JP2008125130A - Surface acoustic wave device and its manufacturing method - Google Patents
Surface acoustic wave device and its manufacturing method Download PDFInfo
- Publication number
- JP2008125130A JP2008125130A JP2008029469A JP2008029469A JP2008125130A JP 2008125130 A JP2008125130 A JP 2008125130A JP 2008029469 A JP2008029469 A JP 2008029469A JP 2008029469 A JP2008029469 A JP 2008029469A JP 2008125130 A JP2008125130 A JP 2008125130A
- Authority
- JP
- Japan
- Prior art keywords
- film
- idt
- sio
- tantalum
- litao
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000010897 surface acoustic wave method Methods 0.000 title claims abstract description 44
- 238000004519 manufacturing process Methods 0.000 title claims description 8
- 229910052715 tantalum Inorganic materials 0.000 claims abstract description 68
- 239000000758 substrate Substances 0.000 claims abstract description 67
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 claims abstract description 67
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 71
- 229910052751 metal Inorganic materials 0.000 claims description 10
- 239000002184 metal Substances 0.000 claims description 10
- 238000000034 method Methods 0.000 claims description 7
- 230000008878 coupling Effects 0.000 abstract description 20
- 238000010168 coupling process Methods 0.000 abstract description 20
- 238000005859 coupling reaction Methods 0.000 abstract description 20
- 239000010408 film Substances 0.000 description 137
- 239000010410 layer Substances 0.000 description 14
- 230000015572 biosynthetic process Effects 0.000 description 5
- 238000013016 damping Methods 0.000 description 5
- 229910052782 aluminium Inorganic materials 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000001878 scanning electron micrograph Methods 0.000 description 3
- 229910000838 Al alloy Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000001902 propagating effect Effects 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 239000010953 base metal Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000010329 laser etching Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 238000000992 sputter etching Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 150000003481 tantalum Chemical class 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
Landscapes
- Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)
Abstract
Description
本発明は、例えば表面波フィルタなどに用いられる表面波装置に関し、より詳細には、LiTaO3基板を用いた表面波装置に関する。 The present invention relates to a surface acoustic wave device used for, for example, a surface acoustic wave filter, and more particularly to a surface acoustic wave device using a LiTaO 3 substrate.
従来、帯域フィルタとして、40°〜42°回転Y板X伝搬LiTaO3基板を用いた表面波装置が知られている(例えば、下記の非特許文献1)。RF帯の帯域フィルタでは、上記40°〜42°回転Y板X伝搬LiTaO3基板上に、波長λで規格化された膜厚H/λが0.08〜0.10の厚みのAl膜によりIDTが形成されていた。 Conventionally, a surface wave device using a 40 ° to 42 ° rotated Y-plate X-propagating LiTaO 3 substrate as a bandpass filter is known (for example, Non-Patent Document 1 below). In the RF bandpass filter, an Al film having a thickness H / λ normalized by the wavelength λ of 0.08 to 0.10 is formed on the 40 ° to 42 ° rotated Y-plate X-propagating LiTaO 3 substrate. IDT was formed.
上記のように、40°〜42°回転Y板X伝搬LiTaO3基板を用いた従来の表面波装置では、周波数温度特性TCFが−33ppm/℃と比較的大きいため、より一層温度特性が良好である仕様を十分に満たすことができなかった。なお、従来、表面波装置の温度特性TCFを改善する方法として、LiTaO3基板上にAlからなるIDTを形成した後に、SiO2層を形成する方法が知られている(下記の特許文献1)。
しかしながら、AlからなるIDTを用いた共振子やフィルタを形成する場合、大きな電気機械結合係数Ksawや反射係数を得るには、後述の図4や図12に示すように、IDTの電極膜厚H/λ(Hは膜厚、λは表面波の波長)は、0.08〜0.10とかなり厚くしなければならない。このように、AlからなるIDTがかなり厚くされているため、図13(a)に示されているIDTが形成されている部分において、周波数温度特性を改善するためにSiO2膜がその上に形成されると、図13(b),(c)に示すように、SiO2膜において大きな段差が生じ、SiO2膜にクラックが生じることがあった。そのため、クラックの発生により、弾性表面波フィルタのフィルタ特性が悪化しがちであった。 However, when forming a resonator or a filter using an IDT made of Al, in order to obtain a large electromechanical coupling coefficient K saw or a reflection coefficient, as shown in FIGS. H / λ (H is the film thickness, and λ is the wavelength of the surface wave) must be considerably thick as 0.08 to 0.10. Since the IDT composed of Al is considerably thicker in the portion where the IDT which is shown in FIG. 13 (a) is formed, on the SiO 2 film that in order to improve the frequency temperature characteristic Once formed, as shown in FIG. 13 (b), (c) , a large step in the SiO 2 film occurs, there is a crack occurs in the SiO 2 film. Therefore, the generation of cracks tends to deteriorate the filter characteristics of the surface acoustic wave filter.
加えて、AlからなるIDTの電極膜厚が厚いため、SiO2膜の形成によるIDTの電極表面の凹凸を被覆する効果が十分でなく、それによって、温度特性が十分に改善されないことがあった。 In addition, since the electrode film thickness of the IDT made of Al is thick, the effect of covering the unevenness of the electrode surface of the IDT by the formation of the SiO 2 film is not sufficient, and thereby the temperature characteristics may not be sufficiently improved. .
