JP2008271702A - AC motor control apparatus and control method thereof - Google Patents
AC motor control apparatus and control method thereof Download PDFInfo
- Publication number
- JP2008271702A JP2008271702A JP2007111097A JP2007111097A JP2008271702A JP 2008271702 A JP2008271702 A JP 2008271702A JP 2007111097 A JP2007111097 A JP 2007111097A JP 2007111097 A JP2007111097 A JP 2007111097A JP 2008271702 A JP2008271702 A JP 2008271702A
- Authority
- JP
- Japan
- Prior art keywords
- magnetic flux
- current
- estimated
- phase
- speed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Control Of Ac Motors In General (AREA)
Abstract
【課題】 高周波を印加せずに、ゼロ周波数領域でも安定に動作するセンサレスの交流電動機制御装置とその制御方法を提供する。
【解決手段】dq軸指令電圧を3相指令電圧に変換するベクトル変換器303と、3相指令電圧に基づいて電動機を駆動するPWMインバータ302と、3相実際電流を生成する電流検出器330と、3相実際電流をdq軸実際電流に変換するベクトル変換器304と、推定磁束と推定磁束位置と推定電流を生成する磁束演算器310と、速度推定器320とを備えるセンサレスの交流電動機制御装置において、磁束演算器は第1磁束演算器と、第2磁束演算器を備え、第1磁束演算器は、一つの演算時刻と次の演算時刻の間に仮想の中間演算時刻を設けて第1磁束演算を実施し、第2磁束演算器は、第1磁束演算器の演算結果を用いて第2磁束演算を実施するようにした。
【選択図】図3PROBLEM TO BE SOLVED: To provide a sensorless AC motor control device that stably operates even in a zero frequency region without applying a high frequency, and a control method therefor.
A vector converter 303 that converts a dq-axis command voltage into a three-phase command voltage, a PWM inverter 302 that drives an electric motor based on the three-phase command voltage, and a current detector 330 that generates a three-phase actual current Sensorless AC motor control device comprising a vector converter 304 that converts a three-phase actual current into a dq-axis actual current, a magnetic flux calculator 310 that generates an estimated magnetic flux, an estimated magnetic flux position, and an estimated current, and a speed estimator 320 , The magnetic flux calculator includes a first magnetic flux calculator and a second magnetic flux calculator, and the first magnetic flux calculator provides a virtual intermediate calculation time between one calculation time and the next calculation time. The magnetic flux calculation was performed, and the second magnetic flux calculator performed the second magnetic flux calculation using the calculation result of the first magnetic flux calculator.
[Selection] Figure 3
Description
本発明は、位置センサ、速度センサを持たない交流電動機制御装置とその制御方法に関する。 The present invention relates to an AC motor control device having no position sensor or speed sensor, and a control method therefor.
交流電動機のセンサレス制御は、位置センサ、速度センサを持たずに高性能なトルクおよび速度制御を実現できるので、センサ不要のコストメリットや信頼性向上から産業用途に普及している。交流電動機のセンサレス制御には、ゼロ速および低速回生時に電動機駆動周波数がゼロ周波数領域となると速度推定演算が不安定になる問題がある。これは誘起電圧などの速度に関する情報がなくなり、演算に使用する電圧の誤差や電動機定数の誤差の影響を受けやすくなるためである。これを解決するものとして駆動周波数と異なる高周波信号を電動機に印加するもの(特許文献1)と高周波信号を印加せずに制御系の安定化をはかるもの(非特許文献1)が報告されている。高周波信号を印加するものは回転子位置によって生じるインピーダンス偏差を利用して電動機磁束の位置を推定するものである。また、高周波信号を印加せずに制御系の安定化をはかるものはマルチレート磁束推定器を用いてゼロ周波数領域における速度推定演算の安定化を実現するものである。非特許文献1に開示されたマルチレート磁束推定器の構成を図4に示す。また図4を数式で表すと(1)式となる。 Sensorless control of an AC motor can realize high-performance torque and speed control without having a position sensor and a speed sensor, and is widely used in industrial applications because of cost merit and reliability improvement that do not require a sensor. The sensorless control of an AC motor has a problem that the speed estimation calculation becomes unstable when the motor drive frequency is in the zero frequency region at zero speed and low speed regeneration. This is because there is no information on the speed such as the induced voltage, and it is easy to be affected by the error of the voltage used for the calculation and the error of the motor constant. As a solution to this problem, there have been reported one that applies a high-frequency signal different from the driving frequency to the motor (Patent Document 1) and one that stabilizes the control system without applying the high-frequency signal (Non-Patent Document 1). . What applies a high frequency signal estimates the position of a motor magnetic flux using the impedance deviation produced by a rotor position. Further, what stabilizes the control system without applying a high-frequency signal is to realize stabilization of speed estimation calculation in the zero frequency region using a multi-rate magnetic flux estimator. The configuration of the multi-rate magnetic flux estimator disclosed in Non-Patent Document 1 is shown in FIG. Moreover, when FIG. 4 is expressed by a mathematical formula, the formula (1) is obtained.
