[go: up one dir, main page]

JP2008125158A - Charging system, battery pack, and charging method thereof - Google Patents

Charging system, battery pack, and charging method thereof Download PDF

Info

Publication number
JP2008125158A
JP2008125158A JP2006303022A JP2006303022A JP2008125158A JP 2008125158 A JP2008125158 A JP 2008125158A JP 2006303022 A JP2006303022 A JP 2006303022A JP 2006303022 A JP2006303022 A JP 2006303022A JP 2008125158 A JP2008125158 A JP 2008125158A
Authority
JP
Japan
Prior art keywords
charging
voltage
current
imbalance
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006303022A
Other languages
Japanese (ja)
Other versions
JP5008950B2 (en
Inventor
Toshiyuki Nakatsuji
俊之 仲辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2006303022A priority Critical patent/JP5008950B2/en
Publication of JP2008125158A publication Critical patent/JP2008125158A/en
Application granted granted Critical
Publication of JP5008950B2 publication Critical patent/JP5008950B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

【課題】劣化が進んでいる二次電池の劣化を促進することなく、各二次電池の端子電圧の差を縮小し、組電池の電池容量を有効活用することができる充電システム、電池パック、及びその充電方法を提供する。
【解決手段】二次電池141,142,143の端子電圧α1,α2,α3が、所定の判定条件を満たした場合に充電状態に不均衡が生じていると判定する不均衡検出部214と、不均衡検出部214によって不均衡が生じていると判定された場合、二次電池141,142,143のうち、端子電圧が最大の二次電池への充電電流の供給を停止させると共に、端子電圧が最大の二次電池を除く他の二次電池のうち少なくとも一つへの、充電電流の供給を行う補充電制御部215とを備えた。
【選択図】図1
A charging system, a battery pack, and a battery pack capable of reducing the terminal voltage difference of each secondary battery and effectively utilizing the battery capacity of the assembled battery without promoting the deterioration of the secondary battery that has been deteriorated. And a charging method thereof.
An imbalance detection unit 214 that determines that an imbalance has occurred in the state of charge when terminal voltages α1, α2, and α3 of secondary batteries 141, 142, and 143 satisfy a predetermined determination condition; When the imbalance detection unit 214 determines that an imbalance has occurred, among the secondary batteries 141, 142, and 143, the supply of the charging current to the secondary battery having the maximum terminal voltage is stopped, and the terminal voltage And a supplementary charging control unit 215 that supplies a charging current to at least one of the other secondary batteries excluding the largest secondary battery.
[Selection] Figure 1

Description

本発明は、充電システム、電池パック、及びその充電方法に関し、特に複数のセルが直列に接続されて成る二次電池の劣化によるセルバランス崩れに対する充電手法に関する。   The present invention relates to a charging system, a battery pack, and a charging method thereof, and more particularly, to a charging method for cell balance collapse due to deterioration of a secondary battery in which a plurality of cells are connected in series.

図8は、二次電池の充電時における一般的な充電電圧および電流の管理方法を説明するためのグラフである。図8は3個の二次電池、例えばリチウムイオン電池が直列接続された組電池を充電する場合のグラフであり、参照符号α11,α12,α13は、各二次電池の電圧の変化を示し、参照符号β11は二次電池へ供給される充電電流の変化を示す。また、γ11は、組電池の充電深度(SOC)を示している。   FIG. 8 is a graph for explaining a general charging voltage and current management method during charging of the secondary battery. FIG. 8 is a graph in the case of charging an assembled battery in which three secondary batteries, for example, lithium ion batteries are connected in series, and reference symbols α11, α12, and α13 indicate changes in voltage of each secondary battery, Reference symbol β11 indicates a change in charging current supplied to the secondary battery. Moreover, (gamma) 11 has shown the charging depth (SOC) of the assembled battery.

先ず前記電圧についてみれば、充電開始からトリクル充電領域となり、微小な定電流I1、たとえば50mAの充電電流が供給され、複数の各二次電池のセル電圧が何れもトリクル充電の終了電圧Vm、たとえば2.3Vに達するまでこのトリクル充電が継続される。   First, with regard to the voltage, a trickle charge region is reached from the start of charging, a small constant current I1, for example, a charging current of 50 mA, is supplied, and the cell voltages of a plurality of secondary batteries are all the end voltage Vm of trickle charging, for example, This trickle charge continues until 2.3V is reached.

前記セル電圧が終了電圧Vmに達すると、定電流(CC)充電領域に切換わり、電池パックの充電端子の端子電圧が、セル当り4.2Vの予め定める終止電圧Vfに組電池の直列セル数を乗じた電圧(したがって、たとえば3セル直列の場合は、12.6V)となるまで、前記充電端子に前記終止電圧Vf×直列セル数の電圧が印加されるとともに、予め定める定電流I2、たとえば公称容量値NCを定電流放電して、1時間で放電できるレベルを1Cとして、その70%に、並列セル数Pを乗算した充電電流が供給され、定電流(CC)充電が行われる。   When the cell voltage reaches the end voltage Vm, it switches to a constant current (CC) charging range, and the terminal voltage of the battery pack charging terminal is set to a predetermined end voltage Vf of 4.2 V per cell, and the number of series cells of the assembled battery Is applied to the charging terminal until the voltage is multiplied by (for example, 12.6 V in the case of three cells in series), and a predetermined constant current I2, for example, The nominal capacity value NC is discharged at a constant current, and a level that can be discharged in one hour is defined as 1 C. A charging current obtained by multiplying 70% by the number P of parallel cells is supplied, and constant current (CC) charging is performed.

これによって、前記充電端子の端子電圧が終止電圧Vf×直列セル数となると、定電圧(CV)充電領域に切換わり、その終止電圧Vf×直列セル数を超えないように充電電流値が減少されてゆき、前記充電電流値が温度によって設定される電流値I3まで低下すると満充電と判定して充電電流の供給が停止される。上述のような充電制御方法は、たとえば特許文献1から読取ることができる。   As a result, when the terminal voltage of the charging terminal becomes the termination voltage Vf × the number of series cells, the charging voltage value is reduced so as to switch to the constant voltage (CV) charging region and not exceed the termination voltage Vf × the number of series cells. Then, when the charging current value decreases to the current value I3 set by the temperature, it is determined that the battery is fully charged and the supply of the charging current is stopped. The charge control method as described above can be read from Patent Document 1, for example.

ところで、二次電池は、劣化すると内部抵抗が増大するため、複数の二次電池を直列接続してその直列回路の両端に充電電圧を印加すると、内部抵抗の大きい二次電池、すなわち劣化している二次電池の端子電圧が劣化していない他の電池より大きくなるため、充電電圧が各二次電池に均等に分圧されなくなる。そのため、上述のように、電池パックの充電端子の端子電圧、すなわち複数の二次電池が直列接続された組電池の端子電圧が終止電圧Vf×直列セル数(3セル直列の場合は、12.6V)になるように充電を行う場合、図8に示すように、劣化している二次電池の端子電圧α11は、4.2Vを超え、劣化していない二次電池の端子電圧α12,α13は、4.2Vに満たない電圧になってしまう。   By the way, since the internal resistance increases when the secondary battery deteriorates, when a plurality of secondary batteries are connected in series and a charging voltage is applied to both ends of the series circuit, a secondary battery having a high internal resistance, that is, deteriorates. Since the terminal voltage of the secondary battery is larger than that of other batteries that are not deteriorated, the charging voltage is not divided equally among the secondary batteries. Therefore, as described above, the terminal voltage of the charging terminal of the battery pack, that is, the terminal voltage of the assembled battery in which a plurality of secondary batteries are connected in series is the end voltage Vf × the number of series cells (12. 6V), the terminal voltage α11 of the deteriorated secondary battery exceeds 4.2V as shown in FIG. 8, and the terminal voltages α12, α13 of the non-degraded secondary battery are as shown in FIG. Becomes a voltage less than 4.2V.

このような二次電池のアンバランス状態が生じると、劣化している二次電池には、4.2Vを超える電圧が印加されるためにさらに劣化が促進されるという問題があった。   When such an unbalanced state of the secondary battery occurs, the deteriorated secondary battery has a problem that the deterioration is further promoted because a voltage exceeding 4.2 V is applied.

そこで、二次電池のアンバランス状態を解消するために、図8に示すように端子電圧の高い二次電池を放電させて、端子電圧α11を低下させることにより、他の二次電池の端子電圧α12,α13との差を縮小し、二次電池の充電状態をバランスさせる技術が知られている(例えば、特許文献2参照。)。
特開平6−78471号公報 特開2005−176520号公報
Therefore, in order to eliminate the unbalanced state of the secondary battery, the secondary battery having a high terminal voltage is discharged as shown in FIG. 8 to reduce the terminal voltage α11, thereby reducing the terminal voltage of the other secondary battery. A technique for reducing the difference between α12 and α13 and balancing the state of charge of the secondary battery is known (see, for example, Patent Document 2).
JP-A-6-78471 JP 2005-176520 A

しかしながら、上述のように、端子電圧の高い二次電池を放電させて、他の二次電池の端子電圧との差を縮小する技術では、劣化が進んで電池容量が最も少なくなっている二次電池をさらに放電させることになる。そうすると、最も劣化の進んでいる二次電池の放電回数が増加して充放電サイクル数が増加する結果、最も劣化の進んでいる二次電池の劣化をさらに促進してしまうという不都合があった。   However, as described above, in the technique of discharging the secondary battery having a high terminal voltage and reducing the difference from the terminal voltage of other secondary batteries, the secondary battery having the smallest battery capacity due to deterioration. The battery will be further discharged. As a result, the number of discharges of the secondary battery that is most deteriorated increases and the number of charge / discharge cycles increases, resulting in further inconvenience of further deterioration of the secondary battery that is most deteriorated.

また、アンバランス解消のための放電を行っていなくても、使用による放電によって最も劣化している二次電池が他の二次電池より早く電圧低下するところ、さらに充電の際に劣化している二次電池を放電させることになるので、ますます劣化している二次電池の電圧低下が他の二次電池より早くなり、劣化している二次電池の劣化をさらに促進してしまい、ますます複数の二次電池間でのバランスを崩してしまうという不都合があった。   In addition, even if the discharge for eliminating the imbalance is not performed, the secondary battery that is most deteriorated by the discharge due to use drops more quickly than other secondary batteries, and further deteriorates during charging Since the secondary battery will be discharged, the voltage drop of the secondary battery that is increasingly deteriorated will be faster than other secondary batteries, and the deterioration of the secondary battery will be further promoted. There was an inconvenience that the balance between the plurality of secondary batteries was lost.

さらに、定電圧充電では、組電池全体の電圧が終止電圧Vf×直列セル数(3セル直列の場合は、12.6V)になるように充電が行われるので、劣化した二次電池の端子電圧α11が4.2Vを超えると、劣化していない他の二次電池の端子電圧α12,α13は4.2Vに達しない。そのため、図8に示すように、定電圧充電の終了時には、劣化していない二次電池の端子電圧α12,α13が4.2Vに満たないために、組電池のSOCは100%に達せず、例えば97%程度になっている。さらに、劣化した二次電池を放電させて端子電圧α11を低下させるので、組電池のSOCはさらに低下し、例えば96%程度になってしまう。このように、端子電圧の高い二次電池を放電させて他の二次電池の端子電圧との差を縮小する技術では、組電池の電池容量を有効活用できないという不都合があった。   Further, in the constant voltage charging, charging is performed so that the voltage of the entire assembled battery becomes the end voltage Vf × the number of series cells (12.6 V in the case of three cells in series), so the terminal voltage of the deteriorated secondary battery When α11 exceeds 4.2V, the terminal voltages α12 and α13 of other secondary batteries that have not deteriorated do not reach 4.2V. Therefore, as shown in FIG. 8, at the end of constant voltage charging, the terminal voltage α12, α13 of the secondary battery that has not deteriorated is less than 4.2 V, so the SOC of the assembled battery does not reach 100%, For example, it is about 97%. Furthermore, since the deteriorated secondary battery is discharged to reduce the terminal voltage α11, the SOC of the assembled battery further decreases, for example, about 96%. As described above, the technique of reducing the difference from the terminal voltage of another secondary battery by discharging a secondary battery having a high terminal voltage has a disadvantage that the battery capacity of the assembled battery cannot be effectively used.

本発明は、このような事情に鑑みて為された発明であり、劣化が進んでいる二次電池の劣化を促進することなく、各二次電池の端子電圧の差を縮小し、組電池の電池容量を有効活用することができる充電システム、電池パック、及びその充電方法を提供することを目的とする。   The present invention has been made in view of such circumstances, and reduces the difference in the terminal voltage of each secondary battery without accelerating the deterioration of the secondary battery that has been deteriorated. It is an object of the present invention to provide a charging system, a battery pack, and a charging method that can effectively use battery capacity.

本発明に係る充電システムは、複数の二次電池が直列接続された組電池と、前記組電池に、充電用の電流を供給する充電電流供給部と、前記複数の二次電池の端子電圧を、それぞれ検出する電圧検出部と、前記電圧検出部により検出された前記複数の二次電池の端子電圧が、予め設定された所定の判定条件を満たした場合に前記複数の二次電池における充電状態に不均衡が生じていると判定する不均衡検出部と、前記不均衡検出部によって前記不均衡が生じていると判定された場合、前記複数の二次電池のうち、前記電圧検出部により検出された端子電圧が最大の二次電池への、前記充電電流供給部による電流の供給を停止させると共に、前記電圧検出部により検出された端子電圧が最大の二次電池を除く他の二次電池のうち少なくとも一つへの、前記充電電流供給部による電流の供給を行わせる補充電制御部とを備える。   A charging system according to the present invention includes an assembled battery in which a plurality of secondary batteries are connected in series, a charging current supply unit that supplies a charging current to the assembled battery, and a terminal voltage of the plurality of secondary batteries. A voltage detection unit for detecting each of the secondary batteries, and when the terminal voltages of the plurality of secondary batteries detected by the voltage detection unit satisfy a predetermined determination condition set in advance, the state of charge in the plurality of secondary batteries An imbalance detection unit that determines that an imbalance has occurred in the battery, and when the imbalance detection unit determines that the imbalance has occurred, the voltage detection unit detects the imbalance among the plurality of secondary batteries. Other secondary batteries excluding the secondary battery whose terminal voltage detected by the voltage detection unit is stopped and the supply of current by the charging current supply unit to the secondary battery having the maximum terminal voltage is stopped. At least one of Of, and a supplementary charging controller for causing the supply of current by the charging current supply unit.

この構成によれば、充電電流供給部により供給された充電用の電流によって、直列接続された複数の二次電池が充電される。そして、各二次電池の端子電圧が、電圧検出部によってそれぞれ検出される。そうすると、仮に各二次電池の劣化の程度に差異があれば、充電が進むにつれて各二次電池の端子電圧に差異が生じる不均衡状態が生じることとなる。そこで、不均衡検出部によって、電圧検出部により検出された各二次電池の端子電圧が、予め設定された所定の判定条件を満たすか否かが確認され、当該判定条件を満たしていれば、複数の二次電池における充電状態に不均衡が生じていると判定される。そして、不均衡検出部によって不均衡が生じていると判定された場合、補充電制御部によって、複数の二次電池のうち、電圧検出部により検出された端子電圧が最大の二次電池、すなわち最も劣化が進んでいると考えられる二次電池への電流の供給が停止されると共に、電圧検出部により検出された端子電圧が最大の二次電池を除く他の二次電池のうち少なくとも一つへ電流が供給されて充電されることで端子電圧が上昇される。これにより、最も劣化が進んでいると考えられる二次電池を放電させることなく、従って劣化が進んでいる二次電池の劣化をさらに促進することなく、組電池に含まれる二次電池の端子電圧の差を縮小することができる。そして、端子電圧が最大の二次電池を除く他の二次電池、すなわちまだ満充電に達していないと考えられる二次電池のうち少なくとも一つをさらに充電することができるので、組電池の電池容量を有効活用することができる。   According to this configuration, the plurality of secondary batteries connected in series are charged by the charging current supplied from the charging current supply unit. And the terminal voltage of each secondary battery is each detected by the voltage detection part. Then, if there is a difference in the degree of deterioration of each secondary battery, an unbalanced state in which a difference occurs in the terminal voltage of each secondary battery as charging proceeds will occur. Therefore, whether or not the terminal voltage of each secondary battery detected by the voltage detection unit satisfies a predetermined determination condition set in advance by the imbalance detection unit, and if the determination condition is satisfied, It is determined that there is an imbalance in the state of charge in the plurality of secondary batteries. And when it determines with imbalance having arisen by the imbalance detection part, the secondary battery by which the terminal voltage detected by the voltage detection part among the several secondary batteries by the auxiliary charge control part is the largest, ie, At least one of the other secondary batteries except the secondary battery whose terminal voltage detected by the voltage detection unit is stopped and the terminal voltage detected by the voltage detection unit is stopped while the supply of current to the secondary battery considered to be most deteriorated is stopped. The terminal voltage is increased by charging the current supplied to the terminal. As a result, the terminal voltage of the secondary battery included in the assembled battery can be obtained without discharging the secondary battery that is considered to be most deteriorated, and thus without further promoting the deterioration of the secondary battery that has deteriorated. Can be reduced. In addition, since it is possible to further charge at least one of the other secondary batteries except the secondary battery having the maximum terminal voltage, that is, the secondary battery that is considered to have not yet fully charged, the battery of the assembled battery The capacity can be used effectively.