本発明の目的は、上述した従来技術の現状に鑑み、回転Y板X伝搬のLiTaO3基板を用いた弾性表面波装置において、SiO2膜の形成により周波数温度特性を改善し得るだけでなく、IDTの電極膜厚を薄くすることにより、SiO2膜におけるクラックを防止することができると共に減衰定数も大幅に低減でき、従って、目的とするフィルタ特性などの電気的特性を得ることができ、かつIDTにおける電気機械結合係数及び反射係数が十分な大きさとされる、弾性表面波装置及びその製造方法を提供することにある The object of the present invention is not only to improve the frequency-temperature characteristics by forming a SiO 2 film in a surface acoustic wave device using a LiTaO 3 substrate with a propagating rotating Y plate X in view of the current state of the prior art described above, By reducing the electrode film thickness of the IDT, cracks in the SiO 2 film can be prevented and the attenuation constant can be greatly reduced, so that the desired electrical characteristics such as filter characteristics can be obtained, and To provide a surface acoustic wave device and a method for manufacturing the same, in which the electromechanical coupling coefficient and the reflection coefficient in the IDT are sufficiently large.
本発明に係る表面波装置は、17°〜58°回転Y板X伝搬LiTaO3からなる圧電基板と、前記圧電基板上に形成されており、膜厚をH、表面波の波長をλとしたときに、規格化膜厚H/λが0.004〜0.055であるタンタルよりなるIDTと、前記IDTを覆うように前記圧電基板上に形成されており、表面波の波長で規格化された膜厚Hs/λが0.10〜0.40であるSiO2膜とを備える。 The surface wave device according to the present invention is formed on a piezoelectric substrate made of 17 ° -58 ° rotated Y-plate X-propagating LiTaO 3 and the piezoelectric substrate, and the film thickness is H and the wavelength of the surface wave is λ. Sometimes, it is formed on the piezoelectric substrate so as to cover the IDT made of tantalum having a normalized film thickness H / λ of 0.004 to 0.055, and is normalized by the wavelength of the surface wave. And a SiO 2 film having a thickness Hs / λ of 0.10 to 0.40.
本発明に係る表面波装置のある特定の局面では、上記IDTの規格化膜厚H/λは、0.01〜0.55の範囲、より好ましくは0.016〜0.045の範囲とされる。 In a specific aspect of the surface acoustic wave device according to the present invention, the normalized film thickness H / λ of the IDT is in the range of 0.01 to 0.55, more preferably in the range of 0.016 to 0.045. The
本発明に係る表面波装置の別の特定の局面では、上記圧電基板は、21°〜53°回転Y板X伝搬のLiTaO3基板により構成される。 In another specific aspect of the surface acoustic wave device according to the present invention, the piezoelectric substrate is composed of a 21 ° to 53 ° rotated Y-plate X propagation LiTaO 3 substrate.
本発明においては、タンタル電極を用いることにより、Alを用いた場合に比べ、図4,図12に示すように、薄い電極膜厚で大きな電気機械結合係数と反射係数が得られる。 In the present invention, by using a tantalum electrode, a larger electromechanical coupling coefficient and reflection coefficient can be obtained with a thinner electrode film thickness as shown in FIGS.
本発明に係る弾性表面波装置のさらに他の特定の局面では、IDTの上面と、SiO2膜との間に密着層が形成され、それによってSiO2膜の膜剥がれを制御することができる。この場合、密着層は、IDTの上面だけでなく、LiTaO3基板とSiO2膜の界面にも形成されてもよい。また、上記密着層は、IDTの上面だけでなく、IDTとSiO2膜の界面のほぼ全領域に形成されてもよい。すなわち、IDTの側面にも密着層が形成されていてもよい。 In still another specific aspect of the surface acoustic wave device according to the present invention, an adhesion layer is formed between the upper surface of the IDT and the SiO 2 film, whereby the peeling of the SiO 2 film can be controlled. In this case, the adhesion layer may be formed not only on the upper surface of the IDT but also on the interface between the LiTaO 3 substrate and the SiO 2 film. Further, the adhesion layer may be formed not only on the upper surface of the IDT but also in almost the entire region of the interface between the IDT and the SiO 2 film. That is, an adhesion layer may be formed also on the side surface of the IDT.
本発明に係る弾性表面波装置のさらに別の特定の局面では、LiTaO3基板上に、IDT以外の、少なくともバスバー及び外部との接続用電極パッドを含む複数の電極がさら形成されており、該複数の電極が、タンタルからなる下地電極層と、下地電極層上に形成されており、AlまたはAl合金からなる上層金属層とを有する下地金属層が、IDTと同じ工程で形成されることができ、さらに上層金属層がAlまたはAl合金からなるため、SiO2膜の密着強度が高められるとともに、上記電極のコストを低減することができる。さらに、Alによるウェッジボンド性も高められる。 In still another specific aspect of the surface acoustic wave device according to the present invention, a plurality of electrodes including at least a bus bar and an electrode pad for connection to the outside other than the IDT are further formed on the LiTaO 3 substrate, A plurality of electrodes are formed on a base electrode layer made of tantalum and a base electrode layer, and a base metal layer having an upper metal layer made of Al or an Al alloy is formed in the same process as IDT. In addition, since the upper metal layer is made of Al or an Al alloy, the adhesion strength of the SiO 2 film can be increased and the cost of the electrode can be reduced. Furthermore, the wedge bond property by Al is also improved.
本発明に係る弾性表面波装置では、好ましくは、表面波として漏洩弾性表面波が用いられ、本発明に従って、周波数温度特性に優れ、電気機械結合係数及び反射係数の大きなIDTを有する、伝搬定数の小さい漏洩弾性表面波を利用した弾性表面波装置を提供することができる。 In the surface acoustic wave device according to the present invention, preferably, a leaky surface acoustic wave is used as the surface wave, and according to the present invention, the frequency constant is excellent, the IDT has a large electromechanical coupling coefficient and a large reflection coefficient. A surface acoustic wave device using a small leaky surface acoustic wave can be provided.
