[go: up one dir, main page]

JP2008185300A - Collector - Google Patents

Collector Download PDF

Info

Publication number
JP2008185300A
JP2008185300A JP2007020826A JP2007020826A JP2008185300A JP 2008185300 A JP2008185300 A JP 2008185300A JP 2007020826 A JP2007020826 A JP 2007020826A JP 2007020826 A JP2007020826 A JP 2007020826A JP 2008185300 A JP2008185300 A JP 2008185300A
Authority
JP
Japan
Prior art keywords
heat
heat collecting
focal point
parabolic reflector
tubes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007020826A
Other languages
Japanese (ja)
Inventor
Norio Yotsuya
規夫 肆矢
Hideo Tomita
英夫 富田
Katsuzo Konakawa
勝蔵 粉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2007020826A priority Critical patent/JP2008185300A/en
Publication of JP2008185300A publication Critical patent/JP2008185300A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S20/20Solar heat collectors for receiving concentrated solar energy, e.g. receivers for solar power plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S23/74Arrangements for concentrating solar-rays for solar heat collectors with reflectors with trough-shaped or cylindro-parabolic reflective surfaces
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/20Solar thermal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To uniformly keep the temperature of a heat medium at high temperatures by receiving solar light toward a focal point of a parabolic reflector by heat collecting tubes. <P>SOLUTION: This heat collector 25 is composed of the parabolic reflector 1 for collecting solar light, the plurality of heat collecting tubes 5 disposed around the focal point 2 of the parabolic reflector 1 for circulating the heat medium 6, a heat collecting portion 4 constituted by spirally winding the plurality of heat collecting tubes 5 around the focal point 2, and an exterior 22 receiving the parabolic reflector 1 and the heat collecting portion 4, so that the solar light toward the focal point 2 of the parabolic reflector 1 is uniformly collected by the plurality of heat collecting tubes 5, and the heat medium 6 circulated in the heat collecting portion 4 can be uniformly heated to high temperatures. Further the radiation from the heat collecting portion 4 is prevented, thus the heat for heating the heat medium 6 to the high temperature can be efficiently collected. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、太陽光を集光して、太陽熱を回収する集熱器に関するものである。   The present invention relates to a heat collector that collects solar light and collects solar heat.

従来、この種の集熱器は、放射円筒状の反射鏡の焦点と放射円筒状反射鏡面上の中央を通る開口部頂点との間及び焦線上に、放射円筒状反射鏡長手方向に沿って複数本の集熱管を配置し、集熱管列の最上部管が焦線上に位置するように設け、直射日光と散乱光のいずれも集熱するようにしている(例えば、特許文献1参照)。
特開昭55−105147号公報
Conventionally, this type of heat collector is along the longitudinal direction of the radiating cylindrical reflector between the focal point of the radiating cylindrical reflector and the apex of the opening passing through the center on the surface of the radiating cylindrical reflector and on the focal line. A plurality of heat collecting tubes are arranged so that the uppermost tube of the heat collecting tube row is located on the focal line, and both direct sunlight and scattered light are collected (see, for example, Patent Document 1).
JP-A-55-105147

しかしながら、前記従来技術では、反射鏡の焦点上に配置される集熱管は、複数本の集熱管の一部であるため、反射鏡で集光する直射日光を受ける集熱管以外には、直射日光が当たらず集熱管内を通過する熱媒体の温度を高温にできないという課題があった。   However, in the prior art, since the heat collecting tube disposed on the focal point of the reflecting mirror is a part of the plurality of heat collecting tubes, direct sunlight other than the heat collecting tube that receives the direct sunlight condensed by the reflecting mirror is used. There is a problem that the temperature of the heat medium that passes through the heat collecting tube without being hit can not be increased.

また、散乱光を受けることができても、焦点上のように集光できないので、焦点上で集光した太陽熱を他の集熱管で放熱し、集熱器の集熱効率を向上できないという課題もあった。   In addition, even if it can receive scattered light, it cannot collect light as it is on the focal point, so there is also a problem that the heat collection efficiency of the heat collector cannot be improved by dissipating solar heat collected on the focal point with other heat collecting tubes. there were.

本発明は、上記従来の課題を解決するもので、放物面反射鏡の焦点の周囲に複数個の集熱管を配置して、常に集点に向かう太陽光を夫々の集熱管で受けるようにして、熱媒体の温度を高温に均一に保つことを目的とする。   The present invention solves the above-described conventional problems, and a plurality of heat collecting tubes are arranged around the focal point of a parabolic reflector so that sunlight toward the collecting point is always received by each heat collecting tube. The purpose of this is to keep the temperature of the heat medium uniform at a high temperature.

前記従来の課題を解決するために、本発明の集熱器は、太陽光を集光する放物面反射鏡と、この放物面反射鏡の焦点の周囲に設けた熱媒体が流通する複数個の集熱管と、この複数個の集熱管を前記焦点の周囲に螺旋状に周回する構成に設ける集熱部と、これらの放物面反射鏡と集熱部を収納した外装とで構成したものである。   In order to solve the above-described conventional problems, the heat collector according to the present invention includes a plurality of parabolic reflectors that collect sunlight and a plurality of heat media provided around the focal points of the parabolic reflectors. A plurality of heat collecting tubes, a heat collecting portion provided in a configuration in which the plurality of heat collecting tubes are spirally wound around the focal point, and an exterior housing these parabolic reflectors and the heat collecting portion. Is.

これよって、複数個の集熱管には、常に放物面反射鏡の焦点に向かう太陽光が集光するので、集熱部を流通する熱媒体の温度が高温に加熱されるようになる。   As a result, the sunlight toward the focal point of the parabolic reflector is always concentrated on the plurality of heat collecting tubes, so that the temperature of the heat medium flowing through the heat collecting portion is heated to a high temperature.

また、放物面反射鏡の焦点の周囲に複数個の集熱管を螺旋状に周回するようにして集熱部を構成するので、複数個の集熱管は、太陽光が必ず集光する部分が構成でき、集熱部からの放熱を低減し集熱効率を向上するものである。   In addition, since the heat collecting section is configured by spirally winding a plurality of heat collecting tubes around the focal point of the parabolic reflector, the plurality of heat collecting tubes have a portion where sunlight is always collected. The heat collecting efficiency can be improved by reducing heat radiation from the heat collecting section.

本発明の集熱器は、複数個の集熱管に放物面鏡の焦点に向かう太陽光を均一に集光するので、集熱部を流通する熱媒体の温度を高温に均一に加熱することができる。   The heat collector of the present invention uniformly concentrates sunlight toward the focal point of the parabolic mirror on a plurality of heat collecting tubes, so that the temperature of the heat medium flowing through the heat collecting portion is uniformly heated to a high temperature. Can do.

また、集熱部からの放熱を防止し、熱媒体を高温に加熱するための熱量を効率良く回収するものである。   Moreover, the heat radiation from the heat collecting part is prevented, and the amount of heat for heating the heat medium to a high temperature is efficiently recovered.

第1の発明は、太陽光を集光する放物面反射鏡と、この放物面反射鏡の焦点の周囲に設けた熱媒体が流通する複数個の集熱管と、この複数個の集熱管を前記焦点の周囲に螺旋状
に周回する構成に設ける集熱部と、これらの放物面反射鏡と集熱部を収納した外装とで構成したことにより、複数個の集熱管に放物面反射鏡の焦点に向かう太陽光を均一に集光するので、集熱部を流通する熱媒体の温度を高温に均一に加熱することができる。
A first invention is a parabolic reflector for collecting sunlight, a plurality of heat collecting tubes through which a heat medium provided around a focal point of the parabolic reflecting mirror, and the plurality of heat collecting tubes Is provided with a heat collecting portion provided in a configuration that spirally circulates around the focal point, and an outer housing that houses these parabolic reflectors and the heat collecting portion, so that a plurality of heat collecting tubes have a parabolic surface. Since the sunlight toward the focal point of the reflecting mirror is uniformly collected, the temperature of the heat medium flowing through the heat collecting unit can be uniformly heated to a high temperature.

また、集熱部からの放熱を防止し、熱媒体を高温に加熱するための熱量を効率良く回収するものである。   Moreover, the heat radiation from the heat collecting part is prevented, and the amount of heat for heating the heat medium to a high temperature is efficiently recovered.

第2の発明は、特に、第1の発明の集熱部は、複数個の集熱管を放物面反射鏡の焦点から均等の距離に配置したことにより、複数個の集熱管に同一の集光状態の太陽光を当て、集熱管の温度を均一に上昇させることができ、集熱管内を流通する熱媒体を均一に加熱することができる。   In the second invention, in particular, the heat collecting section of the first invention has a plurality of heat collecting tubes arranged at equal distances from the focal point of the parabolic reflector, so that the same heat collecting portion is arranged on the plurality of heat collecting tubes. The sunlight in the light state can be applied to raise the temperature of the heat collecting tube uniformly, and the heat medium flowing through the heat collecting tube can be heated uniformly.

