス基板は、予め加熱された後、化学強化液に浸漬される(化学強化液浸漬工程)。化学強化液から取り出されたガラス基板は、冷却工程で冷却された後、水にて洗浄され(水浸漬工程)、乾燥される。   The contents of the chemical strengthening step are shown in the flowchart of FIG. The cleaned glass substrate is preheated and then immersed in a chemical strengthening solution (chemical strengthening solution immersion step). The glass substrate taken out from the chemical strengthening solution is cooled in the cooling step, washed with water (water immersion step), and dried.

(化学強化液浸漬工程)
化学強化液浸漬工程は、化学強化剤を溶融した化学強化液にガラス基板を浸漬させて、ガラス基板表層のアルカリ金属イオンを化学強化液のアルカリ金属イオンにイオン交換する。
(Chemical strengthening liquid immersion process)
In the chemical strengthening solution immersion step, the glass substrate is immersed in a chemical strengthening solution in which the chemical strengthening agent is melted, and the alkali metal ions on the surface of the glass substrate are ion-exchanged with the alkali metal ions of the chemical strengthening solution.

化学強化剤としては従来公知のものを使用でき、例えば、硝酸カリウム(KNO3)、硝酸ナトリウム(NaNO3)、炭酸カリウム(K2CO3)などが挙げられ、これらを単独又は2種以上混合して使用する。 As the chemical strengthening agent, conventionally known ones can be used, and examples thereof include potassium nitrate (KNO 3 ), sodium nitrate (NaNO 3 ), potassium carbonate (K 2 CO 3 ) and the like. These can be used alone or in combination of two or more. To use.

化学強化剤は化学強化処理槽に所定量投入され、加熱されることによって溶融して化学強化液となる。化学強化液の加熱温度は、イオン交換の速度やガラス基板のTgなどの点から280〜660℃の範囲が好ましく、より好ましくは300〜450℃の範囲である。この高温側(上限値)がガラス転移温度Tgより低い300℃〜450℃の範囲とすることで、イオン交換の反応速度が遅すぎることなく、また、ガラス基板の形状に影響が生じない。   A predetermined amount of the chemical strengthening agent is put into a chemical strengthening treatment tank, and is melted by heating to become a chemical strengthening liquid. The heating temperature of the chemical strengthening solution is preferably in the range of 280 to 660 ° C., more preferably in the range of 300 to 450 ° C. from the viewpoint of ion exchange rate and Tg of the glass substrate. By setting this high temperature side (upper limit) to a range of 300 ° C. to 450 ° C. lower than the glass transition temperature Tg, the reaction rate of ion exchange is not too slow, and the shape of the glass substrate is not affected.

ガラス基板を化学強化液に浸漬する時間は0.1時間〜数十時間の範囲が好ましい。また、本例に示しているように、ガラス基板を化学強化液に浸漬する前に、予め加熱しておくことが好ましい。予めガラス基板を加熱すると、化学強化液に浸漬した際に化学強化液の温度が低下し過ぎることがなく化学強化が効率的に行うことができる。   The time for immersing the glass substrate in the chemical strengthening solution is preferably in the range of 0.1 hour to several tens of hours. Moreover, as shown in this example, it is preferable to preheat the glass substrate before immersing it in the chemical strengthening solution. When the glass substrate is heated in advance, the temperature of the chemical strengthening solution does not decrease excessively when immersed in the chemical strengthening solution, and chemical strengthening can be performed efficiently.

強化層の厚みとしては、ガラス基板の強度向上とポリッシング工程の時間の短縮との兼ね合いから、5μm〜15μm程度の範囲が好ましい。   The thickness of the reinforcing layer is preferably in the range of about 5 μm to 15 μm from the viewpoint of improving the strength of the glass substrate and shortening the time of the polishing process.