本発明の弾性表面波装置の製造方法は、17°〜58°回転Y板X伝搬のLiTaO3基板を用意する工程と、前記LiTaO3基板上に少なくとも1つのIDTを、タンタルを主成分とする金属を用いて形成する工程と、前記IDTを形成した後に、周波数調整を行う工程と、前記周波数調整後に、前記IDTを被覆するように前記LiTaO3基板上にSiO2膜を形成する工程とを備えることを特徴とする。タンタルを主成分とする金属とは、タンタルまたはタンタルを主成分とする合金の他、タンタル層と他の金属の積層構造であってタンタル層が主たる層の場合も含むものとする。 The method for manufacturing a surface acoustic wave device of the present invention includes a step of preparing a LiTaO 3 substrate with 17 ° -58 ° rotated Y-plate X propagation, and at least one IDT on the LiTaO 3 substrate, the main component of which is tantalum. A step of forming using a metal, a step of adjusting the frequency after forming the IDT, and a step of forming a SiO 2 film on the LiTaO 3 substrate so as to cover the IDT after the frequency adjustment. It is characterized by providing. The metal containing tantalum as a main component includes not only tantalum or an alloy containing tantalum as a main component, but also a layered structure of a tantalum layer and another metal, where the tantalum layer is the main layer.
本発明の製造方法の特定の局面では、上記IDTは、密度が7100kg/m3以上の金属からなる電極と、タンタル電極とが積層されている構造を有する。 In a specific aspect of the manufacturing method of the present invention, the IDT has a structure in which an electrode made of a metal having a density of 7100 kg / m 3 or more and a tantalum electrode are laminated.
タンタルは、Alに比べて密度が高く、薄い電極膜厚で電気機械結合係数が大きくかつ反射係数が大きなIDTを容易に構成することができるため、SiO2膜のクラックを防止することができる。さらに、SiO2膜によって減衰定数を小さくすることができる。 Tantalum has a higher density than Al, and can easily form an IDT having a thin electrode film thickness, a large electromechanical coupling coefficient, and a large reflection coefficient, so that cracks in the SiO 2 film can be prevented. Furthermore, the attenuation constant can be reduced by the SiO 2 film.
本発明に係る表面波装置では、17°〜58°回転Y板X伝搬LiTaO3からなる圧電基板上に、規格化膜厚H/λが0.004〜0.055であり、かつタンタルよりなるIDTが形成されており、IDTを覆うように、Hs/λ=0.10〜0.40のSiO2膜が形成されている、SiO2膜により周波数温度係数TCFが改善され、タンタル膜よりなるIDTの膜厚H/λが上記特定の範囲とされているため、電気機械結合係数と反射係数が大きく、さらにLiTaO3基板の回転角が上記特定の範囲とされているため、減衰定数が小さくされる。よって、周波数温度特性に優れ、大きな電気機械結合係数を有し、かつ伝搬損失が少ない表面波装置を提供することが可能となる。 In the surface wave device according to the present invention, the normalized film thickness H / λ is 0.004 to 0.055 on the piezoelectric substrate made of 17 ° to 58 ° rotated Y-plate X-propagating LiTaO 3 and made of tantalum. An IDT is formed, and an SiO 2 film of Hs / λ = 0.10 to 0.40 is formed so as to cover the IDT. The SiO 2 film improves the frequency temperature coefficient TCF, and is made of a tantalum film. Since the film thickness H / λ of the IDT is in the specific range, the electromechanical coupling coefficient and the reflection coefficient are large, and the rotation angle of the LiTaO 3 substrate is in the specific range, so the attenuation constant is small. Is done. Therefore, it is possible to provide a surface acoustic wave device that is excellent in frequency temperature characteristics, has a large electromechanical coupling coefficient, and has low propagation loss.
特に、IDTの膜厚H/λが0.10〜0.55の範囲、より好ましくは0.016〜0.045の範囲にある場合には、電気機械結合係数を効果的に高めることができる。 In particular, when the film thickness H / λ of the IDT is in the range of 0.10 to 0.55, more preferably in the range of 0.016 to 0.045, the electromechanical coupling coefficient can be effectively increased. .
また、上記LiTaO3からなる圧電基板の回転角が21°〜53°の範囲である場合には、減衰定数をより一層小さくすることができる。 Further, when the rotation angle of the piezoelectric substrate made of LiTaO 3 is in the range of 21 ° to 53 °, the attenuation constant can be further reduced.
また、タンタル電極が薄いため、このタンタル電極IDT上にSiO2が成膜されてもSiO2に大きな段差やクラックができないため、Al電極の場合に生じるそれらに起因した挿入損失等の特性の劣化もない。 Further, since the thin tantalum electrodes, deterioration of the characteristics of this for SiO 2 can not be a large step or cracks SiO 2 be deposited tantalum electrodes IDT on, insertion loss or the like due to their occurring when the Al electrode Nor.
以下、図面を参照しつつ、本発明の具体的な実施例を説明することにより、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail by describing specific embodiments of the present invention with reference to the drawings.