第3の発明は、特に、第1または第2の発明の集熱部は、複数個の集熱管を焦点の周囲に互いに夫々の集熱管の外壁が接触するよう配置したことにより、複数個の集熱管の放物面反射鏡に反射する集光した太陽光を受けない裏の部分の温度を上昇させ、放熱を防止するので、集熱部の集熱効率を向上することができる。   In the third invention, in particular, the heat collecting part of the first or second invention has a plurality of heat collecting tubes arranged around the focal point so that the outer walls of the heat collecting tubes are in contact with each other. Since the temperature of the back part which does not receive the condensed sunlight reflected on the parabolic reflector of the heat collecting tube is raised and heat radiation is prevented, the heat collecting efficiency of the heat collecting part can be improved.

第4の発明は、特に、第1〜3のいずれか1つの発明の集熱部は、複数個の集熱管の端部に複数個の階層に仕切られ、夫々の集熱管が連通することで、複数個の集熱管が一つの経路に構成するように入口連通部と出口連通部を設けたことにより、複数個の集熱管を焦点から等距離に配置し、集熱管を潰さないように屈曲するよりもその距離も小さく設定できるので、集熱管のすべてをより焦点に近づけ、放物面反射鏡に反射する太陽光をより集光し、すべての集熱管の温度を高温に上昇させることができる。   In the fourth invention, in particular, the heat collecting part of any one of the first to third inventions is partitioned into a plurality of layers at the ends of the plurality of heat collecting pipes, and the respective heat collecting pipes communicate with each other. By providing an inlet communication part and an outlet communication part so that a plurality of heat collecting tubes form a single path, a plurality of heat collecting tubes are arranged at equal distances from the focal point and bent so as not to crush the heat collecting tubes Since the distance can be set smaller than this, it is possible to bring all of the heat collection tubes closer to the focal point, concentrate the sunlight reflected by the parabolic reflector, and raise the temperature of all the heat collection tubes to a high temperature. it can.

第5の発明は、特に、第1〜4のいずれか1つの発明の集熱部は、周囲に筒状の透過管を配置し、集熱管の周囲を密閉構造にしたことにより、集熱管の周囲を真空にして空気層を無くすので、集熱管から透過管への対流による放熱を防止し、集熱部の集熱効率を向上することができる。   In the fifth aspect of the invention, in particular, the heat collecting part of any one of the first to fourth aspects of the present invention is the arrangement of the heat collecting tube by arranging a cylindrical permeation tube around the heat collecting tube and forming a sealed structure around the heat collecting tube. Since the surroundings are evacuated and the air layer is eliminated, heat dissipation due to convection from the heat collecting tube to the permeation tube can be prevented, and the heat collecting efficiency of the heat collecting portion can be improved.

第6の発明は、特に、第1〜5のいずれか1つの発明の集熱部は、複数個の集熱管を焦点の周囲に互いに夫々の集熱管の外壁を接触させるとき、外壁の接触面積を増加させるために集熱管に平面部を構成して配置したことにより、より焦点に近いところに複数個の集熱管を集合させて放物面反射鏡に反射する太陽光をより集光させ、複数個の集熱管の温度を均一化し、熱媒体の温度を高温化し均一化することができる。   In the sixth aspect of the invention, in particular, when the heat collecting portion of any one of the first to fifth aspects of the present invention brings the plurality of heat collecting tubes into contact with the outer walls of the respective heat collecting tubes around the focal point, the contact area of the outer walls. In order to increase the heat collecting tube, the flat portion is configured and arranged, so that a plurality of the heat collecting tubes are gathered closer to the focal point, and the sunlight reflected by the parabolic reflector is more condensed, The temperature of the plurality of heat collecting tubes can be made uniform, and the temperature of the heat medium can be raised and made uniform.

第7の発明は、特に、第1〜6のいずれか1つの発明の集熱部と、放物面反射鏡の焦点を回転の中心として、その周囲を放物面反射鏡が回転できるように支持した回転支持部と、放物面反射鏡を回転する駆動部と、この駆動部をコントロールする制御部を設け、これらの集熱部と放物面反射鏡と駆動部を収納した外装とで構成したことにより、制御部は、太陽の年間の動きをベースに季節や1日の太陽高度に合わせて、駆動部を作動し、放物面反射鏡を回転させて、その日のその時間の太陽の日射が最大になる高度に合わせるように指示できるので、それにより放物面反射鏡に反射した太陽光が常に焦点に集中し、集熱部の温度を高温に上昇させ、熱媒体を高温に加熱することができる。   The seventh aspect of the invention is particularly configured so that the parabolic reflector can rotate around the heat collecting portion of any one of the first to sixth aspects and the focal point of the parabolic reflector as the center of rotation. A rotation support unit that is supported, a drive unit that rotates the parabolic reflector, and a control unit that controls the drive unit, and an exterior housing the heat collection unit, the parabolic reflector, and the drive unit. By configuring, the control unit operates the drive unit according to the season and the solar altitude of the day based on the annual movement of the sun, rotates the parabolic reflector, and adjusts the sun for that time of the day. Because the sunlight reflected on the parabolic reflector is always focused on the focal point, the temperature of the heat collecting part is raised to a high temperature and the heat medium is heated to a high temperature. Can be heated.

以下本発明の実施の形態を図面を参照して説明する。なお、この実施の形態によって本発明が限定されるものではない。   Embodiments of the present invention will be described below with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態1)
図1、図2、図3において、1は太陽光を集光する放物面反射鏡で、その形状は太陽光を焦点2に集束させるために放物線断面の樋型に形成されている。
(Embodiment 1)
1, 2, and 3, reference numeral 1 denotes a parabolic reflector that condenses sunlight, and the shape thereof is formed in a saddle shape with a parabolic cross section in order to focus sunlight on a focal point 2.

この樋型の放物面反射鏡1は方位方向(東西方向)に配置してあり、その反射面3は太陽光の反射率を向上させるために、鏡面に仕上げている。   This bowl-shaped parabolic reflector 1 is arranged in the azimuth direction (east-west direction), and the reflecting surface 3 is finished to be a mirror surface in order to improve the reflectance of sunlight.

反射面3の鏡面仕上げは、放物面反射鏡1を構成する材料によりめっき、蒸着、研磨、塗装等の方法がある。放物面反射鏡1の加工は、耐熱の樹脂(例えば、フェノール樹脂、フッ素樹脂、ポリイミド樹脂等)を成型、ステンレスをプレス加工、アルミダイカスト成型等の方法がある。またアルミの鏡面仕上げ板を折り曲げる方法もある。   The mirror surface finishing of the reflecting surface 3 includes methods such as plating, vapor deposition, polishing, and coating with materials constituting the parabolic reflecting mirror 1. Processing of the parabolic reflecting mirror 1 includes methods such as molding a heat-resistant resin (for example, phenol resin, fluorine resin, polyimide resin, etc.), pressing stainless steel, and aluminum die casting. There is also a method of bending an aluminum mirror finish plate.

例えば、放物面反射鏡1を耐熱樹脂で成型した時は、アルミめっき(蒸着)や塗装で仕上げで鏡面とし、反射面3を形成する。特に、鏡面をアルミめっきする時は、ポリイミド樹脂やポリフェニレンサルファイド樹脂またはポリステル樹脂、ポリアミド樹脂等を使用する。また、ステンレスをプレス加工したときは、アルミ電解研磨やバフ研磨等で鏡面を形成することもある。   For example, when the parabolic reflecting mirror 1 is molded from a heat-resistant resin, the reflecting surface 3 is formed by finishing it with aluminum plating (evaporation) or painting to make a mirror surface. In particular, when the mirror surface is plated with aluminum, polyimide resin, polyphenylene sulfide resin, polyester resin, polyamide resin, or the like is used. Further, when stainless steel is pressed, a mirror surface may be formed by aluminum electrolytic polishing or buffing.

また、アルミダイカストの成型でもめっき等により鏡面仕上げを行い、アルミダイカスト材料の研磨後の酸化皮膜による反射率の低下を防止することもある。   In addition, the aluminum die casting may be mirror-finished by plating or the like to prevent a reduction in reflectance due to an oxide film after polishing of the aluminum die casting material.

放物面反射鏡1の放物線の焦点2の周囲に配置された集熱部4は、複数個の集熱管5(銅管やステンレス管や黄銅管やアルミ管等)で構成され、焦点2に沿ってその周囲に螺旋状に周回するごとく設けてある。   The heat collecting part 4 arranged around the parabolic focal point 2 of the parabolic reflector 1 is composed of a plurality of heat collecting tubes 5 (copper tube, stainless steel tube, brass tube, aluminum tube, etc.). It is provided as if it circulates spirally around it.

このように、螺旋状に周回する構成により、すべての集熱管5が放物面反射鏡1の焦点2に集中する太陽光を同じように受けるとともに、焦点の直上に周回するときは直達太陽光も同じように受けるようにして同一条件の太陽光を受けるようにしている。   Thus, by the structure which circulates spirally, all the heat collecting tubes 5 receive the sunlight which concentrates on the focus 2 of the parabolic reflecting mirror 1 similarly, and when it circulates just above a focus, direct sunlight Is also received in the same way so that it receives sunlight under the same conditions.

つまり、放物面反射鏡1の焦点2から均等の距離に複数個の集熱管5を配置して、集熱管5に同一の集光状態の太陽光を当てて温度を均一に上昇させ、内部を流通する熱媒体6を均一に加熱している。   That is, a plurality of heat collecting tubes 5 are arranged at equal distances from the focal point 2 of the parabolic reflecting mirror 1, and the heat collecting tubes 5 are irradiated with sunlight in the same condensing state so as to increase the temperature uniformly. The heating medium 6 that circulates is uniformly heated.