(ガラス基板の待機)
化学強化液から大気中に取り出したガラス基板を水浸漬工程である水に浸漬する前に、1秒以上待機させる。より好ましくは30秒以上待機するのが良い。水に浸漬する前に大気中で待機期間を設けると、ガラス基板の強度が低下しない。この理由は定かでないが、以下のように推測する。例えば、300℃程度の化学強化液から大気中に取り出したガラス基板においては、その温度差から、ガラス基板の内部の温度に比較してガラス基板の表面の温度が放熱により急速に低下する。しかし、ガラス基板の表面温度がある程度低下すると大気とガラス基板の表面温度との差が緩和しガラス基板の表面温度の低下が抑えられ鈍化してくる。その一方でガラス基板の内部の温度低下が進みガラス基板の表面温度に追いついてくる。よって、ガラス基板全体の温度が均質化してくる。こうしたガラス基板全体の温度の均質化は、化学強化液からガラス基板を取り出した後、大気中で1秒以上経過すると効果的な状態に達している。より好ましくは、30秒以上経過するのがよい。少なくとも30秒経過すると、ガラス基板全体の温度がより効果的に均質となる。待機期間の上限は、特に限定することはなく製造効率より適宜決めればよい。
(Standby for glass substrate)
Before dipping the glass substrate taken out from the chemical strengthening solution into the atmosphere in water, which is a water dipping process, the glass substrate is allowed to stand by for 1 second or longer. It is better to wait for 30 seconds or more. If a standby period is provided in the atmosphere before being immersed in water, the strength of the glass substrate does not decrease. The reason for this is not clear, but is presumed as follows. For example, in a glass substrate taken out from the chemical strengthening solution of about 300 ° C. into the atmosphere, the temperature of the surface of the glass substrate rapidly decreases due to heat dissipation due to the temperature difference compared to the temperature inside the glass substrate. However, when the surface temperature of the glass substrate decreases to some extent, the difference between the atmosphere and the surface temperature of the glass substrate is relaxed, and the decrease in the surface temperature of the glass substrate is suppressed and slowed down. On the other hand, the temperature inside the glass substrate decreases and catches up with the surface temperature of the glass substrate. Therefore, the temperature of the whole glass substrate becomes uniform. Such homogenization of the temperature of the whole glass substrate has reached an effective state after 1 second or more has passed in the atmosphere after the glass substrate is taken out from the chemical strengthening solution. More preferably, 30 seconds or more should elapse. After at least 30 seconds, the temperature of the entire glass substrate becomes more effective and uniform. The upper limit of the waiting period is not particularly limited, and may be determined as appropriate based on manufacturing efficiency.

上記のようにガラス基板の温度が均質化した状態で水に浸漬すると、ガラス基板全体に温度ムラが少ないため化学強化がガラス基板全体で特に過不足がある状態でなくバランス良く均質な状態で化学強化液の除去ができる。この結果、化学強化液除去後の強化ムラが生じることがないため、化学強化層が均質に形成され圧縮歪が均質となり変形が生じ難く平坦度が良好で、機械的強度も良好となると推測される。   If the glass substrate is immersed in water with the glass substrate temperature homogenized as described above, there is little temperature unevenness throughout the glass substrate, so chemical strengthening is not particularly excessive or insufficient in the entire glass substrate, but in a well-balanced and homogeneous state. The strengthening liquid can be removed. As a result, since non-uniformity of the strengthening after removal of the chemical strengthening liquid does not occur, it is presumed that the chemically strengthened layer is uniformly formed, the compressive strain is uniform, the deformation is difficult to occur, the flatness is good, and the mechanical strength is also good. The

尚、ガラス基板を例えば300℃程度の化学強化液から30℃程度の大気中に取り出して1秒経過すると、ガラス基板の温度はおおよそ200℃程度となり、30秒経過すると150℃から100℃程度となる。化学強化槽から取り出したガラス基板を300℃、200℃とする高温の徐冷室を設けることなく、大気中に取り出した後、上記のように適切な待機期間を設けて水に浸漬することで、ダメージを受けることなく良好なガラス基板を得ることができる。   For example, when the glass substrate is taken out from the chemical strengthening liquid at about 300 ° C. into the atmosphere at about 30 ° C. for 1 second and the temperature elapses for about 1 second, the temperature of the glass substrate becomes about 200 ° C. Become. After taking out the glass substrate taken out from the chemical strengthening tank into the atmosphere without providing a high temperature annealing chamber at 300 ° C. and 200 ° C., it is immersed in water with an appropriate waiting period as described above. A good glass substrate can be obtained without being damaged.

(水浸漬工程)
化学強化液から取り出した後、上記の待機時間経過後、化学強化液を除去するために水に浸漬する。化学強化液浸漬工程で、例えば、300℃程度の化学強化液に浸漬後、取り出したガラス基板を1秒間大気中に待機させて水に浸漬することで、ガラス基板にひびや割れ変形が生じることはない。
(Water immersion process)
After taking out from the chemical strengthening solution, after the waiting time has elapsed, it is immersed in water to remove the chemical strengthening solution. In the chemical strengthening solution immersion step, for example, after being immersed in a chemical strengthening solution at about 300 ° C., the glass substrate taken out is kept in the atmosphere for 1 second and immersed in water, so that the glass substrate is cracked or cracked. There is no.