図1は、本発明の一実施形態に係る表面波装置の略図的断面図である。表面波装置1は、縦結合共振子型表面波フィルタであり、17°〜58°回転Y板LiTaO3からなる圧電基板2を有する。圧電基板2上に、タンタル膜(Ta膜)よりなるIDT3a,3b及び反射器5a,5bが形成されている。IDT3a,3bの規格化膜厚H/λ(HはIDTの厚み、λは中心周波数における波長を示す)は0.004〜0.055の範囲とされている。また、IDT3a,3bを覆うように、圧電基板2上に、SiO2膜4が形成されている。SiO2膜4の規格化膜厚Hs/λ(HsはSiO2膜の厚み、λは中心周波数における表面波の波長)は0.10〜0.40の範囲とされている。 FIG. 1 is a schematic cross-sectional view of a surface acoustic wave device according to an embodiment of the present invention. The surface acoustic wave device 1 is a longitudinally coupled resonator type surface acoustic wave filter, and includes a piezoelectric substrate 2 made of a 17 ° -58 ° rotated Y plate LiTaO 3 . On the piezoelectric substrate 2, IDTs 3a and 3b and reflectors 5a and 5b made of a tantalum film (Ta film) are formed. The normalized film thickness H / λ (H is the IDT thickness and λ is the wavelength at the center frequency) of the IDTs 3a and 3b is in the range of 0.004 to 0.055. An SiO 2 film 4 is formed on the piezoelectric substrate 2 so as to cover the IDTs 3a and 3b. The normalized film thickness Hs / λ (Hs is the thickness of the SiO 2 film and λ is the wavelength of the surface wave at the center frequency) of the SiO 2 film 4 is in the range of 0.10 to 0.40.
本実施例では上記のように、17°〜58°回転Y板X伝搬LiTaO3からなる圧電基板2と、H/λ=0.004〜0.055であるタンタルよりなるIDT3a,3bと、Hs/λ=0.10〜0.40の範囲にあるSiO2膜4とを用いているため、周波数温度係数TCFが小さく、電気機械結合係数K2が大きく、かつ伝搬損失が小さい表面波装置を提供することができる。これを、以下の具体的な実験例に基づき説明する。 In the present embodiment, as described above, the piezoelectric substrate 2 made of 17 ° -58 ° rotated Y-plate X-propagating LiTaO 3 , IDTs 3a, 3b made of tantalum with H / λ = 0.004-0.055, and Hs Since the SiO 2 film 4 in the range of /λ=0.10 to 0.40 is used, a surface wave device having a small frequency temperature coefficient TCF, a large electromechanical coupling coefficient K 2 , and a small propagation loss. Can be provided. This will be described based on the following specific experimental example.
LiTaO3基板を伝搬する表面波としては、レイリー波の他に、漏洩弾性表面波が存在する。漏洩弾性表面波は、レイリー波に比べて音速が速く、電気機械結合係数が大きい。しかしながら、漏洩弾性表面波は、エネルギーを基板内部に放射しながら伝搬する波である。従って、漏洩弾性表面波は、伝搬損失の原因となる減衰定数を有する。 As surface waves propagating through the LiTaO 3 substrate, leaky surface acoustic waves exist in addition to Rayleigh waves. The leaky surface acoustic wave has a higher sound speed and a larger electromechanical coupling coefficient than the Rayleigh wave. However, a leaky surface acoustic wave is a wave that propagates while radiating energy into the substrate. Therefore, the leaky surface acoustic wave has an attenuation constant that causes propagation loss.
図2は、回転Y板X伝搬LiTaO3におけるオイラー角(0,θ,0)のθと、基板表面が電気的に短絡された場合の減衰定数(伝搬損失)αとの関係を示す。なお、回転角=θ−90度の関係である。 FIG. 2 shows the relationship between the Euler angle (0, θ, 0) θ in the rotating Y plate X propagation LiTaO 3 and the attenuation constant (propagation loss) α when the substrate surface is electrically short-circuited. It should be noted that the rotation angle = θ−90 degrees.
図2から明らかなように、オイラー角のθが124°〜126°の範囲で減衰定数は小さい。この範囲を外れると、減衰定数は大きくなる。 As is apparent from FIG. 2, the damping constant is small when the Euler angle θ is in the range of 124 ° to 126 °. Outside this range, the damping constant increases.
また、比較的膜厚が厚いAlからなるIDTを形成した場合には、θ=130°〜132°で減衰定数が小さくなることが知られている(例えば、上記非特許文献1)。従って、従来、AlからなるIDTと、LiTaO3基板とを組み合わせた構成では、θ=130°〜132°の回転Y板X伝搬のLiTaO3基板が用いられていた。 In addition, it is known that when an IDT made of Al having a relatively large thickness is formed, the attenuation constant becomes small at θ = 130 ° to 132 ° (for example, Non-Patent Document 1). Therefore, conventionally, in a configuration in which an IDT made of Al and a LiTaO 3 substrate are combined, a rotating Y plate X propagation LiTaO 3 substrate of θ = 130 ° to 132 ° has been used.
図3は、回転Y板X伝搬LiTaO3基板におけるオイラー角(0,θ,0)のθと電気機械結合係数K2との関係を示す。オイラー角のθが100°〜120°の範囲で大きな電気機械結合係数K2が得られることがわかる。しかしながら、θ=100°〜120°の範囲では、前述の図2から明らかなように減衰定数が大きい。従って、このようなオイラー角のLiTaO3基板を用いることはできないことがわかる。 FIG. 3 shows the relationship between the Euler angle (0, θ, 0) θ and the electromechanical coupling coefficient K 2 in the rotating Y-plate X-propagating LiTaO 3 substrate. It can be seen that a large electromechanical coupling coefficient K 2 is obtained when the Euler angle θ is in the range of 100 ° to 120 °. However, in the range of θ = 100 ° to 120 °, the damping constant is large as is apparent from FIG. Therefore, it can be seen that such an Euler angle LiTaO 3 substrate cannot be used.