複数個の集熱管5は、夫々の外壁が接触するよう配置してあり、集熱管5の放物面反射鏡に反射する集光した太陽光を受けない裏の部分の温度を上昇させ、集熱管5の温度を均一に保つようにしている。   The plurality of heat collecting tubes 5 are arranged so that the respective outer walls are in contact with each other, and the temperature of the back side of the heat collecting tube 5 that does not receive the condensed sunlight reflected by the parabolic reflector is raised. The temperature of the heat tube 5 is kept uniform.

集熱管5は、夫々の端部が順次連結され、一経路に連通するように構成している。これにより、集熱管5内を流通する熱媒体6の流速を低下させないで、集熱管5の集光状態の太陽光を受ける面積を拡大して太陽熱を回収するようにしている。   The heat collecting tubes 5 are configured so that their respective end portions are sequentially connected and communicate with one path. Thereby, without reducing the flow velocity of the heat medium 6 flowing through the heat collecting tube 5, the area of the heat collecting tube 5 receiving sunlight in the condensed state is expanded to collect solar heat.

集熱管5は奇数の複数個に設定してあり、集熱部4に流入する熱媒体6の入口側7と出口側8を両端に分けて配置している。   The heat collecting pipes 5 are set to an odd number of plural, and the inlet side 7 and the outlet side 8 of the heat medium 6 flowing into the heat collecting section 4 are arranged separately at both ends.

なお、複数個の集熱管5を偶数個設け、集熱部4に流入する熱媒体6の入口側7と出口側8を同一側に設けて配置する場合もある。   In some cases, an even number of the plurality of heat collecting tubes 5 are provided, and the inlet side 7 and the outlet side 8 of the heat medium 6 flowing into the heat collecting unit 4 are provided on the same side.

集熱管5の入口側7から中間9に至る部分、および中間9から出口側8に至る部分は潰れ防止のために所定の曲率をもたせ折り返してある。この集熱管5の折り返し部分は、放物面反射鏡1の内側に設けるようにしている。   The portion from the inlet side 7 to the middle 9 and the portion from the middle 9 to the outlet side 8 of the heat collecting tube 5 are folded with a predetermined curvature to prevent crushing. The folded portion of the heat collecting tube 5 is provided inside the parabolic reflecting mirror 1.

この時、入口側7の集熱管5と出口側8の集熱管5は、一本の集熱管5で構成して焦点2上に配置し、そこに太陽光を集光するようにしている。   At this time, the heat collecting tube 5 on the inlet side 7 and the heat collecting tube 5 on the outlet side 8 are constituted by a single heat collecting tube 5 and are arranged on the focal point 2 so as to collect sunlight.

この集熱管5の折り返す部分は、放物面反射鏡1の外側に設けて、放物面反射鏡1の内側の集熱管5の集光状態を均一化するか、集熱管5の折り返す部分の曲率を自在にして、折り返す構成を容易にする場合もある。   The folded portion of the heat collecting tube 5 is provided outside the parabolic reflecting mirror 1 so that the light collecting state of the heat collecting tube 5 inside the parabolic reflecting mirror 1 is made uniform or the folded portion of the collecting tube 5 is folded. In some cases, the curvature can be freely set to facilitate the folding.

放物面反射鏡1では開口部10の幅を大きくすることにより焦点2に集光する太陽光の量を増加し、集熱部4の温度を高温に上昇するようにしている。   In the parabolic reflecting mirror 1, the amount of sunlight collected at the focal point 2 is increased by increasing the width of the opening 10, and the temperature of the heat collecting unit 4 is increased to a high temperature.

熱媒体6は、代替フロン(HFC:Hydrogenerated Fluoro Carbon)の134Aや二酸化炭素(CO2)を使用するか、または熱媒体油(シリコーン油のような鉱物油)を使用している。   As the heat medium 6, alternative chlorofluorocarbon (HFC) 134A and carbon dioxide (CO2) are used, or heat medium oil (mineral oil such as silicone oil) is used.

放物面反射鏡1は、一方向の太陽光しか焦点2を結ばないので、集熱部4に太陽光を集中させるためには、反射鏡1に対して垂直の太陽光を当てるか、または樋型の方位方向に平行の適当な角度の太陽光を当て反射面3に反射させ、反対側の集熱部3に同一の角度で跳ね返り集光する必要がある。   Since the parabolic reflector 1 focuses the sunlight 2 only in one direction, in order to concentrate the sunlight on the heat collecting part 4, the sunlight is applied perpendicular to the reflector 1, or It is necessary to apply sunlight at an appropriate angle parallel to the azimuth direction of the saddle to reflect it to the reflecting surface 3 and to bounce and collect light at the same angle on the heat collecting section 3 on the opposite side.

この放物面反射鏡1の特性に合わせるために、放物面反射鏡1を固定した集熱部4の周囲に回転のための駆動部11と、この駆動部11により放物面反射鏡1を同一の角度に一体で回転させる作動部12を設けている。   In order to match the characteristics of the parabolic reflecting mirror 1, a driving unit 11 for rotation around the heat collecting unit 4 to which the parabolic reflecting mirror 1 is fixed, and the parabolic reflecting mirror 1 by the driving unit 11. Is provided with an actuating portion 12 that integrally rotates the same at the same angle.

ただし、集熱部4は、春分(秋分)時の南中の太陽に正対するときに方物面反射鏡1の開口部10内での位置関係を決めて固定しているので、太陽高度に合わせて放物面反射鏡1は常に太陽に正対するが、集熱部4は太陽が春分(秋分)時の南中の高度以外は、複数個の集熱管5のどこかに太陽光が当たるようにしている。   However, since the heat collecting part 4 determines and fixes the positional relationship in the opening 10 of the reflector 1 when facing the sun in the south during spring equinox (autumn), At the same time, the parabolic reflector 1 always faces the sun, but the heat collecting section 4 is exposed to sunlight somewhere in the plurality of heat collecting tubes 5 except for the altitude in the south and middle when the sun is in the spring equinox (autumn). I am doing so.

駆動部11はモーターとギアやカムを組み合わせて軸に装着した駆動部作動板13を回転し、この駆動部作動板13に棒状の作動部12を装着している。   The drive unit 11 rotates a drive unit operation plate 13 mounted on a shaft by combining a motor, a gear, and a cam, and a rod-like operation unit 12 is mounted on the drive unit operation plate 13.

また、駆動部11はステッピングモーターを使用して自在の角度に設定することも可能である。作動部12は駆動部作動板13にピン15を介して自在に回転できるように連結してあり、駆動部作動板13の回転により押したり引いたりする動作を行うようにしている。   Further, the drive unit 11 can be set to any angle using a stepping motor. The actuating part 12 is connected to the drive part actuating plate 13 through a pin 15 so as to be freely rotatable, and is operated to be pushed and pulled by the rotation of the drive part actuating plate 13.

放物面反射鏡1の端部に設けた駆動部作動板13と同等の形状の反射鏡作動板14に作動部12の一方の端部をピン15で固定し、駆動部作動板13と同じように自在に回転できるようにしてあり、駆動部作動板13の回転により押したり引いたりする動作に連動して、反射鏡作動板14が押されたり引かれたりして集熱部4を軸として放物面反射鏡1が回転するようになっている。   One end of the operating unit 12 is fixed to the reflecting mirror operating plate 14 having the same shape as the driving unit operating plate 13 provided at the end of the parabolic reflecting mirror 1 with a pin 15, and is the same as the driving unit operating plate 13. The reflecting mirror actuating plate 14 is pushed or pulled in conjunction with the operation of pushing or pulling by the rotation of the driving unit actuating plate 13 so that the heat collecting unit 4 is pivoted. The parabolic reflector 1 is rotated as follows.

反射鏡作動板14は放物面反射鏡1の両端部に装着した端面16のどちらか一方(両端の端面16でも可能である)に固定されている。   The reflector operating plate 14 is fixed to either one of the end faces 16 attached to both ends of the parabolic reflector 1 (the end faces 16 at both ends are also possible).

端面16は放物面反射鏡1と同等の材料と表面処理を行うようにしている。この端面16に開口17を設け、集熱部4の入口側7と出口側8の集熱管5が挿入されている。   The end face 16 is subjected to surface treatment with the same material as the parabolic reflector 1. An opening 17 is provided in the end face 16, and the heat collecting tubes 5 on the inlet side 7 and the outlet side 8 of the heat collecting section 4 are inserted.

端面16の開口17を集熱部4に接触しないように延長して筒状の軸受け部18を設け、その周囲に回転軸受け19を設けている。   A cylindrical bearing portion 18 is provided by extending the opening 17 of the end face 16 so as not to contact the heat collecting portion 4, and a rotary bearing 19 is provided around the cylindrical bearing portion 18.

回転軸受け19はベアリング軸受けまたは非接触の流体軸受けを使用している。回転軸
受け19の一方は回転支持部20に固定され、これにより放物面反射鏡1は、集熱部4と接触しないように独立した構成に設けられている。
The rotary bearing 19 uses a bearing bearing or a non-contact fluid bearing. One of the rotation bearings 19 is fixed to the rotation support unit 20, whereby the parabolic reflector 1 is provided in an independent configuration so as not to contact the heat collection unit 4.