また、前記充電電流供給部から、予め設定された一定の電流を前記組電池に供給させることにより、定電流充電を実行させる定電流充電部をさらに備え、前記不均衡検出部は、前記定電流充電の実行期間中に、前記電圧検出部により検出される端子電圧の最大値と最小値との差が、予め設定された差分判定値以上となる条件を、前記判定条件として前記判定を行い、前記補充電制御部は、前記定電流充電の実行期間中に、前記不均衡検出部によって前記不均衡が生じていると判定された場合、前記端子電圧が最大の二次電池への、前記充電電流供給部による電流の供給を停止させると共に、当該端子電圧が最大の二次電池を除く他の二次電池へ、前記複数の二次電池の端子電圧が一致するまで前記充電電流供給部により電流を供給させることが好ましい。   The charging current supply unit further includes a constant current charging unit configured to perform constant current charging by supplying a predetermined constant current to the assembled battery, and the imbalance detection unit includes the constant current During the charge execution period, the determination is performed with the condition that the difference between the maximum value and the minimum value of the terminal voltage detected by the voltage detection unit is equal to or greater than a preset difference determination value, as the determination condition, The auxiliary charge control unit is configured to charge the secondary battery with the maximum terminal voltage when the imbalance detection unit determines that the imbalance has occurred during the constant current charging period. The supply of current by the current supply unit is stopped, and current is supplied by the charging current supply unit to the other secondary batteries except the secondary battery having the maximum terminal voltage until the terminal voltages of the plurality of secondary batteries match. To supply Preferred.

この構成によれば、定電流充電部が、充電電流供給部から一定の電流を組電池に供給させることによって定電流充電が実行される。また、定電流充電の実行期間中に、電圧検出部により検出される端子電圧の最大値と最小値との差が、予め設定された差分判定値以上になると、不均衡検出部によって、不均衡が生じていると判定される。そして、不均衡検出部によって不均衡が生じていると判定されると、補充電制御部によって、端子電圧が最大の二次電池、すなわち最も劣化が進んでいると考えられる二次電池への電流の供給が停止されると共に、当該端子電圧が最大の二次電池を除く他の二次電池へ、前記複数の二次電池の端子電圧が一致するまで充電電流供給部により電流が供給されて充電され、端子電圧が上昇される。これにより、最も劣化が進んでいると考えられる二次電池を放電させることなく、従って劣化が進んでいる二次電池の劣化をさらに促進することなく、定電流充電の実行期間中に、組電池に含まれる二次電池の端子電圧の差を縮小することができる。そうすると、定電流充電の実行途中であっても、不均衡が生じて各二次電池の端子電圧の最大値と最小値との差が差分判定値以上になると、二次電池の端子電圧の差が縮小されるので、仮にユーザが定電流充電による組電池の充電が終了する前に充電を中断させた場合であっても、二次電池の不均衡を低減することができる。   According to this configuration, the constant current charging unit performs constant current charging by causing the assembled battery to supply a constant current from the charging current supply unit. Further, during the constant current charge execution period, if the difference between the maximum value and the minimum value of the terminal voltage detected by the voltage detection unit becomes equal to or greater than a preset difference determination value, the imbalance detection unit Is determined to have occurred. Then, if it is determined by the imbalance detection unit that an imbalance has occurred, the auxiliary charge control unit supplies the current to the secondary battery with the highest terminal voltage, that is, the secondary battery that is considered to have the most advanced deterioration. Is supplied to the other secondary batteries excluding the secondary battery having the maximum terminal voltage until the terminal voltages of the plurality of secondary batteries coincide with each other to charge the battery. The terminal voltage is increased. As a result, the assembled battery can be used during the constant current charging period without discharging the secondary battery that is considered to be most deteriorated, and thus without further promoting the deterioration of the secondary battery that has deteriorated. The difference in the terminal voltage of the secondary battery included in the battery can be reduced. Then, even when the constant current charging is in progress, if an imbalance occurs and the difference between the maximum value and the minimum value of the terminal voltage of each secondary battery exceeds the difference judgment value, the difference in the terminal voltage of the secondary battery Therefore, even if the user interrupts charging before charging of the assembled battery by constant current charging is completed, the imbalance of the secondary battery can be reduced.

また、前記不均衡検出部は、前記定電流充電の実行期間中に、前記電圧検出部により検出される端子電圧の最大値と最小値との差が、予め設定された差分判定値以上となった場合であって、さらに前記端子電圧の最大値が予め設定された閾値電圧以上となる条件を、前記判定条件として前記判定を行うことが好ましい。   Further, the imbalance detection unit has a difference between a maximum value and a minimum value of the terminal voltage detected by the voltage detection unit during the constant current charging execution period is equal to or greater than a preset difference determination value. In this case, it is preferable that the determination is further performed with the condition that the maximum value of the terminal voltage is equal to or higher than a preset threshold voltage as the determination condition.

二次電池は、充電深度が浅いと各二次電池の容量差による端子電圧のバラツキが増大する傾向がある。そのため、充電深度が浅い場合には、各二次電池の端子電圧の最大値と最小値との差が、予め設定された差分判定値以上となる条件のみで不均衡が生じていると判定すると、各二次電池の容量差による端子電圧のバラツキを誤って不均衡が生じていると判定してしまうおそれがある。そこで、不均衡検出部は、定電流充電の実行期間中に、電圧検出部により検出される端子電圧の最大値と最小値との差が、予め設定された差分判定値以上となり、かつ端子電圧の最大値が予め設定された閾値電圧以上となり、すなわち充電がある程度進んで各二次電池の容量差による端子電圧のバラツキが低減された状態になっている場合に、不均衡が生じていると判定することで、各二次電池の容量差による端子電圧のバラツキを誤って不均衡が生じていると判定してしまうおそれを低減することができる。   When the charging depth is small, the secondary battery tends to increase the terminal voltage variation due to the capacity difference between the secondary batteries. Therefore, when the charging depth is shallow, it is determined that an imbalance has occurred only under the condition that the difference between the maximum value and the minimum value of the terminal voltage of each secondary battery is equal to or greater than a preset difference determination value. The terminal voltage variation due to the capacity difference between the secondary batteries may be erroneously determined as causing an imbalance. Therefore, the imbalance detection unit is configured such that the difference between the maximum value and the minimum value of the terminal voltage detected by the voltage detection unit is equal to or greater than a preset difference determination value during the constant current charging execution period. When the maximum value of the voltage is equal to or higher than a preset threshold voltage, that is, when the charging progresses to some extent and the variation of the terminal voltage due to the capacity difference of each secondary battery is reduced, an imbalance occurs. By determining, it is possible to reduce a possibility that the terminal voltage variation due to the capacity difference between the secondary batteries is erroneously determined to be imbalanced.

また、前記充電電流供給部から、予め設定された一定の電流を前記組電池に供給させることにより、定電流充電を実行させる定電流充電部をさらに備え、前記不均衡検出部は、前記定電流充電の実行期間中に、前記電圧検出部により検出される端子電圧の最大値が、前記二次電池一つあたりの充電電圧の目標値である目標電圧値を超える条件を、前記判定条件として前記判定を行い、前記補充電制御部は、前記定電流充電の実行期間中に、前記不均衡検出部によって前記不均衡が生じていると判定された場合、前記端子電圧が最大の二次電池への、前記充電電流供給部による電流の供給を停止させると共に、当該端子電圧が最大の二次電池を除く他の二次電池へ、当該他の二次電池の端子電圧が前記目標電圧値に達するまで前記充電電流供給部により電流を供給させるようにしてもよい。   The charging current supply unit further includes a constant current charging unit configured to perform constant current charging by supplying a predetermined constant current to the assembled battery, and the imbalance detection unit includes the constant current The condition that the maximum value of the terminal voltage detected by the voltage detection unit during the charging execution period exceeds the target voltage value that is the target value of the charging voltage per secondary battery is the determination condition. The auxiliary charging control unit determines that the imbalance is generated by the imbalance detection unit during the constant current charging period, and determines that the terminal voltage is the maximum. The supply of current by the charging current supply unit is stopped, and the terminal voltage of the other secondary battery reaches the target voltage value to other secondary batteries excluding the secondary battery having the maximum terminal voltage. Until the charging current supply It may be caused to supply a current by.

この構成によれば、定電流充電部が、充電電流供給部から一定の電流を組電池に供給させることによって定電流充電が実行される。また、定電流充電の実行期間中に、電圧検出部により検出される端子電圧の最大値が、二次電池一つあたりの充電電圧の目標値である目標電圧値を超えた場合に不均衡検出部によって、不均衡が生じていると判定される。そして、不均衡検出部によって不均衡が生じていると判定されると、補充電制御部によって、端子電圧が最大の二次電池への充電電流の供給が停止されると共に、当該端子電圧が最大の二次電池を除く他の二次電池へ、当該他の二次電池の端子電圧が前記目標電圧値に達するまで電流が供給されて充電される。この場合、各二次電池の端子電圧の差が小さく、上述のように、各二次電池の端子電圧の最大値と最小値との差が差分判定値以上になっていない場合であっても、各二次電池の端子電圧の最大値が目標電圧値を超えた場合に当該端子電圧が最大の二次電池を除く他の二次電池にのみ、端子電圧が目標電圧値に達するまで電流が供給されて充電される結果、各二次電池の端子電圧の最大値と最小値との差が差分判定値に満たない場合であっても、各二次電池の端子電圧の差を縮小することができる。   According to this configuration, the constant current charging unit performs constant current charging by causing the assembled battery to supply a constant current from the charging current supply unit. In addition, imbalance detection is performed when the maximum value of the terminal voltage detected by the voltage detector exceeds the target voltage value that is the target value of the charging voltage per secondary battery during the constant current charging period. It is determined by the part that an imbalance has occurred. When it is determined by the imbalance detection unit that an imbalance has occurred, the auxiliary charge control unit stops supplying the charging current to the secondary battery having the maximum terminal voltage, and the terminal voltage is maximized. Current is supplied and charged to other secondary batteries except the secondary battery until the terminal voltage of the other secondary battery reaches the target voltage value. In this case, even if the difference in the terminal voltage of each secondary battery is small and the difference between the maximum value and the minimum value of the terminal voltage of each secondary battery is not equal to or greater than the difference determination value as described above. When the maximum value of the terminal voltage of each secondary battery exceeds the target voltage value, the current is only applied to the other secondary batteries except the secondary battery having the maximum terminal voltage until the terminal voltage reaches the target voltage value. As a result of being supplied and charged, even if the difference between the maximum value and the minimum value of the terminal voltage of each secondary battery is less than the difference judgment value, the difference in the terminal voltage of each secondary battery is reduced. Can do.

また、前記各二次電池に、予め設定された一定の終止電圧が印加されるように、前記充電電流供給部によって前記充電用の電流を供給させることにより定電圧充電を実行する定電圧充電部をさらに備え、前記不均衡検出部は、前記定電圧充電の実行期間中に、前記電圧検出部により検出される端子電圧の最大値と最小値との差が、予め設定された差分判定値以上となる条件を、前記判定条件として前記判定を行い、前記補充電制御部は、前記定電圧充電の実行期間中に、前記不均衡検出部によって前記不均衡が生じていると判定された場合、前記複数の二次電池のうち、前記電圧検出部により検出された端子電圧が前記終止電圧を超えている二次電池への、前記充電電流供給部による電流の供給を停止させると共に、前記電圧検出部により検出された端子電圧が前記終止電圧以下である二次電池への、前記定電圧充電部による定電圧充電を継続させることが好ましい。   In addition, a constant voltage charging unit that performs constant voltage charging by supplying the charging current by the charging current supply unit so that a predetermined preset end voltage is applied to each secondary battery. The imbalance detection unit further includes a difference between a maximum value and a minimum value of the terminal voltage detected by the voltage detection unit during the constant voltage charging is equal to or greater than a preset difference determination value. When the condition is determined as the determination condition, the auxiliary charge control unit determines that the imbalance is generated by the imbalance detection unit during the constant voltage charge execution period, Among the plurality of secondary batteries, the terminal voltage detected by the voltage detection unit stops supply of current by the charging current supply unit to a secondary battery that exceeds the end voltage, and the voltage detection Inspection by department Is the terminal voltage of the secondary battery is less than the termination voltage, the be continued the constant voltage charging by the constant voltage charging unit preferably.

この構成によれば、定電圧充電部によって、各二次電池にそれぞれ予め設定された終止電圧が印加されるように一定の電圧が印加されることにより、定電圧充電が実行される。また、定電圧充電の実行期間中に、電圧検出部により検出される端子電圧の最大値と最小値との差が、予め設定された差分判定値以上となった場合に、不均衡検出部によって不均衡が生じていると判定され、補充電制御部によって、複数の二次電池のうち、電圧検出部により検出された端子電圧が終止電圧を超えている二次電池への、充電電流供給部による電流の供給を停止させると共に、電圧検出部により検出された端子電圧が終止電圧以下である二次電池への、定電圧充電部による定電圧充電が継続されるので、定電圧充電の実行途中であっても、不均衡が生じて各二次電池の端子電圧の最大値と最小値との差が差分判定値以上になると、二次電池の端子電圧の差が縮小される結果、仮にユーザが定電流充電による組電池の充電が終了する前に充電を中断させた場合であっても、二次電池の不均衡を低減することができる。   According to this configuration, the constant voltage charging unit executes constant voltage charging by applying a constant voltage so that a preset end voltage is applied to each secondary battery. In addition, when the difference between the maximum value and the minimum value of the terminal voltage detected by the voltage detection unit is equal to or greater than a preset difference determination value during the constant voltage charging period, the imbalance detection unit A charging current supply unit for a secondary battery in which a terminal voltage detected by the voltage detection unit of the plurality of secondary batteries exceeds the cut-off voltage among the plurality of secondary batteries by determining that an imbalance has occurred. Since the constant voltage charging by the constant voltage charging unit to the secondary battery whose terminal voltage detected by the voltage detection unit is equal to or lower than the end voltage is continued, the current supply by the voltage detection unit is stopped. However, if an imbalance occurs and the difference between the maximum value and the minimum value of the terminal voltage of each secondary battery exceeds the difference determination value, the difference in the terminal voltage of the secondary battery is reduced. Will stop charging the battery pack using constant current charging. Even when the interrupt the charging before, it is possible to reduce the imbalance of the secondary battery.

また、前記各二次電池に、それぞれ予め設定された一定の終止電圧が印加されるように、前記充電電流供給部によって前記充電用の電流を供給させることにより定電圧充電を実行する定電圧充電部をさらに備え、前記不均衡検出部は、前記定電圧充電の実行期間中に、前記電圧検出部により検出される端子電圧の最大値が、前記二次電池一つあたりの充電電圧の目標値である目標電圧値を超える条件を、前記判定条件として前記判定を行い、前記補充電制御部は、前記定電圧充電の実行期間中に、前記不均衡検出部によって前記不均衡が生じていると判定された場合、前記複数の二次電池のうち、前記電圧検出部により検出された端子電圧が前記終止電圧を超えている二次電池への、前記充電電流供給部による電流の供給を停止させると共に、前記電圧検出部により検出された端子電圧が前記終止電圧以下である二次電池への、前記定電圧充電部による定電圧充電を継続させるようにしてもよい。   Further, constant voltage charging is performed by performing constant voltage charging by supplying the charging current by the charging current supply unit so that a predetermined end voltage set in advance is applied to each of the secondary batteries. The imbalance detection unit is configured such that the maximum value of the terminal voltage detected by the voltage detection unit during the constant voltage charging period is a target value of the charging voltage per secondary battery. When the condition exceeding the target voltage value is determined as the determination condition, the auxiliary charge control unit is configured to generate the imbalance by the imbalance detection unit during the constant voltage charge execution period. If determined, the supply of current by the charging current supply unit to a secondary battery in which the terminal voltage detected by the voltage detection unit exceeds the end voltage among the plurality of secondary batteries is stopped. With Wherein the detected terminal voltage of the secondary battery is less than the end voltage by the voltage detection unit, it may be to continue the constant voltage charging by the constant voltage charging unit.