図4は、36°回転Y板X伝搬[オイラー角で(0°,126°,0°)]のLiTaO3基板上に、タンタル膜を形成した場合のタンタル膜の規格化膜厚H/λ(Hは膜厚を、λは表面波装置の中心周波数における波長を示す)と、電気機械結合係数K2との関係を示す。規格化膜厚H/λ=0.004〜0.08の範囲では、電気機械結合係数K2は、H/λ=0(成膜しなかった場合)の場合の電気機械結合係数の1.3倍以上となり、H/λ=0.01〜0.055では、1.5倍以上となり、H/λ=0.016〜0.045では、1.75倍以上となることがわかる。 FIG. 4 shows a normalized film thickness H / λ of a tantalum film when a tantalum film is formed on a LiTaO 3 substrate of 36 ° rotation Y-plate X propagation [Euler angles (0 °, 126 °, 0 °)]. (H represents the film thickness, and λ represents the wavelength at the center frequency of the surface acoustic wave device) and the electromechanical coupling coefficient K 2 . In the range of the normalized film thickness H / λ = 0.004 to 0.08, the electromechanical coupling coefficient K 2 is 1 of the electromechanical coupling coefficient when H / λ = 0 (when no film is formed). It becomes 3 times or more, and when H / λ = 0.01 to 0.055, it becomes 1.5 times or more, and when H / λ = 0.016 to 0.045, it becomes 1.75 times or more.
従って、H/λ=0.004〜0.08とすることにより、電気機械結合係数K2を高めることができることがわかる。 Therefore, it is understood that the electromechanical coupling coefficient K 2 can be increased by setting H / λ = 0.004 to 0.08.
なお、タンタル膜の規格化膜厚が0.055を超えると、タンタルから得られるIDTの作製が困難となることがある。従って、好ましくは、タンタル膜の規格化膜厚H/λは、0.004〜0.055、より好ましくは0.012〜0.055、さらに好ましくは0.016〜0.045であることがわかる。 Note that when the normalized film thickness of the tantalum film exceeds 0.055, it may be difficult to manufacture an IDT obtained from tantalum. Therefore, the normalized film thickness H / λ of the tantalum film is preferably 0.004 to 0.055, more preferably 0.012 to 0.055, and still more preferably 0.016 to 0.045. Recognize.
次に、SiO2膜をLiTaO3基板上に形成した場合の周波数温度係数TCFの改善効果を説明する。図5は、θ=113°、126°及び129°の(0,θ,0)の各LiTaO3基板上にSiO2膜を成膜した場合の周波数温度係数TCFの変化を示す図である。 Next, the improvement effect of the frequency temperature coefficient TCF when the SiO 2 film is formed on the LiTaO 3 substrate will be described. FIG. 5 is a diagram showing changes in the frequency temperature coefficient TCF when a SiO 2 film is formed on each (0, θ, 0) LiTaO 3 substrate of θ = 113 °, 126 °, and 129 °.
図5から明らかなように、θが113°,126°及び129°のいずれの場合においても、SiO2の規格化膜厚Hs/λ(HsはSiO2膜の膜厚を、λは表面波装置の中心周波数における波長を示す)が0.10〜0.45の範囲において、TCFが−24〜+17ppm/℃の範囲にはいることがわかる。もっとも、SiO2膜の成膜には時間を要するため、SiO2膜の膜厚Hs/λは0.40以下であることが望ましい。従って、好ましくは、SiO2膜の膜厚Hs/λは、0.10〜0.40の範囲であり、それによって、短時間で成膜でき、かつTCFを−20〜+17ppm/℃の範囲とすることができる。 As apparent from FIG. 5, theta is 113 °, in either case of 126 ° and 129 °, the film thickness of the SiO 2 normalized thickness Hs / λ (Hs is SiO 2 film, lambda surface waves It can be seen that the TCF is in the range of -24 to +17 ppm / ° C in the range of 0.10 to 0.45 (which indicates the wavelength at the center frequency of the device). However, since the formation of the SiO 2 film it takes time, it is desirable that the thickness Hs / lambda of the SiO 2 film is 0.40 or less. Therefore, preferably, the film thickness Hs / λ of the SiO 2 film is in the range of 0.10 to 0.40, whereby the film can be formed in a short time and the TCF is in the range of −20 to +17 ppm / ° C. can do.
従来、LiTaO3基板上に、AlからなるIDTを形成した構造において、さらにSiO2膜を形成することにより、レイリー波などのTCFが改善されるという報告がいくつか存在する(例えば、上記特許文献1など)。しかしながら、LiTaO3基板−タンタルからなる電極−SiO2膜の積層構造において、電極の膜厚や漏洩弾性表面波の減衰定数を考慮にいれて実験が行われた報告は存在しない。 Conventionally, there are some reports that TCF such as Rayleigh waves can be improved by further forming a SiO 2 film in a structure in which an IDT made of Al is formed on a LiTaO 3 substrate (for example, the above-mentioned patent document). 1). However, in the laminated structure of LiTaO 3 substrate-electrode made of tantalum-SiO 2 film, there has been no report on an experiment taking into consideration the film thickness of the electrode and the attenuation constant of the leaky surface acoustic wave.
図6及び図7は、オイラー角(0°,120°,0°)と、(0°,140°,0°)の各LiTaO3基板上に、種々の膜厚のタンタルからなるIDTと、種々の膜厚のSiO2膜とを形成した場合の減衰定数を示す図である。 FIG. 6 and FIG. 7 show an IDT made of tantalum having various film thicknesses on each LiTaO 3 substrate of Euler angles (0 °, 120 °, 0 °) and (0 °, 140 °, 0 °), is a diagram illustrating the attenuation constant in the case of forming a SiO 2 film of various thickness.
図6から明らかなように、θ=120°では、SiO2の膜厚Hs/λが0.1〜0.40かつタンタルよりなる電極の規格化膜厚H/λが0.0〜0.10の範囲において、減衰定数が小さいことがわかる。他方、図7から明らかなように、θ=140°では、タンタルからなる電極の規格化膜厚H/λが0.0〜0.06の範囲では、SiO2膜の膜厚の如何に係わらず、減衰定数が大きくなっていることがわかる。 As is apparent from FIG. 6, when θ = 120 °, the SiO 2 film thickness Hs / λ is 0.1 to 0.40, and the normalized film thickness H / λ of the electrode made of tantalum is 0.0 to 0.00. It can be seen that in the range of 10, the attenuation constant is small. On the other hand, as is apparent from FIG. 7, when θ = 140 °, the normalized film thickness H / λ of the electrode made of tantalum is in the range of 0.0 to 0.06 regardless of the film thickness of the SiO 2 film. It can be seen that the damping constant is increased.