(1)式は一つの演算時刻Tnから次の演算時刻Tn+1の間に実行されるが、図4の409が示すマルチレート入力、すなわち(1)式第2行第1項にある推定速度に与える変化量Δを演算周期Ts内で別の演算周期で正負に切り替えるようにする。この操作により、速度項の行列が拡大され、結果、速度推定系の不安定零点(制御的に不安定となる周波数零のときに生じる零点)が移動し、(2)式の推定速度演算の安定性が確保されることとなる。
Equation (1) is executed between one computation time T n and the next computation time T n + 1 , but the multi-rate input indicated by 409 in FIG. 4, that is, the estimation in the first term of the second row of Equation (1) The change amount Δ given to the speed is switched between positive and negative in another calculation cycle within the calculation cycle T s . By this operation, the matrix of the velocity term is expanded, and as a result, the unstable zero point of the velocity estimation system (the zero point generated when the frequency becomes zero in terms of control) is moved, and the estimated velocity calculation of the equation (2) is performed. Stability will be ensured.
従来の交流電動機のセンサレス制御装置では、電動機の構造によっては実現不能であることや、実装するのが困難であるという課題があった。また、特許文献1では、高周波を印加しても電動機の構造によっては、回転子に依存したインピーダンス変化があらわれない場合がある。さらに、特許文献2では、単一の演算周期内で外部から変化量の符号を切り替えなければならず、速度センサレス制御が実装される通常の演算プロセッサで実装するのは困難である。 The conventional sensorless control device for an AC motor has a problem that it cannot be realized depending on the structure of the motor and is difficult to mount. In Patent Document 1, even if a high frequency is applied, depending on the structure of the electric motor, there may be a case where the impedance change depending on the rotor does not appear. Furthermore, in Patent Document 2, the sign of the amount of change must be switched from the outside within a single calculation cycle, and it is difficult to implement with a normal calculation processor in which speed sensorless control is mounted.
本発明はこのような問題点に鑑みてなされたものであり、高周波を印加せずに、ゼロ周波数領域においても安定な速度推定演算を実現するセンサレスの交流電動機制御装置とその制御方法を提供することを目的とする。 The present invention has been made in view of such problems, and provides a sensorless AC motor control device and a control method thereof that realizes a stable speed estimation calculation even in a zero frequency region without applying a high frequency. For the purpose.