複数個の集熱管5の表面には選択吸収膜を形成している(図示なし)。選択吸収膜は集熱管5の表面に黒色の黒クロムまたは無電解ニッケルのめっき処理を行うようにしている。また、めっきの替わりにマンガン系の黒色塗料を塗布することもある。   A selective absorption film is formed on the surface of the plurality of heat collecting tubes 5 (not shown). In the selective absorption film, the surface of the heat collecting tube 5 is plated with black black chrome or electroless nickel. In addition, manganese-based black paint may be applied instead of plating.

21は駆動部11の動作をコントロールする制御部で、マイコン等に記憶した太陽の年間の動きをベースに季節や1日の太陽高度に合わせて駆動部11を作動し、作動部12を動かして放物面反射鏡1を回転させて、その日のその時間の太陽の日射が最大になる高度に合わせるように指示している。   21 is a control unit for controlling the operation of the drive unit 11, which operates the drive unit 11 according to the season and the solar altitude of the day based on the annual movement of the sun stored in the microcomputer or the like, and moves the operation unit 12 The parabolic reflecting mirror 1 is rotated to instruct to adjust to the altitude at which the solar radiation of the day of the day is maximized.

それにより放物面反射鏡1に反射した太陽光が集熱部4を焦点2にして集中し、集熱部4の温度を高温に上昇させるようにしている。   Thereby, the sunlight reflected by the parabolic reflecting mirror 1 is concentrated with the heat collecting part 4 as the focal point 2, and the temperature of the heat collecting part 4 is increased to a high temperature.

22は放物面反射鏡1と集熱部4と作動部12と駆動部11を収納した外装で、上部開口に透過体23を設けた箱状に構成している。   Reference numeral 22 denotes an exterior housing the parabolic reflecting mirror 1, the heat collecting unit 4, the operating unit 12, and the driving unit 11, and is configured in a box shape in which a transmission body 23 is provided in the upper opening.

外装22は腐食の少ないステンレスや耐候性のある樹脂材料(例えば、ポリエステル樹脂、ポリカーボネート樹脂等)で構成している。外装22の内部は放物面反射鏡1や集熱部4の周囲を外装断熱材24で覆うようにしている。外装断熱材24は耐熱性のロックウール、グラスウール等で構成してあり、その表面は硬化させて、それだけで壁面を構成するかまたは板で内面を補強して構成するようにしている。   The exterior 22 is made of stainless steel with little corrosion or a weather resistant resin material (for example, polyester resin, polycarbonate resin, etc.). The interior of the exterior 22 is configured to cover the surroundings of the parabolic reflector 1 and the heat collecting unit 4 with an exterior heat insulating material 24. The exterior heat insulating material 24 is composed of heat-resistant rock wool, glass wool, or the like, and its surface is cured to form a wall surface by itself or to reinforce the inner surface with a plate.

透過体23は放物面反射鏡1の上部に設けられ、太陽光を取り込み、放物面反射鏡1の内部に雨やホコリが侵入するのを防止している。   The transmissive body 23 is provided on the upper part of the parabolic reflecting mirror 1, takes in sunlight, and prevents rain and dust from entering the inside of the parabolic reflecting mirror 1.

透過体23は太陽光を通過させるために透過率の大きな透明ガラスを使用している。このような透明ガラスの日射透過率は、約90%である。この透過体23に向かって外装断熱材24を傾斜させて上方に広がるように構成して、太陽の高度に合わせて反射鏡で太陽光を多く受けられるようにしている。   The transparent body 23 uses transparent glass having a high transmittance in order to allow sunlight to pass therethrough. The solar radiation transmittance of such transparent glass is about 90%. The exterior heat insulating material 24 is inclined toward the transmitting body 23 so as to spread upward, so that a large amount of sunlight can be received by the reflecting mirror according to the altitude of the sun.

25は放物面反射鏡1と集熱部4を外装断熱材24で囲み、収納するとともに放物面反射鏡1の上部を透過体23で開口した外装22で構成した集熱器である。   Reference numeral 25 denotes a heat collector configured by enclosing and storing the parabolic reflector 1 and the heat collecting section 4 with an exterior heat insulating material 24 and having an exterior 22 in which an upper portion of the parabolic reflector 1 is opened with a transmission body 23.

26は熱媒体6の循環ポンプ、27は熱媒体6が流れる回路、28は熱媒体6からの高温の熱を蓄える蓄熱槽である。   26 is a circulation pump for the heat medium 6, 27 is a circuit through which the heat medium 6 flows, and 28 is a heat storage tank for storing high-temperature heat from the heat medium 6.

蓄熱槽28は融点の高い溶融塩の相変化を利用した潜熱型や溶融塩や油等を用いた顕熱型や蒸気を圧力水の形で蓄える蒸気アキュムレイタ等を用いることで100℃以上の高温の熱を貯めるようにしている。   The heat storage tank 28 uses a latent heat type using a phase change of a molten salt having a high melting point, a sensible heat type using a molten salt, oil, or the like, or a steam accumulator that stores steam in the form of pressure water, or a high temperature of 100 ° C. or higher. To store the heat.

以上のように構成された集熱器について以下その動作、作用を説明する。   The operation and action of the heat collector configured as described above will be described below.

まず、制御部21に運転の支持があたえられることにより、循環ポンプ26を作動し、熱媒体6を回路27内に循環させ、集熱器25に送る。   First, when the control unit 21 is given support for operation, the circulation pump 26 is operated to circulate the heat medium 6 in the circuit 27 and send it to the heat collector 25.

集熱器25では制御部21のマイコン等に記憶するその日の太陽高度データに合わせて駆動部11を回転させて作動部12を動かし、集熱部4の周囲で放物面反射鏡1を回転させ、太陽光が放物面反射鏡1の開口部10の頂点に沿って垂直に当たるような位置に向け
る。
In the heat collector 25, the driving unit 11 is rotated according to the solar altitude data stored in the microcomputer of the control unit 21 to move the operating unit 12, and the parabolic reflector 1 is rotated around the heat collecting unit 4. The solar light is directed to a position where it strikes vertically along the apex of the opening 10 of the parabolic reflector 1.

例えば、太陽が南中にあれば、太陽光は高度、方位に関して放物面反射鏡1の反射面3にどの方向からも直角に当たり、その反射光は放物線で反射し、焦点2の周囲に設けた集熱部4に太陽光を集中させて、集熱部4の温度を上昇させる。   For example, if the sun is in the south, the sunlight hits the reflecting surface 3 of the parabolic reflector 1 at a right angle from any direction with respect to altitude and direction, and the reflected light is reflected by the parabola and provided around the focal point 2. The sunlight is concentrated on the heat collecting unit 4 to increase the temperature of the heat collecting unit 4.

図2の(a)、(b)のように異なる太陽高度により、太陽光の入射方向が異なっても、放物面反射鏡1の回転により放物面反射鏡1に太陽光を垂直に当てるようにしている。   Even if the incident direction of sunlight is different due to different solar altitudes as shown in FIGS. 2A and 2B, the parabolic reflector 1 is rotated so that the sunlight is vertically applied by the rotation of the parabolic reflector 1. I am doing so.

複数個の集熱管5の表面に装着した選択吸収膜により太陽光の約90%が集熱部4に吸収され、複数個の集熱管5の温度が上昇する。   About 90% of sunlight is absorbed by the heat collecting section 4 by the selective absorption film mounted on the surface of the plurality of heat collecting tubes 5, and the temperature of the plurality of heat collecting tubes 5 rises.

集熱管5に熱媒体6が送られると、集熱管5の熱を受けて熱媒体6は高温の液体または蒸気(または液体や蒸気と液体が混ざったもの等)を形成して蓄熱槽28に送られる。   When the heat medium 6 is sent to the heat collecting tube 5, the heat medium 6 receives the heat of the heat collecting tube 5 to form a high-temperature liquid or vapor (or a liquid or a mixture of the vapor and the liquid) to the heat storage tank 28. Sent.

このとき、複数個の集熱管5はこの螺旋状に周回する構成により、集熱管5に供給される熱媒体6が放物面反射鏡1の焦点2に集中する太陽光を同じように受けるとともに、焦点の直上に周回するときは直達太陽光も同じように受けるようにして同一条件の太陽光を受け、均一に高温に加熱されるようにしている。   At this time, the plurality of heat collecting tubes 5 are configured to circulate in this spiral shape, so that the heat medium 6 supplied to the heat collecting tubes 5 similarly receives sunlight concentrated on the focal point 2 of the parabolic reflector 1. When it goes around just above the focal point, direct sunlight is also received in the same way so that it receives sunlight under the same conditions and is uniformly heated to a high temperature.

蓄熱槽28ではこの液体または蒸気を受けて100℃以上の熱量を蓄積するようにしている。熱媒体6の液体または蒸気は、蓄熱槽28で凝縮して液体となり、循環ポンプ26により再度集熱器25に送られ、加熱されるようにしている。   The heat storage tank 28 receives this liquid or vapor and accumulates an amount of heat of 100 ° C. or higher. The liquid or vapor of the heat medium 6 is condensed into a liquid in the heat storage tank 28 and is sent again to the heat collector 25 by the circulation pump 26 so as to be heated.

この動作を太陽熱の供給が可能な間、繰り返すことにより、必要な熱量を蓄熱槽28に維持するようにしている。   This operation is repeated while solar heat can be supplied, so that the necessary amount of heat is maintained in the heat storage tank 28.