ガラス基板を浸漬する水の温度は、より高温にするほど、ガラス基板から化学強化液や化学強化液を成す塩の結晶物をより短時間で効率良く除去することができる。実用的な製造の点から、水の温度は、大気圧下で35℃以上100℃以下が好ましい。   The higher the temperature of the water in which the glass substrate is immersed, the more efficiently the chemical strengthening solution and the crystalline crystals of the salt forming the chemical strengthening solution can be removed from the glass substrate in a shorter time. From the viewpoint of practical production, the temperature of water is preferably 35 ° C. or higher and 100 ° C. or lower under atmospheric pressure.

ガラス基板を水に浸漬することで、ガラス基板の表面の化学強化液をムラなく除去することができる。このため、化学強化液がガラス基板上に部分的に存在することが無く、部分的に化学強化が進むことがなくなり、化学強化にムラが生じない。これより、ガラス基板に一様な強度を持たせることができる。   By immersing the glass substrate in water, the chemical strengthening liquid on the surface of the glass substrate can be removed without unevenness. For this reason, the chemical strengthening liquid does not partially exist on the glass substrate, the chemical strengthening does not proceed partially, and the chemical strengthening is not uneven. Thus, the glass substrate can have a uniform strength.

ここで、変形等により反りが生じるとガラス基板の平坦度が劣化するが、問題とならない変形量として許容される平坦度は6μm未満である。平坦度の測定は、例えば、レーザー斜入射干渉計を用いたフラットネステスターFT−900(NIDEK製)等が挙げられる。   Here, if warpage occurs due to deformation or the like, the flatness of the glass substrate deteriorates, but the flatness allowed as a deformation amount that does not cause a problem is less than 6 μm. For example, flatness tester FT-900 (manufactured by NIDEK) using a laser oblique incidence interferometer can be used for measuring the flatness.

(ガラス基板)
化学強化されるガラス基板としては特に限定はないが、二酸化ケイ素、酸化ナトリウム、酸化カルシウムを主成分としたソーダライムガラス;二酸化ケイ素、酸化アルミニウム、R2O(R=K、Na、Li)を主成分としたアルミノシリケートガラス;ボロシリケートガラス;酸化リチウム−二酸化ケイ素系ガラス;酸化リチウム−酸化アルミニウム−二酸化ケイ素系ガラス;R’O−酸化アルミニウム−二酸化ケイ素系ガラス(R’=Mg、Ca、Sr又はBa)を使用することができ、これらガラス材料に酸化ジルコニウムや酸化チタン等を添加したものであってもよい。
(Glass substrate)
The glass substrate to be chemically strengthened is not particularly limited, but soda lime glass mainly composed of silicon dioxide, sodium oxide, calcium oxide; silicon dioxide, aluminum oxide, R 2 O (R = K, Na, Li). Aluminosilicate glass as main component; borosilicate glass; lithium oxide-silicon dioxide glass; lithium oxide-aluminum oxide-silicon dioxide glass; R′O-aluminum oxide-silicon dioxide glass (R ′ = Mg, Ca, Sr or Ba) can be used, and these glass materials may be added with zirconium oxide, titanium oxide or the like.

またガラス基板の大きさに限定はなく2.5インチ,1.8インチ、1インチ、0.85インチあるいはそれ以下の小径ディスクにも本発明の方法を適用することができ、またその厚さが2mmや1mm、0.63mm、あるいはそれ以下といった薄型のものにも適用することができる。   The size of the glass substrate is not limited, and the method of the present invention can be applied to a small-diameter disk of 2.5 inches, 1.8 inches, 1 inch, 0.85 inches or less, and the thickness thereof. Can be applied to a thin type such as 2 mm, 1 mm, 0.63 mm, or less.

化学強化工程に提供されるガラス基板において、主表面および端面部分の粗さに特に限定はないが、ガラス基板の主表面の表面粗度は、Rmax(最大高さ)が10nm以下、Ra(中心線平均粗さ)が1.0nm以下であるのが好ましい。また端面の表面粗度は、Rmaxが0.01μm〜1μmの範囲、Raが0.001μm〜0.8μmの範囲であるのが好ましい。表面研磨されたガラス基板を化学強化処理すると、強化層を均一に形成することができるようになる。   In the glass substrate provided for the chemical strengthening step, the roughness of the main surface and the end face portion is not particularly limited, but the surface roughness of the main surface of the glass substrate is Rmax (maximum height) of 10 nm or less, Ra (center) The line average roughness) is preferably 1.0 nm or less. The surface roughness of the end face is preferably in the range of Rmax from 0.01 μm to 1 μm and Ra in the range of 0.001 μm to 0.8 μm. If the surface-polished glass substrate is chemically strengthened, the reinforcing layer can be formed uniformly.