上記問題を解決するため、本発明は、次のように構成したのである。
請求項1に記載の発明は、指令磁束から推定磁束を減じた磁束偏差と指令速度から推定速度を減じた速度偏差とに基づいてdq軸指令電流を生成する磁束・速度制御器と、前記dq軸指令電流とdq軸実際電流との電流偏差からdq軸指令電圧を生成する電流制御器と、前記dq軸指令電圧を推定磁束位置によって3相指令電圧に変換するベクトル変換器と、前記3相指令電圧をPWM信号に変換し電力増幅して電動機を駆動するPWMインバータと、前記電動機の3相電流または2相電流を検出し3相実際電流を生成する電流検出器と、前記推定磁束位置によって3相実際電流をdq軸実際電流に変換するベクトル変換器と、前記3相実際電流と前記3相指令電圧と前記推定速度に基づいて推定磁束と前記推定磁束位置と推定電流を生成する磁束演算器と、前記推定磁束と前記推定電流と前記3相実際電流に基づいて前記推定速度を生成する速度推定器と、を備え、位置および速度センサを用いずに交流電動機を制御する交流電動機制御装置において、前記磁束演算器は第1磁束演算器と、第2磁束演算器を備え、前記第1磁束演算器は、一つの演算時刻Tnと次の演算時刻Tn+1の間に、仮想の中間演算時刻Tn+0.5を設け、TnからTn+0.5の間に第1の磁束演算を実施し、前記第2磁束演算器は、前記第1磁束演算器の演算結果を用いて、Tn+0.5からTn+1の間に第2の磁束演算を実施することを特徴とするものである。
請求項2に記載の発明は、請求項1記載の交流電動機の制御装置において、前記磁束演算器は、Tn時点あるいはそれ以前に検出された電動機電流と電動機電圧に基づいて磁束演算を実施することを特徴とするものである。
請求項3に記載の発明は、請求項1記載の交流電動機の制御装置において、前記磁束演算器は、Tn時点あるいはそれ以前に検出された電動機電流とTn時点あるいはそれ以前に設定された電動機電圧指令値に基づいて磁束演算を実施することを特徴とするものである。
請求項4に記載の発明は、請求項1記載の交流電動機の制御装置において、前記磁束演算器に用いる速度は、前記第1の磁束演算器に用いる速度と前記第2の磁束演算器に用いる速度に任意の変化量を加算あるいは減算することを特徴とするものである。
請求項5に記載の発明は、制御時間ごとに、指令磁束から推定磁束を減じた磁束偏差と、指令速度から推定速度を減じた速度偏差と、に基づいてdq軸指令電流を生成するステップと、dq軸指令電流とdq軸実際電流の電流偏差からdq軸指令電圧を生成するステップと、dq軸指令電圧を推定磁束位置によって3相指令電圧に変換するステップと、3相電流または2相電流を検出し3相実際電流を生成するステップと、推定磁束位置によって3相実際電流をdq軸実際電流に変換するステップと、3相実際電流と3相指令電圧と推定速度に基づいて推定磁束と推定磁束位置と推定電流を生成するステップと、推定磁束と推定電流と3相実際電流に基づいて推定速度を生成するステップと、を備えた交流電動機制御方法において、演算時刻Tnと次の演算時刻Tn+1の間に、仮想の中間演算時刻Tn+0.5を設け、TnからTn+0.5の間に第1の磁束演算を実施し第1推定磁束を生成するステップと、前記第1推定磁束を用いて、Tn+0.5からTn+1の間に第2の磁束演算を実施し推定磁束も生成するステップと、を備えたことを特徴とする交流電動機制御装置の制御方法。
In order to solve the above problem, the present invention is configured as follows.
The invention according to claim 1 is a magnetic flux / speed controller that generates a dq-axis command current based on a magnetic flux deviation obtained by subtracting the estimated magnetic flux from the command magnetic flux and a speed deviation obtained by subtracting the estimated speed from the command speed, and the dq A current controller that generates a dq-axis command voltage from a current deviation between an axis command current and a dq-axis actual current; a vector converter that converts the dq-axis command voltage into a three-phase command voltage based on an estimated magnetic flux position; A PWM inverter that converts the command voltage into a PWM signal and amplifies the power to drive the motor, a current detector that detects a three-phase current or a two-phase current of the motor and generates a three-phase actual current, and the estimated magnetic flux position A vector converter that converts a three-phase actual current into a dq-axis actual current, and generates an estimated magnetic flux, an estimated magnetic flux position, and an estimated current based on the three-phase actual current, the three-phase command voltage, and the estimated speed. An AC motor comprising: a magnetic flux calculator; and a speed estimator that generates the estimated speed based on the estimated magnetic flux, the estimated current, and the three-phase actual current, and controls the AC motor without using a position and speed sensor In the control device, the magnetic flux computing unit includes a first magnetic flux computing unit and a second magnetic flux computing unit, and the first magnetic flux computing unit has a virtual time between one computation time Tn and the next computation time Tn + 1. Intermediate calculation time T n + 0.5 is provided, the first magnetic flux calculation is performed between T n and T n + 0.5 , and the second magnetic flux calculator uses the calculation result of the first magnetic flux calculator. , T n + 0.5 to T n + 1 , the second magnetic flux calculation is performed.
