[go: up one dir, main page]

JP2008153455A - Ultra-compact power converter - Google Patents

Ultra-compact power converter Download PDF

Info

Publication number
JP2008153455A
JP2008153455A JP2006340252A JP2006340252A JP2008153455A JP 2008153455 A JP2008153455 A JP 2008153455A JP 2006340252 A JP2006340252 A JP 2006340252A JP 2006340252 A JP2006340252 A JP 2006340252A JP 2008153455 A JP2008153455 A JP 2008153455A
Authority
JP
Japan
Prior art keywords
electrode
slit
main surface
gap
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006340252A
Other languages
Japanese (ja)
Inventor
Masaharu Edo
雅晴 江戸
Takayuki Hirose
隆之 広瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Device Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Device Technology Co Ltd filed Critical Fuji Electric Device Technology Co Ltd
Priority to JP2006340252A priority Critical patent/JP2008153455A/en
Publication of JP2008153455A publication Critical patent/JP2008153455A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Coils Or Transformers For Communication (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an ultracompact power conversion device which can suppress mounting failures due to voids, when a magnetic induction element filled with resin in a through hole for an electrode is mounted. <P>SOLUTION: A mounting failure caused by voids generated in a solder reflow step can be suppressed by forming a slit-shaped gap 11 in each of electrodes 12, which are formed in the outer periphery of a ferrite substrate 16 and are formed on a second main surface of the ferrite substrate 16 as a soldering target surface to be soldered to a mounting board. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、半導体基板上に形成した半導体集積回路(以下ICと記す)と、コイルやコンデンサ、抵抗などの受動部品で形成されるDC−DCコンバータなどの超小型電力変換装置に関する。   The present invention relates to a micro power converter such as a DC-DC converter formed of a semiconductor integrated circuit (hereinafter referred to as IC) formed on a semiconductor substrate and passive components such as a coil, a capacitor, and a resistor.

近年、電子情報機器、特に携帯型の各種電子情報機器の普及が著しい。それらの電子情報機器は、電池を電源とするものが多く、DC−DCコンバータなどの電力変換装置を内蔵している。通常その電力変換装置は、スイッチング素子、整流素子、制御用ICなどの能動素子と、磁気部品、コンデンサ、抵抗などの受動素子の各個別部品とをセラミック基板やプラスチックなどのプリント基板などの上に実装することでハイブリッド型電源モジュールとして構成されている。   In recent years, electronic information devices, in particular, various portable electronic information devices have been widely used. Many of these electronic information devices use a battery as a power source, and incorporate a power conversion device such as a DC-DC converter. Normally, the power conversion device is composed of active elements such as switching elements, rectifier elements, and control ICs, and individual components of passive elements such as magnetic components, capacitors, and resistors on a printed circuit board such as a ceramic substrate or plastic. By mounting, it is configured as a hybrid power supply module.

前記した携帯用を含めた各種電子情報機器の小型、薄型、軽量化の要望に伴い、内蔵される電力変換装置の小型、薄型、軽量化の要求も強い。ハイブリッド型電源モジュールの小型化は、MCM(マルチチップモジュール)技術や、積層セラミック部品などの技術により進歩してきている。しかしながら、個別の部品を同一基板上に、並べて実装するため、電源モジュールの実装面積の縮小化が制限されている。特にインダクタやトランスなどの磁気部品は、集積回路と比較すると体積が非常に大きいために電子機器の小型、薄型化をはかる上で最大の制約となっている。   Along with the demands for reducing the size, thickness, and weight of various electronic information devices including the above-mentioned portable devices, there is a strong demand for reducing the size, thickness, and weight of built-in power conversion devices. Miniaturization of the hybrid power supply module has been advanced by technologies such as MCM (multi-chip module) technology and multilayer ceramic components. However, since individual components are mounted side by side on the same substrate, reduction of the mounting area of the power supply module is limited. In particular, magnetic parts such as inductors and transformers have a very large volume compared to an integrated circuit, which is the biggest restriction in reducing the size and thickness of electronic devices.

これら磁気部品の小型、薄型化に対する今後の方向としては、チップ部品として限りなく小さく、薄くし、面実装する方向と、シリコン基板上に薄膜で形成する方向の2つが考えられる。近年、半導体技術の適用により、半導体基板上に薄型のマイクロ磁気素子(コイル、トランス)を搭載した例も報告されている。
特に、平面型磁気部品をとして、スイッチング素子や制御回路などの半導体部品を作り込んだ半導体基板の表面上に、薄膜コイルを磁性基板とフェライト基板とで挟んだ形の平面型磁気部品(薄型インダクタ)を薄膜技術により形成したものが開示されている(例えば、特許文献1など)。
これにより、磁気素子の薄型化とその実装面積の削減が可能となった。しかし、真空プロセスでの製造でコストが高くなる。また、電流の大きい所で使用する場合などは、磁性膜と絶縁膜に関する多大な積層工程が必要であり、コストが非常に高くなるという問題があった。
There are two possible future directions for miniaturization and thinning of these magnetic components: a chip component that is extremely small and thin, surface-mounted, and a thin film formed on a silicon substrate. In recent years, there has been reported an example in which a thin micromagnetic element (coil, transformer) is mounted on a semiconductor substrate by application of semiconductor technology.
In particular, a planar magnetic component (thin inductor) is a thin magnetic coil sandwiched between a magnetic substrate and a ferrite substrate on the surface of a semiconductor substrate on which semiconductor components such as switching elements and control circuits are built. ) Is formed by thin film technology (for example, Patent Document 1).
As a result, the magnetic element can be made thinner and its mounting area can be reduced. However, the manufacturing cost is increased in the vacuum process. In addition, when used in a place with a large current, a large number of lamination steps relating to the magnetic film and the insulating film are required, and there is a problem that the cost becomes very high.

平面型磁気素子として、スパイラル(渦巻き状)のコイル導体の隙間に磁性を帯びた微粒子を混入した樹脂を充填し、上面、下面をフェライト基板で挟み込んで形成したものが開示されている(例えば、特許文献2など)。
この方法では、コイル導体のインダクタンスは、スパイラルの回数(ターン数)にほぼ比例するため、大きなインダクタンスを得るためには、ターン数を増やす必要がある。実装面積を増やさずにターン数を増やすと、コイル導体の断面積を小さくする必要がある。つまり、大きなインダクタンスを得るためには、コイル導体の断面積を小さく、導体線長を長くしなければならない。しかし、コイル断面積を小さく、導体線長を長くすると、コイル導体の直流抵抗が増大するため電力損失が増大してしまうという課題があった。
A planar magnetic element is disclosed in which a gap between spiral coil conductors is filled with a resin mixed with magnetic fine particles, and an upper surface and a lower surface are sandwiched between ferrite substrates (for example, disclosed) Patent Document 2).
In this method, since the inductance of the coil conductor is substantially proportional to the number of spirals (turns), it is necessary to increase the number of turns in order to obtain a large inductance. If the number of turns is increased without increasing the mounting area, it is necessary to reduce the cross-sectional area of the coil conductor. That is, in order to obtain a large inductance, the coil conductor must have a small cross-sectional area and a long conductor wire length. However, when the coil cross-sectional area is reduced and the conductor wire length is increased, the DC resistance of the coil conductor is increased, resulting in an increase in power loss.