(強度試験方法)
図3(a)は、記録媒体用ガラス基板10の形状の例を示す模式図である。ガラス基板10は、外径φ1=65mm、内径φ2=20mm、板厚d=0.635mmのディスク状ガラス基板で、通常の2.5インチ型ハードディスクに用いられるガラス基板である。
(Strength test method)
FIG. 3A is a schematic diagram illustrating an example of the shape of the glass substrate 10 for recording medium. The glass substrate 10 is a disk-shaped glass substrate having an outer diameter φ1 = 65 mm, an inner diameter φ2 = 20 mm, and a plate thickness d = 0.635 mm, and is a glass substrate used for a normal 2.5-inch hard disk.

図3(b)は、図3(a)に示した記録媒体用ガラス基板10の破壊強度を測定するための円環曲げ強度試験と呼ばれる試験に用いられる円環曲げ試験機20の模式図である。   FIG. 3B is a schematic diagram of an annular bending test machine 20 used in a test called an annular bending strength test for measuring the breaking strength of the glass substrate 10 for recording medium shown in FIG. is there.

円環曲げ試験機20は、支持台23上に記録媒体用ガラス基板10の評価用サンプルを乗せて外周8を円環状に支持し、鉄球22を記録媒体用ガラス基板10の穴部4の内周9に乗せ、鉄球22を介してロード21で記録媒体用ガラス基板10の内周9に力を加えることによって加圧−破壊試験を行う。この方法は、ハードディスク用記録媒体の強度試験として業界で一般的に用いられている方法と同じである。   The annular bending test machine 20 places an evaluation sample of the recording medium glass substrate 10 on a support base 23 to support the outer periphery 8 in an annular shape, and supports the iron ball 22 in the hole 4 of the recording medium glass substrate 10. A pressure-destructive test is performed by placing a force on the inner periphery 9 of the recording medium glass substrate 10 with the load 21 through the iron ball 22 through the inner periphery 9. This method is the same as a method generally used in the industry as a strength test of a recording medium for hard disk.

支持台23は、外径φ5=70mm、内径φ6=63mm、高さh=50mmの円筒形で、円筒の上部に記録媒体用ガラス基板10を乗せ、外周8を円環状に支持する。   The support base 23 has a cylindrical shape having an outer diameter φ5 = 70 mm, an inner diameter φ6 = 63 mm, and a height h = 50 mm. The recording medium glass substrate 10 is placed on the upper portion of the cylinder, and the outer periphery 8 is supported in an annular shape.

鉄球22は、直径φ4=28.57mmの鉄製の球で、質量は100グラム程度で、ロード21によって印加される力に比べて無視できる程度の質量である。鉄球22は、記録媒体用ガラス基板10の内周9に当接して力を加えることで、支持台23に外周8を支持された記録媒体用ガラス基板10に曲げ応力を加える。ロード21の押し下げ速度は、0.5mm/分程度である。記録媒体用ガラス基板10が破壊される押し下げ力が100N以上であれば、良好な強度を備えているとする。   The iron ball 22 is an iron ball having a diameter of φ4 = 28.57 mm, and has a mass of about 100 grams, which is negligible compared to the force applied by the load 21. The iron ball 22 abuts on the inner periphery 9 of the recording medium glass substrate 10 and applies a force, thereby applying a bending stress to the recording medium glass substrate 10 supported on the outer periphery 8 by the support base 23. The pressing speed of the load 21 is about 0.5 mm / min. If the push-down force that destroys the glass substrate for recording medium 10 is 100 N or more, it is assumed that the recording medium glass substrate 10 has good strength.

(記録媒体)
次に、これまで説明した記録媒体用ガラス基板を用いた記録媒体について説明する。この情報記録用ガラス基板を用いると、耐久性および高記録密度が実現される。以下、図面に基づき記録媒体について説明する。
(recoding media)
Next, a recording medium using the recording medium glass substrate described so far will be described. When this information recording glass substrate is used, durability and high recording density are realized. Hereinafter, a recording medium will be described with reference to the drawings.