すなわち、TCFの絶対値を小さくし、大きな電気機械結合係数を得、かつ減衰定数を小さくするには、LiTaO3基板のカット角、SiO2膜の厚み及びタンタルからなる電極の膜厚の3つの条件を考慮しなければならないことがわかる。 That is, in order to reduce the absolute value of TCF, obtain a large electromechanical coupling coefficient, and reduce the attenuation constant, the cut angle of the LiTaO 3 substrate, the thickness of the SiO 2 film, and the film thickness of the electrode made of tantalum It can be seen that the conditions must be taken into account.
図8〜図11は、SiO2膜の規格化膜厚Hs/λ及びタンタルからなる電極膜の規格化膜厚H/λを変化させた場合の、θと減衰定数との関係を示す。 8 to 11 show the relationship between θ and the attenuation constant when the normalized film thickness Hs / λ of the SiO 2 film and the normalized film thickness H / λ of the electrode film made of tantalum are changed.
図8〜図11から明らかなように、タンタルからなる電極の規格化膜厚H/λが0.01〜0.055及び0.016〜0.045において、SiO2膜の膜厚と、最適なθとの関係は、下記の表1及び表2に示す通りとなる。なお、この最適θは、タンタル電極の電極指幅のばらつきや単結晶基板のばらつきにより−2°〜+4°程度ばらつくことがある。 As apparent from FIGS. 8 to 11, when the normalized film thickness H / λ of the electrode made of tantalum is 0.01 to 0.055 and 0.016 to 0.045, the film thickness of the SiO 2 film is optimal. The relationship with θ is as shown in Table 1 and Table 2 below. Note that this optimum θ may vary by about −2 ° to + 4 ° due to variations in the electrode finger width of the tantalum electrode and variations in the single crystal substrate.
すなわち、表1及び表2から明らかなように、タンタルよりなる電極の膜厚H/λが、0.01〜0.055の場合、温度特性を改善するために、SiO2膜の規格化膜厚を0.1〜0.4の範囲とした場合、LiTaO3のオイラー角におけるθは、107°〜148°の範囲、すなわち、回転角で17°〜58°の範囲、より好ましくは、SiO2の膜厚に応じて表1に示すオイラー角を選択すればよいことがわかる。 That is, as apparent from Tables 1 and 2, when the film thickness H / λ of the electrode made of tantalum is 0.01 to 0.055, the normalized film of the SiO 2 film is used to improve the temperature characteristics. When the thickness is in the range of 0.1 to 0.4, the θ at the Euler angle of LiTaO 3 is in the range of 107 ° to 148 °, that is, the rotation angle is in the range of 17 ° to 58 °, more preferably SiO. It can be seen that the Euler angles shown in Table 1 may be selected according to the film thickness of 2 .
同様に、表2から明らかなように、タンタル膜からなる電極の規格化膜厚が0.016〜0.045であり、周波数温度特性を改善するために、SiO2膜の膜厚を0.1〜0.4の範囲とした場合には、LiTaO3基板のオイラー角は109°〜144°の範囲とすればよく、より好ましくはSiO2膜の膜厚に応じて表2のオイラー角を選択すればよいことがわかる。 Similarly, as is apparent from Table 2, the normalized film thickness of the electrode made of the tantalum film is 0.016 to 0.045, and the SiO 2 film thickness is set to 0.000 in order to improve the frequency temperature characteristics. When it is in the range of 1 to 0.4, the Euler angle of the LiTaO 3 substrate may be in the range of 109 ° to 144 °, and more preferably, the Euler angle in Table 2 is set according to the film thickness of the SiO 2 film. It turns out that it only has to be selected.
LiTaO3のオイラー角の範囲は、減衰定数が0.05以下の範囲を規定したものである。また、表1及び表2におけるLiTaO3のオイラー角のより好ましい範囲は、減衰定数が0.025以下に規定したものである。また、タンタルからなる電極膜の規格化膜厚が0.012、0.015、0.042、0.053である場合のSiO2膜の膜厚とオイラー角の関係は、図8〜図11に示すタンタルからなる電極膜の規格化膜厚から換算して求めて、表1及び表2のSiO2膜の膜厚とオイラー角の値を求めている。 The range of Euler angles of LiTaO 3 defines a range where the attenuation constant is 0.05 or less. Moreover, the more preferable range of the Euler angles of LiTaO 3 in Tables 1 and 2 is that in which the attenuation constant is specified to be 0.025 or less. The relationship between the film thickness of the SiO 2 film and the Euler angle when the normalized film thickness of the electrode film made of tantalum is 0.012, 0.015, 0.042, 0.053 is shown in FIGS. The thickness of the SiO 2 film and the Euler angle values in Tables 1 and 2 are obtained by conversion from the normalized film thickness of the electrode film made of tantalum shown in FIG.