その点を解消するために、磁性絶縁基板と、該磁性絶縁基板の第1主面に形成された第1導体と前記磁性絶縁基板の第2主面に形成された第2導体と前記磁性絶縁基板を貫通する貫通孔に形成された接続導体とをそれぞれ接続してなるソレノイド状のコイル導体と、からなる薄型磁気素子が開示されている(例えば、特許文献3など)。
この特許文献3に記載されている構造は、磁性絶縁基板に貫通孔を形成し、コイル導体を形成する際、同時に半導体素子、実装基板などと接続するための実装端子を形成し、コイルとなる磁性絶縁基板にICを実装するだけで、新たな実装基板を不要とし、超小型・薄型の電力変換装置を実現するものである。
In order to solve the problem, a magnetic insulating substrate, a first conductor formed on the first main surface of the magnetic insulating substrate, a second conductor formed on the second main surface of the magnetic insulating substrate, and the magnetic insulation. There has been disclosed a thin magnetic element comprising solenoidal coil conductors connected to connecting conductors formed in through holes penetrating a substrate (for example, Patent Document 3).
In the structure described in Patent Document 3, when a through hole is formed in a magnetic insulating substrate and a coil conductor is formed, a mounting terminal for connecting to a semiconductor element, a mounting substrate and the like is formed at the same time, thereby forming a coil. By simply mounting an IC on a magnetic insulating substrate, a new mounting substrate is unnecessary, and an ultra-compact and thin power converter is realized.

特許文献3に記載されている超小型電力変換素子の特徴は、磁性絶縁基板に貫通孔を形成し、その貫通孔を通して電気的に接続されたコイル導体を第1主面、第2主面に具備し、さらに同様に第1主面に半導体素子との電気的接続をするための電極(接合単端子)、第2主面に実際に使用される場合のプリント板などとの電気的接続のための電極(実装電極)を具備していることである。この構造を適用することにより、デバイスを構成する部品を最小限に留め、薄型化を実現した超小型電力変換装置を得ることができる。   The feature of the micro power conversion element described in Patent Document 3 is that a through hole is formed in a magnetic insulating substrate, and a coil conductor electrically connected through the through hole is formed on the first main surface and the second main surface. In addition, similarly, an electrode (junction single terminal) for electrical connection with a semiconductor element on the first main surface, and an electrical connection with a printed board when actually used on the second main surface For this purpose (mounting electrode). By applying this structure, it is possible to obtain an ultra-compact power conversion device that minimizes the number of parts constituting the device and achieves a reduction in thickness.

図10、図11は、従来の超小型電力変換装置の構成図であり、図10(a)はICチップを搭載した要部断面図であり図10(b)のY−Y線で切断した要部断面図、図10(b)は磁気誘導素子の第2主面(裏面)の要部平面図、図11は図10(b)の要部断面図で、図11(a)は図10(b)のX1−X1線で切断した要部拡大断面図、図11(b)は図10(b)のX2−X2線で切断した要部拡大断面図である。   10 and 11 are configuration diagrams of a conventional ultra-small power converter. FIG. 10A is a cross-sectional view of a main part on which an IC chip is mounted, and is cut along a YY line in FIG. FIG. 10B is a main part sectional view of the second main surface (back surface) of the magnetic induction element, FIG. 11 is a main part sectional view of FIG. 10B, and FIG. 10 (b) is an enlarged cross-sectional view of the main part cut along line X1-X1, and FIG. 11 (b) is an enlarged cross-sectional view of the main part cut along line X2-X2 in FIG. 10 (b).

フェライト基板86の中央部にソレノイド状コイルが形成され、周辺部に電極82、88が形成されている。ソレノイド状コイルはフェライト基板86の第1主面と第2主面と貫通孔85の側壁に形成されるコイル導体84で出来ている。電極88は第1主面、電極82は第2主面に形成され,貫通孔83の側壁に形成される接続導体83aで互いに接続されている。   A solenoidal coil is formed at the center of the ferrite substrate 86, and electrodes 82 and 88 are formed at the periphery. The solenoid coil is made of a coil conductor 84 formed on the first main surface and the second main surface of the ferrite substrate 86 and the side wall of the through hole 85. The electrode 88 is formed on the first main surface, and the electrode 82 is formed on the second main surface, and is connected to each other by a connection conductor 83 a formed on the side wall of the through hole 83.

第1主面に形成された電極88とICチップ80はスタッドバンプ81を介して固着し、ICチップ80とフェライト基板86の間にはアンダーフィル89が充填されている。また、第2主面に形成されたコイル導体84は保護膜87で被覆されている。
特開2001−196542号公報 特開2002−233140号公報 (図1) 特開2004−274004号公報
The electrode 88 formed on the first main surface and the IC chip 80 are fixed via a stud bump 81, and an underfill 89 is filled between the IC chip 80 and the ferrite substrate 86. The coil conductor 84 formed on the second main surface is covered with a protective film 87.
JP 2001-196542 A JP 2002-233140 A (FIG. 1) JP 2004-274004 A

図10(b)の電極構造の詳細断面は図11(a)、図11(b)に示すように、第1主面と第2主面との電極88、82を貫通孔83の側壁に形成された接続導体83aで電気的に接続されており、貫通孔83の空洞箇所は充填樹脂83bが充填されている。この充填樹脂83bは樹脂層である保護膜87を形成するときに貫通孔83の空洞箇所に充填される。   The detailed cross section of the electrode structure in FIG. 10B is shown in FIGS. 11A and 11B, with the electrodes 88 and 82 of the first main surface and the second main surface on the side wall of the through hole 83. The connection conductor 83a is electrically connected, and the hollow portion of the through hole 83 is filled with a filling resin 83b. The filling resin 83b is filled in the hollow portion of the through hole 83 when the protective film 87 which is a resin layer is formed.

製造工程としては、(1)フェライト基板86に貫通孔83、85を形成、(2)電解めっきをするために必要なめっきシード層を形成、(3)電解めっき時の型となるレジストパターンを形成、(4)電解めっきでコイル導体84、実装端子である電極82、88および接続導体83aを同時形成、(5)不要レジスト、シード層を除去、(6)保護膜87として、樹脂層を形成、という手順である。電解めっきでコイル導体84および電極82、88および接続導体83aとなる導電層を形成する際、貫通孔83、85の内部は完全には埋められず空洞箇所が発生し、その空洞箇所が最後に保護膜87として樹脂層を形成する際に充填される。   The manufacturing process includes (1) forming through holes 83 and 85 in the ferrite substrate 86, (2) forming a plating seed layer necessary for electrolytic plating, and (3) forming a resist pattern as a mold at the time of electrolytic plating. (4) Electrolytic plating simultaneously forms coil conductor 84, electrodes 82 and 88 as mounting terminals, and connection conductor 83a. (5) Removes unnecessary resist and seed layer. (6) Resin layer as protective film 87. This is the procedure of formation. When forming the conductive layer to be the coil conductor 84, the electrodes 82 and 88, and the connection conductor 83a by electrolytic plating, the inside of the through holes 83 and 85 is not completely filled, and a hollow portion is generated. Filled when the resin layer is formed as the protective film 87.

この樹脂層である保護膜87をパターニングした後、図11(a)に示すように、貫通孔83内部を充填した樹脂層(保護膜87)である充填樹脂83bの露出面はパターニング時の現像で電極82、88の表面高さより低くなっている。後述するように、この低くなっている充填樹脂83bの露出部にはんだ付けの際にボイドが形成される。
本製造方法は、最小限の工程で電気的な接続とコイル導体84、電極82、88および接続導体83aを形成できるため、低いコストで形成できるが、電極82、88の中央部に貫通孔83が形成されており、かつその内部に充填樹脂83bが充填されていることから、図12に示すようにプリント基板などの基板95に形成された基板電極96へはんだ91で実装する時に、充填樹脂83bの下部にボイド92ができてしまう。また、このボイド92ははんだ91の実装での1回目のリフローではボイド体積V3は小さいが(図12(a))、1回実装後に再度、他の部品の実装をするために2回目のリフロー工程を実施すると、充填樹脂83bの吸湿によって充填樹脂83b中にとりこまれた水分がボイド92内に放出され、かつ、熱による膨張をすることで、ボイド92の体積V4が大きくなる(図12(b))。このため、実質的な実装面積(はんだ91と実装電極96との接触面積)は小さくなり、実装強度が低下することで、実装不良を引き起こす。
After patterning the protective film 87 which is the resin layer, as shown in FIG. 11A, the exposed surface of the filling resin 83b which is the resin layer (protective film 87) filling the inside of the through hole 83 is developed during patterning. Thus, the surface height of the electrodes 82 and 88 is lower. As will be described later, voids are formed in the exposed portions of the lower filling resin 83b during soldering.
This manufacturing method can form the electrical connection and the coil conductor 84, the electrodes 82 and 88, and the connection conductor 83a with a minimum number of steps, and thus can be formed at a low cost. However, the through hole 83 is formed at the center of the electrodes 82 and 88. Is formed and filled with the filling resin 83b. Therefore, as shown in FIG. 12, when the solder resin 91 is used to mount the filling resin on the board electrode 96 formed on the board 95 such as a printed board. A void 92 is formed at the bottom of 83b. Further, the void 92 has a small void volume V3 in the first reflow after mounting the solder 91 (FIG. 12A), but after the first mounting, the second reflow is performed in order to mount another component again. When the process is carried out, the moisture taken into the filling resin 83b by the moisture absorption of the filling resin 83b is released into the void 92 and expands due to heat, so that the volume V4 of the void 92 increases (FIG. 12 ( b)). For this reason, a substantial mounting area (a contact area between the solder 91 and the mounting electrode 96) is reduced, and the mounting strength is reduced, thereby causing a mounting failure.