図4は記録媒体の一例である磁気ディスクの斜視図である。この磁気ディスクDは、円形の記録媒体用ガラス基板1の表面に磁性膜2を直接形成されている。磁性膜2の形成方法としては従来公知の方法を用いることができ、例えば磁性粒子を分散させた熱硬化性樹脂を基板上にスピンコートして形成する方法や、スパッタリング、無電解めっきにより形成する方法が挙げられる。スピンコート法での膜厚は約0.3μm〜1.2μm程度、スパッタリング法での膜厚は0.04μm〜0.08μm程度、無電解めっき法での膜厚は0.05μm〜0.1μm程度であり、薄膜化および高密度化の観点からはスパッタリング法および無電解めっき法による膜形成が好ましい。   FIG. 4 is a perspective view of a magnetic disk as an example of a recording medium. In this magnetic disk D, a magnetic film 2 is directly formed on the surface of a circular recording medium glass substrate 1. As a method for forming the magnetic film 2, a conventionally known method can be used. For example, a method in which a thermosetting resin in which magnetic particles are dispersed is spin-coated on a substrate, or a method by sputtering or electroless plating is used. A method is mentioned. The film thickness by spin coating is about 0.3 μm to 1.2 μm, the film thickness by sputtering is about 0.04 μm to 0.08 μm, and the film thickness by electroless plating is 0.05 μm to 0.1 μm. From the viewpoint of thinning and densification, film formation by sputtering and electroless plating is preferable.

磁性膜に用いる磁性材料としては、特に限定はなく従来公知のものが使用できるが、高い保持力を得るために結晶異方性の高いCoを基本とし、残留磁束密度を調整する目的でNiやCrを加えたCo系合金などが好適である。具体的には、Coを主成分とするCoPt、CoCr、CoNi、CoNiCr、CoCrTa、CoPtCr、CoNiPtや、CoNiCrPt、CoNiCrTa、CoCrPtTa、CoCrPtB、CoCrPtSiOなどが挙げられる。磁性膜は、非磁性膜(例えば、Cr、CrMo、CrVなど)で分割しノイズの低減を図った多層構成(例えば、CoPtCr/CrMo/CoPtCr、CoCrPtTa/CrMo/CoCrPtTaなど)としてもよい。上記の磁性材料の他、フェライト系、鉄−希土類系や、SiO2、BNなどからなる非磁性膜中にFe、Co、FeCo、CoNiPt等の磁性粒子を分散された構造のグラニュラーなどであってもよい。また、磁性膜は、内面型および垂直型のいずれの記録形式であってもよい。 The magnetic material used for the magnetic film is not particularly limited and conventionally known materials can be used. However, in order to obtain a high coercive force, Ni having high crystal anisotropy is basically used, and Ni or A Co-based alloy to which Cr is added is suitable. Specific examples include CoPt, CoCr, CoNi, CoNiCr, CoCrTa, CoPtCr, and CoNiPt containing Co as a main component, CoNiCrPt, CoNiCrTa, CoCrPtTa, CoCrPtB, and CoCrPtSiO. The magnetic film may have a multilayer structure (for example, CoPtCr / CrMo / CoPtCr, CoCrPtTa / CrMo / CoCrPtTa) that is divided by a nonmagnetic film (for example, Cr, CrMo, CrV, etc.) to reduce noise. In addition to the above magnetic materials, granular materials such as ferrite, iron-rare earth, non-magnetic films made of SiO 2 , BN, etc. in which magnetic particles such as Fe, Co, FeCo, CoNiPt are dispersed, etc. Also good. Further, the magnetic film may be either an inner surface type or a vertical type recording format.

また、磁気ヘッドの滑りをよくするために磁性膜の表面に潤滑剤を薄くコーティングしてもよい。潤滑剤としては、例えば液体潤滑剤であるパーフロロポリエーテル(PFPE)をフレオン系などの溶媒で希釈したものが挙げられる。   In addition, a lubricant may be thinly coated on the surface of the magnetic film in order to improve the sliding of the magnetic head. Examples of the lubricant include those obtained by diluting perfluoropolyether (PFPE), which is a liquid lubricant, with a freon-based solvent.

さらに必要により下地層や保護層を設けてもよい。磁気ディスクにおける下地層は磁性膜に応じて選択される。下地層の材料としては、例えば、Cr、Mo、Ta、Ti、W、V、B、Al、Niなどの非磁性金属から選ばれる少なくとも一種以上の材料が挙げられる。Coを主成分とする磁性膜の場合には、磁気特性向上等の観点からCr単体やCr合金であることが好ましい。また、下地層は単層とは限らず、同一又は異種の層を積層した複数層構造としても構わない。例えば、Cr/Cr、Cr/CrMo、Cr/CrV、NiAl/Cr、NiAl/CrMo、NiAl/CrV等の多層下地層としてもよい。   Furthermore, you may provide a base layer and a protective layer as needed. The underlayer in the magnetic disk is selected according to the magnetic film. Examples of the material for the underlayer include at least one material selected from nonmagnetic metals such as Cr, Mo, Ta, Ti, W, V, B, Al, and Ni. In the case of a magnetic film containing Co as a main component, Cr alone or a Cr alloy is preferable from the viewpoint of improving magnetic characteristics. Further, the underlayer is not limited to a single layer, and may have a multi-layer structure in which the same or different layers are stacked. For example, a multilayer underlayer such as Cr / Cr, Cr / CrMo, Cr / CrV, NiAl / Cr, NiAl / CrMo, or NiAl / CrV may be used.