この構成によれば、定電圧充電部によって、各二次電池にそれぞれ予め設定された終止電圧が印加されるように一定の電圧が印加されることにより、定電圧充電が実行される。また、定電圧充電の実行期間中に、電圧検出部により検出される端子電圧の最大値が、二次電池一つあたりの充電電圧の目標値である目標電圧値を超えた場合に不均衡検出部によって、不均衡が生じていると判定される。そして、不均衡検出部によって不均衡が生じていると判定されると、補充電制御部によって、端子電圧が終止電圧を超えている二次電池への電流の供給が停止されて充電が停止されると共に、端子電圧が終止電圧以下である二次電池への定電圧充電が継続される。この場合、各二次電池の端子電圧の差が小さく、上述のように、各二次電池の端子電圧の最大値と最小値との差が差分判定値以上になっていない場合であっても、各二次電池の端子電圧の最大値が目標電圧値を超えた場合に端子電圧が終止電圧以下である二次電池にのみ、定電圧充電が継続される結果、各二次電池の端子電圧の最大値と最小値との差が差分判定値に満たない場合であっても、各二次電池の端子電圧の差を縮小することができる。   According to this configuration, the constant voltage charging unit executes constant voltage charging by applying a constant voltage so that a preset end voltage is applied to each secondary battery. Also, imbalance detection is performed when the maximum value of the terminal voltage detected by the voltage detection unit exceeds the target voltage value that is the target value of the charging voltage per secondary battery during the constant voltage charging period. It is determined by the part that an imbalance has occurred. When the imbalance detection unit determines that an imbalance has occurred, the auxiliary charge control unit stops the supply of current to the secondary battery whose terminal voltage exceeds the end voltage, and charging is stopped. At the same time, the constant voltage charging to the secondary battery whose terminal voltage is equal to or lower than the end voltage is continued. In this case, even if the difference in the terminal voltage of each secondary battery is small and the difference between the maximum value and the minimum value of the terminal voltage of each secondary battery is not equal to or greater than the difference determination value as described above. When the maximum value of the terminal voltage of each secondary battery exceeds the target voltage value, constant voltage charging is continued only for the secondary battery whose terminal voltage is equal to or lower than the end voltage, resulting in the terminal voltage of each secondary battery. Even when the difference between the maximum value and the minimum value is less than the difference determination value, the difference in the terminal voltage of each secondary battery can be reduced.

また、前記組電池に流れる電流を検出する電流検出部をさらに備え、前記定電圧充電部は、前記電流検出部により検出された電流が、予め設定された満充電判定電流以下になった場合、前記定電圧充電部による定電圧充電を停止させ、前記補充電制御部は、さらに、前記定電圧充電が停止された後、前記複数の二次電池のうち前記電圧検出部により検出された端子電圧が前記終止電圧に満たない二次電池へ、前記充電電流供給部によって、前記充電用の電流を供給させることが好ましい。   Further, the current detection unit further detects a current flowing through the assembled battery, the constant voltage charging unit, when the current detected by the current detection unit is equal to or less than a preset full charge determination current, The constant voltage charging by the constant voltage charging unit is stopped, and the auxiliary charging control unit further detects a terminal voltage detected by the voltage detecting unit among the plurality of secondary batteries after the constant voltage charging is stopped. It is preferable that the charging current supply unit supplies the charging current to a secondary battery that is less than the final voltage.

この構成によれば、定電圧充電部によって、組電池に流れる電流が満充電判定電流以下になった場合、定電圧充電が停止される。そして、定電圧充電が停止された後、補充電制御部によって、複数の二次電池のうち端子電圧が終止電圧に満たない二次電池へ、充電電流供給部により充電用の電流が供給されて充電が行われるので、定電圧充電の終了後に、端子電圧が終止電圧に満たず、従ってまだ満充電になっていないと考えられる二次電池を充電して端子電圧を上昇させることができる結果、組電池に含まれる二次電池の端子電圧の差を縮小しつつ、組電池の電池容量を有効活用することができる。   According to this configuration, when the current flowing through the assembled battery becomes equal to or lower than the full charge determination current by the constant voltage charging unit, the constant voltage charging is stopped. Then, after the constant voltage charging is stopped, the auxiliary charging control unit supplies the charging current to the secondary battery whose terminal voltage is less than the end voltage among the plurality of secondary batteries by the charging current supply unit. As charging is performed, after the end of constant voltage charging, the terminal voltage is less than the end voltage, and therefore, the secondary battery that is considered not yet fully charged can be charged to increase the terminal voltage, The battery capacity of the assembled battery can be effectively utilized while reducing the difference in the terminal voltage of the secondary battery included in the assembled battery.

また、前記不均衡検出部は、前記判定条件が、予め設定された期間、継続して満たされた場合に前記複数の二次電池における充電状態に不均衡が生じていると判定することが好ましい。この構成によれば、不均衡検出部によって、前記判定条件が予め設定された期間、継続して満たされた場合に複数の二次電池における充電状態に不均衡が生じていると判定されるので、電源環境の変動やノイズによって誤って不均衡が生じていると判定されるおそれを低減することができる。   The imbalance detection unit preferably determines that an imbalance has occurred in the state of charge in the plurality of secondary batteries when the determination condition is continuously satisfied for a preset period. . According to this configuration, the imbalance detection unit determines that there is an imbalance in the state of charge in the plurality of secondary batteries when the determination condition is continuously satisfied for a preset period. Therefore, it is possible to reduce the risk that it is erroneously determined that an imbalance has occurred due to fluctuations in the power supply environment or noise.

また、本発明に係る電池パックは、複数の二次電池が直列接続された組電池と、前記組電池を充電するための電流を受電する接続端子と、前記接続端子により受電された電流を前記複数の二次電池に供給することにより充電する制御部と、前記複数の二次電池の端子電圧を、それぞれ検出する電圧検出部と、前記電圧検出部により検出された前記複数の二次電池の端子電圧が、予め設定された所定の判定条件を満たした場合に前記複数の二次電池における充電状態に不均衡が生じていると判定する不均衡検出部と、前記不均衡検出部によって前記不均衡が生じていると判定された場合、前記複数の二次電池のうち、前記電圧検出部により検出された端子電圧が最大の二次電池への、前記充電制御部による電流の供給を停止させると共に、前記電圧検出部により検出された端子電圧が最大の二次電池を除く他の二次電池のうち少なくとも一つへの、前記制御部による電流の供給を行わせる補充電制御部とを備える。   Further, the battery pack according to the present invention includes an assembled battery in which a plurality of secondary batteries are connected in series, a connection terminal that receives current for charging the assembled battery, and the current received by the connection terminal. A control unit for charging by supplying to a plurality of secondary batteries, a voltage detection unit for detecting terminal voltages of the plurality of secondary batteries, and a plurality of the secondary batteries detected by the voltage detection unit. When the terminal voltage satisfies a predetermined determination condition set in advance, an imbalance detection unit that determines that an imbalance has occurred in the state of charge of the plurality of secondary batteries, and the imbalance detection unit detects the imbalance by the imbalance detection unit. When it is determined that an equilibrium has occurred, supply of current by the charge control unit to the secondary battery having the maximum terminal voltage detected by the voltage detection unit among the plurality of secondary batteries is stopped. Together with the above To at least one of the other secondary battery except the secondary battery detected terminal voltage is maximum by the pressure detecting unit, and a supplementary charging controller for causing the supply of current by the control unit.

この構成によれば、電池パックの外部から接続端子により受電された電流によって、直列接続された複数の二次電池が充電される。そして、各二次電池の端子電圧が、電圧検出部によってそれぞれ検出される。そうすると、仮に各二次電池の劣化の程度に差異があれば、充電が進むにつれて各二次電池の端子電圧に差異が生じる不均衡状態が生じることとなる。そこで、不均衡検出部によって、電圧検出部により検出された各二次電池の端子電圧が、予め設定された所定の判定条件を満たすか否かが確認され、当該判定条件を満たしていれば、複数の二次電池における充電状態に不均衡が生じていると判定される。そして、不均衡検出部によって不均衡が生じていると判定された場合、補充電制御部によって、複数の二次電池のうち、電圧検出部により検出された端子電圧が最大の二次電池、すなわち最も劣化が進んでいると考えられる二次電池への電流の供給が停止されると共に、電圧検出部により検出された端子電圧が最大の二次電池を除く他の二次電池のうち少なくとも一つへ電流が供給されて充電されることで端子電圧が上昇される。これにより、最も劣化が進んでいると考えられる二次電池を放電させることなく、従って劣化が進んでいる二次電池の劣化をさらに促進することなく、組電池に含まれる二次電池の端子電圧の差を縮小することができる。そして、端子電圧が最大の二次電池を除く他の二次電池、すなわちまだ満充電に達していないと考えられる二次電池のうち少なくとも一つをさらに充電することができるので、組電池の電池容量を有効活用することができる。   According to this configuration, the plurality of secondary batteries connected in series are charged by the current received by the connection terminal from the outside of the battery pack. And the terminal voltage of each secondary battery is each detected by the voltage detection part. Then, if there is a difference in the degree of deterioration of each secondary battery, an unbalanced state in which a difference occurs in the terminal voltage of each secondary battery as charging proceeds will occur. Therefore, whether or not the terminal voltage of each secondary battery detected by the voltage detection unit satisfies a predetermined determination condition set in advance by the imbalance detection unit, and if the determination condition is satisfied, It is determined that there is an imbalance in the state of charge in the plurality of secondary batteries. And when it determines with imbalance having arisen by the imbalance detection part, the secondary battery by which the terminal voltage detected by the voltage detection part among the several secondary batteries by the auxiliary charge control part is the largest, ie, At least one of the other secondary batteries except the secondary battery whose terminal voltage detected by the voltage detection unit is stopped and the terminal voltage detected by the voltage detection unit is stopped while the supply of current to the secondary battery considered to be most deteriorated is stopped. The terminal voltage is increased by charging the current supplied to the terminal. As a result, the terminal voltage of the secondary battery included in the assembled battery can be obtained without discharging the secondary battery that is considered to be most deteriorated, and thus without further promoting the deterioration of the secondary battery that has deteriorated. Can be reduced. In addition, since it is possible to further charge at least one of the other secondary batteries except the secondary battery having the maximum terminal voltage, that is, the secondary battery that is considered to have not yet fully charged, the battery of the assembled battery The capacity can be used effectively.

また、本発明に係る充電方法は、複数の二次電池が直列接続された組電池に、充電用の電流を供給して充電する充電工程と、前記複数の二次電池の端子電圧を、それぞれ検出する電圧検出工程と、前記複数の二次電池の端子電圧が、予め設定された所定の判定条件を満たした場合に前記複数の二次電池における充電状態に不均衡が生じていると判定する不均衡検出工程と、前記不均衡検出工程において前記不均衡が生じていると判定された場合、前記複数の二次電池のうち、前記電圧検出工程において検出された端子電圧が最大の二次電池への、前記充電用の電流の供給を停止させると共に、前記電圧検出工程において検出された端子電圧が最大の二次電池を除く他の二次電池のうち少なくとも一つへ、前記充電用の電流を供給する補充電工程とを備える。   Further, the charging method according to the present invention includes a charging step of supplying a charging current to an assembled battery in which a plurality of secondary batteries are connected in series and charging, and a terminal voltage of the plurality of secondary batteries, respectively. When the voltage detection step to detect and the terminal voltages of the plurality of secondary batteries satisfy a predetermined determination condition set in advance, it is determined that there is an imbalance in the state of charge in the plurality of secondary batteries. A secondary battery having a maximum terminal voltage detected in the voltage detection step among the plurality of secondary batteries when it is determined that the imbalance is generated in the imbalance detection step and the imbalance detection step; The charging current is stopped, and the charging current is supplied to at least one of the other secondary batteries excluding the secondary battery having the maximum terminal voltage detected in the voltage detection step. Auxiliary recharger supplying Provided with a door.

この構成によれば、直列接続された複数の二次電池が、充電用の電流によって充電される。そして、各二次電池の端子電圧が、予め設定された所定の判定条件を満たしていれば、複数の二次電池における充電状態に不均衡が生じていると判定され、複数の二次電池のうち、端子電圧が最大の二次電池、すなわち最も劣化が進んでいると考えられる二次電池への電流の供給が停止されると共に、端子電圧が最大の二次電池を除く他の二次電池のうち少なくとも一つへ電流が供給されて充電されることで端子電圧が上昇される。これにより、最も劣化が進んでいると考えられる二次電池を放電させることなく、従って劣化が進んでいる二次電池の劣化をさらに促進することなく、組電池に含まれる二次電池の端子電圧の差を縮小することができる。そして、端子電圧が最大の二次電池を除く他の二次電池、すなわちまだ満充電に達していないと考えられる二次電池のうち少なくとも一つをさらに充電することができるので、組電池の電池容量を有効活用することができる。   According to this configuration, the plurality of secondary batteries connected in series are charged by the charging current. Then, if the terminal voltage of each secondary battery satisfies a predetermined determination condition set in advance, it is determined that there is an imbalance in the state of charge in the plurality of secondary batteries, and Among them, the secondary battery with the highest terminal voltage, that is, the secondary battery except the secondary battery with the highest terminal voltage is stopped while the supply of current to the secondary battery considered to be most deteriorated is stopped. The terminal voltage is raised by supplying current to at least one of them and charging them. As a result, the terminal voltage of the secondary battery included in the assembled battery can be obtained without discharging the secondary battery that is considered to be most deteriorated, and thus without further promoting the deterioration of the secondary battery that has deteriorated. Can be reduced. In addition, since it is possible to further charge at least one of the other secondary batteries except the secondary battery having the maximum terminal voltage, that is, the secondary battery that is considered to have not yet fully charged, the battery of the assembled battery The capacity can be used effectively.

このような構成の充電システム、電池パック、及び充電方法によれば、直列接続された複数の二次電池が、充電用の電流によって充電される。そして、各二次電池の端子電圧が、予め設定された所定の判定条件を満たしていれば、複数の二次電池における充電状態に不均衡が生じていると判定され、複数の二次電池のうち、端子電圧が最大の二次電池、すなわち最も劣化が進んでいると考えられる二次電池への電流の供給が停止されると共に、端子電圧が最大の二次電池を除く他の二次電池のうち少なくとも一つへ電流が供給されて充電されることで端子電圧が上昇される。これにより、最も劣化が進んでいると考えられる二次電池を放電させることなく、従って劣化が進んでいる二次電池の劣化をさらに促進することなく、組電池に含まれる二次電池の端子電圧の差を縮小することができる。そして、端子電圧が最大の二次電池を除く他の二次電池、すなわちまだ満充電に達していないと考えられる二次電池のうち少なくとも一つをさらに充電することができるので、組電池の電池容量を有効活用することができる。   According to the charging system, the battery pack, and the charging method having such a configuration, the plurality of secondary batteries connected in series are charged by the charging current. Then, if the terminal voltage of each secondary battery satisfies a predetermined determination condition set in advance, it is determined that there is an imbalance in the state of charge in the plurality of secondary batteries, and Among them, the secondary battery with the highest terminal voltage, that is, the secondary battery except the secondary battery with the highest terminal voltage is stopped while the supply of current to the secondary battery considered to be most deteriorated is stopped. The terminal voltage is raised by supplying current to at least one of them and charging them. As a result, the terminal voltage of the secondary battery included in the assembled battery can be obtained without discharging the secondary battery that is considered to be most deteriorated, and thus without further promoting the deterioration of the secondary battery that has deteriorated. Can be reduced. In addition, since it is possible to further charge at least one of the other secondary batteries except the secondary battery having the maximum terminal voltage, that is, the secondary battery that is considered to have not yet fully charged, the battery of the assembled battery The capacity can be used effectively.