According to a second aspect of the invention, the control apparatus of the AC motor according to claim 1, wherein the flux calculator performs the magnetic flux calculation based on T n time or before the detected motor current and motor voltage It is characterized by this.
According to a third aspect of the invention, the controller for an AC motor according to claim 1, wherein the flux calculator was set to T n time or before the detected the motor current and T n time or before The magnetic flux calculation is performed based on the motor voltage command value.
According to a fourth aspect of the present invention, in the AC motor control apparatus according to the first aspect, the speed used for the magnetic flux calculator is the speed used for the first magnetic flux calculator and the second magnetic flux calculator. An arbitrary amount of change is added to or subtracted from the speed.
The invention according to claim 5 generates a dq-axis command current based on a magnetic flux deviation obtained by subtracting the estimated magnetic flux from the command magnetic flux and a speed deviation obtained by subtracting the estimated speed from the command speed for each control time; Generating a dq-axis command voltage from the current deviation between the dq-axis command current and the dq-axis actual current, converting the dq-axis command voltage into a three-phase command voltage based on the estimated magnetic flux position, and a three-phase current or a two-phase current Detecting three-phase actual current, converting the three-phase actual current into dq-axis actual current according to the estimated magnetic flux position, and estimating magnetic flux based on the three-phase actual current, the three-phase command voltage, and the estimated speed In an AC motor control method, comprising: a step of generating an estimated magnetic flux position and an estimated current; and a step of generating an estimated speed based on the estimated magnetic flux, the estimated current, and the three-phase actual current. between n and the next operation time T n + 1, the step of generating the first estimated magnetic flux conducted first magnetic flux calculation between T n + 0.5 the intermediate calculation time T n + 0.5 Virtual provided, from T n And a step of performing a second magnetic flux calculation between T n + 0.5 and T n + 1 using the first estimated magnetic flux to generate an estimated magnetic flux, and an AC motor control device comprising: Control method.
請求項1乃至4に記載の発明によると、高周波を印加せずに、ゼロ周波数領域においても安定な速度推定演算を実現するセンサレスの交流電動機制御装置を提供することができる。
請求項5に記載の発明によると、高周波を印加せずに、ゼロ周波数領域においても安定な速度推定演算を実現するセンサレスの交流電動機制御方法を提供することができる。
According to the first to fourth aspects of the invention, it is possible to provide a sensorless AC motor control device that realizes stable speed estimation calculation even in a zero frequency region without applying a high frequency.
According to the fifth aspect of the present invention, it is possible to provide a sensorless AC motor control method that realizes stable speed estimation calculation even in a zero frequency region without applying a high frequency.