磁性膜の摩耗や腐食を防止する保護層としては、例えば、Cr層、Cr合金層、カーボン層、水素化カーボン層、ジルコニア層、シリカ層などが挙げられる。これらの保護層は、下地層、磁性膜など共にインライン型スパッタ装置で連続して形成できる。また、これらの保護層は、単層としてもよく、あるいは、同一又は異種の層からなる多層構成としてもよい。なお、上記保護層上に、あるいは上記保護層に替えて、他の保護層を形成してもよい。例えば、上記保護層に替えて、Cr層の上にテトラアルコキシシランをアルコール系の溶媒で希釈した中に、コロイダルシリカ微粒子を分散して塗布し、さらに焼成して二酸化ケイ素(SiO2)層を形成してもよい。 Examples of the protective layer that prevents wear and corrosion of the magnetic film include a Cr layer, a Cr alloy layer, a carbon layer, a hydrogenated carbon layer, a zirconia layer, and a silica layer. These protective layers can be formed continuously with an in-line type sputtering apparatus, such as an underlayer and a magnetic film. In addition, these protective layers may be a single layer, or may have a multilayer structure including the same or different layers. Note that another protective layer may be formed on the protective layer or instead of the protective layer. For example, in place of the protective layer, tetraalkoxysilane is diluted with an alcohol-based solvent on a Cr layer, and then colloidal silica fine particles are dispersed and applied, followed by baking to form a silicon dioxide (SiO 2 ) layer. It may be formed.

以上、記録媒体の一実施態様として磁気ディスクについて説明したが、記録媒体はこれに限定されるものではなく、光磁気ディスクや光ディスクなどにも本発明のガラス基板を用いることができる。   The magnetic disk has been described above as one embodiment of the recording medium. However, the recording medium is not limited to this, and the glass substrate of the present invention can be used for a magneto-optical disk, an optical disk, and the like.

化学強化を行うガラス基板として、図1の製造工程に沿って外周端面加工後まで製造した外径φ1=65mm、内径φ2=20mm、板厚d=0.635mmのアルミノシリケートガラス基板を準備し、図2に沿って化学強化を行った。また、化学強化する前の準備した全てのガラス基板の後述の平坦度は、2μm以下とした。   As a glass substrate to be chemically strengthened, an aluminosilicate glass substrate having an outer diameter φ1 = 65 mm, an inner diameter φ2 = 20 mm, and a plate thickness d = 0.635 mm manufactured until after the outer peripheral end face processing along the manufacturing process of FIG. Chemical strengthening was performed along FIG. Moreover, the below-mentioned flatness of all the prepared glass substrates before chemical strengthening was 2 micrometers or less.

上記のガラス基板30枚を予め350℃に加熱後、化学強化液に15分間浸漬した。化学強化液は、NaNO3とKNO3とを質量比1:9の割合とした化学強化剤を化学強化槽に投入し330℃に加熱したものとした。 The above 30 glass substrates were heated in advance to 350 ° C. and then immersed in a chemical strengthening solution for 15 minutes. As the chemical strengthening solution, a chemical strengthening agent having a mass ratio of 1: 9 of NaNO 3 and KNO 3 was added to the chemical strengthening tank and heated to 330 ° C.

化学強化液に浸漬した後、化学強化槽から大気中に取りだし、30枚のガラス基板をそれぞれ0.5秒から120秒間待機した後、それぞれ35℃の水に5分間浸漬し、その後乾燥した。   After being immersed in the chemical strengthening solution, the product was taken out from the chemical strengthening tank to the atmosphere, and each of the 30 glass substrates was waited for 0.5 to 120 seconds, immersed in water at 35 ° C. for 5 minutes, and then dried.

乾燥後、ガラス基板のひび、割れ、変形(平坦度)、強度に関して評価した。ひびや割れの確認は、目視及びルーペを用いた目視とした。平坦度の測定は、フラットネステスターFT−900(NIDEK製)を用いて、ガラス基板の外側1mm、内側1mm除外した面でのp−v値とした。また、強度は、円環曲げ強度試験により評価した。ひび、割れに関しては、全てのガラス基板において観察できなかったため全て良好としたので表1に記載しなかった。   After drying, the glass substrate was evaluated for cracks, cracks, deformation (flatness), and strength. The cracks and cracks were confirmed visually and using a magnifying glass. The flatness was measured using a flatness tester FT-900 (manufactured by NIDEK) as a p-v value on the surface of the glass substrate excluding 1 mm on the outside and 1 mm on the inside. The strength was evaluated by an annular bending strength test. The cracks and cracks were not listed in Table 1 because they were all good because they could not be observed on all glass substrates.