以下、本発明に係る実施形態を図面に基づいて説明する。なお、各図において同一の符号を付した構成は、同一の構成であることを示し、その説明を省略する。図1は、本発明の実施の一形態に係る充電方法を用いる充電システムの構成の一例を示すブロック図である。この充電システムは、電池パック2に、それを充電する充電器3を備えて構成されるが、電池パック2から給電が行われる図示しない負荷機器をさらに含めて電子機器システムが構成されてもよい。その場合、電池パック2は、図1では充電器3から充電が行われるけれども、該電池パック2が前記負荷機器に装着されて、負荷機器を通して充電が行われてもよい。電池パック2および充電器3は、給電を行う直流ハイ側の端子T11,T21と、通信信号の端子T12,T22と、給電および通信信号のためのGND端子T13,T23とによって相互に接続される。前記負荷機器が設けられる場合も、同様の端子が設けられる。   Embodiments according to the present invention will be described below with reference to the drawings. In addition, the structure which attached | subjected the same code | symbol in each figure shows that it is the same structure, The description is abbreviate | omitted. FIG. 1 is a block diagram illustrating an example of a configuration of a charging system that uses a charging method according to an embodiment of the present invention. Although this charging system is configured to include the battery pack 2 and the charger 3 that charges the battery pack 2, an electronic device system may be configured to further include a load device (not shown) that receives power from the battery pack 2. . In that case, although the battery pack 2 is charged from the charger 3 in FIG. 1, the battery pack 2 may be attached to the load device and charged through the load device. The battery pack 2 and the charger 3 are connected to each other by DC high-side terminals T11 and T21 that supply power, communication signal terminals T12 and T22, and GND terminals T13 and T23 for power supply and communication signals. . Similar terminals are also provided when the load device is provided.

前記電池パック2内で、前記の端子T11から延びる直流ハイ側の充電経路11には、充電用と放電用とで、相互に導電形式が異なるFET(Field Effect Transistor)12,13が介在されており、その充電経路11が組電池14のハイ側端子に接続される。前記組電池14のロー側端子は、直流ロー側の充電経路15を介して前記GND端子T13に接続され、この充電経路15には、充電電流および放電電流を電圧値に変換する電流検出抵抗16(電流検出部)が介在されている。   In the battery pack 2, FETs (Field Effect Transistors) 12 and 13 having different conductivity types for charging and discharging are interposed in the charging path 11 on the DC high side extending from the terminal T <b> 11. The charging path 11 is connected to the high-side terminal of the assembled battery 14. A low side terminal of the assembled battery 14 is connected to the GND terminal T13 via a DC low side charging path 15, and the charging path 15 includes a current detection resistor 16 that converts charging current and discharging current into voltage values. (Current detection unit) is interposed.

前記組電池14は、直列に接続された複数の二次電池141,142,143を備え、各二次電池の温度は温度センサ17によって検出され、制御IC18内のアナログ/デジタル変換器19に入力される。また、複数の二次電池141,142,143の各端子電圧α1,α2,α3は電圧検出回路20(電圧検出部)によってそれぞれ読取られ、前記制御IC18内のアナログ/デジタル変換器19に入力される。さらにまた、前記電流検出抵抗16によって検出された電流値も、前記制御IC18内のアナログ/デジタル変換器19に入力される。前記アナログ/デジタル変換器19は、各入力値をデジタル値に変換して、制御部21へ出力する。   The assembled battery 14 includes a plurality of secondary batteries 141, 142, and 143 connected in series. The temperature of each secondary battery is detected by a temperature sensor 17 and input to an analog / digital converter 19 in the control IC 18. Is done. The terminal voltages α1, α2, and α3 of the plurality of secondary batteries 141, 142, and 143 are read by the voltage detection circuit 20 (voltage detection unit) and input to the analog / digital converter 19 in the control IC 18. The Furthermore, the current value detected by the current detection resistor 16 is also input to the analog / digital converter 19 in the control IC 18. The analog / digital converter 19 converts each input value into a digital value and outputs the digital value to the control unit 21.

図2は、組電池14の詳細な構成の一例を示す回路図である。図2に示す組電池14は、二次電池141と直列用スイッチング素子411との直列回路と並列に並列用スイッチング素子412が接続された組回路41と、二次電池142と直列用スイッチング素子421との直列回路と並列に並列用スイッチング素子422が接続された組回路42と、二次電池143と直列用スイッチング素子431との直列回路と並列に並列用スイッチング素子432が接続された組回路43とが直列接続されて構成されている。直列用スイッチング素子411,421,431、及び並列用スイッチング素子412,422,432としては、例えばFET等の半導体スイッチング素子や、リレースイッチ等を用いることができる。補充電制御部215による補充電が行われる場合を除いて、直列用スイッチング素子411,421,431はオンされ、並列用スイッチング素子412,422,432はオフされている。   FIG. 2 is a circuit diagram illustrating an example of a detailed configuration of the assembled battery 14. The assembled battery 14 shown in FIG. 2 includes an assembled circuit 41 in which a parallel switching element 412 is connected in parallel to a series circuit of the secondary battery 141 and the series switching element 411, a secondary battery 142, and the series switching element 421. A combination circuit 42 in which a parallel switching element 422 is connected in parallel to the series circuit of the second circuit, and a combination circuit 43 in which a parallel switching element 432 is connected in parallel to the series circuit of the secondary battery 143 and the series switching element 431. Are connected in series. As the series switching elements 411, 421, 431 and the parallel switching elements 412, 422, 432, for example, semiconductor switching elements such as FETs, relay switches, or the like can be used. The series switching elements 411, 421, and 431 are turned on, and the parallel switching elements 412, 422, and 432 are turned off, except when supplementary charging is performed by the auxiliary charging control unit 215.

制御部21は、例えば所定の演算処理を実行するCPU(Central Processing Unit)と、所定の制御プログラムが記憶されたROM(Read Only Memory)と、データを一時的に記憶するRAM(Random Access Memory)と、これらの周辺回路等とを備えて構成され、ROMに記憶された制御プログラムを実行することにより、充放電制御部211、定電流充電部212、定電圧充電部213、不均衡検出部214、及び補充電制御部215として機能する。   The control unit 21 includes, for example, a CPU (Central Processing Unit) that executes predetermined arithmetic processing, a ROM (Read Only Memory) that stores a predetermined control program, and a RAM (Random Access Memory) that temporarily stores data. And a peripheral circuit and the like, and by executing a control program stored in the ROM, the charge / discharge control unit 211, the constant current charging unit 212, the constant voltage charging unit 213, and the imbalance detection unit 214 , And the auxiliary charging control unit 215.

充放電制御部211は、アナログ/デジタル変換器19からの各入力値に応答して、充電器3に対して、出力を要求する充電電流の電圧値、電流値を演算し、通信部22から端子T12,T22;T13,T23を介して充電器3へ送信する。また、充放電制御部211は、前記アナログ/デジタル変換器19からの各入力値から、端子T11,T13間の短絡や充電器3からの異常電流などの電池パック2の外部における異常や、組電池14の異常な温度上昇などに対して、前記FET12,13を遮断するなどの保護動作を行う。   In response to each input value from the analog / digital converter 19, the charge / discharge control unit 211 calculates a voltage value and a current value of a charging current that requires output from the charger 3. It transmits to the charger 3 via terminals T12, T22; T13, T23. In addition, the charge / discharge control unit 211 determines whether there is an abnormality outside the battery pack 2 such as a short circuit between the terminals T11 and T13 or an abnormal current from the charger 3 based on each input value from the analog / digital converter 19. A protection operation such as blocking the FETs 12 and 13 is performed against an abnormal temperature rise of the battery 14.

定電流充電部212は、充電器3から、予め設定された一定の電流値I2の電流β1を供給させることにより、定電流充電を実行する。定電圧充電部213は、充電器3から、予め設定された一定の終止電圧Vf(目標電圧値)に直列セル数である3を乗じた電圧を出力させることにより、定電圧充電を実行する。   The constant current charging unit 212 executes constant current charging by supplying a current β1 having a predetermined constant current value I2 from the charger 3. The constant voltage charging unit 213 executes constant voltage charging by causing the charger 3 to output a voltage obtained by multiplying a preset constant end voltage Vf (target voltage value) by 3 as the number of series cells.

不均衡検出部214は、アナログ/デジタル変換器19から入力された二次電池141,142,143の端子電圧α1,α2,α3が、予め設定された所定の判定条件を満たした場合に二次電池141,142,143における充電状態に不均衡が生じていると判定する。   The imbalance detection unit 214 performs secondary operation when the terminal voltages α1, α2, and α3 of the secondary batteries 141, 142, and 143 input from the analog / digital converter 19 satisfy a predetermined determination condition set in advance. It is determined that there is an imbalance in the state of charge of batteries 141, 142, and 143.

補充電制御部215は、不均衡検出部214によって不均衡が生じていると判定された場合、複数の二次電池141,142,143のうち、端子電圧が最大のものを除く他の二次電池を含む前記組回路の、直列用スイッチング素子をオン、並列用スイッチング素子をオフさせると共に、前記他の二次電池を含まない前記組回路の、直列用スイッチング素子をオフ、並列用スイッチング素子をオンさせることにより、端子電圧が最大のものを除く他の二次電池のうち少なくとも一つを充電する。   When it is determined by the imbalance detection unit 214 that an imbalance has occurred, the auxiliary charge control unit 215, among the plurality of secondary batteries 141, 142, 143, other secondary batteries excluding the one with the maximum terminal voltage. In the group circuit including the battery, the series switching element is turned on and the parallel switching element is turned off, and the series switching element of the group circuit not including the other secondary battery is turned off and the parallel switching element is turned off. By turning it on, at least one of the other secondary batteries except the one with the highest terminal voltage is charged.

充電器3では、前記の要求を、制御IC30において、通信手段である通信部32で受信し、充電制御手段である充電制御部31が充電電流供給手段である充電電流供給回路33(充電電流供給部)を制御して、前記の電圧値、電流値、およびパルス幅で、充電電流を供給させる。充電電流供給回路33は、AC−DCコンバータやDC−DCコンバータなどから成り、入力電圧を、前記充電制御部31で指示された電圧値、電流値、およびパルス幅に変換して、端子T21,T11;T23,T13を介して、充電経路11,15へ供給する。   In the charger 3, the control IC 30 receives the request by the communication unit 32 that is a communication unit, and the charge control unit 31 that is a charge control unit receives a charge current supply circuit 33 (a charge current supply unit) that is a charge current supply unit. And the charging current is supplied with the voltage value, the current value, and the pulse width. The charging current supply circuit 33 is composed of an AC-DC converter, a DC-DC converter, etc., and converts an input voltage into a voltage value, a current value, and a pulse width instructed by the charging control unit 31, and a terminal T21, T11: Supply to charging paths 11 and 15 via T23 and T13.

なお、制御部21を電池パック2に備える例に限られず、充電器3に制御部21を備えるようにしてもよい。また、制御部21を電池パック2と充電器3で分担して備えるようにしてもよい。   In addition, it is not restricted to the example provided with the control part 21 in the battery pack 2, You may make it provide the control part 21 in the charger 3. FIG. Further, the control unit 21 may be shared by the battery pack 2 and the charger 3.

そして、電池パック2において、前記直流ハイ側の充電経路11には、通常(急速)充電用のFET12と並列に、トリクル充電回路25が設けられている。このトリクル充電回路25は、限流抵抗26とFET27との直列回路から成り、充放電制御部211は、充電の初期に、放電用のFET13をONしたまま、急速充電用のFET12をOFFし、このトリクル充電用のFET27をONしてトリクル充電を行い、通常充電時および放電時には、前記FET13をONしたまま、前記FET12をONし、このFET27をOFFして、通常電流による充放電を行う。   In the battery pack 2, a trickle charging circuit 25 is provided in the DC high side charging path 11 in parallel with the normal (rapid) FET 12. The trickle charging circuit 25 is composed of a series circuit of a current limiting resistor 26 and an FET 27, and the charge / discharge control unit 211 turns off the FET 12 for rapid charging while keeping the FET 13 for discharging at the initial stage of charging, The trickle charge FET 27 is turned on to perform trickle charge. During normal charge and discharge, the FET 12 is turned on while the FET 13 is turned on, and the FET 27 is turned off to perform charge / discharge with a normal current.

注目すべきは、本実施の形態では、補充電制御部215は、不均衡検出部214によって不均衡が生じていると判定された場合、端子電圧が最大の二次電池、すなわち最も劣化が進んでいる二次電池を放電させることなく、端子電圧が最大のものを除く他の二次電池のうち少なくとも一つを充電することで、劣化が進んでいる二次電池の劣化を促進することなく、各二次電池の端子電圧の差を縮小することである。   It should be noted that in the present embodiment, the auxiliary charging control unit 215 determines that the imbalance detection unit 214 determines that an imbalance has occurred, so that the secondary battery with the largest terminal voltage, that is, the most advanced deterioration is achieved. Without discharging the secondary battery, and charging at least one of the other secondary batteries except the one with the highest terminal voltage, without promoting the deterioration of the secondary battery that has deteriorated It is to reduce the difference in the terminal voltage of each secondary battery.

次に、上述のように構成された充電システム1の動作について説明する。図3は、本発明の一実施形態に係る充電方法を用いた充電システム1の動作の一例を示す説明図である。また、図4、図5は、本発明の一実施形態に係る充電方法を用いた充電システム1の動作の一例を示すフローチャートである。トリクル充電から定電流定電圧(CC−CV)充電に切換わると、ステップS1で、定電流充電部212によって、充電器3へ、定電流充電用の電流として予め設定された電流値I2の電流を出力すべき旨の要求が行われ、充電制御部31からの制御信号に応じて充電電流供給回路33から電流値I2の電流β1が組電池14に供給されて、定電流充電が開始される(タイミングT1)。   Next, the operation of the charging system 1 configured as described above will be described. FIG. 3 is an explanatory diagram showing an example of the operation of the charging system 1 using the charging method according to the embodiment of the present invention. 4 and 5 are flowcharts showing an example of the operation of the charging system 1 using the charging method according to the embodiment of the present invention. When switching from trickle charging to constant current constant voltage (CC-CV) charging, in step S1, the constant current charging unit 212 supplies the charger 3 with a current having a current value I2 set in advance as a current for constant current charging. In response to a control signal from the charging control unit 31, the current β1 having a current value I2 is supplied from the charging current supply circuit 33 to the assembled battery 14, and constant current charging is started. (Timing T1).

そうすると、電流値I2により組電池14が充電され、組電池14の充電深度γ1が徐々に増大する。このとき、二次電池141,142,143の劣化の度合いが異なり、例えば二次電池141の劣化が最も進んでおり、次いで二次電池142,143の順に劣化が進んでいるとすると、二次電池141の端子電圧α1が最も高くなり、次いで端子電圧α2,α3の順に端子電圧が高くなる。そして、充電が進むにつれて、端子電圧α1,α2,α3の差が増大していく。   Then, the assembled battery 14 is charged with the current value I2, and the charging depth γ1 of the assembled battery 14 gradually increases. At this time, the degree of deterioration of the secondary batteries 141, 142, and 143 is different. For example, if the secondary battery 141 is most deteriorated, and then the secondary batteries 142 and 143 are sequentially deteriorated, the secondary battery 141, 143 is deteriorated. The terminal voltage α1 of the battery 141 becomes the highest, and then the terminal voltage increases in the order of the terminal voltages α2 and α3. As the charging progresses, the difference between the terminal voltages α1, α2, and α3 increases.

次に、不均衡検出部214によって、アナログ/デジタル変換器19で得られた端子電圧α1,α2,α3のうち最大の電圧と予め設定された閾値電圧V1とが比較され、端子電圧α1,α2,α3のうち最大の電圧が閾値電圧V1以上であれば、最大の電圧と最小の電圧との差に基づき不均衡の有無を判断するべくステップS3へ移行し(ステップS2でYES)、最大の電圧が閾値電圧V1に満たなければ(ステップS2でNO)最大の電圧と最小の電圧との差に基づく不均衡の判断を行うことなくステップS4へ移行する。   Next, the imbalance detection unit 214 compares the maximum voltage among the terminal voltages α1, α2, and α3 obtained by the analog / digital converter 19 with a preset threshold voltage V1, and the terminal voltages α1, α2 , Α3, if the maximum voltage is equal to or higher than the threshold voltage V1, the process proceeds to step S3 to determine whether there is an imbalance based on the difference between the maximum voltage and the minimum voltage (YES in step S2). If the voltage does not satisfy the threshold voltage V1 (NO in step S2), the process proceeds to step S4 without determining an imbalance based on the difference between the maximum voltage and the minimum voltage.