以下、本発明の実施の形態について図を参照して説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
図3は本発明の交流電動機の制御装置の構成を示すブロック図である。301は電動機、302は電動機を駆動する電圧を出力するPWMインバータ、330は電流検出器、303、304はベクトル変換器、305は電流制御器、307は磁束・速度制御器、310は磁束推定器、320は速度推定器である。磁束・速度制御器307は、指令磁束から推定磁束を減じた磁束偏差と、指令速度から推定速度を減じた速度偏差と、に基づいてdq軸指令電流を生成する。電流制御器305はdq軸指令電流とdq軸実際電流の電流偏差からdq軸指令電圧を生成する。ベクトル変換器303はdq軸指令電圧を推定磁束位置θe^によって3相指令電圧に変換する。PWMインバータ302は3相指令電圧をPWM信号に変換し電力増幅して電動機301を駆動する。電流検出器330は3相電流または2相電流を検出し3相実際電流を生成する。ベクトル変換器304は推定磁束位置θe^によって3相実際電流をdq軸実際電流に変換する。磁束演算器310は3相実際電流と3相指令電圧と推定速度に基づいて推定磁束と推定電気角と推定電流を生成する。速度推定器320は推定磁束と推定電流と3相実際電流に基づいて推定速度を生成する。
図1は本発明の磁束推定器を説明するものである。また、図2は本発明の原理を説明するものである。従来の交流電動機のセンサレス制御におけるマルチレート磁束推定器は磁束演算に少なくとも二つの演算周期を必要としていたのに対し、本発明は単一演算周期内に仮想の中間演算時点を設けることにより、擬似的なマルチレート磁束推定器を構築し、単一周期でもゼロ周波数領域においても安定な速度推定演算を実現できる。図2におけるnは演算時点であり、単一演算周期であるためn、n+1、n+2・・・のように表されるものである。ここで、nとn+1の間に仮想の中間演算時点をおくと式(3)、(4)式のような離散化の形態をとることができる。
FIG. 3 is a block diagram showing the configuration of the control device for the AC motor of the present invention. 301 is a motor, 302 is a PWM inverter that outputs a voltage for driving the motor, 330 is a current detector, 303 and 304 are vector converters, 305 is a current controller, 307 is a magnetic flux / speed controller, and 310 is a magnetic flux estimator. 320 are speed estimators. The magnetic flux / speed controller 307 generates a dq-axis command current based on a magnetic flux deviation obtained by subtracting the estimated magnetic flux from the command magnetic flux and a speed deviation obtained by subtracting the estimated speed from the command speed. The current controller 305 generates a dq axis command voltage from the current deviation between the dq axis command current and the dq axis actual current. The vector converter 303 converts the dq-axis command voltage into a three-phase command voltage based on the estimated magnetic flux position θe ^. The PWM inverter 302 converts the three-phase command voltage into a PWM signal and amplifies the power to drive the electric motor 301. The current detector 330 detects a three-phase current or a two-phase current and generates a three-phase actual current. The vector converter 304 converts the three-phase actual current into the dq-axis actual current based on the estimated magnetic flux position θe ^. The magnetic flux calculator 310 generates an estimated magnetic flux, an estimated electrical angle, and an estimated current based on the three-phase actual current, the three-phase command voltage, and the estimated speed. The speed estimator 320 generates an estimated speed based on the estimated magnetic flux, the estimated current, and the three-phase actual current.
FIG. 1 illustrates a magnetic flux estimator of the present invention. FIG. 2 illustrates the principle of the present invention. Whereas a conventional multi-rate magnetic flux estimator in sensorless control of an AC motor requires at least two calculation cycles for magnetic flux calculation, the present invention provides a pseudo intermediate calculation time point within a single calculation cycle. A stable multi-rate magnetic flux estimator can be constructed, and stable speed estimation calculation can be realized even in a single period or in a zero frequency region. In FIG. 2, n is a calculation time point, and is a single calculation cycle, and is expressed as n, n + 1, n + 2,. Here, if a virtual intermediate calculation time point is set between n and n + 1, it can take the form of discretization as shown in equations (3) and (4).
この離散化は離散値を直線近似補間し、離散誤差を低減する効果もある。この離散化により一つの演算周期Tsの中にもう一つの演算周期0.5Tsを設定できることになる。この仮想的につくられた演算周期0.5Tsごとに演算中に用いる推定速度に異なる変化量、ここでは−Δと+Δを与え、疑似マルチレート磁束推定器を構築すると式(5)、(6)となる。 This discretization also has an effect of reducing discrete errors by linearly interpolating discrete values. It becomes possible to set another calculation cycle 0.5 T s in one calculation period T s by the discretization. When different amounts of change, in this case -Δ and + Δ, are given to the estimated speed used during the calculation every calculation period 0.5T s created virtually, a pseudo multi-rate magnetic flux estimator is constructed. 6).