また、図14(a),(b),(c)は、上記実施例の弾性表面波フィルタにおける表面の走査型電子顕微鏡写真である。ここでは、H/λ=0.025の規格化膜厚のタンタルからなるIDT上に、規格化膜厚Hs/λ=0.3のSiO2膜が形成されている前後の場合の結果が示されている。図14(b)の成膜後の写真から明らかなように、SiO2膜の表面にクラックは見られず、従って、クラックによる特性の劣化も生じ難いことがわかる。Al電極に比べ、タンタル電極は薄い膜厚で大きな電気機械結合係数と反射係数が得られる。そのため、薄いタンタル電極の上にSiO2が成膜されても図14(b),(c)に示すようにSiO2に大きな段差やクラックが生じないという利点がある。 FIGS. 14A, 14B, and 14C are scanning electron micrographs of the surface of the surface acoustic wave filter of the above example. Here, the results are shown before and after the SiO 2 film having the normalized film thickness Hs / λ = 0.3 is formed on the IDT made of tantalum having the standardized film thickness of H / λ = 0.025. Has been. As is apparent from the post-deposition photograph in FIG. 14B, it can be seen that no cracks are observed on the surface of the SiO 2 film, and therefore it is difficult for the characteristics to be deteriorated by the cracks. Compared with the Al electrode, the tantalum electrode has a thin film thickness and a large electromechanical coupling coefficient and reflection coefficient. Therefore, even if SiO 2 is formed on a thin tantalum electrode, there is an advantage that a large step or crack does not occur in SiO 2 as shown in FIGS. 14 (b) and 14 (c).
本発明に係る弾性表面波装置の製造に際しては、回転Y板X伝搬LiTaO3基板上にタンタルを主成分とする金属からなるIDTを形成した後、その状態において周波数調整を行い、しかる後減衰定数αを小さくし得る範囲の膜厚のSiO2膜を成膜することが望ましい。これを、図15及び図16を参照して説明する。図15は、オイラー角(0°,126°,0°)の回転Y板X伝搬LiTaO3基板上に、タンタルからなるIDT及びSiO2膜を形成した場合の、タンタルの規格化膜厚H/λと、SiO2膜の規格化膜厚Hs/λと、漏洩弾性表面波の音速との関係を示す。また、図16は、同じオイラー角のLiTaO3基板上に、種々の膜厚のタンタルからなるIDTを形成し、その上に形成されるSiO2膜の規格化膜厚を変化させた場合の漏洩弾性表面波の音速の変化を示す。図15と図16を比較すれば明らかなように、タンタルの膜厚を変化させた場合の方が、SiO2膜の膜厚を変化させた場合よりも表面波の音速の変化がはるかに大きい。従って、SiO2膜の形成に先立ち、周波数調整が、行われることが望ましく、例えば、レーザーエッチングやイオンエッチングなどによりタンタルからなるIDTを形成した後に周波数調整を行うことが望ましい。 In manufacturing the surface acoustic wave device according to the present invention, an IDT made of a metal containing tantalum as a main component is formed on a rotating Y-plate X-propagating LiTaO 3 substrate, and then the frequency is adjusted in that state, and then the damping constant is set. It is desirable to form a SiO 2 film having a thickness within a range where α can be reduced. This will be described with reference to FIGS. 15 and 16. FIG. 15 shows the normalized film thickness H / of tantalum when an IDT and SiO 2 film made of tantalum is formed on a rotating Y plate X-propagating LiTaO 3 substrate with Euler angles (0 °, 126 °, 0 °). The relationship between λ, the normalized film thickness Hs / λ of the SiO 2 film, and the sound velocity of the leaky surface acoustic wave is shown. Further, FIG. 16 shows leakage when an IDT made of tantalum having various film thicknesses is formed on a LiTaO 3 substrate having the same Euler angle and the normalized film thickness of the SiO 2 film formed thereon is changed. Changes in the speed of sound of surface acoustic waves are shown. As is apparent from a comparison between FIG. 15 and FIG. 16, the change in the sound velocity of the surface wave is much greater when the tantalum film thickness is changed than when the SiO 2 film thickness is changed. . Therefore, it is desirable to adjust the frequency prior to the formation of the SiO 2 film. For example, it is desirable to adjust the frequency after forming an IDT made of tantalum by laser etching or ion etching.
なお、本発明は、上記のように、17°〜58°回転Y板X伝搬LiTaO3からなる圧電基板、H/λ=0.004〜0.055であるタンタルよりなるIDTと、Hs/λ=0.10〜0.40であるSiO2膜とを有することを特徴とするものであり、従って、IDTの数及び構造等については特に限定されない。すなわち、本発明は、図1に示した表面波装置だけでなく、上記条件を満たす限り、様々な表面波共振子や表面波フィルタ等に適用することができる。 As described above, the present invention provides a piezoelectric substrate made of 17 ° -58 ° rotated Y-plate X-propagating LiTaO 3 , an IDT made of tantalum with H / λ = 0.004-0.055, and Hs / λ. = which is characterized by having a SiO 2 film is 0.10 to 0.40, thus, there is no particular limitation on such IDT of number and structure. That is, the present invention can be applied not only to the surface acoustic wave device shown in FIG. 1 but also to various surface acoustic wave resonators, surface acoustic wave filters and the like as long as the above conditions are satisfied.
タンタルを主成分という意味は、タンタルと他の電極と積層された場合、厚みの比をいうのではなく、密度と厚みを乗じた重量比で半分以上という意味である。なお、タンタルの上あるいは下に7100kg/m3以上の密度をもつW、Au、Pt、Cu、Ag、Cr等の金属からなる電極と同じ程度の割合で積層してもタンタル電極単層と同じ効果をもつことはいうまでもない。 The meaning of tantalum as a main component means that when tantalum is laminated with another electrode, it does not mean the ratio of thickness, but means that the weight ratio multiplied by density and thickness is half or more. Note that the same layer as the tantalum electrode single layer is formed on the tantalum or below the tantalum even if it is laminated at the same rate as an electrode made of a metal such as W, Au, Pt, Cu, Ag, Cr having a density of 7100 kg / m 3 or more. Needless to say, it has an effect.