本課題を解決するためには、空洞箇所の充填樹脂83bをなくして、吸湿しない金属系の材料で充填するなどの方法が必要である。また金属系の材料で充填しない場合で空洞箇所の充填樹脂83bをなくして、空洞箇所を開放状態にする方法もある。しかし、例えばICチップなどの半導体素子を第1主面に固着したあとに樹脂などでモールドすると、貫通孔83に樹脂が充填されて開放状態が維持できなくなる。開放状態とするためにはデバイス全体を保護する樹脂モールドが行えないことになり採用できない。   In order to solve this problem, a method of eliminating the filling resin 83b in the hollow portion and filling it with a metal material that does not absorb moisture is required. There is also a method in which the hollow portion is not filled with a metal material and the hollow portion is not filled with the resin 83b so that the hollow portion is opened. However, for example, if a semiconductor element such as an IC chip is fixed to the first main surface and then molded with resin or the like, the through hole 83 is filled with resin and the open state cannot be maintained. In order to make it an open state, a resin mold for protecting the entire device cannot be used and it cannot be adopted.

前記の貫通孔83を金属で埋める方法には、めっきの厚さを厚くすることで、貫通孔83の中央部を閉じさせてしまう方法、スクリーン印刷法などで導電ペーストやはんだペーストで埋め込んでしまうなどの方法が考えられる。ただし、めっきの厚さで貫通孔83をとじさせてしまう方法は、コイル導体84、電極82、88と同時にめっきしていることから、厚さの制約がある場合は適用できない。また、仮に厚さの制約をなくした場合でも、めっきの時間を延長しなければならないことからコスト増加になる。別工程として、電極内部を埋め込む場合については、フォトリソグラフィー工程、めっき工程、レジスト剥離工程などを再度実施しなければならず、コストは大幅に上昇する。また、めっきで埋め込む場合は、貫通孔83内部のめっき厚の制御が悪い場合、めっきされた金属でボイドが発生し、その中にめっき液などの残留液が取り残されるため、腐食の発生など信頼性上の問題が発生する。   In the method of filling the through hole 83 with a metal, the thickness of the plating is increased so that the central portion of the through hole 83 is closed, or the conductive paste or the solder paste is embedded by a screen printing method or the like. Such a method is conceivable. However, the method of binding the through-hole 83 with the plating thickness is not applicable when there is a thickness limitation because the plating is performed simultaneously with the coil conductor 84 and the electrodes 82 and 88. Even if the thickness restriction is eliminated, the plating time must be extended, resulting in an increase in cost. As a separate process, in the case of embedding the inside of the electrode, the photolithography process, the plating process, the resist stripping process, and the like must be performed again, and the cost increases significantly. Also, when embedding by plating, if the control of the plating thickness inside the through-hole 83 is poor, voids are generated in the plated metal, and residual liquid such as plating solution is left in it. Sexual problems occur.

電極82、88をスクリーン印刷で導電ペースト、はんだペーストで埋め込む工程は、工程が増えるためにコスト増加につながるだけでなく、これらを保護膜87の形成前に実施しなければならず、保護膜87の熱硬化など、後工程の熱処理工程を制限することになる。
この発明の目的は、前記の課題を解決して、電極部の貫通孔に樹脂が充填された磁気誘導素子を実装する際に、ボイドによる実装不良を抑制できる超小型電力変換装置を提供することである。
The process of embedding the electrodes 82 and 88 with a conductive paste and a solder paste by screen printing not only leads to an increase in cost due to an increase in the number of processes, but these must be performed before the formation of the protective film 87. This limits the heat treatment step in the subsequent step such as heat curing.
An object of the present invention is to solve the above-described problems and provide an ultra-compact power conversion device that can suppress mounting defects due to voids when mounting a magnetic induction element in which resin is filled in a through hole of an electrode portion. It is.

前記の目的を達成するために、半導体集積回路ga形成された半導体基板と薄膜磁気誘導素子とコンデンサを有し、前記薄膜磁気誘導素子が磁性絶縁基板と該磁性絶縁基板の中央部に形成されたコイルと該磁性絶縁基板の第1主面および第2主面の外周部で貫通孔を介して電気的に接続された電極を有する超小型電力変換装置において、前記第1主面および第2主面の少なくとも一方の主面の前記電極がスリット状の間隙を有し、該スリット状の間隙が前記貫通孔と接続し前記電極の端部まで延在する構成とする。   In order to achieve the above object, the semiconductor integrated circuit ga has a semiconductor substrate, a thin film magnetic induction element, and a capacitor, and the thin film magnetic induction element is formed at the center of the magnetic insulating substrate and the magnetic insulating substrate. In the micro power converter having an electrode electrically connected through a through hole at the outer periphery of the first main surface and the second main surface of the coil and the magnetic insulating substrate, the first main surface and the second main surface The electrode on at least one main surface of the surface has a slit-like gap, and the slit-like gap is connected to the through hole and extends to the end of the electrode.

また、前記スリット状の間隙が前記電極を貫通するとよい。
また、前記電極のスリット状の間隙の幅が前記電極の厚さ以上であるとよい。
また、前記スリット状の間隙が前記電極に形成した凹部の溝であるとよい。
また、前記磁性絶縁基板がフェライト基板であるとよい。
The slit-shaped gap may penetrate the electrode.
The width of the slit-like gap of the electrode may be equal to or greater than the thickness of the electrode.
The slit-like gap may be a recess groove formed in the electrode.
The magnetic insulating substrate may be a ferrite substrate.

この発明によれば、実装基板にはんだ付けされる電極にスリット状の間隙を形成することにより、2回目のリフロー工程でのボイド体積の増加を抑制し、コストを増加させることなく、超小型電力変換装置のはんだ実装時のリフローで引き起こされる実装不良を防止することができる。   According to the present invention, by forming a slit-like gap in the electrode soldered to the mounting substrate, an increase in the void volume in the second reflow process is suppressed, and the micro power can be reduced without increasing the cost. Mounting defects caused by reflow during solder mounting of the conversion device can be prevented.

実施の形態を以下の実施例で説明する。   Embodiments will be described in the following examples.