(5)(6)式で用いる推定速度の演算は(2)式と同様になされる。
(5) The estimated speed used in equation (6) is calculated in the same manner as equation (2).
ここでの推定速度演算は積分型を示しているが比例要素を加えた比例積分型でもよい。
さらに、推定磁束位置は(6)式の推定磁束を用いて(8)式で演算される。
The estimated speed calculation here shows an integral type, but may be a proportional integral type with a proportional element added.
Further, the estimated magnetic flux position is calculated by equation (8) using the estimated magnetic flux of equation (6).
これらをブロック図で表したものが図1である。
(6)式における電圧vsは理想的には時刻Tn+0.5時点の値でなければならないが、実にはその値をえることができないため、時刻Tn時点の値で近似することとなる。(8)式でえられた磁束位置から時刻Tn+0.5時点までの位相を進めた、あらたな電圧値vs’を用いてもよい。
These are shown in a block diagram in FIG.
The voltage v s in the equation (6) should ideally be a value at the time T n + 0.5, but since it cannot actually be obtained, it is approximated by a value at the time T n. . A new voltage value v s ′ in which the phase from the magnetic flux position obtained by equation (8) to the time T n + 0.5 is advanced may be used.
このように本発明によると、複数の演算周期を持たずに単一の演算周期内でマルチレート磁束演算器を構築でき、ゼロ周波数領域での安定な速度推定演算を実現できる。
Thus, according to the present invention, a multi-rate magnetic flux calculator can be constructed within a single calculation period without having a plurality of calculation periods, and a stable speed estimation calculation in the zero frequency region can be realized.
図5は本発明の交流電動機制御方法を示すフローチャートである。ステップST1で指令磁束から推定磁束を減じた磁束偏差と、指令速度から推定速度を減じた速度偏差と、に基づいてdq軸指令電流を生成し、ステップST2でdq軸指令電流とdq軸実際電流の電流偏差からdq軸指令電圧を生成し、ステップST3でdq軸指令電圧を推定磁束位置によって3相指令電圧に変換し、ステップST4で3相電流または2相電流を検出し3相実際電流を生成し、ステップST5で推定磁束位置によって3相実際電流をdq軸実際電流に変換し、ステップST6で3相実際電流と3相指令電圧と推定速度に基づいて推定磁束と推定磁束位置と推定電流を生成し、ステップST7で推定磁束と推定電流と3相実際電流に基づいて推定速度を生成し、ステップST8で演算時刻Tnと次の演算時刻Tn+1の間に、仮想の中間演算時刻Tn+0.5を設け、TnからTn+0.5の間に第1の磁束演算を実施し第1推定磁束を生成し、ステップST9で第1推定磁束を用いて、Tn+0.5からTn+1の間に第2の磁束演算を実施し推定磁束を生成する。 FIG. 5 is a flowchart showing the AC motor control method of the present invention. A dq-axis command current is generated based on the magnetic flux deviation obtained by subtracting the estimated magnetic flux from the command magnetic flux in step ST1 and the speed deviation obtained by subtracting the estimated speed from the command speed. In step ST2, the dq-axis command current and the dq-axis actual current are generated. Dq-axis command voltage is generated from the current deviation, and in step ST3, the dq-axis command voltage is converted into a three-phase command voltage based on the estimated magnetic flux position. In step ST4, the three-phase current or the two-phase current is detected and the three-phase actual current is detected. In step ST5, the three-phase actual current is converted into the dq-axis actual current according to the estimated magnetic flux position. In step ST6, the estimated magnetic flux, the estimated magnetic flux position, and the estimated current are converted based on the three-phase actual current, the three-phase command voltage, and the estimated speed. generate the estimated velocity generated based on the estimated magnetic flux and the estimated current and the three-phase actual currents at step ST7, during operation time T n and the next operation time T n + 1 in step ST8 The intermediate calculation time T n + 0.5 Virtual provided to generate a first estimated magnetic flux conducted first magnetic flux calculation between T n + 0.5 from T n, by using the first estimated magnetic flux in step ST9, A second magnetic flux calculation is performed between T n + 0.5 and T n + 1 to generate an estimated magnetic flux.