Figure 2008140498
Figure 2008140498

表1の平坦度(p−v値)は、ガラス基板の最大値を示している。平坦度の判定の記号は以下を示している。
○:ガラス基板全数の平坦度が6μm未満であった。
×:ガラス基板全数の平坦度が6μm以上であった。
The flatness (p-v value) in Table 1 indicates the maximum value of the glass substrate. The symbols for determining the flatness indicate the following.
○: The flatness of the total number of glass substrates was less than 6 μm.
X: The flatness of the total number of glass substrates was 6 μm or more.

表1の割れた枚数は、円環曲げ強度試験で押し下げ力が100N未満で割れた枚数を示している。また、強度の判定の記号は以下を示している。製造上の歩留まりの観点から、割れが生じるガラス基板数が16枚以上を不適格(×記号)とした。
◎:100N未満で割れたガラス基板数がなかった。
○:100N未満で割れたガラス基板数が1枚以上7枚以下であった。
△:100N未満で割れたガラス基板数が8枚以上15枚以下であった。
×:100N未満で割れたガラス基板数が16枚以上であった。
The number of cracks in Table 1 indicates the number of cracks when the pressing force is less than 100 N in the annular bending strength test. Further, the symbols for determining the strength indicate the following. From the viewpoint of production yield, 16 or more glass substrates on which cracks occurred were regarded as unqualified (x symbol).
A: There were no broken glass substrates at less than 100N.
A: The number of glass substrates broken at less than 100 N was 1 or more and 7 or less.
Δ: The number of glass substrates broken at less than 100 N was 8 or more and 15 or less.
X: The number of glass substrates broken at less than 100 N was 16 or more.

以上の結果より、化学強化液に浸漬し、大気中に取り出し後、1秒以上待機して水に浸漬するのがよく、30秒以上とするのがより好ましいことが分かる。   From the above results, it is better to immerse in a chemical strengthening solution, take it out into the atmosphere, wait for 1 second or more and then immerse in water, and more preferably 30 seconds or more.

記録媒体用ガラス基板の製造工程の例を示すフロー図である。It is a flowchart which shows the example of the manufacturing process of the glass substrate for recording media. 図1における化学強化処理工程の内容を示すフロー図である。It is a flowchart which shows the content of the chemical strengthening process process in FIG. (a)は記録媒体用ガラス基板の形状の例を模式的に示す図を示し、(b)は(a)に示す記録媒体用ガラス基板の破壊強度を測定するための円環曲げ試験機の構成例を模式的に示す図である。(A) shows the figure which shows the example of the shape of the glass substrate for recording media typically, (b) is an annular bending test machine for measuring the fracture strength of the glass substrate for recording media shown in (a). It is a figure which shows the example of a structure typically. 磁気ディスクの部分断面を含む斜視図である。It is a perspective view containing the partial cross section of a magnetic disc.

符号の説明Explanation of symbols

1、10 記録媒体用ガラス基板
2 磁性膜
4 穴部
8 外周
9 内周
20 円環曲げ試験機
21 ロード
22 鉄球
23 支持台
D 磁気ディスク
DESCRIPTION OF SYMBOLS 1, 10 Glass substrate for recording media 2 Magnetic film 4 Hole part 8 Outer periphery 9 Inner periphery 20 Ring bending test machine 21 Load 22 Iron ball 23 Support stand D Magnetic disk

Claims (3)