図1は、この発明の第1実施例の超小型電力変換装置の要部構成図でり、図1(a)は薄型磁気部品の第2主面(裏面)から透視した平面図、図1(b)は図1(a)のX1−X1線で切断した要部断面図、図1(c)は図1(a)のX2−X2線で切断した要部断面図、図1(d)は図1(a)のC部の第1主面(表面)側の電極の平面形状図である。
また図2は図1の拡大図であり、図2(a)は図1(b)のA部拡大図、図2(b)は図1(c)のB部拡大図である。
FIG. 1 is a configuration diagram of a main part of a micro power conversion device according to a first embodiment of the present invention. FIG. 1 (a) is a plan view seen through a second main surface (back surface) of a thin magnetic component. FIG. 1B is a cross-sectional view of main parts cut along line X1-X1 in FIG. 1A, FIG. 1C is a cross-sectional view of main parts cut along line X2-X2 in FIG. FIG. 3B is a plan view of the electrode on the first main surface (front surface) side of the portion C in FIG.
2 is an enlarged view of FIG. 1, FIG. 2 (a) is an enlarged view of portion A of FIG. 1 (b), and FIG. 2 (b) is an enlarged view of portion B of FIG. 1 (c).

尚、超小型電力変換装置としては、図10(a)に示したようにICチップ等の他の構成部品もあるが、図1ではそれらを省略し磁気誘導素子のみを示した。
フェライト基板16の中央部にソレノイド状コイルが形成され、周辺部に電極12、18が形成されている。ソレノイド状コイルはフェライト基板16の第1主面と第2主面に形成されたコイル導体14a、14bおよびこれらのコイル導体14a、14bを電気的に接続する貫通孔15aの側壁に形成される接続導体15cで構成される。電極18、12は第1主面と第2主面にそれぞれ形成され,貫通孔13aの側壁に形成される接続導体13cで互いに接続されている。第2主面に形成される電極12には貫通孔13aに接するスリット状の間隙11が形成され、このスリット状の間隙11は電極12の端部まで延在しており、その底はフェライト基板16が露出している。尚、図中の符号で13b、15bは充填樹脂、17は樹脂層である保護膜である。
As the ultra-small power converter, there are other components such as an IC chip as shown in FIG. 10A. However, in FIG. 1, only those magnetic induction elements are shown.
A solenoidal coil is formed at the center of the ferrite substrate 16, and electrodes 12 and 18 are formed at the periphery. The solenoid coil is formed on the side walls of the coil conductors 14a and 14b formed on the first main surface and the second main surface of the ferrite substrate 16 and the through holes 15a that electrically connect the coil conductors 14a and 14b. It is composed of a conductor 15c. The electrodes 18 and 12 are formed on the first main surface and the second main surface, respectively, and are connected to each other by a connection conductor 13c formed on the side wall of the through hole 13a. The electrode 12 formed on the second main surface is formed with a slit-like gap 11 in contact with the through hole 13a. The slit-like gap 11 extends to the end of the electrode 12, and the bottom is a ferrite substrate. 16 is exposed. In the figure, reference numerals 13b and 15b are filled resins, and 17 is a protective film which is a resin layer.

図1で示すように、電極12にスリット状の間隙11を形成することで、はんだ実装の際、充填樹脂13b上にはボイドは発生するものの、2回目のリフローでは、スリット状の間隙11から吸湿した水分が放出されるため、ボイドが大きくなるのを防止することができる。このスリット状の間隙11の底部はフェライト基板16であるため、はんだが固着せず間隙11に沿って空洞の通路34が形成され(図5(b)参照)、その通路34からボイドの空気や湿気が外部に放出され、ボイドが2回目のリフローで大きくならない。   As shown in FIG. 1, by forming the slit-shaped gap 11 in the electrode 12, a void is generated on the filling resin 13 b at the time of solder mounting, but in the second reflow, from the slit-shaped gap 11. Since moisture absorbed is released, it is possible to prevent the void from becoming large. Since the bottom of the slit-shaped gap 11 is the ferrite substrate 16, solder is not fixed, and a hollow passage 34 is formed along the gap 11 (see FIG. 5B). Moisture is released to the outside, and the void does not grow with the second reflow.

また、本発明は、電極12のスリットの空隙11のパターン形成の際には、フォトマスクのパターン変更のみで実行することができるため、新たな工程を追加することもなく、コストの増加を招くことはない。
図3、図4は図1の磁気誘導素子の製造方法を示す工程図であり、両図面の(a)〜(f)は工程順に示した要部製造工程断面図である。各工程で図3は図1(a)のY−Y線で切断した断面図に対応する要部断面図であり、図4は図1(a)のX2−X2線で切断した断面図に対応する要部断面図である。図3および図4は、1つのチップ部分(磁気誘導素子の部分)のみについて拡大して示してあるが、実際はこのようなチップを多数形成した基板として製造した。
Moreover, since the present invention can be executed only by changing the pattern of the photomask when forming the pattern of the gap 11 of the slit of the electrode 12, it does not add a new process and causes an increase in cost. There is nothing.
3 and 4 are process diagrams showing a method of manufacturing the magnetic induction element of FIG. 1, and (a) to (f) of both drawings are cross-sectional views of main part manufacturing processes shown in the order of processes. In each step, FIG. 3 is a cross-sectional view of the main part corresponding to the cross-sectional view taken along line YY of FIG. 1A, and FIG. 4 is a cross-sectional view taken along line X2-X2 of FIG. It is a principal part sectional drawing corresponding. 3 and 4 show only one chip portion (magnetic induction element portion) in an enlarged manner, but in actuality, it was manufactured as a substrate on which a large number of such chips were formed.

絶縁磁性基板として、厚さ525μmのNi−Zn系フェライト基板16を用いた。なお、フェライト基板16の厚さは必要なインダクタンス、コイル電流値、磁性基板の特性から決定されるものであり、今回の実施例での厚さに限ったものではない。なお、絶縁基板としてフェライト基板16を用いたが、絶縁性の磁性基板であればどの材料でも良い。今回は、容易に基板状に成型し得る材料としてフェライト基板16を用いた。   A Ni—Zn ferrite substrate 16 having a thickness of 525 μm was used as the insulating magnetic substrate. The thickness of the ferrite substrate 16 is determined from necessary inductance, coil current value, and characteristics of the magnetic substrate, and is not limited to the thickness in the present embodiment. Although the ferrite substrate 16 is used as the insulating substrate, any material may be used as long as it is an insulating magnetic substrate. This time, the ferrite substrate 16 was used as a material that can be easily molded into a substrate.

まず、フェライト基板16に貫通孔13a、15aを形成する。ICチップとの接合に用いる電極18とプリント基板などに形成した基板電極との接合に用いる電極12とを接続する貫通孔が13a、コイル導体14a、14bを接続する貫通孔が15aである。加工方法は、レーザ加工、サンドブラスト加工、放電加工、超音波加工、機械加工などいずれの方法も適用でき、加工コスト、加工寸法などで決定する必要がある。今回の実施例では、最小加工寸法幅が0.13mmと微小なこと、加工個所が多いことからサンドブラスト法を用いた(図3(a)、図4(a)の工程)。   First, the through holes 13 a and 15 a are formed in the ferrite substrate 16. A through hole for connecting the electrode 18 used for bonding with the IC chip and the electrode 12 used for bonding with the substrate electrode formed on the printed circuit board or the like is 13a, and a through hole for connecting the coil conductors 14a and 14b is 15a. As the processing method, any method such as laser processing, sand blast processing, electric discharge processing, ultrasonic processing, and machining can be applied, and it is necessary to determine the processing method based on processing costs, processing dimensions, and the like. In this example, the sandblasting method was used because the minimum processing dimension width was as small as 0.13 mm and there were many processing points (steps in FIGS. 3A and 4A).