この時、制御器21は太陽の高度の動きに合わせて放物面反射鏡1を随時動かし、太陽が南中から方位が変化していても太陽光が常に放物面反射鏡1に反射して、焦点2に到達するように駆動部11をコントロールしていく。   At this time, the controller 21 moves the parabolic reflector 1 at any time according to the altitude of the sun, so that the sunlight is always reflected on the parabolic reflector 1 even if the direction of the sun changes from the south. Then, the drive unit 11 is controlled so as to reach the focal point 2.

以上のように、本実施の形態においては、太陽光を集光する放物面反射鏡1と、この放物面反射鏡1の焦点2の周囲に設けた熱媒体6が流通する複数個の集熱管5と、この複数個の集熱管5を前記焦点2の周囲に螺旋状に周回する構成に設ける集熱部4と、これらの放物面反射鏡1と集熱部4を収納した外装22とで構成したので、複数個の集熱管5に供給される熱媒体6が放物面反射鏡1の焦点2に集中する太陽光を同じように受けるとともに、焦点の直上に周回するときは直達太陽光も同じように受けるようにして同一条件の太陽光を受け、均一に集光するので、熱媒体6の温度を高温に均一に加熱することができる。   As described above, in the present embodiment, a plurality of parabolic reflecting mirrors 1 for collecting sunlight and a plurality of heat mediums 6 provided around the focal point 2 of the parabolic reflecting mirror 1 circulate. A heat collecting tube 5, a heat collecting portion 4 provided in a configuration that spirally surrounds the plurality of heat collecting tubes 5 around the focal point 2, and an exterior housing these parabolic reflector 1 and the heat collecting portion 4 When the heat medium 6 supplied to the plurality of heat collecting tubes 5 receives the sunlight concentrated on the focal point 2 of the parabolic reflector 1 in the same manner and goes around just above the focal point. Since direct sunlight is received in the same manner, sunlight of the same condition is received and condensed uniformly, so that the temperature of the heat medium 6 can be uniformly heated to a high temperature.

また、本実施の形態においては、放物面反射鏡1の焦点の周囲に複数個の集熱管5を配置して集熱部4を構成するので、複数個の集熱管5には常に太陽光が集光し、集熱部4からの放熱を低減し集熱効率を向上することができる。   In the present embodiment, since the heat collecting section 4 is configured by arranging a plurality of heat collecting tubes 5 around the focal point of the parabolic reflecting mirror 1, the plurality of heat collecting tubes 5 are always provided with sunlight. Can be condensed to reduce heat radiation from the heat collecting section 4 and improve the heat collecting efficiency.

また、本実施の形態においては、集熱部4は、放物面反射鏡1の焦点2から均等の距離に複数個の集熱管5を配置したので、複数個の集熱管5に同一の集光状態の太陽光を当て、集熱管5の温度を均一に上昇させることができ、集熱5内を流通する熱媒体6を均一に加熱することができる。   In the present embodiment, the heat collecting section 4 has a plurality of heat collecting tubes 5 arranged at equal distances from the focal point 2 of the parabolic reflecting mirror 1. By applying sunlight in the light state, the temperature of the heat collecting tube 5 can be increased uniformly, and the heat medium 6 flowing through the heat collecting 5 can be heated uniformly.

また、本実施の形態においては、複数個の集熱管5は、夫々の端部が順次連結され、一
経路に連通するように構成しているので、集熱管5内を流通する熱媒体6の流速を低下させないで、集熱管5の集光状態の太陽光を受ける面積を拡大して太陽熱を回収し、熱媒体6への太陽熱の授受を効率良く促進することができる。熱媒体6の集熱管5内での流速を低下させないことで、集熱管5から熱媒体6への熱伝達性能の低下を防止することができる。
Further, in the present embodiment, the plurality of heat collecting tubes 5 are configured so that their respective end portions are sequentially connected and communicated with one path, so that the heat medium 6 flowing through the heat collecting tube 5 can be used. Without reducing the flow rate, the area of the heat collecting tube 5 that receives sunlight in the condensed state can be expanded to recover solar heat, and the transfer of solar heat to the heat medium 6 can be efficiently promoted. By not reducing the flow rate of the heat medium 6 in the heat collecting tube 5, it is possible to prevent a decrease in heat transfer performance from the heat collecting tube 5 to the heat medium 6.

また、本実施の形態においては、集熱管5は、入口側7から中間9に部分と中間9から出口側8に連結する時に集熱管5に曲率をもたせて折り返すような構成にしているので、熱媒体6の流れを変化させ、集熱管5内の内壁沿いの流れと中央部分の流れの混合を促進し、温度分布を均一化することができる。   Further, in the present embodiment, the heat collecting tube 5 is configured to be folded with a curvature to the heat collecting tube 5 when connected to the portion from the inlet side 7 to the middle 9 and from the middle 9 to the outlet side 8. The flow of the heat medium 6 can be changed to promote the mixing of the flow along the inner wall in the heat collecting tube 5 and the flow in the central portion, and the temperature distribution can be made uniform.

また、本実施の形態においては、集熱管5の折り返す部分は、放物面反射鏡1の内側に設けるので、折り返しの部分にも太陽光を集光し、太陽熱の回収量を増加することができる。   Further, in the present embodiment, the folded portion of the heat collecting tube 5 is provided inside the parabolic reflector 1, so that the sunlight is also condensed on the folded portion, thereby increasing the amount of collected solar heat. it can.

また、本実施の形態においては、入口側7の集熱管5と出口側8の集熱管5は、放物面反射鏡1内に入る部分と放物面反射鏡1から出る部分は、一本の集熱管5で構成し、焦点2上に配置し、そこに太陽光を集光するので、熱媒体6の温度低下を起こすことなく、太陽熱を回収し、熱媒体6への太陽熱の授受を効率良く促進することができる。   Further, in the present embodiment, the heat collecting tube 5 on the inlet side 7 and the heat collecting tube 5 on the outlet side 8 have only one part that enters the parabolic reflector 1 and one part that exits from the parabolic reflector 1. The solar heat collecting tube 5 is arranged on the focal point 2 and the sunlight is condensed on the focal point 2, so that the solar heat is recovered without causing the temperature of the heat medium 6 to decrease, and the solar heat is transferred to the heat medium 6. It can be promoted efficiently.

本実施の形態においては、集熱部4は、放物面反射鏡1の焦点2から均等の距離に複数個の集熱管5を配置したので、焦点2上に1本の集熱管5を設けることよりも組み立て時に焦点2に対して配置がずれても集光された太陽光を受けることができるので、組み立てを容易にすることができる。   In the present embodiment, the heat collecting section 4 has a plurality of heat collecting tubes 5 arranged at an equal distance from the focal point 2 of the parabolic reflecting mirror 1, so that one heat collecting tube 5 is provided on the focal point 2. Even if the arrangement is shifted with respect to the focal point 2 at the time of assembly, the concentrated sunlight can be received, so that the assembly can be facilitated.

また、本実施の形態においては、集熱管5は、表面に赤外線を吸収する選択吸収膜を形成したことにより、集熱管5からの赤外線放射を防止して集熱管5の温度を高温に維持して、熱媒体6にその熱を効率良く伝えることができる。   In the present embodiment, the heat collecting tube 5 is formed with a selective absorption film that absorbs infrared rays on the surface thereof, thereby preventing infrared radiation from the heat collecting tube 5 and maintaining the temperature of the heat collecting tube 5 at a high temperature. Thus, the heat can be efficiently transmitted to the heat medium 6.

また、本実施の形態においては、制御部21は、太陽の年間の動きをベースに季節や1日の太陽高度に合わせて、駆動部11を作動し、作動部12を動かして放物面反射鏡1を回転させて、その日のその時間の太陽の日射が最大になる高度に合わせるように支持しているので、それにより放物面反射鏡1に反射した太陽光が焦点2上の集熱部4に集中し、集熱部4の温度を高温に上昇させることができ、熱媒体6に高温の熱を年間の長い期間、1日の多くの時間帯を使って伝えることができる。   Moreover, in this Embodiment, the control part 21 operates the drive part 11 according to a season and the solar altitude of the day based on the annual movement of the sun, and moves the operation part 12 and parabolic reflection. Since the mirror 1 is rotated and supported so as to be adjusted to the altitude at which the solar radiation of the time of the day is maximized, the sunlight reflected by the parabolic reflector 1 thereby collects heat on the focal point 2. The temperature of the heat collecting part 4 can be raised to a high temperature by concentrating on the part 4, and the high temperature heat can be transmitted to the heat medium 6 using a lot of time of the day for a long period of time.

また、本実施の形態においては、放物面反射鏡1は、方物線で構成したので、太陽光を放物面反射鏡1の焦点2に集中でき、エネルギー密度の低い太陽光から必要な熱量と温度を得ることができる。   Moreover, in this Embodiment, since the parabolic reflector 1 was comprised by the parallel wire, sunlight can be concentrated on the focus 2 of the parabolic reflector 1, and it is required from sunlight with low energy density. The amount of heat and temperature can be obtained.

また、本実施の形態においては、外装22は、放物面反射鏡1が開口部10側に透過体23を装着したことにより、外装22内に雨水やホコリが堆積しないので、長期間にわたって集熱効率を良好に維持することができる。   In the present embodiment, since the parabolic reflecting mirror 1 has the transmitting body 23 attached to the opening 10 side, rainwater and dust do not accumulate in the exterior 22, so that the exterior 22 is collected over a long period of time. Thermal efficiency can be maintained well.