端子電圧α1,α2,α3は、電池の放電末期、すなわち低電圧の状態では、容量差による電圧のバラツキが大きくなるため、ある程度充電が進んで容量差による端子電圧α1,α2,α3のバラツキがある程度小さくできる電圧値が、閾値電圧V1として設定されており、例えば3.8Vに設定されている。これにより、ステップS2では、端子電圧α1,α2,α3のうち最大の電圧が閾値電圧V1以上となり、容量差による端子電圧α1,α2,α3のバラツキがある程度抑制された場合にのみ、ステップS3へ移行して不均衡の有無を判断するので、ステップS3において容量差による端子電圧のバラツキを、電池のバランスが崩れたものとして誤検出するおそれを低減することができる。   The terminal voltages α1, α2, and α3 have a large variation in voltage due to the capacity difference at the end of discharge of the battery, that is, in a low voltage state. Therefore, the charging proceeds to some extent and the variation in the terminal voltages α1, α2, and α3 due to the capacitance difference occurs. A voltage value that can be reduced to some extent is set as the threshold voltage V1, and is set to, for example, 3.8V. As a result, in step S2, the maximum voltage among the terminal voltages α1, α2, and α3 is equal to or higher than the threshold voltage V1, and the process proceeds to step S3 only when variations in the terminal voltages α1, α2, and α3 due to the capacitance difference are suppressed to some extent. Since it is determined whether or not there is an imbalance, it is possible to reduce the possibility of erroneously detecting the terminal voltage variation due to the capacity difference in step S3 as the battery being out of balance.

次に、不均衡検出部214によって、アナログ/デジタル変換器19で得られた端子電圧α1,α2,α3のうち、最大の電圧と最小の電圧との差が、予め設定された差分判定値Vdiffと比較される(ステップS3)。差分判定値Vdiffは、例えば40mV程度の電圧に設定されている。この場合、端子電圧α1,α2,α3は、二次電池141,142,143を流れる電流値によって異なるので、差分判定値Vdiffは、電流値I2に応じて適宜設定される。   Next, the difference between the maximum voltage and the minimum voltage among the terminal voltages α1, α2, and α3 obtained by the analog / digital converter 19 by the imbalance detection unit 214 is determined as a preset difference determination value Vdiff. (Step S3). The difference determination value Vdiff is set to a voltage of about 40 mV, for example. In this case, since the terminal voltages α1, α2, and α3 vary depending on the current values flowing through the secondary batteries 141, 142, and 143, the difference determination value Vdiff is appropriately set according to the current value I2.

そして、端子電圧α1,α2,α3のうち、最大の電圧と最小の電圧との差が差分判定値Vdiffに満たなければ(ステップS3でNO)、端子電圧の最大値に基づき不均衡を判定すべくステップS4へ移行し、最大の電圧と最小の電圧との差が差分判定値Vdiff以上であれば(ステップS3でYES、タイミングT2)、不均衡が生じていると判定されてステップS5へ移行する。   If the difference between the maximum voltage and the minimum voltage among the terminal voltages α1, α2, and α3 does not satisfy the difference determination value Vdiff (NO in step S3), an imbalance is determined based on the maximum value of the terminal voltage. Therefore, the process proceeds to step S4, and if the difference between the maximum voltage and the minimum voltage is equal to or greater than the difference determination value Vdiff (YES in step S3, timing T2), it is determined that an imbalance has occurred and the process proceeds to step S5. To do.

なお、ステップS3における不均衡の判定処理は、例えば10秒程度、継続して不均衡が生じていると判定された場合、例えば2秒毎に5回連続して不均衡が生じていると判定された場合に、ステップS5へ移行して補充電処理を行うようにしてもよい。これにより、充電中の電流変動に対しての応答速度の違いや測定速度違いに起因して、二次電池のアンバランスを誤検出してしまうおそれを低減することができる。充電中に電流変動が生じる要因としては、例えば充電システム1が、ACアダプタによって電力が供給されるパーソナルコンピュータに内蔵されている場合のように、ACアダプタによって供給される電力が本体負荷によって消費され、電池パック2のフル電流充電ができなくなるような場合、いわゆるフロート充電の場合等がある。   Note that the imbalance determination process in step S3 determines that an imbalance has occurred continuously, for example, 5 times every 2 seconds when it is determined that an imbalance has occurred for about 10 seconds, for example. When it is done, it may be made to shift to Step S5 and perform supplementary charging processing. Thereby, it is possible to reduce the possibility of erroneously detecting an imbalance of the secondary battery due to a difference in response speed or a measurement speed with respect to a current variation during charging. The cause of current fluctuation during charging is that the power supplied by the AC adapter is consumed by the main body load, for example, when the charging system 1 is built in a personal computer to which power is supplied by the AC adapter. There are cases where the battery pack 2 cannot be charged at full current, or so-called float charging.

次に、ステップS5において、補充電制御部215によって、直列用スイッチング素子411がオフ、並列用スイッチング素子412がオンされて端子電圧が最大である二次電池141への電流の供給が停止されると共に、直列用スイッチング素子421,431がオン、並列用スイッチング素子422,432がオフされて、端子電圧α2,α3が端子電圧α1と一致するまで二次電池142,143への電流供給が行われ、二次電池142,143が充電される。   Next, in step S5, the auxiliary charging control unit 215 turns off the series switching element 411 and turns on the parallel switching element 412 to stop the supply of current to the secondary battery 141 having the maximum terminal voltage. At the same time, the series switching elements 421 and 431 are turned on, the parallel switching elements 422 and 432 are turned off, and current is supplied to the secondary batteries 142 and 143 until the terminal voltages α2 and α3 coincide with the terminal voltage α1. Secondary batteries 142 and 143 are charged.

そうすると、最も劣化が進んでいる二次電池141を放電させることなく、二次電池142,143を充電することで、二次電池141の劣化を促進させることなく二次電池141,142,143の端子電圧の差を縮小することができる。また、定電流充電の実行中に、二次電池141,142,143の端子電圧の差を縮小することで、充電終了時における二次電池141,142,143の端子電圧の差が縮小するので、各二次電池の充電深度のバラツキが縮小される結果、組電池の電池容量を有効活用することができる。さらに、定電流充電の実行中に、二次電池141,142,143の不均衡が生じると、補充電制御部215によって、二次電池141,142,143の端子電圧の差が縮小されるので、例えばユーザが電池パック2の充電終了を待たずに定電流充電の途中で電池パック2の充電を中止した場合であっても、二次電池141,142,143の端子電圧の差を縮小することができる。   Then, by charging the secondary batteries 142 and 143 without discharging the secondary battery 141 that is most deteriorated, the secondary batteries 141 and 142 and 143 can be charged without promoting the deterioration of the secondary battery 141. The difference in terminal voltage can be reduced. In addition, since the difference in the terminal voltages of the secondary batteries 141, 142, and 143 is reduced during the constant current charging, the difference in the terminal voltages of the secondary batteries 141, 142, and 143 at the end of charging is reduced. As a result of the variation in the charging depth of each secondary battery being reduced, the battery capacity of the assembled battery can be effectively utilized. Furthermore, if the secondary batteries 141, 142, and 143 are imbalanced during the constant current charging, the auxiliary charging control unit 215 reduces the difference in the terminal voltages of the secondary batteries 141, 142, and 143. For example, even when the user stops charging the battery pack 2 in the middle of constant current charging without waiting for the charging of the battery pack 2 to end, the terminal voltage difference between the secondary batteries 141, 142, and 143 is reduced. be able to.

以下、最も劣化が進んでいる二次電池を除く他の二次電池のうち少なくとも一部を充電する充電動作を補充電と称する。   Hereinafter, the charging operation for charging at least a part of the other secondary batteries excluding the secondary battery that is most deteriorated will be referred to as auxiliary charging.

次に、補充電制御部215によって、直列用スイッチング素子411,421,431がオン、並列用スイッチング素子412,422,432がオフされて、二次電池141,142,143への定電流充電が再開される(ステップS6、タイミングT3)。   Next, the auxiliary charging control unit 215 turns on the series switching elements 411, 421, 431 and turns off the parallel switching elements 412, 422, 432, and constant current charging to the secondary batteries 141, 142, 143 is performed. The process is resumed (step S6, timing T3).

次に、ステップS4において、補充電制御部215によって、アナログ/デジタル変換器19で得られた端子電圧α1,α2,α3のうち最大の電圧と、終止電圧Vfとが比較される(ステップS4)。そして、端子電圧α1,α2,α3のうち、最大の電圧が終止電圧Vf以下であれば(ステップS4でNO)、不均衡は生じていないと判定されてステップS7へ移行し、端子電圧α1,α2,α3のうち、最大の電圧が終止電圧Vfを超え、例えば4.21V以上であれば(ステップS4でYES、タイミングT4)、不均衡が生じていると判定されてステップS8へ移行する。   Next, in step S4, the auxiliary charging control unit 215 compares the maximum voltage among the terminal voltages α1, α2, and α3 obtained by the analog / digital converter 19 with the end voltage Vf (step S4). . If the maximum voltage among the terminal voltages α1, α2, and α3 is equal to or lower than the end voltage Vf (NO in step S4), it is determined that no imbalance has occurred, and the process proceeds to step S7. If the maximum voltage of α2 and α3 exceeds the end voltage Vf, for example, 4.21 V or more (YES in step S4, timing T4), it is determined that an imbalance has occurred, and the process proceeds to step S8.

次に、ステップS8において、補充電制御部215によって、直列用スイッチング素子411がオフ、並列用スイッチング素子412がオンされて端子電圧α1が終止電圧Vfに達した二次電池141への電流の供給が停止されると共に、直列用スイッチング素子421,431がオン、並列用スイッチング素子422,432がオフされて、端子電圧α2,α3が終止電圧Vfに達するまで二次電池142,143への電流供給が行われ、二次電池142,143が定電流充電される。   Next, in step S8, the auxiliary charging control unit 215 supplies current to the secondary battery 141 in which the series switching element 411 is turned off and the parallel switching element 412 is turned on and the terminal voltage α1 reaches the final voltage Vf. Is stopped, the series switching elements 421 and 431 are turned on, the parallel switching elements 422 and 432 are turned off, and the current supply to the secondary batteries 142 and 143 until the terminal voltages α2 and α3 reach the final voltage Vf. The secondary batteries 142 and 143 are charged with a constant current.

そうすると、最も劣化が進んでいる二次電池141を放電させることなく、二次電池142,143を定電流充電することで、二次電池141の劣化を促進させることなく二次電池141,142,143の端子電圧の差を縮小することができる。また、端子電圧α1,α2,α3のうち、最大の電圧と最小の電圧との差が、予め設定された差分判定値Vdiff以上になっていなくても、定電流充電を終了して定電圧充電に移行する直前に、二次電池141,142,143の端子電圧の差を縮小することができるので、充電終了時における二次電池141,142,143の端子電圧の差が縮小されて各二次電池の充電深度のバラツキが縮小される結果、組電池の電池容量を有効活用することができる。さらに、定電流充電を終了して定電圧充電に移行する直前に、補充電制御部215によって、二次電池141,142,143の端子電圧の差が縮小されるので、例えばユーザが電池パック2の充電終了を待たずに定電圧充電の途中で電池パック2の充電を中止した場合であっても、二次電池141,142,143の端子電圧の差を縮小することができる。   As a result, the secondary batteries 141 and 143 are charged at a constant current without discharging the secondary battery 141 that has been most deteriorated, so that the secondary batteries 141 and 142 and 143 do not accelerate the deterioration of the secondary battery 141. The difference in the terminal voltage of 143 can be reduced. Further, even if the difference between the maximum voltage and the minimum voltage among the terminal voltages α1, α2, and α3 is not equal to or greater than a preset difference determination value Vdiff, the constant current charging is terminated and the constant voltage charging is performed. Since the difference between the terminal voltages of the secondary batteries 141, 142, and 143 can be reduced immediately before the transition to, the difference between the terminal voltages of the secondary batteries 141, 142, and 143 at the end of charging is reduced. As a result of the variation in the charging depth of the secondary battery being reduced, the battery capacity of the assembled battery can be effectively utilized. Furthermore, the difference between the terminal voltages of the secondary batteries 141, 142, and 143 is reduced by the auxiliary charging control unit 215 immediately before the constant current charging is finished and the constant voltage charging is started. Even when the charging of the battery pack 2 is stopped in the middle of constant voltage charging without waiting for the end of charging, the difference in the terminal voltages of the secondary batteries 141, 142, and 143 can be reduced.

次に、ステップS7において、定電流充電部212によって、終止電圧Vfと端子電圧α1,α2,α3とが比較され、端子電圧α1,α2,α3のいずれかが終止電圧Vfに達していなければ(ステップS7でNO)再びステップS1〜S8を繰り返し、端子電圧α1,α2,α3がすべて終止電圧Vf以上であれば定電圧充電に移行するべくステップS9へ移行する。   Next, in step S7, the constant current charging unit 212 compares the termination voltage Vf with the terminal voltages α1, α2, and α3, and if any of the terminal voltages α1, α2, and α3 has not reached the termination voltage Vf ( Step S7: NO) Steps S1 to S8 are repeated again, and if the terminal voltages α1, α2, α3 are all equal to or higher than the end voltage Vf, the flow proceeds to step S9 to shift to constant voltage charging.

次に、ステップS9において、定電圧充電部213によって、充電器3へ、終止電圧Vfに二次電池の数を乗じた電圧を出力すべき旨の要求が行われ、充電制御部31からの制御信号に応じて充電電流供給回路33から終止電圧Vf×3の電圧が出力されて、定電圧充電が開始される(タイミングT5)。   Next, in step S9, the constant voltage charging unit 213 requests the charger 3 to output a voltage obtained by multiplying the final voltage Vf by the number of secondary batteries, and the control from the charging control unit 31 is performed. In response to the signal, a voltage of the final voltage Vf × 3 is output from the charging current supply circuit 33, and constant voltage charging is started (timing T5).

そうすると、組電池14の両端に終止電圧Vf×3の電圧が印加されて、充電電流β1が徐々に低下しつつ組電池14の充電深度γ1が徐々に増大する。このとき、二次電池141,142,143の劣化の度合いが異なり、例えば二次電池141の劣化が最も進んでおり、次いで二次電池142,143の順に劣化が進んでいるとすると、二次電池141の端子電圧α1が最も高くなり、次いで端子電圧α2,α3の順に端子電圧が高くなる結果、再び端子電圧α1,α2,α3の間に差異が生じる。この場合、端子電圧α1,α2,α3の合計電圧は終止電圧Vfと等しいから、例えば二次電池142,143の劣化の程度が同程度であれば、端子電圧α1のみ終止電圧Vfを上回り、端子電圧α2,α3は終止電圧Vfを下回ることとなる。そして、充電が進むにつれて、端子電圧α1,α2,α3の差が増大していく。   Then, the end voltage Vf × 3 is applied to both ends of the assembled battery 14, and the charging depth γ1 of the assembled battery 14 gradually increases while the charging current β1 gradually decreases. At this time, the degree of deterioration of the secondary batteries 141, 142, and 143 is different. For example, if the secondary battery 141 is most deteriorated, and then the secondary batteries 142 and 143 are sequentially deteriorated, the secondary battery 141, 143 is deteriorated. The terminal voltage α1 of the battery 141 becomes the highest, and then the terminal voltage increases in the order of the terminal voltages α2 and α3. As a result, a difference occurs again between the terminal voltages α1, α2 and α3. In this case, since the total voltage of the terminal voltages α1, α2, and α3 is equal to the end voltage Vf, for example, if the degree of deterioration of the secondary batteries 142 and 143 is approximately the same, only the terminal voltage α1 exceeds the end voltage Vf. The voltages α2 and α3 are lower than the end voltage Vf. As the charging progresses, the difference between the terminal voltages α1, α2, and α3 increases.

次に、不均衡検出部214によって、アナログ/デジタル変換器19で得られた端子電圧α1,α2,α3のうち、最大の電圧と最小の電圧との差が、予め設定された差分判定値Vdiffと比較される(ステップS10)。そして、端子電圧α1,α2,α3のうち、最大の電圧と最小の電圧との差が差分判定値Vdiffに満たなければ(ステップS10でNO)、定電圧充電の終了条件を確認するべくステップS11へ移行し、最大の電圧と最小の電圧との差が差分判定値Vdiff以上であれば(ステップS10でYES)、不均衡が生じていると判定されてステップS12へ移行する。   Next, the difference between the maximum voltage and the minimum voltage among the terminal voltages α1, α2, and α3 obtained by the analog / digital converter 19 by the imbalance detection unit 214 is determined as a preset difference determination value Vdiff. (Step S10). If the difference between the maximum voltage and the minimum voltage among the terminal voltages α1, α2, and α3 is less than the difference determination value Vdiff (NO in step S10), step S11 is performed to confirm the constant voltage charging end condition. If the difference between the maximum voltage and the minimum voltage is equal to or greater than the difference determination value Vdiff (YES in step S10), it is determined that an imbalance has occurred, and the process proceeds to step S12.

なお、ステップS10における不均衡の判定処理は、ステップS2の場合と同様に、例えば10秒程度、継続して不均衡が生じていると判定された場合、例えば2秒毎に5回連続して不均衡が生じていると判定された場合に、ステップS12へ移行して補充電処理を行うようにしてもよい。   Note that the imbalance determination process in step S10 is, for example, about 10 seconds, as in step S2, for example, when it is determined that an imbalance has occurred continuously, for example, 5 times every 2 seconds. When it is determined that an imbalance has occurred, the process may proceed to step S12 to perform the auxiliary charging process.