つぎに、貫通孔13a、15aの接続導体13b、15bおよび第1主面、第2主面のコイル導体14a、14b、電極18、12を形成する。電極12に貫通孔13aに接し電極12の端部まで延在するスリット状の間隙11を形成する。この間隙11の底部はフェライト基板16が露出しており、この間隙11は電極12を貫通している。
まず、フェライト基板16全面に導電性を付与するために、Cr/Cuをスパッタ法で成膜し、めっきシード層41を形成する(図3(b)、図4(b)の工程)。このとき、貫通孔13a、15aへも導電性は付与されるが、必要であれば、無電解めっきなどを施しても良い。また、スパッタ法にかぎらず真空蒸着法、CVD(ケミカルベイパーデポジション)法、などを用いても良い。無電解めっきのみで形成する方法でも良い。ただし、フェライト基板16との密着性を十分得られる方法が望ましい。なお、導電性材料については導電性を持つ材料であればなんでも良い。密着性を得るための密着層として今回はCrを用いたが、Ti、W、Nb、Taなども用いることができる。また、Cuが後工程の電解めっき工程でめっきが生成されるシード層となるが、これもNi、Auなどを用いることができる。今回は、後工程での加工の容易さも考慮し、Cr/Cuの膜構成とした。
Next, the connection conductors 13b and 15b of the through holes 13a and 15a, the coil conductors 14a and 14b on the first main surface and the second main surface, and the electrodes 18 and 12 are formed. A slit-like gap 11 is formed in the electrode 12 so as to be in contact with the through hole 13 a and extending to the end of the electrode 12. The ferrite substrate 16 is exposed at the bottom of the gap 11, and the gap 11 passes through the electrode 12.
First, in order to impart conductivity to the entire surface of the ferrite substrate 16, Cr / Cu is formed by sputtering to form a plating seed layer 41 (steps of FIGS. 3B and 4B). At this time, conductivity is imparted to the through holes 13a and 15a, but electroless plating or the like may be performed if necessary. Further, not limited to the sputtering method, a vacuum deposition method, a CVD (chemical vapor deposition) method, or the like may be used. A method of forming only by electroless plating may be used. However, a method capable of obtaining sufficient adhesion with the ferrite substrate 16 is desirable. Note that the conductive material may be anything as long as it has conductivity. Although Cr was used as an adhesion layer for obtaining adhesion, Ti, W, Nb, Ta, or the like can also be used. Further, Cu serves as a seed layer in which plating is generated in a subsequent electrolytic plating process, and Ni, Au, or the like can also be used. This time, considering the ease of processing in the subsequent process, a Cr / Cu film configuration was adopted.

つぎに、第1主面、第2主面に形成されるべきコイル導体14a、14b、電極18、12のパターンをフォトレジストを用いて形成する(図3(c)、図4(c)の工程)。本実施例ではネガ型のフィルムタイプのレジストを用いて、これらのパターンを形成した。このときのパターンで、電極12のスリット状の空隙11のパターン(スリット用フォトレジストパターン43)を形成しておく。また、42はスリット用フォトレジストパターンであり、43以外のフォトレジストパターンである。   Next, the patterns of the coil conductors 14a and 14b and the electrodes 18 and 12 to be formed on the first main surface and the second main surface are formed using a photoresist (FIGS. 3C and 4C). Process). In this example, these patterns were formed using a negative film type resist. A pattern of the slit-like gap 11 of the electrode 12 (slit photoresist pattern 43) is formed in this pattern. Reference numeral 42 denotes a slit photoresist pattern, which is a photoresist pattern other than 43.

次にレジストパターンの開口部へ電解めっきで導電層33としてCuを形成させる(図3(d)、図4(d)の工程)。このとき、貫通孔13a、15a部へもCuがめっきされ、接続導体13c、15cも同時に形成され、第1主面と第2主面のコイル導体14a、14bが接続され、ソレノイド状コイルが形成される。また、電極パターン18、12も同時に形成される。電解めっき後、不要なフォトレジスト、シード層を除去することで、所望のコイル導体14a、14bと電極18、12が形成される。このとき、電極12にスリット状の間隙11が形成される。このスリット状の間隙11の幅は後述するように電極11の厚さ以上とする(図3(e)、図4(e)の工程)。   Next, Cu is formed as the conductive layer 33 by electrolytic plating in the openings of the resist pattern (steps of FIGS. 3D and 4D). At this time, the through holes 13a and 15a are also plated with Cu, and the connection conductors 13c and 15c are formed at the same time, and the coil conductors 14a and 14b on the first main surface and the second main surface are connected to form a solenoid coil. Is done. Also, the electrode patterns 18 and 12 are formed at the same time. After the electrolytic plating, unnecessary photoresist and seed layers are removed to form desired coil conductors 14a and 14b and electrodes 18 and 12. At this time, a slit-like gap 11 is formed in the electrode 12. The width of the slit-shaped gap 11 is set to be equal to or greater than the thickness of the electrode 11 as will be described later (steps shown in FIGS. 3E and 4E).

つぎにコイル導体14b上に保護膜17を形成する(図3(f)、図4(f)の工程)。本実施例ではフィルム型の絶縁材料を用いた。保護膜17は保護膜としての機能を果たすとともに、貫通孔13a、15a内部を充填する機能も持つ。不要であれば形成する必要はないが、後工程でICチップなどの半導体素子を実装し、樹脂封止をする際、樹脂が流れ出してくるため、充填しておく必要がある。また、長期信頼性を考慮すると形成しておくのが望ましい。なお、絶縁膜形成方法はフィルム型の材料に限定されるものではなく、液状の絶縁材料をスクリーン印刷でパターン形成し、熱硬化させても良い。   Next, the protective film 17 is formed on the coil conductor 14b (steps of FIG. 3 (f) and FIG. 4 (f)). In this embodiment, a film type insulating material is used. The protective film 17 functions as a protective film and also has a function of filling the through holes 13a and 15a. If it is unnecessary, it is not necessary to form it. However, when a semiconductor element such as an IC chip is mounted and sealed with resin in a later process, the resin flows out, so it is necessary to fill it. Further, it is desirable to form in consideration of long-term reliability. The insulating film forming method is not limited to a film type material, and a liquid insulating material may be patterned by screen printing and thermally cured.

なお、コイル導体14a、14bおよび電極18、12となる導電層44の表面には必要に応じて、Ni、Auめっきなどを施し、表面処理層を形成する。本実施例では図3(d)、図4(d)の工程で、Cuを電解めっき後連続してNiおよびAuを電解めっきで形成した。なお、図3(f)、図4(f)の工程の終了後に無電解めっきでこれらを形成してよい。もしくは図3(e)、図4(e)の工程後に同様に無電解めっきを実施しても良い。これらの金属保護導体は後工程でのICチップなどの半導体素子との接続工程で安定した接続状態を得るためのものである。   In addition, Ni, Au plating etc. are given to the surface of the conductive layer 44 used as the coil conductors 14a and 14b and the electrodes 18 and 12 as needed, and a surface treatment layer is formed. In this example, Ni and Au were formed by electrolytic plating continuously after electrolytic plating of Cu in the steps of FIGS. 3 (d) and 4 (d). In addition, after completion | finish of the process of FIG.3 (f) and FIG.4 (f), you may form these by electroless plating. Alternatively, electroless plating may be similarly performed after the steps of FIGS. 3 (e) and 4 (e). These metal protective conductors are for obtaining a stable connection state in a connection process with a semiconductor element such as an IC chip in a later process.

前述した工程により、実装側(第2主面側)の電極12にスリット状の間隙11を形成した薄型磁気誘導素子が形成される。尚、電力変換装置としての構成をとるためには、図10(a)で示したように電源用のICチップ80を図1で示す磁気誘導素子に形成した電極18に接続する。構成の一例としては図10(a)に示したとおりスタッドバンプ81を用いて超音波接続で接合し、アンダーフィル89でICチップ80と磁気誘導素子を固定する。図10は一例であり、接合方法として本実施例ではスタッドバンプと超音波接合を用いたが、本構造ではこれに限定されるものではなく、はんだ接合、導電接着材などを用いても問題はない。また、ICチップ80と磁気誘導素子の固定にはアンダーフィル89を用いたが、これは必要に応じて材料を選定すれば良く、エポキシ樹脂などの封止材などでも良い。   Through the process described above, a thin magnetic induction element in which the slit-shaped gap 11 is formed in the electrode 12 on the mounting side (second main surface side) is formed. In order to adopt a configuration as a power converter, an IC chip 80 for power supply is connected to the electrode 18 formed on the magnetic induction element shown in FIG. 1 as shown in FIG. As an example of the configuration, as shown in FIG. 10A, the stud bump 81 is used to join by ultrasonic connection, and the IC chip 80 and the magnetic induction element are fixed by the underfill 89. FIG. 10 shows an example. In this embodiment, stud bumps and ultrasonic bonding are used as bonding methods. However, this structure is not limited to this, and there is a problem even if solder bonding, conductive adhesive, or the like is used. Absent. In addition, the underfill 89 is used to fix the IC chip 80 and the magnetic induction element, but this may be performed by selecting a material as necessary, and may be a sealing material such as an epoxy resin.