1…表面波装置
2…圧電基板
3a,3b…IDT
4…SiO2膜
5a,5b…反射器
DESCRIPTION OF SYMBOLS 1 ... Surface wave apparatus 2 ... Piezoelectric substrate 3a, 3b ... IDT
4 ... SiO 2 film 5a, 5b ... Reflector
Claims (6)
前記圧電基板上に形成されており、膜厚をH、表面波の波長をλとしたときに、規格化膜厚H/λが0.004〜0.055であるタンタルよりなるIDTと、
前記IDTを覆うように前記圧電基板上に形成されており、表面波の波長で規格化された膜厚Hs/λが0.10〜0.40であるSiO2膜とを備える、表面波装置。 A piezoelectric substrate made of 17 ° -58 ° rotated Y-plate X-propagating LiTaO 3 ;
IDT made of tantalum having a normalized film thickness H / λ of 0.004 to 0.055 when the film thickness is H and the wavelength of the surface wave is λ.
A surface acoustic wave device comprising: a SiO 2 film formed on the piezoelectric substrate so as to cover the IDT and having a film thickness Hs / λ normalized by the wavelength of the surface acoustic wave of 0.10 to 0.40. .
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2008029469A JP2008125130A (en) | 2008-02-08 | 2008-02-08 | Surface acoustic wave device and its manufacturing method |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2008029469A JP2008125130A (en) | 2008-02-08 | 2008-02-08 | Surface acoustic wave device and its manufacturing method |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2002336941A Division JP2004172991A (en) | 2002-11-20 | 2002-11-20 | Surface wave instrument and its manufacturing method |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JP2008125130A true JP2008125130A (en) | 2008-05-29 |
Family
ID=39509348
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2008029469A Pending JP2008125130A (en) | 2008-02-08 | 2008-02-08 | Surface acoustic wave device and its manufacturing method |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP2008125130A (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2017523645A (en) * | 2014-08-21 | 2017-08-17 | スナップトラック・インコーポレーテッド | Microacoustic device with improved temperature compensation |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH0715274A (en) * | 1991-06-02 | 1995-01-17 | Kazuhiko Yamanouchi | High frequency saw filter and surface acoustic wave function element using high-stability high coupling saw substrate |
| JP2001077653A (en) * | 1999-09-02 | 2001-03-23 | Murata Mfg Co Ltd | Surface acoustic wave device and manufacture thereof |
| JP2001077662A (en) * | 1999-09-02 | 2001-03-23 | Murata Mfg Co Ltd | Surface wave device and communication device |
| JP2001332953A (en) * | 2000-05-19 | 2001-11-30 | Murata Mfg Co Ltd | Surface acoustic wave device |
| JP2002152003A (en) * | 2000-11-14 | 2002-05-24 | Murata Mfg Co Ltd | Surface acoustic wave filter |
-
2008
- 2008-02-08 JP JP2008029469A patent/JP2008125130A/en active Pending
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH0715274A (en) * | 1991-06-02 | 1995-01-17 | Kazuhiko Yamanouchi | High frequency saw filter and surface acoustic wave function element using high-stability high coupling saw substrate |
| JP2001077653A (en) * | 1999-09-02 | 2001-03-23 | Murata Mfg Co Ltd | Surface acoustic wave device and manufacture thereof |
| JP2001077662A (en) * | 1999-09-02 | 2001-03-23 | Murata Mfg Co Ltd | Surface wave device and communication device |
| JP2001332953A (en) * | 2000-05-19 | 2001-11-30 | Murata Mfg Co Ltd | Surface acoustic wave device |
| JP2002152003A (en) * | 2000-11-14 | 2002-05-24 | Murata Mfg Co Ltd | Surface acoustic wave filter |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2017523645A (en) * | 2014-08-21 | 2017-08-17 | スナップトラック・インコーポレーテッド | Microacoustic device with improved temperature compensation |
| US10224897B2 (en) | 2014-08-21 | 2019-03-05 | Snaptrack, Inc. | Micro-acoustic component having improved temperature compensation |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP3945363B2 (en) | Surface acoustic wave device | |
| JP6481687B2 (en) | Elastic wave device | |
| US8680744B2 (en) | Surface acoustic wave device | |
| JP5187444B2 (en) | Surface acoustic wave device | |
| JP2004112748A (en) | Surface acoustic wave apparatus and manufacturing method therefor | |
| JP4279271B2 (en) | Surface acoustic wave device and manufacturing method thereof | |
| WO2006114930A1 (en) | Boundary acoustic wave device | |
| US10951193B2 (en) | Elastic wave device | |
| JPWO2008004408A1 (en) | Surface acoustic wave device | |
| JP2010088109A (en) | Acoustic wave element, and electronic equipment using the same | |
| JP3979279B2 (en) | Surface acoustic wave device | |
| JP5874738B2 (en) | Surface acoustic wave device | |
| JP3780947B2 (en) | Surface acoustic wave device | |
| JP5110091B2 (en) | Surface acoustic wave device | |
| JP2006254507A (en) | Surface acoustic wave device and manufacturing method therefor | |
| JP2007235711A (en) | Surface acoustic wave apparatus | |
| JP5321678B2 (en) | Surface acoustic wave device | |
| JP2009194895A (en) | Surface acoustic wave device | |
| JPWO2009090715A1 (en) | Surface acoustic wave device | |
| JP2004172990A (en) | Surface acoustic wave device | |
| JP2008136238A (en) | Surface wave instrument and its manufacturing method | |
| JP2008125130A (en) | Surface acoustic wave device and its manufacturing method | |
| JP4363443B2 (en) | Surface acoustic wave device | |
| JP3975924B2 (en) | Surface wave device and manufacturing method thereof | |
| JP2004228985A (en) | Surface wave device and manufacturing method therefor |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080214 |
|
| A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080214 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100713 |
|
| A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20101109 |