ガラス基板を化学強化液と接触させて、前記ガラス基板の表面のアルカリ金属イオンを、前記化学強化液が含む前記アルカリ金属イオンより大きなイオン径のアルカリ金属イオンと置換する化学強化を行う化学強化工程を有する記録媒体用ガラス基板の製造方法において、
前記化学強化工程は、
前記ガラス基板を前記化学強化液に浸漬する化学強化液浸漬工程と、
前記化学強化液から取り出したガラス基板を大気中に1秒以上待機した後、水に浸漬する水浸漬工程と、を有することを特徴とする記録媒体用ガラス基板の製造方法。
A chemical strengthening step in which the glass substrate is brought into contact with a chemical strengthening solution and the alkali metal ions on the surface of the glass substrate are replaced with alkali metal ions having a larger ion diameter than the alkali metal ions contained in the chemical strengthening solution. In a method for producing a glass substrate for a recording medium having
The chemical strengthening step includes
A chemical strengthening solution immersion step of immersing the glass substrate in the chemical strengthening solution;
And a water immersion step of immersing the glass substrate taken out of the chemical strengthening solution in water after waiting for 1 second or more in the atmosphere.
請求項1に記載の記録媒体用ガラス基板の製造方法により製造されたことを特徴とする記録媒体用ガラス基板。 A glass substrate for a recording medium manufactured by the method for manufacturing a glass substrate for a recording medium according to claim 1. 請求項2に記載の記録媒体用ガラス基板の表面に磁性膜を有することを特徴とする記録媒体。 A recording medium comprising a magnetic film on a surface of the glass substrate for a recording medium according to claim 2.
JP2006326931A 2006-12-04 2006-12-04 Manufacturing method of glass substrate for recording medium, glass substrate for recording medium and recording medium Pending JP2008140498A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006326931A JP2008140498A (en) 2006-12-04 2006-12-04 Manufacturing method of glass substrate for recording medium, glass substrate for recording medium and recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006326931A JP2008140498A (en) 2006-12-04 2006-12-04 Manufacturing method of glass substrate for recording medium, glass substrate for recording medium and recording medium

Publications (1)

Publication Number Publication Date
JP2008140498A true JP2008140498A (en) 2008-06-19

Family

ID=39601784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006326931A Pending JP2008140498A (en) 2006-12-04 2006-12-04 Manufacturing method of glass substrate for recording medium, glass substrate for recording medium and recording medium

Country Status (1)

Country Link
JP (1) JP2008140498A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012234608A (en) * 2011-05-09 2012-11-29 Furukawa Electric Co Ltd:The Flexural strength test method and flexural strength test device of glass substrate for magnetic disk

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012234608A (en) * 2011-05-09 2012-11-29 Furukawa Electric Co Ltd:The Flexural strength test method and flexural strength test device of glass substrate for magnetic disk

Similar Documents

Publication Publication Date Title
JP4240159B2 (en) Method for manufacturing glass substrate for recording medium, glass substrate for recording medium, recording medium and holding jig
JP5321594B2 (en) Manufacturing method of glass substrate and manufacturing method of magnetic recording medium
WO2013145503A1 (en) Method for producing hdd glass substrate
JP2008287779A (en) Method for manufacturing glass substrate for information recording medium, glass substrate for information recording medium, and magnetic recording medium
JP5577290B2 (en) Method for manufacturing glass substrate for magnetic information recording medium
JP2011060416A (en) Method for manufacturing glass substrate for information-recording medium
JP4623211B2 (en) Manufacturing method of glass substrate for information recording medium and magnetic disk using the same
JPWO2010041537A1 (en) Manufacturing method of glass substrate and manufacturing method of magnetic recording medium
WO2008062662A1 (en) Method for producing glass substrate for information recording medium, glass substrate for information recording medium, and information recording medium
CN104054130B (en) Glass substrate, information recording medium using same, and manufacturing method of same
JP2008140499A (en) Manufacturing method of glass substrate for recording medium, glass substrate for recording medium, recording medium and holding tool
JP2011159367A (en) Method of manufacturing glass substrate for information recording medium, and method of manufacturing information recording medium
JP2008140498A (en) Manufacturing method of glass substrate for recording medium, glass substrate for recording medium and recording medium
JP2010113783A (en) Holding tool, method of manufacturing glass substrate for recording medium using the holding tool and method of manufacturing recording medium
JP5755952B2 (en) Inspection and sorting method for HDD glass substrate, manufacturing method of HDD information recording medium, and HDD glass substrate
JPWO2008078528A1 (en) Holding jig, method for manufacturing glass substrate for recording medium using the holding jig, glass substrate for recording medium, and recording medium
JP2008140497A (en) Manufacturing method of glass substrate for recording medium, glass substrate for recording medium and recording medium
JP2010118090A (en) Holding tool, method of manufacturing glass substrate for recording medium, and method of manufacturing recording medium
JP2008123612A (en) Manufacturing method of recording medium glass substrate, recording medium glass substrate, and recording medium
JP2008123635A (en) Manufacturing method of recording medium glass substrate, recording medium glass substrate, and recording medium
JP6225248B2 (en) Glass substrate for magnetic disk, magnetic disk for heat-assisted magnetic recording, and method for manufacturing magnetic disk for heat-assisted magnetic recording
JP4548386B2 (en) Chemical strengthening treatment method for glass substrate and method for producing glass substrate using this treatment method
JP2014191851A (en) Manufacturing method of glass substrate for information recording medium
JP5859757B2 (en) Manufacturing method of glass substrate for HDD
JP2007305217A (en) Chemically strengthening method of glass substrate, and manufacturing method of glass substrate using the method