本実施例を用いた超小型電力変換装置を実装基板にはんだ実装し、ボイドの発生状況を調査した。
図5と図6は、ボイドの状態を示す図であり、図5は1回目のリフローで形成されたはんだのボイドの状態を示す図であり、図6は2回目のリフロー後のボイドの状態を示す図である。磁気誘導素子の断面図を比較したとき、図5(a)、図6は図2(a)に相当する断面図であり、図5(b)は図2(b)に相当する断面図である。図5、図6から1回目のリフローで形成されたはんだ32のボイド33aの体積V1が2回目のリフローでも成長することはなく、ボイド33bの体積V2は殆ど増加せず、実質的なはんだ実装面積の低下は見られなかった。これは図5(b)に示すスリット状の間隙11に形成された通路34を通ってボイド33aに溜まった湿気や空気が外界に抜けて行くためである。
The micro power converter using this example was solder mounted on a mounting board, and the occurrence of voids was investigated.
5 and 6 are views showing the state of the void, FIG. 5 is a view showing the state of the void of the solder formed by the first reflow, and FIG. 6 is the state of the void after the second reflow. FIG. 5A and 6 are cross-sectional views corresponding to FIG. 2A, and FIG. 5B is a cross-sectional view corresponding to FIG. is there. The volume V1 of the void 33a of the solder 32 formed by the first reflow from FIGS. 5 and 6 does not grow even by the second reflow, and the volume V2 of the void 33b hardly increases, and the substantial solder mounting. There was no reduction in area. This is because moisture or air accumulated in the void 33a passes through the passage 34 formed in the slit-shaped gap 11 shown in FIG.

このスリット状の間隙11の幅Mと電極12の厚さNを変化させ、はんだボイド33a、33bから成長状態を実験した。今回の実験では、電極12の厚さNを40μm、60μmを用い、スリット状の間隙11の幅Mを30μm〜80μmまで10μm間隔とした。その結果についてつぎに説明する。
図8は、1回目のリフロー工程を行った後のボイド体積に対する2回目のリフロー工程を行った後のボイド体積の比率(V2/V1)とスリット状の間隙の幅Mの関係を示した相関図である。図8(a)は電極12の厚さNが40μmの場合であり、図8(b)は電極12の厚さNが60μmの場合である。図8は2回目のリフロー工程でのボイド体積V2が1回目のリフロー工程でのボイド体積V1の何倍に増大したかを表したものである。2回のリフロー工程を行うのは、従来技術で説明した通りであるのでここでは説明を省略する。
The growth state was tested from the solder voids 33a and 33b by changing the width M of the slit-shaped gap 11 and the thickness N of the electrode 12. In this experiment, the thickness N of the electrode 12 was 40 μm and 60 μm, and the width M of the slit-shaped gap 11 was 10 μm from 30 μm to 80 μm. The results will be described next.
FIG. 8 shows the correlation between the void volume ratio (V2 / V1) after the second reflow process and the void width M after the first reflow process and the slit width M. FIG. FIG. 8A shows the case where the thickness N of the electrode 12 is 40 μm, and FIG. 8B shows the case where the thickness N of the electrode 12 is 60 μm. FIG. 8 shows how many times the void volume V2 in the second reflow process has increased to the void volume V1 in the first reflow process. Since the two reflow steps are performed as described in the prior art, the description is omitted here.

図8に示すデータは、リフロー工程に関する信頼性試験規格に準拠したリフロー工程を適用して得られたものである。すなわち、そのリフロー工程は、はんだの耐熱性を確認するための前工程とその後高温で加熱処理してリフローする後工程の2つの工程で構成されている。前工程の条件は吸湿処理を行うための前処理条件であり、この前処理条件は温度が85℃、湿度が85%、時間が192時間である。後工程の条件は実際にリフローする条件であり温度が260℃、時間が2分である。後工程ではんだ内の湿気を吸引したボイド33bがはじける(ポップコーン現象)などの不具合が発生していないか否か調査して通常は良否を判定する。   The data shown in FIG. 8 is obtained by applying a reflow process based on the reliability test standard for the reflow process. That is, the reflow process is composed of two processes, a pre-process for confirming the heat resistance of the solder and a post-process for reflowing after heat treatment at a high temperature. The conditions for the pre-process are pre-treatment conditions for performing a moisture absorption treatment. The pre-treatment conditions are a temperature of 85 ° C., a humidity of 85%, and a time of 192 hours. The post-process conditions are the actual reflow conditions, the temperature is 260 ° C., and the time is 2 minutes. It is usually determined whether the void 33b that has sucked the moisture in the solder in the subsequent process is repelled (popcorn phenomenon) or the like is not defective.

しかし、ここでは前記したように1回目のリフロー工程で発生したボイド体積V1が2回目のリフロー工程でそのボイド体積V2がどの程度大きくなったかを調査した。1回目のリフロー工程と2回目のリフロー工程は前記した条件と同じ条件である。尚、前記の前処理条件は湿度を与えたときのはんだのリフロー耐熱を保証する条件であり、リフロー試験規格でレベル1と称せられる階級の規格に準じている。   However, here, as described above, it was investigated how the void volume V1 generated in the first reflow process was increased in the second reflow process. The first reflow process and the second reflow process are the same conditions as described above. The pretreatment conditions are conditions for guaranteeing the reflow heat resistance of the solder when humidity is applied, and conform to a class standard referred to as level 1 in the reflow test standard.

ボイド体積V1、V2の調査において、ボイド33a、33bははんだ32と充填樹脂13bの境界に形成されるために外部から直接測定することはできない。そこで充填樹脂13bとはんだ33の接合部付近の断面(図1のX1−X1線で切断した断面近傍)を研磨してボイド33a、33bの断面形状を出し、ボイド33a,33bの最大幅W1、W2と最大高さH1、H2を測定する。図7で示すように、ボイド33a、33bの形状を円筒形と仮定して、この円筒形の底面の直径(D=2r)はボイド33a、33bの最大幅W1、W2とし、円筒形の高さ(h)はボイド33a、33bの最大高さH1、H2として円筒形の体積(πr×h)を算出してボイド体積V1、V2とした。 In the investigation of the void volumes V1 and V2, the voids 33a and 33b cannot be directly measured from the outside because they are formed at the boundary between the solder 32 and the filling resin 13b. Therefore, the cross section in the vicinity of the joint between the filling resin 13b and the solder 33 (near the cross section cut along the line X1-X1 in FIG. 1) is polished to obtain the cross sectional shapes of the voids 33a and 33b. W2 and maximum heights H1 and H2 are measured. As shown in FIG. 7, assuming that the shapes of the voids 33a and 33b are cylindrical, the diameter (D = 2r) of the bottom surface of the cylinder is the maximum width W1 and W2 of the voids 33a and 33b. The length (h) was calculated as cylindrical volumes (πr 2 × h) as the maximum heights H1 and H2 of the voids 33a and 33b, and the void volumes V1 and V2 were obtained.