また、ステップS10において、あるいはステップS10とステップS11との間で、ステップS4と同様に、端子電圧α1,α2,α3のうち、最大の電圧が終止電圧Vf以下であれば、不均衡は生じていないと判定してステップS11へ移行し、端子電圧α1,α2,α3のうち、最大の電圧が終止電圧Vfを超え、例えば4.21V以上であれば不均衡が生じていると判定してステップS12へ移行するようにしてもよい。   Further, in step S10 or between step S10 and step S11, as in step S4, if the maximum voltage among the terminal voltages α1, α2, and α3 is equal to or lower than the end voltage Vf, an imbalance has occurred. If not, the process proceeds to step S11, and if the maximum voltage of the terminal voltages α1, α2, α3 exceeds the end voltage Vf, for example, 4.21 V or more, it is determined that an imbalance has occurred. You may make it transfer to S12.

ステップS11では、定電流充電部212によって、アナログ/デジタル変換器19で得られた電流β1と電流値I3とが比較され、電流β1が電流値I3を超えていれば(ステップS11でNO)ステップS9へ戻って定電圧充電が継続される一方、電流β1が電流値I3以下であれば(ステップS11でYES)、定電圧充電を終了して補充電領域へ移行するべくステップS14へ移行する(タイミングT7)。   In step S11, the constant current charging unit 212 compares the current β1 obtained by the analog / digital converter 19 with the current value I3. If the current β1 exceeds the current value I3 (NO in step S11), step S11 is performed. While returning to S9 and constant voltage charging is continued, if the current β1 is equal to or smaller than the current value I3 (YES in step S11), the process proceeds to step S14 to end the constant voltage charging and shift to the auxiliary charging region ( Timing T7).

一方、ステップS12において、補充電制御部215によって、直列用スイッチング素子411がオフ、並列用スイッチング素子412がオンされて端子電圧が終止電圧Vfを超えている二次電池141への電流の供給が停止されると共に、直列用スイッチング素子421,431がオン、並列用スイッチング素子422,432がオフされて、端子電圧が終止電圧Vfに満たない二次電池142,143への電圧供給が行われる。この場合、充電電流供給回路33の出力電圧が終止電圧Vf×3のままであると、二次電池142,143への印加電圧が終止電圧Vfを超えてしまうので、定電圧充電部213によって、充電器3へ、終止電圧Vf×2の電圧を出力すべき旨の要求が行われ、充電制御部31からの制御信号に応じて充電電流供給回路33から終止電圧Vf×2の電圧が出力されて、二次電池142,143への定電圧充電が実行される(タイミングT6)。   On the other hand, in step S12, the auxiliary charging control unit 215 supplies current to the secondary battery 141 in which the series switching element 411 is turned off and the parallel switching element 412 is turned on and the terminal voltage exceeds the final voltage Vf. At the same time, the series switching elements 421 and 431 are turned on and the parallel switching elements 422 and 432 are turned off, so that the voltage is supplied to the secondary batteries 142 and 143 whose terminal voltage is less than the final voltage Vf. In this case, if the output voltage of the charging current supply circuit 33 remains the final voltage Vf × 3, the applied voltage to the secondary batteries 142 and 143 exceeds the final voltage Vf. The charger 3 is requested to output a voltage of the final voltage Vf × 2, and the voltage of the final voltage Vf × 2 is output from the charging current supply circuit 33 in response to a control signal from the charge control unit 31. Thus, constant voltage charging of the secondary batteries 142 and 143 is performed (timing T6).

なお、ステップS12において、充電電流供給回路33からの出力電圧を変更して定電圧充電を行う例に限られず、例えば、組電池14の代わりに図6に示す組電池14aを用いて充電電流供給回路33からの出力電圧を終止電圧Vf×3のまま維持する構成としてもよい。具体的には、図6に示す組電池14aは、スイッチング素子SW1と抵抗R1とが直列に接続されたバイパス回路と二次電池141とが並列に接続された組回路41aと、スイッチング素子SW2と抵抗R2とが直列に接続されたバイパス回路と二次電池142とが並列に接続された組回路42aと、スイッチング素子SW3と抵抗R3とが直列に接続されたバイパス回路と二次電池143とが並列に接続された組回路43aとが直列接続されて構成されている。   In addition, it is not restricted to the example which changes the output voltage from the charging current supply circuit 33 and performs constant voltage charging in step S12, for example, charging current supply is performed using the assembled battery 14a shown in FIG. The output voltage from the circuit 33 may be maintained as the final voltage Vf × 3. Specifically, the assembled battery 14a shown in FIG. 6 includes a bypass circuit in which a switching element SW1 and a resistor R1 are connected in series, a combined circuit 41a in which a secondary battery 141 is connected in parallel, a switching element SW2, A bypass circuit in which a resistor R2 is connected in series and a secondary battery 142 are connected in parallel, and a combined circuit 42a in which a switching element SW3 and a resistor R3 are connected in series and a secondary battery 143 are provided. A combination circuit 43a connected in parallel is connected in series.

そして、補充電制御部215は、端子電圧が終止電圧Vfを超えた二次電池141を含む組回路41aのスイッチング素子SW1をオンさせる共に、二次電池141を含まない組回路42a,43aのスイッチング素子SW2,SW3をオフさせることにより、抵抗R1,二次電池142,143の分圧により、充電電流供給回路33からの出力電圧を終止電圧Vf×3のまま、二次電池142,143にそれぞれ終止電圧Vfを印加するようにしてもよい。この場合、抵抗R1,R2,R3の抵抗値を適宜設定することにより、抵抗R1,R2,R3と直列接続されたスイッチング素子がオンされても、スイッチング素子がオンされた組回路の二次電池に、当該二次電池と並列接続された抵抗の電圧降下により終止電圧Vfを印加させて当該二次電池が放電されて劣化が促進されることを低減することができる。   Then, the auxiliary charging control unit 215 turns on the switching element SW1 of the assembled circuit 41a including the secondary battery 141 whose terminal voltage exceeds the end voltage Vf, and switches the assembled circuits 42a and 43a not including the secondary battery 141. By turning off the elements SW2 and SW3, the output voltage from the charging current supply circuit 33 remains at the final voltage Vf × 3 due to the divided voltage of the resistor R1 and the secondary batteries 142 and 143, respectively, to the secondary batteries 142 and 143, respectively. The end voltage Vf may be applied. In this case, by appropriately setting the resistance values of the resistors R1, R2, and R3, even if the switching device connected in series with the resistors R1, R2, and R3 is turned on, the secondary battery of the assembled circuit in which the switching device is turned on In addition, the termination voltage Vf is applied by a voltage drop of a resistor connected in parallel with the secondary battery, and the secondary battery is discharged and deterioration is accelerated.

また、ステップS12において、微小な電流による定電流充電を行って、二次電池142,143への補充電を実行するようにしてもよい。   In step S12, the secondary batteries 142 and 143 may be charged by constant current charging with a minute current.

次に、ステップS13では、定電流充電部212によって、アナログ/デジタル変換器19で得られた電流β1と電流値I4とが比較され、電流β1が電流値I4を超えていれば(ステップS13でNO)ステップS12へ戻って二次電池142,143の定電圧充電が継続される一方、電流β1が電流値I4以下であれば(ステップS13でYES)、定電圧充電を終了して補充電領域へ移行するべくステップS14へ移行する(タイミングT7)。   Next, in step S13, the constant current charging unit 212 compares the current β1 obtained by the analog / digital converter 19 with the current value I4, and if the current β1 exceeds the current value I4 (in step S13). NO) Returning to step S12, the constant voltage charging of the secondary batteries 142, 143 is continued, while if the current β1 is equal to or less than the current value I4 (YES in step S13), the constant voltage charging is terminated and the auxiliary charging region The process proceeds to step S14 to shift to (timing T7).

ステップS13では、充電されている二次電池は二個だけなので、三個定電圧充電する場合よりも、電流β1が低下する。そこで、電流値I4は、電流値I3よりも小さい値に設定されている。   In step S13, since only two secondary batteries are charged, the current β1 is reduced as compared with the case where three are charged at a constant voltage. Therefore, the current value I4 is set to a value smaller than the current value I3.

ここで、ステップS12では、二次電池142,143の直列回路に終止電圧Vf×2の電圧が印加されているので、二次電池142と二次電池143とで劣化の程度が異なれば、劣化の進んでいる例えば二次電池142の端子電圧α2は終止電圧Vfを超え、二次電池143の端子電圧α3は終止電圧Vfを下回る。そうすると、定電圧充電を終了した時点(タイミングT7)において、二次電池143の端子電圧α3は終止電圧Vfを下回っていることになる。   Here, in step S12, since the voltage of the final voltage Vf × 2 is applied to the series circuit of the secondary batteries 142 and 143, if the degree of deterioration is different between the secondary battery 142 and the secondary battery 143, the battery is deteriorated. For example, the terminal voltage α2 of the secondary battery 142 exceeds the end voltage Vf, and the terminal voltage α3 of the secondary battery 143 is lower than the end voltage Vf. Then, when the constant voltage charging is finished (timing T7), the terminal voltage α3 of the secondary battery 143 is lower than the end voltage Vf.

そこで、ステップS14において、補充電制御部215によって、直列用スイッチング素子411,421がオフ、並列用スイッチング素子412,422がオンされて端子電圧が終止電圧Vfを超えている二次電池141,142への電流の供給が停止されると共に、直列用スイッチング素子431がオン、並列用スイッチング素子432がオフされて、端子電圧が終止電圧Vfに満たない二次電池143への電圧供給が行われる。この場合、充電電流供給回路33の出力電圧が終止電圧Vf×2のままであると、二次電池142,143への印加電圧が終止電圧Vfを超えてしまうので、定電圧充電部213によって、充電器3へ、終止電圧Vfの電圧を出力すべき旨の要求が行われ、充電制御部31からの制御信号に応じて充電電流供給回路33から終止電圧Vfの電圧が出力されて、二次電池143への定電圧充電が実行される。   Therefore, in step S14, the secondary charging batteries 141 and 142 in which the auxiliary switching controller 215 turns off the series switching elements 411 and 421 and turns on the parallel switching elements 412 and 422 and the terminal voltage exceeds the end voltage Vf. Is stopped, the series switching element 431 is turned on, and the parallel switching element 432 is turned off, so that the voltage is supplied to the secondary battery 143 whose terminal voltage is less than the final voltage Vf. In this case, if the output voltage of the charging current supply circuit 33 remains the final voltage Vf × 2, the voltage applied to the secondary batteries 142 and 143 exceeds the final voltage Vf. The charger 3 is requested to output the voltage of the end voltage Vf, and the voltage of the end voltage Vf is output from the charging current supply circuit 33 in response to the control signal from the charge control unit 31, so that the secondary voltage The battery 143 is charged with a constant voltage.

次に、ステップS15では、定電流充電部212によって、アナログ/デジタル変換器19で得られた電流β1と電流値I5とが比較され、電流β1が電流値I5を超えていれば(ステップS15でNO)ステップS14へ戻って二次電池143の定電圧充電が継続される一方、電流β1が電流値I5以下であれば(ステップS15でYES)、充電を終了するべくステップS16へ移行する。ステップS15では、充電されている二次電池は一個だけなので、2個定電圧充電する場合よりも、電流β1が低下する。そこで、電流値I5は、電流値I4よりも小さい値に設定されている。   Next, in step S15, the constant current charging unit 212 compares the current β1 obtained by the analog / digital converter 19 with the current value I5, and if the current β1 exceeds the current value I5 (in step S15). NO) Returning to step S14, the constant voltage charging of the secondary battery 143 is continued. On the other hand, if the current β1 is equal to or less than the current value I5 (YES in step S15), the process proceeds to step S16 to end the charging. In step S15, since only one secondary battery is charged, the current β1 is reduced as compared with the case where two are charged at a constant voltage. Therefore, the current value I5 is set to a value smaller than the current value I4.

次に、ステップS16において、定電圧充電部213によって、充電器3へ充電電流をゼロにすべき要求が出力され、充電制御部31により充電電流供給回路33の出力電流がゼロにされて充電を終了する(タイミングT8)。   Next, in step S16, the constant voltage charging unit 213 outputs a request for making the charging current zero, to the charger 3, and the charging control unit 31 sets the output current of the charging current supply circuit 33 to zero to perform charging. End (timing T8).

以上、ステップS14,S15の処理により、端子電圧α1,α2,α3のうち、最大の電圧と最小の電圧との差が差分判定値Vdiffに満たないためにステップS3やステップS10で二次電池の不均衡が検出されず、ステップS5,S12の補充電が実行されない場合であっても、端子電圧が終止電圧Vfに満たず、従って満充電状態になっていない二次電池のみ、さらに補充電を行うことで、劣化が進んでいる二次電池の劣化を促進することなく各二次電池の端子電圧の差を縮小しつつ、すべての二次電池を満充電状態にすることができるので、組電池の電池容量を有効活用することができる。   As described above, since the difference between the maximum voltage and the minimum voltage among the terminal voltages α1, α2, and α3 is less than the difference determination value Vdiff by the processing in steps S14 and S15, the secondary battery is determined in steps S3 and S10. Even if the imbalance is not detected and the supplementary charging in steps S5 and S12 is not executed, only the secondary battery whose terminal voltage is less than the final voltage Vf and therefore not fully charged is further supplemented. By doing so, all secondary batteries can be fully charged while reducing the terminal voltage difference of each secondary battery without accelerating the deterioration of secondary batteries that have been deteriorated. The battery capacity of the battery can be used effectively.

なお、ステップS14では、ステップS12と同様、充電電流供給回路33からの出力電圧を変更して定電圧充電を行う例に限られず、例えば、組電池14の代わりに図6に示す組電池14aを用いて充電電流供給回路33からの出力電圧を終止電圧Vf×3のまま維持する構成としてもよい。この場合、補充電制御部215は、端子電圧が終止電圧Vfを超えた二次電池141,142を含む組回路41a,42aのスイッチング素子SW1,SW2をオンさせる共に、二次電池141,142を含まない組回路43aのスイッチング素子SW3をオフさせることにより、抵抗R1,R2、二次電池143の分圧により、充電電流供給回路33からの出力電圧を終止電圧Vf×3のまま、二次電池143に終止電圧Vfを印加するようにしてもよい。この場合、抵抗R1,R2,R3の抵抗値を適宜設定することにより、抵抗R1,R2,R3と直列接続されたスイッチング素子がオンされても、スイッチング素子がオンされた組回路の二次電池に終止電圧Vfを印加させて当該二次電池が放電されて劣化が促進されることを低減することができる。また、ステップS14において、微小な電流による定電流充電を行って、二次電池143への補充電を実行するようにしてもよい。   In step S14, as in step S12, the present invention is not limited to the example in which the output voltage from the charging current supply circuit 33 is changed and constant voltage charging is performed. For example, instead of the assembled battery 14, the assembled battery 14a shown in FIG. The output voltage from the charging current supply circuit 33 may be used to maintain the final voltage Vf × 3. In this case, the auxiliary charging control unit 215 turns on the switching elements SW1 and SW2 of the assembled circuits 41a and 42a including the secondary batteries 141 and 142 whose terminal voltage exceeds the end voltage Vf, and turns on the secondary batteries 141 and 142. By turning off the switching element SW3 of the assembly circuit 43a that is not included, the output voltage from the charging current supply circuit 33 remains at the final voltage Vf × 3 by the voltage division of the resistors R1 and R2 and the secondary battery 143, and the secondary battery The end voltage Vf may be applied to 143. In this case, by appropriately setting the resistance values of the resistors R1, R2, and R3, even if the switching device connected in series with the resistors R1, R2, and R3 is turned on, the secondary battery of the assembled circuit in which the switching device is turned on The end voltage Vf can be applied to the secondary battery to discharge the secondary battery and promote deterioration. In step S14, the secondary battery 143 may be supplemented by performing constant current charging with a minute current.

以上、ステップS1〜S16の処理により、最も劣化が進んでいる二次電池141を放電させることなく、二次電池142,143を充電することで、二次電池141の劣化を促進させることなく二次電池141,142,143の端子電圧の差を縮小することができる。また、充電終了時における二次電池141,142,143の端子電圧の差が縮小するので、各二次電池の充電深度のバラツキが縮小される結果、組電池の電池容量を有効活用することができる。   As described above, the secondary battery 142 and 143 are charged without discharging the secondary battery 141 that has been most deteriorated by the processes of steps S1 to S16, and thus the secondary battery 141 is not deteriorated. The terminal voltage difference between the secondary batteries 141, 142, and 143 can be reduced. In addition, since the difference in the terminal voltages of the secondary batteries 141, 142, and 143 at the end of charging is reduced, the variation in the charging depth of each secondary battery is reduced, so that the battery capacity of the assembled battery can be effectively utilized. it can.