また、透過体23を放物面反射鏡1の上に載置したので、放物面反射鏡1内に熱をこもらせ、集熱管5からの対流による放熱を防止して、集熱管5の温度を高温に維持して、熱媒体6にその熱を効率良く伝えることができる。   Further, since the transmissive body 23 is placed on the parabolic reflecting mirror 1, heat is trapped in the parabolic reflecting mirror 1, and heat radiation due to convection from the heat collecting tube 5 is prevented, so that the heat collecting tube 5 The temperature can be maintained at a high temperature and the heat can be efficiently transferred to the heat medium 6.

また、本実施の形態の透過体23は、選択透過性能を有する耐熱性、耐候性の優れた樹脂材料(例えば、ポリカーボネート等)で構成することにより、集熱器25の軽量化と低
コスト化を行うことができる。
In addition, the transmissive body 23 of the present embodiment is made of a resin material (for example, polycarbonate) having a selective permeation performance and excellent heat resistance and weather resistance, thereby reducing the weight and cost of the heat collector 25. It can be performed.

また、本実施の形態の放物面反射鏡1は、複合放物面集光器(CPC:Compound Parabolic Concentrator)の反射鏡を用いることにより、太陽光の所定の傾斜角度(例えば、太陽光の入射可能な角度が天頂より30°程度なら約3倍の集光比、入射可能な角度が20°程度に狭くすると、集光比は約7倍に拡大する。集光比が、大きくなれば太陽光がより集束するので、開口部10で照射する熱量は増加し、温度を上昇するようになる。   In addition, the parabolic reflector 1 of the present embodiment uses a reflector of a compound parabolic concentrator (CPC) so that a predetermined inclination angle of sunlight (for example, sunlight) If the incident angle is about 30 ° from the zenith, the light condensing ratio is about 3 times, and if the incident angle is narrowed to about 20 °, the light condensing ratio is expanded to about 7 times. As the sunlight is more focused, the amount of heat irradiated at the opening 10 increases and the temperature rises.

しかし、集光比を拡大すると太陽光の入射可能な角度は、天頂を基準に狭くなるので、集光部での集光時間、設置場所等の制約が多くなり、考慮する必要がある。これに対して、集熱部4に集中することができるので、太陽の高度に対して、放物面反射鏡1を回転させる範囲を小さくするか、または回転をする必要が無いように構成し、構成部品や制御の簡略化によりコストダウンを図ることができる。   However, when the condensing ratio is increased, the angle at which sunlight can be incident becomes narrower with respect to the zenith. Therefore, there are many restrictions on the condensing time at the condensing unit, the installation location, and the like, which needs to be considered. On the other hand, since it can concentrate on the heat collection part 4, it is comprised so that it is not necessary to make the range which rotates the parabolic reflector 1 small or to rotate with respect to the altitude of the sun. Cost reduction can be achieved by simplifying the components and control.

また、本実施の形態の外装22は、内部に熱伝導率の小さいガス(例えば、クリプトンガス)を注入し、密封することにより、外装20内で反射鏡1の可動部分のための空間の
空気の対流による放熱を防止するので、外装22からの放熱を低減させ集熱効率を向上することができる。また、不活性ガスを充填することで、高温の集熱部4を覆い安全性を高め、外装断熱材24の劣化を防止して、長期間の使用に耐えるようにしている。
In addition, the exterior 22 of the present embodiment is filled with a gas having a low thermal conductivity (for example, krypton gas) and sealed, so that the air in the space for the movable part of the reflector 1 in the exterior 20 is sealed. Therefore, it is possible to reduce the heat radiation from the exterior 22 and improve the heat collection efficiency. Moreover, by filling the inert gas, the high-temperature heat collecting section 4 is covered to improve safety, prevent the exterior heat insulating material 24 from being deteriorated, and endure long-term use.

また、本実施の形態の集熱器25は、太陽の高度方向を固定(放物面反射鏡1の並びを南北方向に合わせ、例えば、設置台の傾斜角度は、春分や秋分時の南中に太陽光が垂直に反射鏡1に当たるような角度に設置する)して、太陽の方位の動きに対して放物面反射鏡1を回転することにより、1日の太陽の動きからより多くの太陽光を集熱部4に集中することも可能である。   Further, the heat collector 25 of the present embodiment fixes the solar altitude direction (the alignment of the parabolic reflectors 1 is aligned with the north-south direction, for example, the inclination angle of the installation base is in the middle of spring or autumn. The sun light vertically hits the reflector 1) and rotates the parabolic reflector 1 with respect to the sun's azimuth movement. It is also possible to concentrate sunlight on the heat collecting unit 4.

また、本実施の形態の蓄熱槽28に熱を蓄えるので、その熱は、夜間に利用したり、あるいは曇りの時に十分な熱が得られない時に補充する形で太陽光の不安定な熱の供給を安定化し、使い勝手を向上することができる。また、常時、蓄熱槽28に熱を蓄えることができるので、エネルギー密度の少ない太陽熱を効率良く回収することができる。   In addition, since heat is stored in the heat storage tank 28 of the present embodiment, the heat is used at night, or is supplemented when sufficient heat cannot be obtained when it is cloudy. Supply can be stabilized and usability can be improved. Moreover, since heat can always be stored in the heat storage tank 28, solar heat with low energy density can be efficiently recovered.

(実施の形態2)
図4において、集熱部4は、複数個の集熱管5の両端部に複数個の階層に仕切られ、夫々の集熱管5が連通することで、複数個の集熱管5が一つの経路に構成するように入口側連通部29と出口側連通部30を設けている。
(Embodiment 2)
In FIG. 4, the heat collecting section 4 is partitioned into a plurality of layers at both ends of the plurality of heat collecting pipes 5, and the heat collecting pipes 5 communicate with each other, so that the plurality of heat collecting pipes 5 are combined into one path. The inlet side communication part 29 and the outlet side communication part 30 are provided so that it may comprise.

入口側連通部29と出口側連通部30は、2重の部屋で仕切られ、熱媒体6が出入りする第一の部屋31と複数個の集熱管5が連通する第二の部屋32が設けられている。   The inlet side communication portion 29 and the outlet side communication portion 30 are partitioned by a double room, and a first chamber 31 through which the heat medium 6 enters and exits and a second chamber 32 through which the plurality of heat collecting tubes 5 communicate with each other are provided. ing.

入口側連通部29と出口側連通部30は円筒状に構成され、熱伝導の良い材料(例えば、銅、黄銅、アルミ等)で構成され、その表面には、集熱管5と同じ選択吸収膜を形成している。   The inlet side communication portion 29 and the outlet side communication portion 30 are formed in a cylindrical shape and are made of a material having good heat conductivity (for example, copper, brass, aluminum, etc.), and the same selective absorption film as the heat collecting tube 5 is formed on the surface thereof. Is forming.

複数個の集熱管5の連通構成は、入口側7の集熱管5の場合は、集熱管5との入口管33(入口管33は集熱器25の外部に延長され回路27と連結している。また、入口管33の放物面反射鏡1内に露出した部分は、集熱管5と同じ選択吸収膜を形成している)は、入口側連通部29の第一の部屋31で連通している。   In the case of the heat collecting pipe 5 on the inlet side 7, the communication structure of the plurality of heat collecting pipes 5 is the inlet pipe 33 with the heat collecting pipe 5 (the inlet pipe 33 extends outside the heat collector 25 and is connected to the circuit 27. In addition, the portion of the inlet pipe 33 exposed in the parabolic reflector 1 forms the same selective absorption film as the heat collecting pipe 5) communicates with the first chamber 31 of the inlet side communication portion 29. is doing.

この入口側7の集熱管5は、入口側連通部29の第二の部屋32と連通することなく貫
通して、出口側連通部30の第二の部屋32に連通し、この第二の部屋32から中間9の集熱管5が入口側連通部29に向けて設けられている。
The heat collecting tube 5 on the inlet side 7 penetrates without communicating with the second chamber 32 of the inlet side communication portion 29 and communicates with the second chamber 32 of the outlet side communication portion 30, and this second chamber. The middle 9 and the middle 9 heat collecting tubes 5 are provided toward the inlet side communication portion 29.

中間9の集熱管5は入口側連通部29の第二の部屋32で出口側8の集熱管5と連通し、この出口側8の集熱管5が出口側連通部30に向けて設けられている。   The middle 9 heat collecting tube 5 communicates with the heat collecting tube 5 on the outlet side 8 in the second chamber 32 of the inlet side communication portion 29, and the heat collecting tube 5 on the outlet side 8 is provided toward the outlet side communication portion 30. Yes.

出口側8の集熱管5は、出口側連通部30の第二の部屋32に連通することなく貫通し、第一の部屋31に連通している。この第一の部屋31で出口側8の集熱管5と出口管34(出口管34は、集熱器25の外部に延長され回路27と連結している。また、出口管34の放物面反射鏡1内に露出した部分は、集熱管5と同じ選択吸収膜を形成している)が連通するように構成している。   The heat collecting tube 5 on the outlet side 8 penetrates without communicating with the second chamber 32 of the outlet side communication portion 30 and communicates with the first chamber 31. In the first chamber 31, the heat collecting pipe 5 and the outlet pipe 34 on the outlet side 8 (the outlet pipe 34 is extended to the outside of the heat collector 25 and connected to the circuit 27. The portion exposed in the reflecting mirror 1 is configured such that the same selective absorption film as the heat collecting tube 5 is formed).