101、301、401 交流電動機
102 第1磁束演算器
103 第2磁束演算器
104 出力フィードバックゲイン
105、320 速度推定器
106 疑似マルチサンプル入力信号生成部
107 システム行列
108、306、309 差分器
302 PWMインバータ
303、304 ベクトル変換器
305 電流制御器
307 磁束・速度制御器
310 磁束演算器
330 電流検出器
101, 301, 401 AC motor 102 First magnetic flux calculator 103 Second magnetic flux calculator 104 Output feedback gain 105, 320 Speed estimator 106 Pseudo multi-sample input signal generator 107 System matrix 108, 306, 309 Differencer 302 PWM inverter 303, 304 Vector converter 305 Current controller 307 Magnetic flux / velocity controller 310 Magnetic flux calculator 330 Current detector
Claims (5)
前記磁束演算器は第1磁束演算器と、第2磁束演算器を備え、前記第1磁束演算器は、一つの演算時刻Tnと次の演算時刻Tn+1の間に、仮想の中間演算時刻Tn+0.5を設け、TnからTn+0.5の間に第1の磁束演算を実施し、前記第2磁束演算器は、前記第1磁束演算器の演算結果を用いて、Tn+0.5からTn+1の間に第2の磁束演算を実施することを特徴とする交流電動機制御装置。 A magnetic flux / speed controller that generates a dq-axis command current based on a magnetic flux deviation obtained by subtracting the estimated magnetic flux from the command magnetic flux and a speed deviation obtained by subtracting the estimated speed from the command speed, and the dq-axis command current and the dq-axis actual current A current controller that generates a dq-axis command voltage from the current deviation of the current, a vector converter that converts the dq-axis command voltage into a three-phase command voltage based on the estimated magnetic flux position, and a power that converts the three-phase command voltage into a PWM signal. A PWM inverter that amplifies and drives the motor, a current detector that detects a three-phase current or two-phase current of the motor and generates a three-phase actual current, and a three-phase actual current based on the estimated magnetic flux position as a dq-axis actual current A vector converter for converting to a magnetic flux, a magnetic flux calculator for generating an estimated magnetic flux, the estimated magnetic flux position and an estimated current based on the three-phase actual current, the three-phase command voltage, and the estimated speed, and the estimated In the a speed estimator for generating an estimated speed, equipped with an AC motor control device which controls an AC motor without using a position and speed sensor based flux and the estimated current and the three-phase actual currents,
The magnetic flux calculator includes a first magnetic flux calculator and a second magnetic flux calculator, and the first magnetic flux calculator has a virtual intermediate calculation time between one calculation time Tn and the next calculation time Tn + 1. T n + 0.5 is provided, and the first magnetic flux calculation is performed between T n and T n + 0.5 , and the second magnetic flux calculator uses the calculation result of the first magnetic flux calculator to calculate T n + 0. An AC motor control device that performs a second magnetic flux calculation between 5 and T n + 1 .