なお、タイミングT6以降において、α2が終止電圧Vfに到達した時点でVf×2の充電からα3だけの充電に切り替えて、α3が終止電圧Vfに到達するまで充電を行う方法を用いてもよい。   In addition, after timing T6, when α2 reaches the end voltage Vf, a method of switching from Vf × 2 charging to only α3 charging and charging until α3 reaches the end voltage Vf may be used.

さらに、タイミングT6以降において定電圧充電完了(タイミングT7)までに、α2とα3との差が閾値以上の差になった場合には、その時点で電圧の高いα2の充電を停止し、電圧の低いα3だけの充電に切り替えて、α3が終止電圧Vfに到達するまで充電する方法を用いてもよい。   Furthermore, if the difference between α2 and α3 is equal to or greater than the threshold before completion of constant voltage charging (timing T7) after timing T6, charging of α2 having a high voltage is stopped at that time, and the voltage A method may be used in which charging is switched to low α3 only and charging is performed until α3 reaches the final voltage Vf.

なお、例えばステップS2,S3,S5,S6の処理を行わない構成としてもよく、ステップS4,S8の処理を行わない構成としてもよい。   For example, a configuration in which the processes in steps S2, S3, S5, and S6 are not performed may be performed, and a configuration in which the processes in steps S4 and S8 are not performed may be performed.

また、図7に示すように、例えばステップS2〜S6,S8、S10,S12,S13の処理を実行せず、すなわち定電流充電領域及び定電圧充電領域では補充電を行わず、定電圧充電の終了後に、ステップS14,S15の処理により補充電を行って、各二次電池の端子電圧の差を縮小する構成としてもよい。   Further, as shown in FIG. 7, for example, the processes of steps S2 to S6, S8, S10, S12, and S13 are not executed, that is, the auxiliary charging is not performed in the constant current charging region and the constant voltage charging region, and constant voltage charging is not performed. It is good also as a structure which performs supplementary charge by the process of step S14, S15 after completion | finish, and reduces the terminal voltage difference of each secondary battery.

本発明は、携帯型パーソナルコンピュータやデジタルカメラ等の電子機器、電気自動車やハイブリッドカー等の車両、等の電池搭載装置の電源として用いられる電池パック、及びこのような電池パックを充電する電池システムや充電方法に好適に利用することができる。   The present invention relates to a battery pack used as a power source for a battery-mounted device such as an electronic device such as a portable personal computer or a digital camera, a vehicle such as an electric vehicle or a hybrid car, and a battery system for charging such a battery pack. It can utilize suitably for a charging method.

本発明の実施の一形態に係る充電方法を用いる充電システムの構成の一例を示すブロック図である。It is a block diagram which shows an example of a structure of the charging system using the charging method which concerns on one Embodiment of this invention. 図1に示す組電池の詳細な構成の一例を示す回路図である。It is a circuit diagram which shows an example of a detailed structure of the assembled battery shown in FIG. 本発明の一実施形態に係る充電方法を用いた充電システムの動作の一例を示す説明図である。It is explanatory drawing which shows an example of operation | movement of the charging system using the charging method which concerns on one Embodiment of this invention. 本発明の一実施形態に係る充電方法を用いた充電システムの動作の一例を示すフローチャートである。It is a flowchart which shows an example of operation | movement of the charging system using the charging method which concerns on one Embodiment of this invention. 本発明の一実施形態に係る充電方法を用いた充電システムの動作の一例を示すフローチャートである。It is a flowchart which shows an example of operation | movement of the charging system using the charging method which concerns on one Embodiment of this invention. 図1に示す組電池の他の一例を示す回路図である。It is a circuit diagram which shows another example of the assembled battery shown in FIG. 本発明の一実施形態に係る充電方法を用いた充電システムの動作の一例を示す説明図である。It is explanatory drawing which shows an example of operation | movement of the charging system using the charging method which concerns on one Embodiment of this invention. 背景技術に係る充電方法を説明するための説明図である。It is explanatory drawing for demonstrating the charging method which concerns on background art.

符号の説明Explanation of symbols

1 充電システム
2 電池パック
3 充電器
14,14a 組電池
16 電流検出抵抗
17 温度センサ
19 アナログ/デジタル変換器
20 電圧検出回路
21 制御部
31 充電制御部
33 充電電流供給回路
41,41a,42,42a,43,43a 組回路
141,142,143 二次電池
211 充放電制御部
212 定電流充電部
213 定電圧充電部
214 不均衡検出部
215 補充電制御部
411,421,431 直列用スイッチング素子
412,422,432 並列用スイッチング素子
T11,T12,T13,T21,T22,T23 端子
V1 閾値電圧
Vdiff 差分判定値
Vf 終止電圧
α1,α2,α3 端子電圧
β1 電流
γ1 充電深度
DESCRIPTION OF SYMBOLS 1 Charging system 2 Battery pack 3 Charger 14, 14a Battery assembly 16 Current detection resistor 17 Temperature sensor 19 Analog / digital converter 20 Voltage detection circuit 21 Control unit 31 Charge control unit 33 Charging current supply circuit 41, 41a, 42, 42a , 43, 43a Assembly circuit 141, 142, 143 Secondary battery 211 Charging / discharging control unit 212 Constant current charging unit 213 Constant voltage charging unit 214 Unbalance detection unit 215 Supplementary charging control unit 411, 421, 431 Series switching element 412 422, 432 Parallel switching element T11, T12, T13, T21, T22, T23 Terminal V1 Threshold voltage Vdiff Difference judgment value Vf End voltage α1, α2, α3 Terminal voltage β1 Current γ1 Charging depth

Claims (10)

複数の二次電池が直列接続された組電池と、
前記組電池に、充電用の電流を供給する充電電流供給部と、
前記複数の二次電池の端子電圧を、それぞれ検出する電圧検出部と、
前記電圧検出部により検出された前記複数の二次電池の端子電圧が、予め設定された所定の判定条件を満たした場合に前記複数の二次電池における充電状態に不均衡が生じていると判定する不均衡検出部と、
前記不均衡検出部によって前記不均衡が生じていると判定された場合、前記複数の二次電池のうち、前記電圧検出部により検出された端子電圧が最大の二次電池への、前記充電電流供給部による電流の供給を停止させると共に、前記電圧検出部により検出された端子電圧が最大の二次電池を除く他の二次電池のうち少なくとも一つへの、前記充電電流供給部による電流の供給を行わせる補充電制御部と
を備えることを特徴とする充電システム。
An assembled battery in which a plurality of secondary batteries are connected in series;
A charging current supply unit for supplying a charging current to the assembled battery;
A voltage detector for detecting terminal voltages of the plurality of secondary batteries, respectively;
When the terminal voltages of the plurality of secondary batteries detected by the voltage detection unit satisfy a predetermined determination condition set in advance, it is determined that there is an imbalance in the state of charge in the plurality of secondary batteries. An imbalance detector to
When it is determined by the imbalance detection unit that the imbalance has occurred, among the plurality of secondary batteries, the charging current to the secondary battery with the maximum terminal voltage detected by the voltage detection unit The supply of current by the supply unit is stopped, and the current supplied by the charging current supply unit to at least one of the other secondary batteries excluding the secondary battery having the maximum terminal voltage detected by the voltage detection unit. A charging system comprising: an auxiliary charging control unit that performs supply.
前記充電電流供給部から、予め設定された一定の電流を前記組電池に供給させることにより、定電流充電を実行させる定電流充電部をさらに備え、
前記不均衡検出部は、前記定電流充電の実行期間中に、前記電圧検出部により検出される端子電圧の最大値と最小値との差が、予め設定された差分判定値以上となる条件を、前記判定条件として前記判定を行い、
前記補充電制御部は、前記定電流充電の実行期間中に、前記不均衡検出部によって前記不均衡が生じていると判定された場合、前記端子電圧が最大の二次電池への、前記充電電流供給部による電流の供給を停止させると共に、当該端子電圧が最大の二次電池を除く他の二次電池へ、前記複数の二次電池の端子電圧が一致するまで前記充電電流供給部により電流を供給させること
を特徴とする請求項1記載の充電システム。
The charging current supply unit further includes a constant current charging unit that performs constant current charging by supplying a predetermined constant current to the assembled battery.
The imbalance detection unit has a condition that a difference between a maximum value and a minimum value of the terminal voltage detected by the voltage detection unit is equal to or greater than a preset difference determination value during the constant current charging execution period. , Performing the determination as the determination condition,
The auxiliary charge control unit is configured to charge the secondary battery with the maximum terminal voltage when the imbalance detection unit determines that the imbalance has occurred during the constant current charging period. The supply of current by the current supply unit is stopped, and current is supplied by the charging current supply unit to the other secondary batteries except the secondary battery having the maximum terminal voltage until the terminal voltages of the plurality of secondary batteries match. The charging system according to claim 1, wherein the charging system is supplied.
前記不均衡検出部は、前記定電流充電の実行期間中に、前記電圧検出部により検出される端子電圧の最大値と最小値との差が、予め設定された差分判定値以上となった場合であって、さらに前記端子電圧の最大値が予め設定された閾値電圧以上となる条件を、前記判定条件として前記判定を行うこと
を特徴とする請求項2記載の充電システム。
When the difference between the maximum value and the minimum value of the terminal voltage detected by the voltage detection unit is equal to or larger than a preset difference determination value during the constant current charging execution period The charging system according to claim 2, wherein the determination is further performed with the condition that the maximum value of the terminal voltage is equal to or higher than a preset threshold voltage as the determination condition.
前記充電電流供給部から、予め設定された一定の電流を前記組電池に供給させることにより、定電流充電を実行させる定電流充電部をさらに備え、
前記不均衡検出部は、前記定電流充電の実行期間中に、前記電圧検出部により検出される端子電圧の最大値が、前記二次電池一つあたりの充電電圧の目標値である目標電圧値を超える条件を、前記判定条件として前記判定を行い、
前記補充電制御部は、前記定電流充電の実行期間中に、前記不均衡検出部によって前記不均衡が生じていると判定された場合、前記端子電圧が最大の二次電池への、前記充電電流供給部による電流の供給を停止させると共に、当該端子電圧が最大の二次電池を除く他の二次電池へ、当該他の二次電池の端子電圧が前記目標電圧値に達するまで前記充電電流供給部により電流を供給させること
を特徴とする請求項1記載の充電システム。
The charging current supply unit further includes a constant current charging unit that performs constant current charging by supplying a predetermined constant current to the assembled battery.
The imbalance detection unit is a target voltage value in which the maximum value of the terminal voltage detected by the voltage detection unit during the execution of the constant current charging is a target value of the charging voltage per secondary battery. The determination is performed with the condition exceeding
The auxiliary charge control unit is configured to charge the secondary battery with the maximum terminal voltage when the imbalance detection unit determines that the imbalance has occurred during the constant current charging period. While stopping the supply of current by the current supply unit, to the other secondary battery except the secondary battery having the maximum terminal voltage, the charging current until the terminal voltage of the other secondary battery reaches the target voltage value The charging system according to claim 1, wherein a current is supplied by the supply unit.
前記各二次電池に、予め設定された一定の終止電圧が印加されるように、前記充電電流供給部によって前記充電用の電流を供給させることにより定電圧充電を実行する定電圧充電部をさらに備え、
前記不均衡検出部は、前記定電圧充電の実行期間中に、前記電圧検出部により検出される端子電圧の最大値と最小値との差が、予め設定された差分判定値以上となる条件を、前記判定条件として前記判定を行い、
前記補充電制御部は、前記定電圧充電の実行期間中に、前記不均衡検出部によって前記不均衡が生じていると判定された場合、前記複数の二次電池のうち、前記電圧検出部により検出された端子電圧が前記終止電圧を超えている二次電池への、前記充電電流供給部による電流の供給を停止させると共に、前記電圧検出部により検出された端子電圧が前記終止電圧以下である二次電池への、前記定電圧充電部による定電圧充電を継続させること
を特徴とする請求項1〜4のいずれか1項に記載の充電システム。
A constant voltage charging unit that performs constant voltage charging by supplying the charging current by the charging current supply unit such that a predetermined end voltage set in advance is applied to each secondary battery; Prepared,
The imbalance detection unit has a condition that a difference between a maximum value and a minimum value of the terminal voltage detected by the voltage detection unit is equal to or greater than a preset difference determination value during the constant voltage charging execution period. , Performing the determination as the determination condition,
When the imbalance detection unit determines that the imbalance has occurred during the constant voltage charging execution period, the auxiliary charge control unit uses the voltage detection unit among the plurality of secondary batteries. The supply of current by the charging current supply unit to the secondary battery whose detected terminal voltage exceeds the end voltage is stopped, and the terminal voltage detected by the voltage detection unit is equal to or lower than the end voltage. The charging system according to any one of claims 1 to 4, wherein the constant voltage charging by the constant voltage charging unit to the secondary battery is continued.
前記各二次電池に、それぞれ予め設定された一定の終止電圧が印加されるように、前記充電電流供給部によって前記充電用の電流を供給させることにより定電圧充電を実行する定電圧充電部をさらに備え、
前記不均衡検出部は、前記定電圧充電の実行期間中に、前記電圧検出部により検出される端子電圧の最大値が、前記二次電池一つあたりの充電電圧の目標値である目標電圧値を超える条件を、前記判定条件として前記判定を行い、
前記補充電制御部は、前記定電圧充電の実行期間中に、前記不均衡検出部によって前記不均衡が生じていると判定された場合、前記複数の二次電池のうち、前記電圧検出部により検出された端子電圧が前記終止電圧を超えている二次電池への、前記充電電流供給部による電流の供給を停止させると共に、前記電圧検出部により検出された端子電圧が前記終止電圧以下である二次電池への、前記定電圧充電部による定電圧充電を継続させること
を特徴とする請求項1〜4のいずれか1項に記載の充電システム。
A constant voltage charging unit that performs constant voltage charging by causing the charging current supply unit to supply the charging current so that a predetermined end voltage set in advance is applied to each of the secondary batteries. In addition,
The imbalance detection unit is a target voltage value in which the maximum value of the terminal voltage detected by the voltage detection unit during the execution of the constant voltage charging is a target value of the charging voltage per secondary battery. The determination is performed with the condition exceeding
When the imbalance detection unit determines that the imbalance has occurred during the constant voltage charging execution period, the auxiliary charge control unit uses the voltage detection unit among the plurality of secondary batteries. The supply of current by the charging current supply unit to the secondary battery whose detected terminal voltage exceeds the end voltage is stopped, and the terminal voltage detected by the voltage detection unit is equal to or lower than the end voltage. The charging system according to any one of claims 1 to 4, wherein the constant voltage charging by the constant voltage charging unit to the secondary battery is continued.
前記組電池に流れる電流を検出する電流検出部をさらに備え、
前記定電圧充電部は、前記電流検出部により検出された電流が、予め設定された満充電判定電流以下になった場合、前記定電圧充電部による定電圧充電を停止させ、
前記補充電制御部は、さらに、前記定電圧充電が停止された後、前記複数の二次電池のうち前記電圧検出部により検出された端子電圧が前記終止電圧に満たない二次電池へ、前記充電電流供給部によって、前記充電用の電流を供給させること
を特徴とする請求項5又は6記載の充電システム。
A current detection unit for detecting a current flowing in the assembled battery;
The constant voltage charging unit, when the current detected by the current detection unit is equal to or less than a preset full charge determination current, stops the constant voltage charging by the constant voltage charging unit,
The auxiliary charge control unit is further configured such that after the constant voltage charging is stopped, a terminal voltage detected by the voltage detection unit among the plurality of secondary batteries is less than the end voltage, The charging system according to claim 5, wherein the charging current is supplied by a charging current supply unit.
前記不均衡検出部は、前記判定条件が、予め設定された期間、継続して満たされた場合に前記複数の二次電池における充電状態に不均衡が生じていると判定すること
を特徴とする請求項1〜7のいずれか1項に記載の充電システム。
The imbalance detection unit determines that an imbalance has occurred in the state of charge in the plurality of secondary batteries when the determination condition is continuously satisfied for a preset period. The charging system according to any one of claims 1 to 7.
複数の二次電池が直列接続された組電池と、
前記組電池を充電するための電流を受電する接続端子と、
前記接続端子により受電された電流を前記複数の二次電池に供給することにより充電する制御部と、
前記複数の二次電池の端子電圧を、それぞれ検出する電圧検出部と、
前記電圧検出部により検出された前記複数の二次電池の端子電圧が、予め設定された所定の判定条件を満たした場合に前記複数の二次電池における充電状態に不均衡が生じていると判定する不均衡検出部と、
前記不均衡検出部によって前記不均衡が生じていると判定された場合、前記複数の二次電池のうち、前記電圧検出部により検出された端子電圧が最大の二次電池への、前記充電制御部による電流の供給を停止させると共に、前記電圧検出部により検出された端子電圧が最大の二次電池を除く他の二次電池のうち少なくとも一つへの、前記制御部による電流の供給を行わせる補充電制御部と
を備えることを特徴とする電池パック。
An assembled battery in which a plurality of secondary batteries are connected in series;
A connection terminal for receiving a current for charging the assembled battery;
A control unit for charging by supplying the current received by the connection terminal to the plurality of secondary batteries; and
A voltage detector for detecting terminal voltages of the plurality of secondary batteries, respectively;
When the terminal voltages of the plurality of secondary batteries detected by the voltage detection unit satisfy a predetermined determination condition set in advance, it is determined that there is an imbalance in the state of charge in the plurality of secondary batteries. An imbalance detector to
When it is determined by the imbalance detection unit that the imbalance has occurred, among the plurality of secondary batteries, the charge control to the secondary battery having the maximum terminal voltage detected by the voltage detection unit And the controller supplies the current to at least one of the other secondary batteries excluding the secondary battery having the maximum terminal voltage detected by the voltage detector. A battery pack, comprising: an auxiliary charge control unit.
複数の二次電池が直列接続された組電池に、充電用の電流を供給して充電する充電工程と、
前記複数の二次電池の端子電圧を、それぞれ検出する電圧検出工程と、
前記複数の二次電池の端子電圧が、予め設定された所定の判定条件を満たした場合に前記複数の二次電池における充電状態に不均衡が生じていると判定する不均衡検出工程と、
前記不均衡検出工程において前記不均衡が生じていると判定された場合、前記複数の二次電池のうち、前記電圧検出工程において検出された端子電圧が最大の二次電池への、前記充電用の電流の供給を停止させると共に、前記電圧検出工程において検出された端子電圧が最大の二次電池を除く他の二次電池のうち少なくとも一つへ、前記充電用の電流を供給する補充電工程と
を備えることを特徴とする充電方法。
A charging step of supplying a charging current to a battery pack in which a plurality of secondary batteries are connected in series to charge the battery;
A voltage detection step of detecting terminal voltages of the plurality of secondary batteries,
An imbalance detection step of determining that an imbalance has occurred in the state of charge in the plurality of secondary batteries when the terminal voltages of the plurality of secondary batteries satisfy a predetermined determination condition set in advance;
When it is determined in the imbalance detection step that the imbalance has occurred, among the plurality of secondary batteries, the secondary battery having the maximum terminal voltage detected in the voltage detection step is used for charging. And the auxiliary charging step of supplying the charging current to at least one of the other secondary batteries excluding the secondary battery having the maximum terminal voltage detected in the voltage detecting step. A charging method comprising: and.
JP2006303022A 2006-11-08 2006-11-08 Charging system, battery pack, and charging method thereof Expired - Fee Related JP5008950B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006303022A JP5008950B2 (en) 2006-11-08 2006-11-08 Charging system, battery pack, and charging method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006303022A JP5008950B2 (en) 2006-11-08 2006-11-08 Charging system, battery pack, and charging method thereof