図8(a)に示すように、電極12の厚さNが40μmの場合は、スリット状の間隙11の幅M(間隔)が40μm未満であると、一部の素子でボイドの増加が確認された。これは、スリット状の間隙11の幅Mが狭すぎて、はんだ33がスリットの間隙11箇所でブリッジングを発生させてしまい、スリット状の間隙11に沿って出来るはずの通路34が狭まりボイド33内の水分や気体が放出されづらくなっているためである。   As shown in FIG. 8A, when the thickness N of the electrode 12 is 40 μm, if the width M (interval) of the slit-shaped gap 11 is less than 40 μm, increase in voids is confirmed in some elements. It was done. This is because the width M of the slit-like gap 11 is too narrow, and the solder 33 causes bridging at the slit gap 11 and the path 34 that should be formed along the slit-like gap 11 is narrowed. This is because it is difficult to release moisture and gas inside.

また、図8(b)に示すように、電極12の厚さNが60μmの場合は、スリット状の間隙11の幅Mが60μm未満であると、40μmの場合と同様に、一部の素子でボイドの増加が確認された。これは、スリット状の間隙11の幅Mが狭すぎて、はんだ33がスリットの間隙11箇所でブリッジングを発生させてしまい、スリット状の間隙11に沿って出来るはずの通路34が狭まりボイド33内の水分や気体が放出されづらくなっているためである。   Further, as shown in FIG. 8B, when the thickness N of the electrode 12 is 60 μm, when the width M of the slit-like gap 11 is less than 60 μm, as in the case of 40 μm, some elements Increased voids. This is because the width M of the slit-like gap 11 is too narrow, and the solder 33 causes bridging at the slit gap 11 and the path 34 that should be formed along the slit-like gap 11 is narrowed. This is because it is difficult to release moisture and gas inside.

このことから、スリット状の間隙11の幅M(間隔)を電極12の厚さNよりも大きくすることで、ボイド体積比を1.0付近の小さな値にできて、2回目のリフローでの不良数を減少させることができて、2回のはんだリフローでの良品率を向上させることができる。   Therefore, by making the width M (interval) of the slit-shaped gap 11 larger than the thickness N of the electrode 12, the void volume ratio can be made a small value near 1.0, and the second reflow can be performed. It is possible to reduce the number of defects and improve the yield rate by two solder reflows.

図9は、この発明の第2実施例の超小型電力変換装置の要部断面図である。この断面図は図1(c)の断面図に相当する断面図であり、貫通孔13a、接続導体13c,充填樹脂13bを参考までに点線で示した。
図1との違いは、スリット状の間隙11が凹部11aの溝であり、この凹部11aの溝では溝の底部でフェライト基板16が露出していない点である。この第2実施例は電極12aにスリット状の間隙である凹部11aを形成するときに、スリット状の間隙の底部のフェライト基板16が露出する前にエッチングを停止させ、スリット状の間隙である凹部11aの底部の厚さを1μm程度にする。これは、スリット状の間隙を形成するためのエッチングが十分行われず底部に電極12aの残渣が残った場合も含んでいる。特に、電極12aの厚さが厚く、凹部11aの側壁が数十μmと高い場合には、はんだが凹部11aの底部に充填されず、凹部11aに沿って空洞の通路ができて2回目のリフロー工程でボイド体積の増大が抑制される。
FIG. 9 is a cross-sectional view of an essential part of the micro power converter according to the second embodiment of the present invention. This cross-sectional view is a cross-sectional view corresponding to the cross-sectional view of FIG. 1C, and the through holes 13a, the connection conductors 13c, and the filling resin 13b are indicated by dotted lines for reference.
The difference from FIG. 1 is that the slit-like gap 11 is a groove of the recess 11a, and the ferrite substrate 16 is not exposed at the bottom of the groove of the recess 11a. In the second embodiment, when the recess 11a, which is a slit-like gap, is formed in the electrode 12a, the etching is stopped before the ferrite substrate 16 at the bottom of the slit-like gap is exposed, and the recess, which is the slit-like gap, is formed. The thickness of the bottom of 11a is about 1 μm. This includes the case where the etching for forming the slit-shaped gap is not sufficiently performed and the residue of the electrode 12a remains at the bottom. In particular, when the electrode 12a is thick and the side wall of the recess 11a is as high as several tens of μm, the solder is not filled in the bottom of the recess 11a, and a hollow passage is formed along the recess 11a. An increase in void volume is suppressed in the process.

また、凹部11aの底部に保護膜17の残渣が被覆した場合にははんだが凹部11aの底部に付き難く通路が一層出来易くなり、ボイド体積の増大はさらに抑制される。
なお、第1、第2実施例において、ソレノイド状コイルを一例として実施したが、本発明においては、コイル形成は関係なく、渦巻き状(スパイラル状)コイルやトロイダル状コイルなど別の形状のコイルについても適用できることは勿論である。
Further, when the residue of the protective film 17 is coated on the bottom of the recess 11a, the solder is less likely to adhere to the bottom of the recess 11a, and a passage is further easily formed, and the increase in void volume is further suppressed.
In the first and second embodiments, the solenoid coil is used as an example. However, in the present invention, the coil formation is not related, and a coil having a different shape such as a spiral coil or a toroidal coil is used. Of course, it is applicable.

この発明の第1実施例の超小型電力変換装置の要部構成図であり、(a)は薄型磁気部品の第2主面(裏面)から透視した平面図、(b)は(a)のX1−X1線で切断した要部断面図、(c)は(a)のX2−X2線で切断した要部断面図、(d)は(a)のC部の第1主面(表面)側の電極の平面形状図BRIEF DESCRIPTION OF THE DRAWINGS It is a principal part block diagram of the micro power converter of 1st Example of this invention, (a) is the top view seen through from the 2nd main surface (back surface) of a thin magnetic component, (b) is (a). Sectional view taken along line X1-X1, principal part sectional view taken along line X2-X2 in (a), (d) showing first main surface (surface) of part C in (a). Planar shape of side electrode 図1の拡大図であり、(a)は図1(b)のA部拡大図、(b)は図1(c)のB部拡大図FIG. 2 is an enlarged view of FIG. 1, (a) is an enlarged view of part A of FIG. 1 (b), and (b) is an enlarged view of part B of FIG. 1 (c). 図1の磁気誘導素子の製造方法を示す工程図であり、(a)〜(f)は工程順に示した要部製造工程断面図It is process drawing which shows the manufacturing method of the magnetic induction element of FIG. 1, (a)-(f) is principal part manufacturing process sectional drawing shown to process order 図1の磁気誘導素子の製造方法を示す工程図であり、(a)〜(f)は工程順に示した要部製造工程断面図It is process drawing which shows the manufacturing method of the magnetic induction element of FIG. 1, (a)-(f) is principal part manufacturing process sectional drawing shown to process order 1回目のリフローで形成されたはんだのボイドの状態を示す図The figure which shows the state of the void of the solder formed by the first reflow 2回目のリフロー後のボイドの状態を示す図The figure which shows the state of the void after the second reflow ボイドの形状を仮定した円筒形の図Cylindrical figure assuming void shape 1回目のリフロー工程を行った後のボイド体積に対する2回目のリフロー工程を行った後のボイド体積の比率(V2/V1)とスリット状の間隙の幅Mの関係を示した相関図であり、(a)は電極12の厚さNが40μmの場合の図、(b)は電極12の厚さNが60μmの場合の図It is a correlation diagram showing the relationship between the void volume ratio (V2 / V1) after performing the second reflow process to the void volume after performing the first reflow process and the width M of the slit-shaped gap, (A) is a figure in case the thickness N of the electrode 12 is 40 micrometers, (b) is a figure in case the thickness N of the electrode 12 is 60 micrometers. この発明の第2実施例の超小型電力変換装置の要部断面図Sectional drawing of the principal part of the micro power converter of 2nd Example of this invention 従来の超小型電力変換装置の構成図であり、(a)はICチップを搭載した要部断面図、(b)は磁気誘導素子の第2主面(裏面)の要部平面図It is a block diagram of the conventional micro power converter, (a) is principal part sectional drawing which mounted IC chip, (b) is a principal part top view of the 2nd main surface (back surface) of a magnetic induction element. 従来の超小型電力変換装置の構成図であり、(a)は図10の(b)のX1−X1線で切断した要部拡大断面図、(b)は図10(b)のX2−X2線で切断した要部拡大断面図It is a block diagram of the conventional micro power converter, (a) is a principal part expanded sectional view cut | disconnected by the X1-X1 line | wire of (b) of FIG. 10, (b) is X2-X2 of FIG.10 (b). Main section enlarged cross-sectional view cut by wire 従来の超小型電力変換装置の実装時でのボイドの状態を示す図であり、(a)は1回目のリフロー後のボイドの図、(b)は2回目のリフロー後のボイドの図It is a figure which shows the state of the void at the time of mounting of the conventional micro power converter, (a) is the figure of the void after the first reflow, (b) is the figure of the void after the second reflow.