以上のように構成された集熱器について、以下その動作、作用を説明する。   About the heat collector comprised as mentioned above, the operation | movement and an effect | action are demonstrated below.

循環ポンプ26により、回路27を介して集熱器25に送られた熱媒体6は、入口管33から入口側連通部29の第一の部屋31から入口側7の集熱管5を通り、出口側連通部30の第二の部屋32から中間9の集熱管5を通り、入口側連通部29の第二の部屋32から出口側8の集熱管5に送られ、出口管34から回路27へ排出され、この間に集熱器25で加熱されるようにしている。   The heat medium 6 sent to the heat collector 25 via the circuit 27 by the circulation pump 26 passes through the heat collecting pipe 5 on the inlet side 7 from the first chamber 31 of the inlet side communication portion 29 through the inlet pipe 33, and then on the outlet. From the second chamber 32 of the side communication part 30 through the middle nine heat collecting pipes 5, the second room 32 of the inlet side communication part 29 is sent to the heat collecting pipe 5 on the outlet side 8, and from the outlet pipe 34 to the circuit 27. It is discharged and heated by the heat collector 25 during this time.

このとき、入口側7の集熱管5、中間9の集熱管5、出口側8の集熱管5に供給される熱媒体6が放物面反射鏡1の焦点2に集中する太陽光を同じように受けるとともに、焦点の直上に周回するときは直達太陽光も同じように受けるようにして同一条件の太陽光を受け、熱媒体6の温度を高温に均一に加熱するようにしている。   At this time, the heat medium 6 supplied to the heat collecting tube 5 on the inlet side 7, the heat collecting tube 5 on the middle 9, and the heat collecting tube 5 on the outlet side 8 is the same as the sunlight concentrated on the focal point 2 of the parabolic reflector 1. In addition, when traveling around just above the focal point, direct sunlight is also received in the same manner so that sunlight under the same conditions is received and the temperature of the heat medium 6 is uniformly heated to a high temperature.

以上のように、本実施の形態においては、入口側連通部29と出口側連通部30により、複数個の集熱管5を焦点2から等距離に配置し、集熱管5を屈曲するよりもその距離も小さく設定でき、集熱部4をコンパクトに構成し、外装22に容易に収納することができる。   As described above, in the present embodiment, the plurality of heat collecting tubes 5 are arranged at an equal distance from the focal point 2 by the inlet side communication portion 29 and the outlet side communication portion 30, rather than bending the heat collection tube 5. The distance can also be set small, the heat collecting part 4 can be configured compactly, and can be easily accommodated in the exterior 22.

また、本実施例の入口側連通部29と出口側連通部30により、熱媒体6の流れを変化させて混合を促進し、温度分布を均一化することができる。   In addition, the inlet-side communication portion 29 and the outlet-side communication portion 30 of the present embodiment can change the flow of the heat medium 6 to promote mixing and make the temperature distribution uniform.

(実施の形態3)
図5において、集熱部4は周囲に筒状の透過管35を配置し、複数個の集熱管5の周囲を密閉構造にしている。透過管35は日射の透過率が大きい(例えば、透過ガラスや石英ガラスでは、透過率90%程度である)ガラス管で構成している。透過管35の内部は真空に保たれ、対流による集熱管5からの放熱を防止するようにしている。
(Embodiment 3)
In FIG. 5, the heat collecting section 4 has a cylindrical permeation tube 35 disposed around it, and the periphery of the plurality of heat collecting tubes 5 has a sealed structure. The transmission tube 35 is formed of a glass tube having a high solar radiation transmittance (for example, the transmittance is about 90% in the case of transmission glass or quartz glass). The inside of the permeation tube 35 is kept in a vacuum to prevent heat radiation from the heat collecting tube 5 due to convection.

透過管35の内部を真空に保つ方法としては、入口側連通部29と出口側連通部30を利用しOリング36により密閉構造を保つようにしている。   As a method of keeping the inside of the permeation tube 35 in a vacuum, the sealed structure is maintained by the O-ring 36 using the inlet side communication portion 29 and the outlet side communication portion 30.

以上のように構成された集熱器について、以下その動作、作用を説明する。   About the heat collector comprised as mentioned above, the operation | movement and an effect | action are demonstrated below.

循環ポンプ26により回路27を介して集熱器25に送られた熱媒体6は、集熱管5の内部を流通する間に、透過管35により集熱管5の周囲は真空に保たれ、集熱管5からの対流による放熱損失を防止されるので、高温度を保ちながら集熱器25から回路27に排出される。   While the heat medium 6 sent to the heat collector 25 via the circuit 27 by the circulation pump 26 flows through the inside of the heat collecting pipe 5, the perimeter of the heat collecting pipe 5 is kept in vacuum by the permeation pipe 35, and the heat collecting pipe Since heat dissipation loss due to convection from 5 is prevented, it is discharged from the heat collector 25 to the circuit 27 while maintaining a high temperature.

以上のように、本実施の形態においては、集熱管5の周囲を真空にして空気層を無くす
ので、集熱管5から透過管35への対流による放熱を防止し、集熱部4の集熱効率を向上することができる。
As described above, in the present embodiment, since the air collecting layer 5 is evacuated and the air layer is eliminated, heat dissipation due to convection from the heat collecting tube 5 to the transmission tube 35 is prevented, and the heat collecting efficiency of the heat collecting unit 4 is reduced. Can be improved.

なお、本実施例の透過管35の内部に真空に代わり、空気よりも熱伝導率の小さい、不活性のクリプトンガスを注入しても集熱管5からの放熱を防止することができる。この場合、透過管35の強度は真空ほど必要ないので、透明度の高い樹脂製の管(例えば、ポリカーボネイト等)を使用することも可能である。   Even if an inert krypton gas having a thermal conductivity smaller than that of air is injected into the inside of the permeation tube 35 of this embodiment, heat radiation from the heat collecting tube 5 can be prevented. In this case, since the strength of the permeation tube 35 is not as high as that of a vacuum, it is possible to use a resin tube (for example, polycarbonate) having high transparency.

(実施の形態4)
図6(a)、(b)において、集熱部4は複数個の集熱管5を焦点2の周囲に互いに夫々の集熱管5の外壁37が接触させるときに、外壁37の接触面積を増加させるために集熱管5に平面部38を構成して配置している。
(Embodiment 4)
6 (a) and 6 (b), the heat collecting section 4 increases the contact area of the outer wall 37 when the outer wall 37 of each of the heat collecting tubes 5 contacts the plurality of heat collecting tubes 5 around the focal point 2. In order to achieve this, a flat surface portion 38 is configured and arranged on the heat collecting tube 5.

入口側7の集熱管5と中間9の集熱管5と出口側8の集熱管5とが放物面反射鏡1の焦点2に近いところで夫々の平面部38を接触するようにして、焦点2に太陽光がより集光した位置で太陽光を受けるようにしている。図6の(a)は奇数個、(b)は偶数個の配置を示している。   The heat collecting tube 5 on the inlet side 7, the heat collecting tube 5 on the middle 9, and the heat collecting tube 5 on the outlet side 8 are brought into contact with the respective flat portions 38 near the focal point 2 of the parabolic reflector 1, so that the focal point 2. The sunlight is received at a position where the sunlight is more concentrated. FIG. 6A shows an odd number arrangement, and FIG. 6B shows an even number arrangement.

以上のように構成された集熱器について、以下その動作、作用を説明する。   About the heat collector comprised as mentioned above, the operation | movement and an effect | action are demonstrated below.

循環ポンプ26により回路27を介して集熱器25に送られた熱媒体6は、集熱管5の内部を流通する間に入口側7の集熱管5と中間9の集熱管5と出口側8の集熱管5とで太陽光の受け方が異なり温度にばらつきが発生しても接触させた外壁37に設けた平面部38を介してより多くの熱が伝わり、均一な温度になるようにしている。   The heat medium 6 sent to the heat collector 25 via the circuit 27 by the circulation pump 26 flows through the inside of the heat collection pipe 5, while the heat collection pipe 5 on the inlet side 7, the heat collection pipe 5 on the middle 9, and the outlet side 8. Even if the heat receiving tube 5 receives sunlight and the temperature varies, more heat is transmitted through the flat portion 38 provided on the outer wall 37 that is in contact with the heat collecting tube 5 so that the temperature is uniform. .

熱媒体6は、高温を均一に保ちながら集熱器25から回路27に排出される。   The heat medium 6 is discharged from the heat collector 25 to the circuit 27 while keeping the high temperature uniform.

以上のように、本実施の形態においては、集熱管5の平面部38を互いに接触させるので複数個の集熱管5の放物面反射鏡1に反射する集光した太陽光を受けない部分の温度低下を防止して、複数個の集熱管5の温度を均一にして集熱部4の集熱効率を向上することができる。   As described above, in the present embodiment, since the flat portions 38 of the heat collecting tubes 5 are brought into contact with each other, the portions of the plurality of heat collecting tubes 5 that do not receive the concentrated sunlight reflected by the parabolic reflector 1. The temperature reduction can be prevented, the temperature of the plurality of heat collecting tubes 5 can be made uniform, and the heat collecting efficiency of the heat collecting unit 4 can be improved.