演算時刻Tnと次の演算時刻Tn+1の間に、仮想の中間演算時刻Tn+0.5を設け、TnからTn+0.5の間に第1の磁束演算を実施し第1推定磁束を生成するステップと、
前記第1推定磁束を用いて、Tn+0.5からTn+1の間に第2の磁束演算を実施し推定磁束も生成するステップと、
を備えたことを特徴とする交流電動機制御装置の制御方法。 For each control time, a step of generating a dq-axis command current based on a magnetic flux deviation obtained by subtracting the estimated magnetic flux from the command magnetic flux and a speed deviation obtained by subtracting the estimated speed from the command speed, and the dq-axis command current and the dq-axis actual A step of generating a dq-axis command voltage from a current deviation of current, a step of converting the dq-axis command voltage into a three-phase command voltage based on an estimated magnetic flux position, and detecting a three-phase current or a two-phase current to generate a three-phase actual current A step of converting the three-phase actual current into a dq-axis actual current according to the estimated magnetic flux position, and generating an estimated magnetic flux, an estimated magnetic flux position, and an estimated current based on the three-phase actual current, the three-phase command voltage, and the estimated speed. An AC motor control method comprising: a step; and an estimated magnetic flux, an estimated current, and a step of generating an estimated speed based on a three-phase actual current,
During the operation time T n and the next operation time T n + 1, the intermediate calculation time T n + 0.5 virtual provided, the first estimated magnetic flux conducted first magnetic flux calculation between T n + 0.5 from T n Generating step;
Using the first estimated magnetic flux to perform a second magnetic flux calculation between T n + 0.5 and T n + 1 to generate an estimated magnetic flux;
A control method for an AC motor control device comprising:
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2007111097A JP2008271702A (en) | 2007-04-20 | 2007-04-20 | AC motor control apparatus and control method thereof |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2007111097A JP2008271702A (en) | 2007-04-20 | 2007-04-20 | AC motor control apparatus and control method thereof |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JP2008271702A true JP2008271702A (en) | 2008-11-06 |
Family
ID=40050501
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2007111097A Pending JP2008271702A (en) | 2007-04-20 | 2007-04-20 | AC motor control apparatus and control method thereof |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP2008271702A (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN104143946A (en) * | 2013-05-09 | 2014-11-12 | 三菱电机株式会社 | motor control unit |
-
2007
- 2007-04-20 JP JP2007111097A patent/JP2008271702A/en active Pending
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN104143946A (en) * | 2013-05-09 | 2014-11-12 | 三菱电机株式会社 | motor control unit |
| CN104143946B (en) * | 2013-05-09 | 2017-01-11 | 三菱电机株式会社 | A motor control device |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP5156352B2 (en) | AC motor control device | |
| US9088241B2 (en) | Drive systems including sliding mode observers and methods of controlling the same | |
| US10008966B2 (en) | Drive systems including sliding mode observers and methods of controlling the same | |
| JP6776066B2 (en) | Inverter controller and motor drive system | |
| JP5281339B2 (en) | Synchronous motor drive system and control device used therefor | |
| US10333439B2 (en) | Methods of estimating a position of a rotor in a motor under transient and systems thereof | |
| JP3783695B2 (en) | Motor control device | |
| WO2013137146A1 (en) | Device for controlling electric motor and method for controlling electric motor | |
| TW200524265A (en) | Controller for synchronous motor, electric appliance and module | |
| JP5396906B2 (en) | Electric motor drive control device | |
| JP2018523462A (en) | Motor controller and motor system | |
| JP2008219966A (en) | Controller of permanent magnet motor | |
| JP4425091B2 (en) | Motor position sensorless control circuit | |
| JP5050387B2 (en) | Motor control device | |
| JP2009290962A (en) | Controller of permanent magnet type synchronous motor | |
| JP4760118B2 (en) | Electric motor control device | |
| JP2004289927A (en) | Motor control device | |
| JP5534991B2 (en) | Control device for synchronous motor | |
| JP2011223718A (en) | Controller for permanent magnet synchronous motor | |
| JP2008271702A (en) | AC motor control apparatus and control method thereof | |
| JP2006204054A (en) | Motor control unit and motor drive system having the same | |
| JP2010022189A (en) | Position sensorless control circuit for motor | |
| JP5186352B2 (en) | Electric motor magnetic pole position estimation device | |
| JP5228435B2 (en) | Inverter control device and control method thereof | |
| JP2005124359A (en) | Current control method and control device for synchronous motor |