符号の説明Explanation of symbols

11 スリット状の隙間
11a 凹部
12,12a 電極(第2主面)
13a 貫通孔(電極部)
13b 充填樹脂(電極部)
13c 接続導体(電極部)
14a コイル導体(第1主面)
14b コイル導体(第2主面)
15a 貫通孔(コイル導体部)
15b 充填樹脂(コイル導体部)
15c 接続導体(コイル導体部)
16 フェライト基板
17 保護膜(樹脂層)
18 電極(第1主面)
31 実装電極
32 はんだ
33a ボイド(1回目のリフロー後)
33b ボイド(2回目のリフロー後)
34 通路
41 めっきシード層
42 フォトレジストパターン
43 スリット用フォトレジストパターン
44 導電層
11 slit-like gap 11a recess 12, 12a electrode (second main surface)
13a Through hole (electrode part)
13b Filling resin (electrode part)
13c Connecting conductor (electrode part)
14a Coil conductor (first main surface)
14b Coil conductor (second main surface)
15a Through hole (coil conductor part)
15b Filling resin (coil conductor part)
15c Connecting conductor (coil conductor)
16 Ferrite substrate 17 Protective film (resin layer)
18 electrodes (first main surface)
31 Mounting electrode 32 Solder 33a Void (after the first reflow)
33b Void (after the second reflow)
34 Passage 41 Plating seed layer 42 Photoresist pattern 43 Photoresist pattern for slit 44 Conductive layer

Claims (5)

半導体集積回路が形成された半導体基板と薄膜磁気誘導素子とコンデンサを有し、前記薄膜磁気誘導素子が磁性絶縁基板と該磁性絶縁基板の中央部に形成されたコイルと該磁性絶縁基板の第1主面および第2主面の外周部で貫通孔を介して電気的に接続された電極を有する超小型電力変換装置において、前記第1主面および第2主面の少なくとも一方の主面の前記電極がスリット状の間隙を有し、該スリット状の間隙が前記貫通孔と接続し前記電極の端部まで延在することを特徴とする超小型電力変換装置。 A semiconductor substrate on which a semiconductor integrated circuit is formed, a thin film magnetic induction element, and a capacitor, wherein the thin film magnetic induction element is a magnetic insulating substrate, a coil formed at a central portion of the magnetic insulating substrate, and a first of the magnetic insulating substrate. In the micro power conversion device having electrodes electrically connected to each other through the through holes at the outer peripheral portions of the main surface and the second main surface, the main surface of at least one of the first main surface and the second main surface An electrode having a slit-like gap, and the slit-like gap is connected to the through hole and extends to an end of the electrode. 前記スリット状の間隙が前記電極を貫通することを特徴とする請求項1に記載の超小型電力変換装置。 The ultra-small power converter according to claim 1, wherein the slit-shaped gap penetrates the electrode. 前記電極のスリット状の間隙の幅が前記電極の厚さ以上であることを特徴とする請求項2に記載の超小型電力変換装置。 The ultra-small power converter according to claim 2, wherein the width of the slit-like gap of the electrode is equal to or greater than the thickness of the electrode. 前記スリット状の間隙が前記電極に形成した凹部の溝であることを特徴とする請求項1に記載の超小型電力変換装置。 2. The microminiature power converter according to claim 1, wherein the slit-shaped gap is a groove of a recess formed in the electrode. 前記磁性絶縁基板がフェライト基板であることを特徴とする請求項1〜4のいずれか一項に記載の超小型電力変換装置。 The micro power converter according to claim 1, wherein the magnetic insulating substrate is a ferrite substrate.
JP2006340252A 2006-12-18 2006-12-18 Ultra-compact power converter Withdrawn JP2008153455A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006340252A JP2008153455A (en) 2006-12-18 2006-12-18 Ultra-compact power converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006340252A JP2008153455A (en) 2006-12-18 2006-12-18 Ultra-compact power converter

Publications (1)

Publication Number Publication Date
JP2008153455A true JP2008153455A (en) 2008-07-03

Family

ID=39655310

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006340252A Withdrawn JP2008153455A (en) 2006-12-18 2006-12-18 Ultra-compact power converter

Country Status (1)

Country Link
JP (1) JP2008153455A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102760702A (en) * 2012-07-18 2012-10-31 西安永电电气有限责任公司 Substrate and electronic device using same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1065043A (en) * 1996-08-13 1998-03-06 Sumitomo Kinzoku Electro Device:Kk Ball grid array type package substrate and method of manufacturing the same
JP2006073868A (en) * 2004-09-03 2006-03-16 Fuji Electric Device Technology Co Ltd Manufacturing method of micro power converter

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1065043A (en) * 1996-08-13 1998-03-06 Sumitomo Kinzoku Electro Device:Kk Ball grid array type package substrate and method of manufacturing the same
JP2006073868A (en) * 2004-09-03 2006-03-16 Fuji Electric Device Technology Co Ltd Manufacturing method of micro power converter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102760702A (en) * 2012-07-18 2012-10-31 西安永电电气有限责任公司 Substrate and electronic device using same

Similar Documents

Publication Publication Date Title
JP3610339B2 (en) High density electronic package and manufacturing method thereof
US20220181064A1 (en) Inductor built-in substrate and method for manufacturing the same
US9514876B2 (en) Inductor device, method for manufacturing the same and printed wiring board
CN100492637C (en) Semiconductor device packaging, manufacturing method thereof, and semiconductor device
JP3670917B2 (en) Semiconductor device and manufacturing method thereof
KR100782405B1 (en) Printed Circuit Board Manufacturing Method
CN101266868B (en) Ultra-small electric power conversion device
US9928952B2 (en) Coil-embedded integrated circuit substrate and method of manufacturing the same
US20160042857A1 (en) Chip electronic component and board having the same
JP2004274004A (en) Micro power converter
US9307645B2 (en) Printed wiring board and method for manufacturing printed wiring board
JP3377786B2 (en) Semiconductor chip
CN104700982A (en) Chip electronic component and manufacturing method thereof
JP2011151185A (en) Wiring board and semiconductor device
US20090243389A1 (en) Multiple output magnetic induction unit and a multiple output micro power converter having the same
JP2008147297A (en) Ultra-compact power converter
JP2008159973A (en) Electronic component module and circuit board with built-in components incorporating the module
JP3377787B1 (en) Semiconductor chip and semiconductor device using the same
JP4759981B2 (en) Manufacturing method of electronic component built-in module
JP4065125B2 (en) Component built-in module and manufacturing method thereof
US20080308309A1 (en) Structure of packaging substrate having capacitor embedded therein and method for fabricating the same
CN219658518U (en) Integrated circuit device
JP2006041122A (en) Element with built-in electronic component, electronic apparatus and manufacturing method thereof
JP2008153455A (en) Ultra-compact power converter
CN115224008A (en) Package substrate

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20081216

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090219

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090714

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20091112

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110531

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20110801