また、本実施例の集熱管5は集熱管5の平面部38を接触し、より焦点2に近いところに設置するので、太陽光が集光し、熱媒体6を高温に加熱することができる。   Moreover, since the heat collecting tube 5 of the present embodiment is installed at a location closer to the focal point 2 in contact with the flat portion 38 of the heat collecting tube 5, sunlight is condensed and the heat medium 6 can be heated to a high temperature. .

以上のように、本発明にかかる集熱器は、放物面反射鏡の焦点の周囲に複数個の集熱管を焦点の周囲に螺旋状に周回する構成に設けて、複数個の集熱管は太陽光が必ず集光する部分が構成でき、集熱部からの放熱を低減し集熱効率を向上するので、住宅の給湯や発電のための加熱装置に適用することができる。   As described above, the heat collector according to the present invention is provided with a configuration in which a plurality of heat collecting tubes are spirally wound around the focal point of the parabolic reflector, and the plurality of heat collecting tubes are A portion where sunlight is always condensed can be configured, and the heat collection efficiency can be improved by reducing the heat radiation from the heat collection section, so that it can be applied to a hot water supply or a heating device for power generation in a house.

本発明の実施の形態1における集熱器の正面の断面図Sectional drawing of the front of the heat collector in Embodiment 1 of the present invention 本発明の実施の形態1における集熱器の駆動部近傍の側面の断面図Sectional drawing of the side surface of the drive part vicinity of the heat collector in Embodiment 1 of this invention 本発明の実施の形態1における集熱管の配置を示す側面の断面図と平面図Sectional drawing and top view of the side which show arrangement | positioning of the heat collecting tube in Embodiment 1 of this invention 本発明の実施の形態2における他の集熱器の側面の断面図Sectional drawing of the side surface of the other heat collector in Embodiment 2 of this invention 本発明の実施の形態3における他の集熱器の正面の断面図Sectional drawing of the front of the other heat collector in Embodiment 3 of this invention 本発明の実施の形態4における他の集熱器の側面の断面図Sectional drawing of the side surface of the other heat collector in Embodiment 4 of this invention

符号の説明Explanation of symbols

1 放物面反射鏡
2 焦点
4 集熱部
5 集熱管
6 熱媒体
11 駆動部
12 作動部
22 外装
23 透過体
25 集熱器
DESCRIPTION OF SYMBOLS 1 Parabolic reflecting mirror 2 Focus 4 Heat collecting part 5 Heat collecting tube 6 Heat medium 11 Drive part 12 Actuating part 22 Exterior 23 Transmitter 25 Heat collector 25

Claims (7)

太陽光を集光する放物面反射鏡と、この放物面反射鏡の焦点の周囲に設けた熱媒体が流通する複数個の集熱管と、この複数個の集熱管を前記焦点の周囲に螺旋状に周回させた集熱部と、これらの放物面反射鏡と集熱部を収納した外装とを具備した集熱器。 A parabolic reflector for collecting sunlight, a plurality of heat collecting tubes through which a heat medium provided around the focal point of the parabolic reflecting mirror, and a plurality of the heat collecting tubes around the focal point A heat collector comprising a heat collecting section that is spirally wound, and an exterior housing these parabolic reflecting mirrors and the heat collecting section. 集熱部は、複数個の集熱管を放物面反射鏡の焦点から均等の距離に配置した請求項1記載の集熱器。 The heat collector according to claim 1, wherein the heat collecting section has a plurality of heat collecting tubes arranged at an equal distance from the focal point of the parabolic reflector. 集熱部は、複数個の集熱管を焦点の周囲に互いに夫々の集熱管の外壁が接触するよう配置した請求項1または2記載の集熱器。 The heat collector according to claim 1 or 2, wherein the heat collecting section has a plurality of heat collecting tubes arranged so that the outer walls of the respective heat collecting tubes are in contact with each other around the focal point. 集熱部は、複数個の集熱管の端部に複数個の階層に仕切られ、夫々の集熱管が連通することで、複数個の集熱管が一つの経路に構成するように入口連通部と出口連通部を設けた請求項1〜3いずれか1項記載の集熱器。 The heat collecting part is partitioned into a plurality of layers at the ends of the plurality of heat collecting pipes, and the respective heat collecting pipes communicate with each other so that the plurality of heat collecting pipes are configured in one path. The heat collector according to any one of claims 1 to 3, wherein an outlet communication portion is provided. 集熱部は、周囲に筒状の透過管を配置し、集熱管の周囲を密閉構造にした
請求項1〜4いずれか1項記載の集熱器。
The heat collecting unit according to any one of claims 1 to 4, wherein the heat collecting unit includes a cylindrical permeation tube disposed around the heat collecting tube and has a sealed structure around the heat collecting tube.
集熱部は、複数個の集熱管を焦点の周囲に互いに夫々の集熱管の外壁を接触させるとき、外壁の接触面積を増加させるために集熱管に平面部を構成したよう配置した請求項1〜5いずれか1項記載の集熱器。 The heat collecting part is arranged such that a plurality of heat collecting tubes are arranged in a flat portion on the heat collecting tube in order to increase the contact area of the outer wall when the outer walls of the respective heat collecting tubes are brought into contact with each other around the focal point. The heat collector of any one of -5. 集熱部と、放物面反射鏡の焦点を回転の中心として、その周囲を放物面反射鏡が回転できるように支持した回転支持部と、放物面反射鏡を回転する駆動部と、この駆動部をコントロールする制御部を設け、これらの集熱部と放物面反射鏡と駆動部を収納した外装とで構成した請求項1〜6いずれか1項記載の集熱器。 A heat collection unit, a rotation support unit that supports the parabolic reflector so that the parabolic reflector can rotate around the focal point of the parabolic reflector, and a drive unit that rotates the parabolic reflector; The heat collector according to any one of claims 1 to 6, comprising a control unit for controlling the drive unit, and the heat collection unit, a parabolic reflector, and an exterior housing the drive unit.
JP2007020826A 2007-01-31 2007-01-31 Collector Pending JP2008185300A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007020826A JP2008185300A (en) 2007-01-31 2007-01-31 Collector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007020826A JP2008185300A (en) 2007-01-31 2007-01-31 Collector

Publications (1)

Publication Number Publication Date
JP2008185300A true JP2008185300A (en) 2008-08-14

Family

ID=39728466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007020826A Pending JP2008185300A (en) 2007-01-31 2007-01-31 Collector

Country Status (1)

Country Link
JP (1) JP2008185300A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010073022A3 (en) * 2008-12-24 2011-10-20 Brian Howard Solar furnace
CN109442760A (en) * 2018-12-14 2019-03-08 莱西市产业技术研究院 A kind of energy-saving solar heat collector and its application method
CN113251678A (en) * 2021-05-18 2021-08-13 浙江光学家科技有限公司 Solar panel rotating device
JP7300600B1 (en) 2022-12-12 2023-06-30 郁夫 中村 power generation system

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010073022A3 (en) * 2008-12-24 2011-10-20 Brian Howard Solar furnace
US9464821B2 (en) 2008-12-24 2016-10-11 Pdb Energy Systems Limited Solar furnace
CN109442760A (en) * 2018-12-14 2019-03-08 莱西市产业技术研究院 A kind of energy-saving solar heat collector and its application method
CN113251678A (en) * 2021-05-18 2021-08-13 浙江光学家科技有限公司 Solar panel rotating device
CN113251678B (en) * 2021-05-18 2023-01-10 浙江光学家科技有限公司 Solar panel rotating device
JP7300600B1 (en) 2022-12-12 2023-06-30 郁夫 中村 power generation system
WO2024127690A1 (en) * 2022-12-12 2024-06-20 郁夫 中村 Power generation system
JP2024084091A (en) * 2022-12-12 2024-06-24 郁夫 中村 Power Generation System

Similar Documents

Publication Publication Date Title
JP2008025871A (en) Collector
US6057504A (en) Hybrid solar collector for generating electricity and heat by separating solar rays into long wavelength and short wavelength
JP5738183B2 (en) Solar power device
US4505260A (en) Radiant energy device
US8353285B2 (en) Solar collector and method
US7856974B2 (en) Solar chimney with internal solar collector
US20120112473A1 (en) Solar desalination system with reciprocating solar engine pumps
WO2009113073A2 (en) Concentrated solar heating
JP2008121999A (en) Collector
US10072875B2 (en) Heat concentrator device for solar power system
JP2008138899A (en) Solar collector
Norton Anatomy of a solar collector: developments in materials, components and efficiency improvements in solar thermal collector systems
JP2008185300A (en) Collector
US7854224B2 (en) Solar chimney with internal and external solar collectors
JP2005106432A (en) Solar light collection and heat collection device
JP2008185299A (en) Collector
JP2008133991A (en) Solar collector
JP2008057823A (en) Solar heat collector and solar heat utilization apparatus using the same
KR102155307B1 (en) Generating and accumulating apparatus for solar energy
JP2008138898A (en) Heating device
SE534515C2 (en) Thermal solar collector with built-in chemical heat pump
JP2008209011A (en) Collector
JP2008180399A (en) Sky radiator
JP2008190801A (en) Collector
JP2008232524A (en) Collector