Publications (2)

Publication Number Publication Date
JP2008125158A true JP2008125158A (en) 2008-05-29
JP5008950B2 JP5008950B2 (en) 2012-08-22

Family

ID=39509372

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006303022A Expired - Fee Related JP5008950B2 (en) 2006-11-08 2006-11-08 Charging system, battery pack, and charging method thereof

Country Status (1)

Country Link
JP (1) JP5008950B2 (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009273362A (en) * 2007-03-07 2009-11-19 O2 Micro Inc Battery managing system having controllable adaptor output
JP2009295300A (en) * 2008-06-02 2009-12-17 Panasonic Corp Imbalance determination circuit, power supply device, and imbalance determination method
JP2011242707A (en) * 2010-05-21 2011-12-01 Konica Minolta Medical & Graphic Inc Radiation image imaging device, radiation image imaging system and charging method of radiation image imaging device
CN102308429A (en) * 2009-02-06 2012-01-04 罗伯特·博世有限公司 More readily available traction battery
CN102939684A (en) * 2010-04-16 2013-02-20 Sb锂摩托有限公司 Cell Balanced Batteries
JP2013150440A (en) * 2012-01-19 2013-08-01 Sumitomo Electric Ind Ltd Charging device and power supply device
JP2013172551A (en) * 2012-02-21 2013-09-02 Ntt Facilities Inc Battery pack charge system and battery pack charge method
JP2014500695A (en) * 2010-09-20 2014-01-09 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Method for transferring energy between at least two energy store cells in a controllable energy store
KR20140084264A (en) * 2011-10-26 2014-07-04 르노 에스.아.에스. Method for balancing the charge and discharge level of a battery by switching its blocks of cells
US8912757B2 (en) 2009-02-06 2014-12-16 Robert Bosch Gmbh Traction battery with increased reliability
JPWO2013008408A1 (en) * 2011-07-08 2015-02-23 Necエナジーデバイス株式会社 Charging control system, battery pack and charging method
JP2018078783A (en) * 2016-11-08 2018-05-17 磐石電池股▲分▼有限公司 Control device and control method for equally charging and discharging battery units
JP2019030214A (en) * 2017-07-26 2019-02-21 東泰高科装備科技有限公司Dongtai Hi−Tech Equipment Technology Co., Ltd Method and device for equalizing storage batteries of photovoltaic power generation and storage system and the photovoltaic power generation and storage system
TWI661650B (en) * 2018-03-23 2019-06-01 加百裕工業股份有限公司 Parallel battery system and method
CN110620406A (en) * 2018-06-18 2019-12-27 Oppo广东移动通信有限公司 Quick charging method and device for battery, equipment to be charged and charging system
JP2020171165A (en) * 2019-04-04 2020-10-15 矢崎総業株式会社 Battery control unit and battery system
JP2020171164A (en) * 2019-04-04 2020-10-15 矢崎総業株式会社 Battery control unit and battery system
JP2021044918A (en) * 2019-09-10 2021-03-18 矢崎総業株式会社 Battery control unit and cell system
JP2021125901A (en) * 2020-01-31 2021-08-30 株式会社豊田自動織機 Rechargeable battery system and industrial vehicle
JP2021151147A (en) * 2020-03-23 2021-09-27 古河電池株式会社 Secondary battery module cell balance control device and control method
CN116667472A (en) * 2022-12-06 2023-08-29 荣耀终端有限公司 Charging method and device
CN116760156A (en) * 2023-08-22 2023-09-15 深圳海辰储能控制技术有限公司 Electric quantity balancing method, device, computer equipment and storage medium
CN116834608A (en) * 2023-07-04 2023-10-03 广东鸿昊升能源科技有限公司 Battery charge and discharge control method, system, computer equipment and storage medium

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05111177A (en) * 1991-10-17 1993-04-30 Sony Corp Overcharge/overdischarge preventive circuit for secondary battery
JPH08115748A (en) * 1994-10-17 1996-05-07 Yamaha Motor Co Ltd Method and device for charging secondary battery
JP2003087987A (en) * 2001-09-13 2003-03-20 Mitsubishi Heavy Ind Ltd Charging and discharging circuit for group of series- connected batteries
JP2005278244A (en) * 2004-03-23 2005-10-06 Ricoh Co Ltd Parallel monitor circuit and semiconductor device using the same
JP2006074839A (en) * 2004-08-31 2006-03-16 Fuji Heavy Ind Ltd Voltage equalization device for storage element
JP2006166615A (en) * 2004-12-08 2006-06-22 Fuji Heavy Ind Ltd Voltage equalization control system for power storage devices

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05111177A (en) * 1991-10-17 1993-04-30 Sony Corp Overcharge/overdischarge preventive circuit for secondary battery
JPH08115748A (en) * 1994-10-17 1996-05-07 Yamaha Motor Co Ltd Method and device for charging secondary battery
JP2003087987A (en) * 2001-09-13 2003-03-20 Mitsubishi Heavy Ind Ltd Charging and discharging circuit for group of series- connected batteries
JP2005278244A (en) * 2004-03-23 2005-10-06 Ricoh Co Ltd Parallel monitor circuit and semiconductor device using the same
JP2006074839A (en) * 2004-08-31 2006-03-16 Fuji Heavy Ind Ltd Voltage equalization device for storage element
JP2006166615A (en) * 2004-12-08 2006-06-22 Fuji Heavy Ind Ltd Voltage equalization control system for power storage devices

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009273362A (en) * 2007-03-07 2009-11-19 O2 Micro Inc Battery managing system having controllable adaptor output
JP2009295300A (en) * 2008-06-02 2009-12-17 Panasonic Corp Imbalance determination circuit, power supply device, and imbalance determination method
US9041341B2 (en) 2009-02-06 2015-05-26 Robert Bosch Gmbh More readily available traction battery
US8912757B2 (en) 2009-02-06 2014-12-16 Robert Bosch Gmbh Traction battery with increased reliability
CN102308430B (en) * 2009-02-06 2015-07-01 罗伯特·博世有限公司 Traction Batteries with Higher Reliability
CN102308429A (en) * 2009-02-06 2012-01-04 罗伯特·博世有限公司 More readily available traction battery
CN102939684A (en) * 2010-04-16 2013-02-20 Sb锂摩托有限公司 Cell Balanced Batteries
JP2013526243A (en) * 2010-04-16 2013-06-20 エス・ビー リモーティブ カンパニー リミテッド Battery having cell balancing function
US10063082B2 (en) 2010-04-16 2018-08-28 Samsung Sdi Co., Ltd. Battery with cell balancing
CN106941197A (en) * 2010-04-16 2017-07-11 罗伯特·博世有限公司 Unit battery in a balanced way
JP2011242707A (en) * 2010-05-21 2011-12-01 Konica Minolta Medical & Graphic Inc Radiation image imaging device, radiation image imaging system and charging method of radiation image imaging device
US9035612B2 (en) 2010-09-20 2015-05-19 Robert Bosch Gmbh Method for transferring energy between at least two energy storage cells in a controllable energy store
JP2014500695A (en) * 2010-09-20 2014-01-09 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Method for transferring energy between at least two energy store cells in a controllable energy store
JPWO2013008408A1 (en) * 2011-07-08 2015-02-23 Necエナジーデバイス株式会社 Charging control system, battery pack and charging method
KR101977778B1 (en) 2011-10-26 2019-05-13 르노 에스.아.에스. Method for balancing the charge and discharge level of a battery by switching its blocks of cells
JP2014535255A (en) * 2011-10-26 2014-12-25 ルノー エス.ア.エス. Method for balancing battery charge and discharge levels by switching battery cell blocks
CN104221244A (en) * 2011-10-26 2014-12-17 雷诺两合公司 Method of balancing charge and discharge levels of a battery by switching blocks of cells of the battery
KR20140084264A (en) * 2011-10-26 2014-07-04 르노 에스.아.에스. Method for balancing the charge and discharge level of a battery by switching its blocks of cells
JP2013150440A (en) * 2012-01-19 2013-08-01 Sumitomo Electric Ind Ltd Charging device and power supply device
JP2013172551A (en) * 2012-02-21 2013-09-02 Ntt Facilities Inc Battery pack charge system and battery pack charge method
JP2018078783A (en) * 2016-11-08 2018-05-17 磐石電池股▲分▼有限公司 Control device and control method for equally charging and discharging battery units
JP2019030214A (en) * 2017-07-26 2019-02-21 東泰高科装備科技有限公司Dongtai Hi−Tech Equipment Technology Co., Ltd Method and device for equalizing storage batteries of photovoltaic power generation and storage system and the photovoltaic power generation and storage system
TWI661650B (en) * 2018-03-23 2019-06-01 加百裕工業股份有限公司 Parallel battery system and method
CN110620406A (en) * 2018-06-18 2019-12-27 Oppo广东移动通信有限公司 Quick charging method and device for battery, equipment to be charged and charging system
US11277012B2 (en) 2019-04-04 2022-03-15 Yazaki Corporation Battery control unit and battery system
JP2020171165A (en) * 2019-04-04 2020-10-15 矢崎総業株式会社 Battery control unit and battery system
JP2020171164A (en) * 2019-04-04 2020-10-15 矢崎総業株式会社 Battery control unit and battery system
US11539222B2 (en) 2019-04-04 2022-12-27 Yazaki Corporation Battery control unit and battery system
JP7096193B2 (en) 2019-04-04 2022-07-05 矢崎総業株式会社 Battery control unit and battery system
JP2021044918A (en) * 2019-09-10 2021-03-18 矢崎総業株式会社 Battery control unit and cell system
JP7100002B2 (en) 2019-09-10 2022-07-12 矢崎総業株式会社 Battery control unit and battery system
US11469601B2 (en) 2019-09-10 2022-10-11 Yazaki Corporation Battery control unit and battery system
JP2021125901A (en) * 2020-01-31 2021-08-30 株式会社豊田自動織機 Rechargeable battery system and industrial vehicle
JP7318548B2 (en) 2020-01-31 2023-08-01 株式会社豊田自動織機 Secondary battery system and industrial vehicle
JP2021151147A (en) * 2020-03-23 2021-09-27 古河電池株式会社 Secondary battery module cell balance control device and control method
JP7326659B2 (en) 2020-03-23 2023-08-16 古河電池株式会社 SECONDARY BATTERY MODULE CELL BALANCE CONTROL DEVICE AND CONTROL METHOD
CN116667472A (en) * 2022-12-06 2023-08-29 荣耀终端有限公司 Charging method and device
CN116667472B (en) * 2022-12-06 2023-11-24 荣耀终端有限公司 Charging method and device
CN116834608A (en) * 2023-07-04 2023-10-03 广东鸿昊升能源科技有限公司 Battery charge and discharge control method, system, computer equipment and storage medium
CN116834608B (en) * 2023-07-04 2024-03-08 广东鸿昊升能源科技有限公司 Battery charge and discharge control method, system, computer equipment and storage medium
CN116760156A (en) * 2023-08-22 2023-09-15 深圳海辰储能控制技术有限公司 Electric quantity balancing method, device, computer equipment and storage medium

Also Published As

Publication number Publication date
JP5008950B2 (en) 2012-08-22

Similar Documents

Publication Publication Date Title
JP5008950B2 (en) Charging system, battery pack, and charging method thereof
JP5091473B2 (en) Battery pack control method, battery pack control circuit, charging circuit including the battery pack, and battery pack
JP2008154317A5 (en)
KR100884842B1 (en) Charge control semiconductor integrated circuit, charging device using the charge control semiconductor integrated circuit, and secondary battery connection detection method
US8035354B2 (en) Battery full-charge detection for charge-and-play circuits
JP4533328B2 (en) CHARGE CONTROL SEMICONDUCTOR INTEGRATED CIRCUIT, CHARGING DEVICE USING THE CHARGE CONTROL SEMICONDUCTOR INTEGRATED CIRCUIT, AND SECONDARY BATTERY CONNECTION DETECTION METHOD
JP4967162B2 (en) Secondary battery pack
EP2690743B1 (en) Energy storage system and rechargeable battery control method
JP2009225632A (en) Charging control circuit, battery pack, and charging system
US11453305B2 (en) Vehicle charge system and charge control method
JP7240994B2 (en) Battery pack and charging system
JP6824295B2 (en) Electrical equipment
JPWO2014061153A1 (en) Battery monitoring device
JP2003087990A (en) Rechargeable battery charging circuit
JP2008182809A (en) Battery circuit, battery pack, and battery system
JP2009232659A (en) Charge-discharge control method and charge-discharge control device of battery
JP5165405B2 (en) Charge control circuit, battery pack, and charging system
CN112290608A (en) Power supply control method
JP7268101B2 (en) Charging system and charger for reducing inrush current
JP4618024B2 (en) Failure detection device for battery abnormality detection circuit
US11110817B2 (en) Equalization control device and in-vehicle power supply device
CN115701312A (en) Storage battery control device
JP2001333542A (en) Charging device
WO2015141003A1 (en) Secondary battery charging system and secondary battery charging method
JP7412993B2 (en) Battery pack, control method and program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100921

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110719

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120522

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120530

R150 Certificate of patent or registration of utility model

Ref document number: 5008950

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150608

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees