[go: up one dir, main page]

JP2008207336A - Droplet discharg head - Google Patents

Droplet discharg head Download PDF

Info

Publication number
JP2008207336A
JP2008207336A JP2007043194A JP2007043194A JP2008207336A JP 2008207336 A JP2008207336 A JP 2008207336A JP 2007043194 A JP2007043194 A JP 2007043194A JP 2007043194 A JP2007043194 A JP 2007043194A JP 2008207336 A JP2008207336 A JP 2008207336A
Authority
JP
Japan
Prior art keywords
liquid
beam member
nozzle
droplet
droplet discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007043194A
Other languages
Japanese (ja)
Inventor
Torahiko Kanda
虎彦 神田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP2007043194A priority Critical patent/JP2008207336A/en
Publication of JP2008207336A publication Critical patent/JP2008207336A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Particle Formation And Scattering Control In Inkjet Printers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a droplet discharge head which can eject a high-viscosity liquid at normal temperatures by a high drive frequency. <P>SOLUTION: A beam member 14 can deflect in a liquid droplet ejection direction and the opposite direction, ejecting the liquid 4 which is supplied from a pool 24 formed inside of a holding member 18 and is led to a nozzle 16 travelling on an anti-ejection surface of the beam member 14, as liquid droplets in the ejection direction by inertia. An orifice 24A is formed on the anti-ejection surface side of the pool 24, which communicates from within the pool 24 to a liquid reservoir 13. The liquid reservoir 13 is formed by both the un-ejection surface of the beam member 14/an actuator 36 and a plate-like member 12 prepared with a predetermined gap 13A spaced therefrom. The liquid 4 oozes from the orifice 24A to the gap 13A. The liquid 4 collected in the gap 13A travels oozing through the un-ejection surface of the beam member 14/actuator 36 subjected to lyophilic processing to the liquid 4 up to the nozzle 16. Thus the nozzle 16 is supplemented with the liquid 4. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は液滴吐出ヘッドに関し、特に高粘度のインクを液滴として吐出する液滴吐出ヘッドに関する。   The present invention relates to a droplet discharge head, and more particularly to a droplet discharge head that discharges high-viscosity ink as droplets.

液滴吐出装置として知られている現在市販されている水性インクジェットプリンターは、概ね粘度5cps前後、高々10cpsオーダの染料インクや顔料インクを採用している。媒体に着弾した際のインク滲み防止や、光学的な色濃度アップ、含水量低減による媒体の膨潤抑制/短時間乾燥、あるいは、そうした高品質インクをトータル設計するに当たり自由度が大きくとれる等の理由から、インク粘度を増加することによってプリント性能は向上できることが知られている。   A currently marketed aqueous inkjet printer known as a droplet discharge device employs a dye ink or a pigment ink having a viscosity of about 5 cps or so and an order of 10 cps at most. Reasons such as prevention of ink bleeding when landing on the medium, increase in optical color density, suppression of swelling / short time drying of the medium due to reduced water content, or greater freedom in total design of such high quality ink Therefore, it is known that the printing performance can be improved by increasing the ink viscosity.

反面、高粘度液を吐出するには、高出力な圧力発生機構が必要であり、コストやヘッドサイズ増加等の弊害を招く。従来からイジェクターにヒーターを別途設け、吐出時のインク粘度を強制的に下げる技術は公知である(例えば、特許文献1参照)が、インクを加熱する上記の方法はインク劣化や流路のダメージを早める根本課題があり、また使用できるインクも熱による劣化のないものに制限される。   On the other hand, in order to discharge a high viscosity liquid, a high output pressure generating mechanism is required, which causes adverse effects such as cost and increase in head size. Conventionally, a technique for forcibly lowering the ink viscosity at the time of ejection by separately providing a heater in the ejector is known (see, for example, Patent Document 1). However, the above-described method of heating ink causes ink deterioration and flow path damage. There is a fundamental problem to be accelerated, and the ink that can be used is limited to one that does not deteriorate due to heat.

このほか、インク吐出する際の逆方向へのインク流を梁状の弁によって抑制し、より高粘度なインクを吐出する技術(例えば、特許文献2参照)が開示されている。   In addition, there is disclosed a technique (for example, see Patent Document 2) in which ink flow in the reverse direction when ink is ejected is suppressed by a beam-like valve and ink with higher viscosity is ejected.

大変形が得られる座屈曲がりを利用し、圧力発生機構自体をパワーアップする方法として、発熱体層との熱膨張差で変形するダイヤフラム状アクチュエータを使用した技術(例えば、特許文献3参照)、また、同様の構成で片持ち梁状のアクチュエータを使用した技術(例えば、特許文献4参照)が開示されている。   As a method of powering up the pressure generation mechanism itself using a seat bending beam that can obtain a large deformation, a technique using a diaphragm actuator that deforms due to a difference in thermal expansion with the heating element layer (see, for example, Patent Document 3), Further, a technique using a cantilever-like actuator with the same configuration (for example, see Patent Document 4) is disclosed.

しかしながら、上記の従来技術でも、粘度10cpsを大きく上回る50〜100cpsのような高粘度液を、常温において安定吐出することは極めて困難である。   However, even with the above-described conventional technology, it is extremely difficult to stably discharge a high-viscosity liquid having a viscosity of 50 to 100 cps, which greatly exceeds 10 cps, at room temperature.

本願発明者らは、梁に圧縮と回転運動を与え、座屈曲げ方向が反転する際の急峻な上下運動を利用して、ノズルから高粘度液滴を所望の方向に慣性離脱させる液滴吐出ヘッドを先に出願した(特許文献5〜8参照)。   The inventors of the present application have applied a compressive and rotational motion to the beam, and a droplet discharge that causes a high-viscosity droplet to inertially release from the nozzle in a desired direction using the steep vertical motion when the seat bending direction is reversed. The head was filed earlier (see Patent Documents 5 to 8).

すなわち図8(A)(B)に示すインク吐出ヘッド100のように、インクプール124から補充されるインクは梁部材114と一体的に設けられたインク流路部材112内のインク流路113を通過してノズル116に至り、梁部材114が吐出方向に座屈反転変形する際にノズル116から高粘度のインクを吐出する。   That is, as in the ink discharge head 100 shown in FIGS. 8A and 8B, the ink replenished from the ink pool 124 passes through the ink flow path 113 in the ink flow path member 112 provided integrally with the beam member 114. When the beam member 114 passes through and reaches the nozzle 116 and is buckled and reversed in the ejection direction, high-viscosity ink is ejected from the nozzle 116.

本願発明者が上記課題に対する検討を進めた結果、上記方式のヘッドにおいて高粘度な液体を吐出するためには、高粘度液の流路抵抗によって生じるリフィル(ノズルへの液体供給)の遅れを解決することが重要であり、それには閉じた流路を通してノズルに液体を送ることでリフィルする従来方式と異なり、ノズル内壁と梁の裏面を液体の濡れ性が高い状態に形成し、液体に圧力を印加しないオープンな流路を設け、この流路部分を液体が滲み伝わる現象を利用してノズルに液体供給する方法が有効であることがわかった。   As a result of the inventor's investigation on the above problems, in order to discharge a highly viscous liquid in the above-described head, the delay in refill (liquid supply to the nozzle) caused by the flow resistance of the highly viscous liquid is solved. Unlike the conventional method of refilling by sending liquid to the nozzle through a closed channel, the inner wall of the nozzle and the back of the beam are formed with high liquid wettability, and pressure is applied to the liquid. It has been found that a method of providing an open flow path that does not apply and supplying a liquid to the nozzle by utilizing the phenomenon that the liquid spreads through the flow path portion is effective.

さらに、ノズル直下の吐出反対側に隙間をあけて液体溜り(液体の自由表面が露出した溜り)を設け、梁が吐出方向反対側に弾性変形した際、ノズル裏面と液体溜りの液体表面とを接触させることでノズル孔に液体を充填する方式もまた有効であることが分かった。   In addition, a liquid reservoir (reservoir with the free surface of the liquid exposed) is provided on the opposite side of the nozzle immediately below the nozzle, and when the beam is elastically deformed to the opposite side of the ejection direction, the nozzle back surface and the liquid surface of the liquid reservoir are It has been found that the method of filling the nozzle holes with liquid by contacting them is also effective.

本発明は、先願の発展技術であり、高粘度液体のリフィル遅れを改善し、より高速/高周波に液滴吐出できるヘッドを提供することを目的とする。
特開2003−220702号公報 特開平9−327918号公報 特開2003−118114号公報 特開2003−34710号公報 特願2004−322341号公報 特願2004−322342号公報 特願2004−322343号公報 特願2004−322344号公報
The present invention is an advanced technology of the prior application, and an object of the present invention is to provide a head that can improve the refill delay of a high-viscosity liquid and can eject droplets at higher speeds / high frequencies.
JP 2003-220702 A Japanese Patent Laid-Open No. 9-327918 JP 2003-118114 A JP 2003-34710 A Japanese Patent Application No. 2004-322341 Japanese Patent Application No. 2004-322342 Japanese Patent Application No. 2004-322343 Japanese Patent Application No. 2004-322344

本発明は上記事実を考慮し、常温で高粘度液体を高い駆動周波数で吐出可能な液滴吐出ヘッドを提供することを目的とする。   In consideration of the above facts, an object of the present invention is to provide a droplet discharge head capable of discharging a high-viscosity liquid at a high drive frequency at room temperature.

請求項1に記載の液滴吐出ヘッドは、液滴吐出面に凹となるように座屈反転変形した後、前記液滴吐出面に凸となるよう座屈反転変形する梁部材と、前記液滴吐出面から前記液滴吐出面よりも吐出される液体について濡れ性が高い反液滴吐出面まで貫通するノズルと、前記梁部材の長手方向の少なくとも一端に設けられ前記反液滴吐出面を通じて前記ノズルへ前記液を供給する液溜まりと、を備えたことを特徴とする。   The droplet discharge head according to claim 1, wherein a beam member that is buckled and inverted so as to be convex on the droplet discharge surface after being buckled and inverted so as to be concave on the droplet discharge surface, and the liquid A nozzle penetrating from the droplet ejection surface to the anti-droplet ejection surface having higher wettability with respect to the liquid ejected from the droplet ejection surface, and provided at at least one end in the longitudinal direction of the beam member through the anti-droplet ejection surface And a liquid reservoir for supplying the liquid to the nozzle.

上記構成の発明では、液溜まりから梁部材の反吐出面側に伝わった液がノズルから吐出されるので、液をノズルまで加圧給送する流路部材を梁部材に設ける必要が無く、流体抵抗が発生しないのでノズルへの液体供給遅れおよびメニスカスの復帰遅れを防ぐことができる。   In the invention of the above configuration, since the liquid transmitted from the liquid reservoir to the side opposite to the discharge surface of the beam member is discharged from the nozzle, there is no need to provide the beam member with a flow path member for pressurizing and feeding the liquid to the nozzle. Therefore, a delay in liquid supply to the nozzle and a delay in meniscus return can be prevented.

請求項2に記載の液滴吐出ヘッドは、前記液溜まりは、前記梁部材と前記梁部材から所定の隙間を空けて設けられた板状部材との間に形成される間隙であることを特徴とする。   The liquid droplet ejection head according to claim 2, wherein the liquid pool is a gap formed between the beam member and a plate-like member provided with a predetermined gap from the beam member. And

上記構成の発明では、梁部材と板状部材の間に液溜まりを形成するので、簡易な構造で液をノズルまで給送することができる。   In the invention with the above configuration, since the liquid pool is formed between the beam member and the plate-like member, the liquid can be fed to the nozzle with a simple structure.

請求項3に記載の液滴吐出ヘッドは、前記梁部材の吐出面には前記液体に対して撥液性を高める撥液処理を行ったことを特徴とする。   The droplet discharge head according to claim 3 is characterized in that the discharge surface of the beam member is subjected to a liquid repellent treatment for improving liquid repellency with respect to the liquid.

上記構成の発明では、梁部材の吐出面に液が広がりにくく、吐出方向に梁部材が座屈反転した際、吐出面から液滴が慣性離脱しやすい。   In the invention having the above-described configuration, the liquid hardly spreads on the discharge surface of the beam member, and when the beam member is buckled and reversed in the discharge direction, the liquid droplet is easily detached from the discharge surface.

請求項4に記載の液滴吐出ヘッドは、前記梁部材の反吐出面には前記液体に対して親液性を高める親液処理を行ったことを特徴とする。   The droplet discharge head according to claim 4 is characterized in that a lyophilic treatment for increasing the lyophilicity of the liquid is performed on the opposite discharge surface of the beam member.

上記構成の発明では、梁部材の反吐出面を伝わる液が広がりやすく、吐出方向に梁部材が座屈反転した際、ノズルに液が集まりやすい。   In the invention having the above-described configuration, the liquid transmitted on the anti-discharge surface of the beam member is likely to spread, and when the beam member is buckled and reversed in the discharge direction, the liquid is likely to collect at the nozzle.

請求項5に記載の液滴吐出ヘッドは、前記親液処理は前記梁部材の反吐出面に微細な凹凸を形成する処理であることを特徴とする。   The droplet discharge head according to claim 5 is characterized in that the lyophilic process is a process of forming fine irregularities on the opposite discharge surface of the beam member.

上記構成の発明では、微細ブラスト加工などにより簡易な方法で梁部材の反吐出面の親液性を高めることができる。   In the invention with the above configuration, the lyophilicity of the anti-ejection surface of the beam member can be enhanced by a simple method such as fine blasting.

請求項6に記載の液滴吐出ヘッドは、液滴吐出面に凹となるように座屈反転変形した後、前記液滴吐出面に凸となるよう座屈反転変形する梁部材と、前記液滴吐出面から前記液滴吐出面よりも吐出される液体について濡れ性が高い反液滴吐出面まで貫通するノズルと、前記梁部材の反吐出面側に設けられ、前記梁部材が液滴吐出方向に凹となるように座屈反転変形する際に、前記梁部材の反吐出面側ノズル近傍部分が接触する液溜まりと、を備えたことを特徴とする。   The droplet discharge head according to claim 6 is a beam member that is buckled and inverted so as to be convex on the droplet discharge surface after being buckled and inverted so as to be concave on the droplet discharge surface, and the liquid A nozzle penetrating from the droplet ejection surface to the anti-droplet ejection surface having higher wettability for the liquid ejected from the droplet ejection surface, and the beam member on the side opposite to the ejection surface, the beam member being in the droplet ejection direction And a liquid reservoir with which the portion near the nozzle on the side opposite to the ejection surface of the beam member comes into contact when buckling and reversing deformation so as to be concave.

上記構成の発明では、液溜まりから梁部材の反吐出面側ノズル近傍に移り、ノズル内壁へ伝わって充填された液がノズルから吐出されるので、液をノズルまで加圧給送する流路部材を梁部材に設ける必要が無く、流体抵抗が発生しないのでノズルへの液体供給遅れおよびメニスカスの復帰遅れを防ぐことができる。   In the invention of the above configuration, since the liquid that has been transferred from the liquid reservoir to the vicinity of the nozzle on the side opposite to the discharge side of the beam member and transmitted to the inner wall of the nozzle is discharged from the nozzle, the flow path member that supplies the liquid to the nozzle under pressure is provided. Since there is no need to provide the beam member and no fluid resistance is generated, a delay in liquid supply to the nozzle and a delay in meniscus return can be prevented.

請求項7に記載の液滴吐出ヘッドは、前記液溜まりは前記梁部材のノズル近傍にのみ接触することを特徴とする。   The liquid droplet ejection head according to claim 7 is characterized in that the liquid reservoir contacts only in the vicinity of the nozzle of the beam member.

上記構成の発明では、梁部材と接触する液溜まりがノズル近傍のみ接触するのでノズル以外の部分が液溜まりと接触することにより座屈反転の際に発生する液体剪断抵抗を抑えることができる。   In the invention with the above configuration, since the liquid reservoir in contact with the beam member is in contact only in the vicinity of the nozzle, the liquid shear resistance generated at the time of buckling reversal can be suppressed by contact of the portion other than the nozzle with the liquid reservoir.

請求項8に記載の液滴吐出ヘッドは、前記ノズル内壁面および前記梁部材の反吐出面の前記ノズル近傍には、前記液体に対して親液性を高める処理を行ったことを特徴とする。   The liquid droplet ejection head according to claim 8 is characterized in that a treatment for increasing the lyophilicity of the liquid is performed in the vicinity of the nozzle on the inner wall surface of the nozzle and the opposite ejection surface of the beam member.

上記構成の発明では、親液処理を施した梁部材の反吐出面に、液溜りから液が移りやすく、また吐出方向に梁部材が座屈反転した際、ノズルに液が集まりやすい。   In the invention with the above configuration, the liquid easily moves from the liquid reservoir to the opposite discharge surface of the beam member subjected to the lyophilic treatment, and when the beam member buckles and reverses in the discharge direction, the liquid easily collects in the nozzle.

請求項9に記載の液滴吐出ヘッドは、前記ノズル近傍を除く前記梁部材の反吐出面と、前記梁部材の吐出面には前記液体に対して撥液性を高める処理を行ったことを特徴とする。   The droplet discharge head according to claim 9, wherein a treatment for increasing liquid repellency with respect to the liquid is performed on the anti-discharge surface of the beam member excluding the vicinity of the nozzle and the discharge surface of the beam member. And

上記構成の発明では、梁部材の吐出面、および反吐出面のノズル以外の部分に液が広がりにくく、吐出方向に梁部材が座屈反転した際、吐出面から液滴が慣性離脱しやすい。   In the invention having the above-described configuration, the liquid is unlikely to spread on the ejection surface of the beam member and the portion other than the nozzle on the counter-ejection surface, and when the beam member is buckled and reversed in the ejection direction, the liquid droplets are easily detached from the ejection surface.

請求項10に記載の液滴吐出ヘッドは、前記液溜まりは所定の隙間を空けて設けられた2枚の板状部材の間に、前記液体を圧送することで前記板状部材の間から凸状に盛り上がった液面であることを特徴とする。   The liquid droplet ejection head according to claim 10, wherein the liquid reservoir protrudes from between the plate-like members by pumping the liquid between two plate-like members provided with a predetermined gap. It is characterized by the liquid level rising in a shape.

上記構成の発明では、液を圧送するための閉じた流路、チャンバなどを必要とせず、ノズルに液体を供給できる。また梁部材と液溜まりの板部材とを非接触とできるので静音性や耐久性に優れた液滴吐出ヘッドとすることができる。   In the invention having the above-described configuration, the liquid can be supplied to the nozzle without requiring a closed flow path or chamber for pumping the liquid. Further, since the beam member and the plate member of the liquid reservoir can be made non-contact, it is possible to provide a liquid droplet ejection head that is excellent in silence and durability.

請求項11に記載の液滴吐出ヘッドは、前記液溜まりは多孔質の弾性体に染み込ませた前記液体であることを特徴とする。   The liquid droplet ejection head according to claim 11 is characterized in that the liquid reservoir is the liquid soaked in a porous elastic body.

上記構成の発明では、液体を加圧供給する必要がないので、より簡易な構造とすることができる。   In the invention having the above-described configuration, it is not necessary to pressurize and supply the liquid, so that a simpler structure can be obtained.

本発明は上記構成としたので、常温で高粘度の液滴を高い駆動周波数で吐出可能な液滴吐出ヘッドとすることができた。   Since the present invention has the above-described configuration, a droplet discharge head capable of discharging droplets having a high viscosity at room temperature at a high driving frequency can be obtained.

<基本構成>
図1には、本発明の第1実施形態に係る液滴吐出ヘッドが示されている。
<Basic configuration>
FIG. 1 shows a droplet discharge head according to a first embodiment of the present invention.

図1(A)〜(C)に示すように、液滴吐出ヘッド10は長さ方向略中央にノズル16を備えた梁部材14の長さ方向両端を保持部材18が支持し、保持部材18は回転エンコーダ20に固定され、回転エンコーダ20の回動に伴って長さ方向両端側から押圧され、あるいは曲げ方向に力が加えられ液滴吐出方向(図中上)あるいは逆方向に梁部材14を撓ませる構造となっている。   As shown in FIGS. 1A to 1C, the droplet discharge head 10 is supported by the holding member 18 at both ends in the length direction of the beam member 14 having the nozzle 16 at substantially the center in the length direction. Is fixed to the rotary encoder 20 and is pressed from both ends in the length direction as the rotary encoder 20 is rotated, or a force is applied in the bending direction, and the beam member 14 in the droplet discharge direction (upper in the figure) or in the opposite direction. The structure is bent.

図1(B)に示すように、梁部材14には、薄膜状のピエゾ素子30が接合され、さらにピエゾ素子30には個別電極32が形成され梁部材14、ピエゾ素子30、個別電極32でアクチュエータ36を構成している。梁部材14はピエゾ素子30の共通電極を兼ねており、梁部材14と個別電極32とでピエゾ素子30を挟む構造となっている。   As shown in FIG. 1B, a thin film piezo element 30 is joined to the beam member 14, and an individual electrode 32 is formed on the piezo element 30, and the beam member 14, the piezo element 30, and the individual electrode 32 are used. An actuator 36 is configured. The beam member 14 also serves as a common electrode of the piezo element 30, and has a structure in which the piezo element 30 is sandwiched between the beam member 14 and the individual electrode 32.

個別電極32の一方の端には電極パッド33が設けられ、配線にて図示しないスイッチングICと接続されている。このスイッチングICからの信号によりピエゾ素子30は駆動され、梁部材14を撓ませる/撓ませないの制御が行われる。   An electrode pad 33 is provided at one end of the individual electrode 32 and connected to a switching IC (not shown) by wiring. The piezo element 30 is driven by a signal from the switching IC, and the beam member 14 is controlled to be bent / not bent.

ノズル16は梁部材14を含むアクチュエータ36を吐出方向(図中上下)に貫通して形成され、梁部材14の吐出面(図中上側)には液4に対して撥液処理が施され、梁部材14/アクチュエータ36の反吐出面(図中下側)には液4に対して親液処理が施されている。また全面にわたって液による腐食や電極間のショートなどからピエゾ素子30を保護する絶縁保護膜が形成されている。   The nozzle 16 is formed through the actuator 36 including the beam member 14 in the discharge direction (up and down in the drawing), and the discharge surface (upper side in the drawing) of the beam member 14 is subjected to a liquid repellent treatment with respect to the liquid 4. A lyophilic process is performed on the liquid 4 on the opposite discharge surface (lower side in the figure) of the beam member 14 / actuator 36. In addition, an insulating protective film is formed over the entire surface to protect the piezo element 30 from corrosion caused by liquid, short-circuit between electrodes, and the like.

なお、本実施形態において、夫々の梁部材14は厚さ10μm、幅150μm、長さ5mmのSUS材からなり、図1(C)に示すように、複数の梁部材14が170μmピッチで整列した構成となっている。また、梁部材14にレーザ加工で形成されたノズル16は直径30μmとし、アクチュエータ36を貫通する部分では、穴径を60μmに広げ、液4が充填されやすいようにしている。   In this embodiment, each beam member 14 is made of a SUS material having a thickness of 10 μm, a width of 150 μm, and a length of 5 mm, and a plurality of beam members 14 are arranged at a pitch of 170 μm as shown in FIG. It has a configuration. Further, the nozzle 16 formed by laser processing on the beam member 14 has a diameter of 30 μm, and the hole diameter is increased to 60 μm in a portion penetrating the actuator 36 so that the liquid 4 is easily filled.

梁部材14は液滴吐出方向(図中上)および逆方向に撓み可能であり、保持部材18の内部に設けたプール24から供給され、梁部材14の反吐出面(図中下側)を伝ってノズル16まで達した液4を慣性によって吐出方向に液滴として吐出する。   The beam member 14 can be bent in the droplet discharge direction (upper side in the figure) and in the opposite direction, and is supplied from a pool 24 provided inside the holding member 18, and travels along the anti-discharge surface (lower side in the figure) of the beam member 14. Then, the liquid 4 reaching the nozzle 16 is discharged as droplets in the discharge direction by inertia.

プール24の反吐出面側には開口部24Aが設けられ、プール24内から液溜まり13まで連通している。液溜まり13は梁部材14/アクチュエータ36の反吐出面(図中下側)と所定の間隙13A(約100μm)を空けて設けられた板状部材12とで形成され、液4は開口部24Aから間隙13Aに滲み出し、間隙13Aに溜まった液4は液4に対して親液処理が施された梁部材14/アクチュエータ36の反吐出面(図中下側)をノズル16まで滲み伝わる。本実施形態では、反吐出面側にメッシュ4000の微細砥粒を吹き付けるブラスト加工によって、表面に微細凹凸を形成する方法で親液処理を施した。   An opening 24 </ b> A is provided on the counter discharge surface side of the pool 24, and communicates from the inside of the pool 24 to the liquid reservoir 13. The liquid reservoir 13 is formed of the beam member 14 / actuator 36 on the opposite discharge surface (lower side in the figure) and the plate-like member 12 provided with a predetermined gap 13A (about 100 μm), and the liquid 4 passes through the opening 24A. The liquid 4 that has oozed into the gap 13A and accumulated in the gap 13A spreads to the nozzle 16 on the anti-ejection surface (lower side in the figure) of the beam member 14 / actuator 36 on which the lyophilic treatment has been applied to the liquid 4. In the present embodiment, the lyophilic treatment is performed by a method of forming fine irregularities on the surface by blasting in which fine abrasive grains of mesh 4000 are sprayed on the side opposite to the discharge surface.

ここで用いられる吐出液は前述のように、媒体に着弾した際の滲み防止や、光学的な色濃度アップ、含水量低減による媒体の膨潤抑制や短時間乾燥、あるいは、そうした高品質インクをトータル設計するに当たり自由度が大きくとれる等の理由から、液粘度の極めて高い、具体的には粘度20cpsを大きく上回るような、例えば50〜100cpsの高粘度液である。   As described above, the discharge liquid used here prevents bleeding when landing on the medium, increases the optical color density, suppresses swelling of the medium by reducing the water content, or dries for a short time, or totalizes such high-quality ink. For example, it is a high viscosity liquid having a very high liquid viscosity, for example, a viscosity much higher than 20 cps, for example, 50 to 100 cps, because the degree of freedom in designing can be increased.

本実施形態においては液4の粘度が上記のように大きくとも、大きな流体抵抗が発生する閉じた流路ではなく、開放され流路抵抗が少なく圧力の印加されない流路として液4に対して親液処理が施された梁部材14/アクチュエータ36の反吐出面(図中下側)を液4がノズル16まで滲み伝わることで、ノズル16から液滴2として吐出された液4のリフィル(再充填)、メニスカス(液面)の復帰が阻害される虞をなくし、高粘度の液4を用いながら安定して高速・高周波で液滴吐出を行う液滴吐出ヘッドとすることができる。   In the present embodiment, even if the viscosity of the liquid 4 is large as described above, it is not a closed flow path in which a large fluid resistance is generated, but is open to the liquid 4 as a flow path that is open and has low flow resistance and no pressure is applied. Refilling (refilling) the liquid 4 ejected as droplets 2 from the nozzle 16 by the liquid 4 spreading to the nozzle 16 on the opposite ejection surface (lower side in the figure) of the beam member 14 / actuator 36 subjected to the liquid treatment. ), The return of the meniscus (liquid level) is eliminated, and a liquid droplet discharge head that stably discharges liquid droplets at high speed and high frequency while using the high viscosity liquid 4 can be obtained.

さらに本実施形態においては、高画質化に伴うノズル16の高密度化(ピッチの極小化)による液流路の細径化からくる流路抵抗の増大が発生しない点に加え、従来の流路部材と梁部材の接合、および流路部材中に液を充填することによる梁部材や流路部材の重量増加、座屈反転速度低下による吐出性劣化などの虞もなく、高粘度の液を安定して高密度・高速に吐出させることができる。   Furthermore, in the present embodiment, in addition to the fact that the increase in flow path resistance due to the reduction in the diameter of the liquid flow path due to the higher density of the nozzles 16 (minimization of the pitch) associated with higher image quality does not occur, the conventional flow path Stable high-viscosity liquid without fear of joining the beam and beam members, filling the flow path member with liquid, increasing the weight of the beam member or flow path member, and deteriorating discharge performance due to reduced buckling reversal speed Thus, it can be discharged at high density and high speed.

<吐出原理>
図2、3には、本発明の第1実施形態に係る液滴吐出ヘッドの動作が示されている。
<Discharge principle>
2 and 3 show the operation of the droplet discharge head according to the first embodiment of the present invention.

まずアクチュエータ36を駆動せず、液滴2を吐出しない場合は、図2(A−1)のように例えば梁部材14が予め液滴吐出方向(図中上)に撓みを持たせた状態であり、吐出を指示する信号がスイッチングICより送られないためアクチュエータ36が駆動されない。   First, when the actuator 36 is not driven and the droplet 2 is not discharged, for example, the beam member 14 is bent in the droplet discharge direction (upper side in the drawing) as shown in FIG. In addition, the actuator 36 is not driven because a signal instructing ejection is not sent from the switching IC.

図2(A−2)のように回転エンコーダ20を矢印方向に回動させると、まず吐出方向(図中上)に撓みが発生し、そのまま図2(A−3〜4)のように梁部材14は液滴吐出方向に撓むのみであって、撓み量が最大となる図2(A−4)に至るまで梁部材14は常に液滴吐出方向に凸であり続ける。   When the rotary encoder 20 is rotated in the direction of the arrow as shown in FIG. 2 (A-2), first, bending occurs in the discharge direction (upper in the figure), and the beam is directly used as shown in FIG. 2 (A-3 to 4). The member 14 only bends in the droplet discharge direction, and the beam member 14 always remains convex in the droplet discharge direction until the deflection amount reaches the maximum in FIG. 2A-4.

すなわち図2(A−1〜4)まで梁部材14が変位するまでの間に梁部材14内部の液4に吐出方向(図中上)への十分な加速度が加わらないため、液滴2としてノズル16から吐出されることはない(図2(A−5))。   That is, the liquid 4 inside the beam member 14 is not sufficiently accelerated in the discharge direction (upper side in the figure) until the beam member 14 is displaced as shown in FIGS. There is no discharge from the nozzle 16 (FIG. 2 (A-5)).

さらに図2(A−4)で撓み量が最大となり回転エンコーダ20が停止したのち、逆回転して梁部材14を平坦にすることで梁部材14は初期位置図2(A−1)へ復帰する。   Further, after the deflection amount becomes maximum in FIG. 2 (A-4) and the rotary encoder 20 stops, the beam member 14 returns to the initial position FIG. 2 (A-1) by rotating backward to flatten the beam member 14. To do.

一方、アクチュエータ36を駆動し、液滴2を吐出する場合は吐出を指示する信号がスイッチングICより送られ、図2(B−2)に示すようにアクチュエータ36が駆動されることによって梁部材14が液滴2吐出方向に対して凹(図中下)に撓みを持たせるようにされた状態であり、図2(B−2〜4)のように回転エンコーダ20を正転(図中矢印方向)させると梁部材14は回転エンコーダ20に近い方、すなわち両端から次第に吐出方向(図中上)に凸へと撓み方向が変化する。   On the other hand, when the actuator 36 is driven and the droplet 2 is ejected, a signal instructing ejection is sent from the switching IC, and the actuator 36 is driven as shown in FIG. Is a state in which the concave portion (lower in the figure) is bent with respect to the droplet 2 ejection direction, and the rotary encoder 20 is rotated forward (arrow in the figure) as shown in FIG. 2 (B-2 to 4). Direction), the bending direction of the beam member 14 gradually changes from the both ends closer to the rotary encoder 20, that is, from both ends to the convex in the discharge direction (upper in the drawing).

この撓み方向変化が両端から中央に近付くと、梁部材14はある点で急峻な座屈反転を起こし、液滴2吐出方向(図中上)へと急激に変形する(図2(B−3〜4)に中央部の変形を強調して記載)。   When this change in deflection direction approaches the center from both ends, the beam member 14 undergoes a steep buckling reversal at a certain point, and deforms rapidly in the droplet 2 ejection direction (upper in the figure) (FIG. 2 (B-3)). To 4) with emphasis on deformation at the center.

梁部材14の長さ方向略中央にはノズル16が設けられているため、ノズル16まで達している液4はこの座屈反転による梁部材14の吐出方向への変形に伴い、ノズル16から液滴2として吐出される(拡大図2(B−5))。   Since the nozzle 16 is provided substantially at the center in the length direction of the beam member 14, the liquid 4 reaching the nozzle 16 moves from the nozzle 16 to the liquid in accordance with the deformation in the discharge direction of the beam member 14 due to the buckling inversion. It is discharged as a droplet 2 (enlarged view 2 (B-5)).

さらに図2(B−4)で撓み量が最大となり回転エンコーダ20が停止したのち、逆回転して梁部材14を平坦にすることで梁部材14は初期位置へ復帰し、液滴吐出方向(図中上)に撓みを持った状態に戻る。   Further, in FIG. 2 (B-4), after the amount of bending becomes maximum and the rotary encoder 20 stops, the beam member 14 returns to the initial position by rotating backward to flatten the beam member 14, and the droplet discharge direction ( Return to the state with deflection in the upper part of the figure.

なお、上記の実施形態では、アクチュエータ36を駆動した時に梁部材14が吐出方向に対して凹(図中下)に撓み、座屈反転が起こって液滴2が吐出する構成としたが、アクチュエータ36を駆動しない時に梁部材14が予め吐出方向に対して凹に撓んだ形状とし、アクチュエータ36を駆動した時には梁部材14が吐出方向に対して凸(図中上)に撓むよう構成しても、同様に信号の有無によって液滴2を吐出/非吐出を制御することができる。   In the above-described embodiment, when the actuator 36 is driven, the beam member 14 is bent concavely (lower in the drawing) in the discharge direction, and buckling reversal occurs to discharge the droplet 2. The beam member 14 is previously bent in a concave shape with respect to the discharge direction when the drive 36 is not driven, and the beam member 14 is bent in a convex shape (upward in the drawing) with respect to the discharge direction when the actuator 36 is driven. Similarly, ejection / non-ejection of the droplet 2 can be controlled by the presence or absence of a signal.

上記の座屈反転による変形は通常のアクチュエータなどによる変位と比較すれば非常に大きなものであり、本発明に採用した高粘度インクであっても十分にインク滴2として吐出することが可能である。   The deformation due to the buckling reversal is much larger than the displacement due to a normal actuator or the like, and even the high viscosity ink employed in the present invention can be sufficiently discharged as the ink droplet 2. .

図3には、ノズル16近傍における液4の吐出動作時の動きが示されている。   FIG. 3 shows the movement during the discharge operation of the liquid 4 in the vicinity of the nozzle 16.

図3(A)に示す液溜まり13の液4は、図3(B−1)のようにノズル16近傍においては梁部材14がアクチュエータ36により吐出方向に凹となる(あるいは予め形成され)一方、図3(C)に拡大図として示すように板状部材12と梁部材14との間隙にプール24(図示せず)から開口部24A(図示せず)を通じて充填された液4は、親液処理を施された梁部材14の反吐出面を滲み伝わりながらノズル16近傍まで到達する。   In the liquid 4 of the liquid reservoir 13 shown in FIG. 3A, the beam member 14 is recessed (or formed in advance) in the discharge direction by the actuator 36 in the vicinity of the nozzle 16 as shown in FIG. As shown in an enlarged view in FIG. 3C, the liquid 4 filled in the gap between the plate-like member 12 and the beam member 14 from the pool 24 (not shown) through the opening 24A (not shown) It reaches the vicinity of the nozzle 16 while spreading through the anti-ejection surface of the beam member 14 that has been subjected to the liquid treatment.

このときアクチュエータ36による梁部材14の座屈反転で、液4にノズル16の方向に進もうとする遠心力が加わることで液4の動きが加速される。さらに液4は図3(B−3)のようにノズル16に充填され、回転エンコーダ20の動作で梁部材14が座屈反転することで図3(B−4〜5)のようにノズル16内の液4には吐出方向(図中上)に大きな加速度が掛かり、液滴2として吐出される。   At this time, due to the buckling inversion of the beam member 14 by the actuator 36, the movement of the liquid 4 is accelerated by applying a centrifugal force to the liquid 4 in the direction of the nozzle 16. Further, the liquid 4 is filled in the nozzle 16 as shown in FIG. 3 (B-3), and the beam member 14 is buckled and reversed by the operation of the rotary encoder 20, so that the nozzle 16 as shown in FIG. 3 (B-4 to 5). A large acceleration is applied to the inner liquid 4 in the discharge direction (upper in the figure), and the liquid 4 is discharged as a droplet 2.

<第2実施形態>
図4には、本発明の第2実施形態に係る液滴吐出ヘッドが示されている。
Second Embodiment
FIG. 4 shows a droplet discharge head according to a second embodiment of the present invention.

図4(A)に示すように、液滴吐出ヘッド11は長さ方向略中央にノズル16を備えた梁部材14の長さ方向両端を保持部材18が支持し、保持部材18は回転エンコーダ20に固定され、回転エンコーダ20の回動に伴って長さ方向両端側から押圧され、あるいは曲げ方向に力が加えられ液滴吐出方向(図中上)あるいは逆方向に梁部材14を撓ませる構造となっている点において第1実施形態と同様である。   As shown in FIG. 4A, the droplet discharge head 11 is supported by the holding member 18 at both ends in the length direction of the beam member 14 provided with the nozzle 16 at substantially the center in the length direction, and the holding member 18 is a rotary encoder 20. A structure in which the beam member 14 is bent in the droplet discharge direction (upper direction in the figure) or in the opposite direction by being pressed from both ends in the length direction as the rotary encoder 20 is rotated, or by applying a force in the bending direction. This is the same as in the first embodiment.

本実施形態において液溜まり13は保持部材18に設けられず、梁部材14の反吐出側(図中下)に設けられ、回転エンコーダ20またはアクチュエータ36によるノズル16近傍の梁部材14の移動により液面と梁部材14とが直接接触することで、親液処理をほどこした梁部材14の反吐出面に液4を供給・補充する。   In the present embodiment, the liquid reservoir 13 is not provided on the holding member 18 but is provided on the non-ejection side (lower in the drawing) of the beam member 14, and the liquid member 13 is moved by the movement of the beam member 14 near the nozzle 16 by the rotary encoder 20 or the actuator 36. When the surface and the beam member 14 are in direct contact with each other, the liquid 4 is supplied / supplemented to the opposite discharge surface of the beam member 14 subjected to the lyophilic treatment.

図4(B)に示すように、液溜まり13は複数の板状部材12を所定の間隔を空けて設け、板状部材12の間隙13Aに液圧4Aを印加した液4を加圧供給している。液4は加圧されているので、間隙13Aから表面張力により盛り上がった液面4Bを形成し、梁部材14の反吐出面に液4のみが接触する。これにより梁部材14と板状部材12との干渉音発生や衝撃による故障の発生を防ぐことができる。   As shown in FIG. 4 (B), the liquid reservoir 13 is provided with a plurality of plate-like members 12 at a predetermined interval, and pressurizes and supplies the liquid 4 in which the hydraulic pressure 4A is applied to the gap 13A of the plate-like member 12. ing. Since the liquid 4 is pressurized, a liquid surface 4B that rises from the gap 13A due to surface tension is formed, and only the liquid 4 comes into contact with the opposite ejection surface of the beam member 14. Thereby, generation | occurrence | production of the failure by interference noise generation | occurrence | production and impact with the beam member 14 and the plate-shaped member 12 can be prevented.

このとき、間隙13Aを塞ぐ形で多孔質の弾性体(例えばスポンジ)を設けてもよい。これにより梁部材と液溜まり13との接触時に液4の飛び散りを防ぐことができる。また、弾性体の形状により液面4Bの高さを制御することもできる。   At this time, a porous elastic body (for example, a sponge) may be provided so as to close the gap 13A. Thereby, scattering of the liquid 4 can be prevented at the time of contact between the beam member and the liquid reservoir 13. Further, the height of the liquid surface 4B can be controlled by the shape of the elastic body.

図5には、本発明の第2実施形態に係る液滴吐出ヘッドの動作が示されている。   FIG. 5 shows the operation of the droplet discharge head according to the second embodiment of the present invention.

図5(A−1)はアクチュエータ36が駆動されることによって梁部材14が液滴2吐出方向に対して凹(図中下)に撓みを持たせるようにされた状態であり、図5(B−1)に拡大して示すように液溜まり13からは液圧4Aにより液4が盛り上がった液面4Bを形成しているので、ノズル16近傍の梁部材14は図5(B−2)に示すように液面4Bに接触し、容易に液4をノズル16に取り込むことができる。   FIG. 5A-1 shows a state where the actuator 36 is driven to cause the beam member 14 to bend in the concave (lower in the drawing) with respect to the droplet 2 ejection direction. Since the liquid surface 4B in which the liquid 4 is raised from the liquid reservoir 13 by the hydraulic pressure 4A is formed from the liquid reservoir 13 as shown in FIG. 5B-1), the beam member 14 in the vicinity of the nozzle 16 is shown in FIG. The liquid 4 can be easily taken into the nozzle 16 by contacting the liquid surface 4B as shown in FIG.

回転エンコーダ20が作動し、図5(A−2)のように梁部材14が吐出方向に移動し始めると図5(B−4)のようにノズル16は液面4Bから離れ、さらに回転エンコーダ20が作動を続け図5(A−3)のように梁部材14が座屈反転を起こせばノズル16内の液4は液滴2として吐出される。   When the rotary encoder 20 is activated and the beam member 14 starts to move in the discharge direction as shown in FIG. 5A-2, the nozzle 16 moves away from the liquid surface 4B as shown in FIG. If the operation continues and the beam member 14 undergoes buckling reversal as shown in FIG. 5A-3, the liquid 4 in the nozzle 16 is ejected as a droplet 2.

このとき、例えば液溜まり13がノズル16直近のみでなく梁部材14の長さ方向全体に渡って存在した場合、図5(C)に示すように梁部材14は長さ方向の略全体にわたって液4と接触する。このように広範囲で梁部材14と液4とが接触すると、座屈反転動作時に梁部材14には過大な液体剪断抵抗が発生する。これにより梁部材14は反吐出側に引っ張られ、吐出時に必要となる急峻な慣性が得られず吐出性能に悪影響を及ぼす虞がある。   At this time, for example, when the liquid reservoir 13 exists not only in the vicinity of the nozzle 16 but also over the entire length direction of the beam member 14, the beam member 14 is liquid over substantially the entire length direction as shown in FIG. 4 in contact. When the beam member 14 and the liquid 4 are in contact with each other over a wide range as described above, an excessive liquid shear resistance is generated in the beam member 14 during the buckling reversal operation. As a result, the beam member 14 is pulled to the side opposite to the ejection side, and the steep inertia required at the time of ejection cannot be obtained, which may adversely affect the ejection performance.

このような事態を防ぐため、梁部材14はノズル16の直径以上、直径の10倍の範囲で液面4Bと接触することが好ましい。本実施形態において液溜まり13は、2枚の板状部材12を250μmの隙間で設け、またノズル16の反吐出面側は、直径30μmの孔径に対し直径200μmの範囲に親液処理を施し、ノズル16直近にのみ液面4Bが接触するように構成している。   In order to prevent such a situation, it is preferable that the beam member 14 is in contact with the liquid surface 4B in the range of not less than the diameter of the nozzle 16 and 10 times the diameter. In this embodiment, the liquid reservoir 13 is provided with two plate-like members 12 with a gap of 250 μm, and the nozzle 16 is subjected to a lyophilic treatment within a range of 200 μm in diameter with respect to a hole diameter of 30 μm. The liquid surface 4B is configured to come into contact only in the nearest 16th.

<第3実施形態>
図6には、本発明の第3実施形態に係る液滴吐出ヘッドが示されている。
<Third Embodiment>
FIG. 6 shows a droplet discharge head according to a third embodiment of the present invention.

本実施形態に係る液滴吐出ヘッド21は長さ方向略中央にノズル16を備えた梁部材14の長さ方向両端を保持部材が支持し、保持部材は回転エンコーダに固定され、回転エンコーダの回動に伴って長さ方向両端側から押圧され、あるいは曲げ方向に力が加えられ液滴吐出方向あるいは逆方向に梁部材14を撓ませる構造となっている点において第1実施形態と同様である。   In the liquid droplet ejection head 21 according to this embodiment, holding members support both ends in the length direction of a beam member 14 provided with a nozzle 16 at substantially the center in the length direction, and the holding members are fixed to the rotary encoder. It is the same as the first embodiment in that the beam member 14 is deflected in the droplet discharge direction or in the opposite direction by being pressed from both ends in the length direction along with the movement or by applying a force in the bending direction. .

本実施形態においては、隣り合う梁部材14の形状、および間隙15を図6(A)に示すように構成し、ノズル16千鳥配列とすることでノズル16同士の間隔を縮め(ノズルピッチを小さくし)、ノズル密度を向上させることで更に高密度な吐出を行うことができる。例えば本実施形態では、梁部材14の細い部分の幅を50μm、開放流路14Cが形成された部分の梁部材14の幅は第1実施形態と同様の150μm、間隙15は20μmで形成している。これによって、第1実施形態におけるノズル16のピッチが170μmであったのに対し、本実施形態では120μmピッチで整列することができる。   In the present embodiment, the shape of the adjacent beam members 14 and the gap 15 are configured as shown in FIG. 6A, and the interval between the nozzles 16 is reduced by arranging the nozzles in a zigzag arrangement (the nozzle pitch is reduced). In addition, higher density discharge can be performed by increasing the nozzle density. For example, in the present embodiment, the width of the thin portion of the beam member 14 is 50 μm, the width of the beam member 14 in the portion where the open channel 14C is formed is 150 μm as in the first embodiment, and the gap 15 is 20 μm. Yes. Accordingly, the pitch of the nozzles 16 in the first embodiment is 170 μm, whereas in the present embodiment, the nozzles 16 can be aligned at a pitch of 120 μm.

また梁部材14を平滑な表面構成ではなく、親液処理を施した開放流路14Cを設け、液4をノズル16に供給することを特徴とする。   Further, the beam member 14 is not provided with a smooth surface structure, but is provided with an open flow path 14C subjected to a lyophilic process, and the liquid 4 is supplied to the nozzle 16.

本実施形態では、図示しない液溜まり13から開放流路14Cに供給される液4は、親液処理による濡れ性と梁部材14の座屈反転時に発生する遠心力のみによってノズル16に供給・リフィルが行われる。   In this embodiment, the liquid 4 supplied from the liquid reservoir 13 (not shown) to the open flow path 14C is supplied / refilled to the nozzle 16 only by the wettability by the lyophilic process and the centrifugal force generated when the beam member 14 is buckled. Is done.

図6(B)(C)は、開放流路14Cを図面の左右方向から見た断面図である。図6(B)に示すように開放流路14Cを、液溜まり13からノズル16まで延びるスリットとして、開放流路14C以外の表面を撥液膜14Aで覆い、スリット内部を親液膜14Bで覆うことで、開放流路14Cのみに液4を通し、液溜まり13からノズル16まで上記のように親液処理による濡れ性と梁部材14の座屈反転時に発生する遠心力によって液4を供給することができる。   6B and 6C are cross-sectional views of the open channel 14C as viewed from the left-right direction of the drawing. As shown in FIG. 6B, the open channel 14C is a slit extending from the liquid reservoir 13 to the nozzle 16, and the surface other than the open channel 14C is covered with the liquid repellent film 14A, and the inside of the slit is covered with the lyophilic film 14B. Thus, the liquid 4 is passed only through the open flow path 14C, and the liquid 4 is supplied from the liquid reservoir 13 to the nozzle 16 by the wettability due to the lyophilic treatment and the centrifugal force generated when the beam member 14 is buckled and reversed as described above. be able to.

あるいは図6(C)に示すように開放流路14Cをスリットではなく梁部材14の反吐出面(図中左)に設けた溝としてもよい。この場合は溝内部を親液膜14Bで覆い、それ以外の梁部材14表面を撥液膜14Aで覆うことによって同様の効果を得ることができる。   Alternatively, as shown in FIG. 6C, the open flow path 14C may be a groove provided on the non-ejection surface (left side in the figure) of the beam member 14 instead of the slit. In this case, the same effect can be obtained by covering the inside of the groove with the lyophilic film 14B and covering the other surface of the beam member 14 with the liquid repellent film 14A.

<第4実施形態>
図7には、本発明の第4実施形態に係る液滴吐出ヘッドが示されている。
<Fourth embodiment>
FIG. 7 shows a droplet discharge head according to a fourth embodiment of the present invention.

図7(A)に示すように、液滴吐出ヘッド31は長さ方向略中央にノズル16を備えた梁部材14の長さ方向両端を保持部材18が支持している点において第1実施形態と同様であるが、保持部材18を回転させる回転エンコーダを備えず、ピエゾアクチュエータの変形のみで吐出の有無を制御している。   As shown in FIG. 7A, the droplet discharge head 31 is the first embodiment in that the holding member 18 supports both ends in the length direction of the beam member 14 provided with the nozzle 16 at the substantially center in the length direction. However, a rotation encoder for rotating the holding member 18 is not provided, and the presence or absence of ejection is controlled only by deformation of the piezoelectric actuator.

図7(A)に示すように、保持部材18に長さ方向端部を保持された梁部材14はピエゾ素子30、個別電極32と共に吐出・非吐出を制御するアクチュエータ36を構成し、共通電極を兼ねた梁部材14にはピエゾ素子30の反対側面に共通電線33が設けられている。個別電極32、共通電線33はそれぞれ図示しない個別電極パッド、共通電極パッドに結線され、図示しないスイッチングICからの信号によりアクチュエータ36は駆動され、梁部材14を撓ませる/撓ませないの制御が行われる。   As shown in FIG. 7A, the beam member 14 held in the longitudinal direction by the holding member 18 constitutes an actuator 36 that controls ejection / non-ejection together with the piezo element 30 and the individual electrode 32, and the common electrode A common wire 33 is provided on the opposite side surface of the piezo element 30 in the beam member 14 that also serves as the same. The individual electrode 32 and the common electric wire 33 are connected to an individual electrode pad and a common electrode pad (not shown), respectively, and the actuator 36 is driven by a signal from a switching IC (not shown) to control whether the beam member 14 is bent or not. Is called.

まず図7(B−1)に示すように反吐出方向(図中下)に撓み、あるいは予め反吐出方向に凸となるような形状となっているアクチュエータ36によって梁部材14が反吐出方向(図中下)に撓んでいる(あるいは梁部材14もまた予め反吐出方向に凸となるような形状となっていてもよい)。   First, as shown in FIG. 7 (B-1), the beam member 14 is deformed in the anti-discharge direction (in the drawing) by an actuator 36 that is bent in the anti-discharge direction (lower in the drawing) or is previously convex in the anti-discharge direction. (Below in the figure) (or the beam member 14 may also have a shape that is convex in the anti-discharge direction in advance).

ここで梁部材14の反吐出面は液溜まり13の液面4Bに接触し、ノズル16に液4を補充する。液4は液圧4A(図中白矢印)で加圧され、吐出方向に盛り上がった液面4Bから容易に液4をノズル16に取り込むことができる。   Here, the non-ejection surface of the beam member 14 comes into contact with the liquid surface 4 </ b> B of the liquid reservoir 13 and replenishes the nozzle 16 with the liquid 4. The liquid 4 is pressurized at a liquid pressure 4A (white arrow in the figure), and the liquid 4 can be easily taken into the nozzle 16 from the liquid surface 4B that rises in the discharge direction.

次いでアクチュエータ36が作動し、吐出方向(図中上)に変形が開始されると梁部材14の曲がり、すなわち反吐出方向への撓み変形量は増加するが梁部材14の支持部そのものは吐出方向に移動するため、ノズル16近傍の梁部材14は同じく吐出方向に移動し、液面4Bから離れることでノズル16内に液4が充填されたまま残る。   Next, when the actuator 36 is activated and deformation is started in the discharge direction (upper in the figure), the beam member 14 bends, that is, the amount of deformation in the anti-discharge direction increases, but the support portion of the beam member 14 itself is in the discharge direction. Therefore, the beam member 14 in the vicinity of the nozzle 16 also moves in the discharge direction, and remains away from the liquid surface 4B while the nozzle 4 is filled with the liquid 4.

さらに図7(B−3)でアクチュエータ36が吐出方向に変形(撓み増加)すると梁部材14は座屈反転変形を起こし、図7(C−4)に示すようにノズル16内の液4は液滴2となって吐出方向に吐出される。   Further, when the actuator 36 is deformed (increases in deflection) in the discharge direction in FIG. 7B-3, the beam member 14 undergoes buckling reversal deformation, and as shown in FIG. A droplet 2 is discharged in the discharge direction.

このとき、第2実施形態と同様、広範囲で梁部材14と液4とが接触すると、座屈反転動作時に梁部材14には過大な液体剪断抵抗が発生し吐出時に必要となる急峻な慣性が得られず吐出性能に悪影響を及ぼす事態を防ぐため液溜まり13はノズル16直近にのみ液面4Bを設けている。液4の不要な付着による吐出性能の劣化をさけるため、また液4の表面張力でノズル16に液4を接触補充するのでノズル16の吐出表面側や、梁部材14反吐出面側のノズル16近傍以外の領域は撥液処理を施されている。   At this time, as in the second embodiment, when the beam member 14 and the liquid 4 are in contact with each other over a wide range, an excessive liquid shear resistance is generated in the beam member 14 during the buckling reversal operation, and the steep inertia required at the time of discharge is generated. The liquid reservoir 13 is provided with the liquid surface 4B only in the vicinity of the nozzle 16 in order to prevent a situation in which the discharge performance is not adversely affected. In order to avoid deterioration of the discharge performance due to unnecessary adhesion of the liquid 4, and the liquid 4 is contacted and replenished to the nozzle 16 by the surface tension of the liquid 4, the vicinity of the nozzle 16 on the discharge surface side of the nozzle 16 or the beam member 14 opposite to the discharge surface side. The areas other than are liquid-repellent.

<その他>
尚、本発明は、上記の実施の形態に限定されるものではない。
<Others>
In addition, this invention is not limited to said embodiment.

例えば、上記実施の形態では、アクチュエータはピエゾ素子30と梁部材14とからなっているが、ピエゾ素子30のかわりに発熱抵抗体を利用し、熱膨張差で撓み変形するアクチュエータであっても良いし、静電力や磁力を利用したものであっても良い。或いは、その他の形態のアクチュエータであっても良い。   For example, in the above-described embodiment, the actuator includes the piezo element 30 and the beam member 14, but an actuator that uses a heating resistor instead of the piezo element 30 and bends and deforms due to a difference in thermal expansion may be used. However, it may be one using electrostatic force or magnetic force. Or the actuator of another form may be sufficient.

また、本明細書における液滴吐出ヘッドは必ずしもインク等を用いた記録紙上への文字や画像の記録に限定されるものではない。すなわち、記録媒体は紙に限定されるものでなく、また吐出される液体もインクに限定されるものではない。例えば、高分子フィルムやガラス上にインクを吐出してディスプレイ用カラーフィルターを作成したり、液状の半田を基板上に吐出して部品実装用のバンプを形成したりするなど、工業用的に用いられる液滴噴射装置全般に対して本発明を利用することが可能である。   Further, the droplet discharge head in this specification is not necessarily limited to recording characters and images on recording paper using ink or the like. That is, the recording medium is not limited to paper, and the ejected liquid is not limited to ink. For example, industrial uses such as creating color filters for displays by discharging ink onto polymer films or glass, or forming bumps for component mounting by discharging liquid solder onto a substrate The present invention can be applied to all types of liquid droplet ejecting apparatuses.

本発明の第1実施形態に係る液滴吐出ヘッドを示す図である。It is a figure which shows the droplet discharge head which concerns on 1st Embodiment of this invention. 本発明に係る液の吐出動作を示す図である。It is a figure which shows the discharge operation of the liquid which concerns on this invention. 本発明の第1実施形態に係る液滴吐出ヘッドの動作を示す図である。It is a figure which shows operation | movement of the droplet discharge head which concerns on 1st Embodiment of this invention. 本発明の第2実施形態に係る液滴吐出ヘッドを示す図である。It is a figure which shows the droplet discharge head which concerns on 2nd Embodiment of this invention. 本発明の第2実施形態に係る液滴吐出ヘッドの動作を示す図である。It is a figure which shows operation | movement of the droplet discharge head which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係る液滴吐出ヘッドを示す図である。It is a figure which shows the droplet discharge head which concerns on 3rd Embodiment of this invention. 本発明の第4実施形態に係る液滴吐出ヘッドとその動作を示す図である。It is a figure which shows the droplet discharge head which concerns on 4th Embodiment of this invention, and its operation | movement. 従来の液滴吐出ヘッドを示す図である。It is a figure which shows the conventional droplet discharge head.

符号の説明Explanation of symbols

2 液滴
4 液
10 液滴吐出ヘッド
11 液滴吐出ヘッド
12 板状部材
13 液溜まり
14 梁部材
15 間隙
16 ノズル
18 保持部材
20 回転エンコーダ
21 液滴吐出ヘッド
24 プール
30 ピエゾ素子
31 液滴吐出ヘッド
32 個別電極
36 アクチュエータ
2 droplet 4 liquid 10 droplet ejection head 11 droplet ejection head 12 plate-like member 13 liquid pool 14 beam member 15 gap 16 nozzle 18 holding member 20 rotary encoder 21 droplet ejection head 24 pool 30 piezo element 31 droplet ejection head 32 Individual electrode 36 Actuator

Claims (11)

液滴吐出面に凹となるように座屈反転変形した後、前記液滴吐出面に凸となるよう座屈反転変形する梁部材と、
前記液滴吐出面から前記液滴吐出面よりも吐出される液体について濡れ性が高い反液滴吐出面まで貫通するノズルと、
前記梁部材の長手方向の少なくとも一端に設けられ前記反液滴吐出面を通じて前記ノズルへ前記液を供給する液溜まりと、
を備えたことを特徴とする液滴吐出ヘッド。
A beam member that is buckled and inverted so as to be concave on the droplet discharge surface, and then buckled and inverted so as to be convex on the droplet discharge surface;
A nozzle penetrating from the droplet discharge surface to the anti-droplet discharge surface having high wettability with respect to the liquid discharged from the droplet discharge surface;
A liquid reservoir that is provided at least at one end in the longitudinal direction of the beam member and supplies the liquid to the nozzle through the anti-droplet ejection surface;
A liquid droplet ejection head comprising:
前記液溜まりは、前記梁部材と前記梁部材から所定の隙間を空けて設けられた板状部材との間に形成される間隙であることを特徴とする請求項1に記載の液滴吐出ヘッド。   2. The droplet discharge head according to claim 1, wherein the liquid pool is a gap formed between the beam member and a plate-like member provided with a predetermined gap from the beam member. . 前記梁部材の吐出面には前記液体に対して撥液性を高める撥液処理を行ったことを特徴とする請求項1〜2の何れか1項に記載の液滴吐出ヘッド。   3. The liquid droplet ejection head according to claim 1, wherein a liquid repellent treatment for improving liquid repellency is performed on the ejection surface of the beam member. 4. 前記梁部材の反吐出面には前記液体に対して親液性を高める親液処理を行ったことを特徴とする請求項1〜3の何れか1項に記載の液滴吐出ヘッド。   4. The liquid droplet ejection head according to claim 1, wherein a lyophilic process is performed on the opposite ejection surface of the beam member to enhance the lyophilicity with respect to the liquid. 前記親液処理は前記梁部材の反吐出面に微細な凹凸を形成する処理であることを特徴とする請求項4に記載の液滴吐出ヘッド。   5. The liquid droplet ejection head according to claim 4, wherein the lyophilic process is a process of forming fine irregularities on the opposite ejection surface of the beam member. 液滴吐出面に凹となるように座屈反転変形した後、前記液滴吐出面に凸となるよう座屈反転変形する梁部材と、
前記液滴吐出面から前記液滴吐出面よりも吐出される液体について濡れ性が高い反液滴吐出面まで貫通するノズルと、
前記梁部材の反吐出面側に設けられ、前記梁部材が液滴吐出方向に凹となるように座屈反転変形する際に、前記梁部材の反吐出面側ノズル近傍部分が接触する液溜まりと、を備えたことを特徴とする液滴吐出ヘッド。
A beam member that is buckled and inverted so as to be concave on the droplet discharge surface, and then buckled and inverted so as to be convex on the droplet discharge surface;
A nozzle penetrating from the droplet discharge surface to the anti-droplet discharge surface having high wettability with respect to the liquid discharged from the droplet discharge surface;
A liquid reservoir provided on the side opposite to the ejection surface of the beam member, and when the beam member is buckled and inverted so as to be concave in the liquid droplet ejection direction, a liquid reservoir in contact with a portion near the nozzle on the side opposite to the ejection side of the beam member; A liquid droplet ejection head comprising:
前記液溜まりは前記梁部材のノズル近傍にのみ接触することを特徴とする請求項6に記載の液滴吐出ヘッド。   The liquid droplet ejection head according to claim 6, wherein the liquid pool is in contact with only the vicinity of the nozzle of the beam member. 前記ノズル内壁面および前記梁部材の反吐出面の前記ノズル近傍には、前記液体に対して親液性を高める親液処理を行ったことを特徴とする請求項6〜7の何れか1項に記載の液滴吐出ヘッド。   8. The lyophilic treatment for improving the lyophilicity of the liquid is performed in the vicinity of the nozzle on the inner wall surface of the nozzle and the anti-ejection surface of the beam member. The droplet discharge head described. 前記ノズル近傍を除く前記梁部材の反吐出面と、前記梁部材の吐出面には前記液体に対して撥液性を高める撥液処理を行ったことを特徴とする請求項6〜8の何れか1項に記載の液滴吐出ヘッド。   The liquid repellent treatment for improving liquid repellency with respect to the liquid is performed on the anti-discharge surface of the beam member excluding the vicinity of the nozzle and the discharge surface of the beam member. 2. A droplet discharge head according to item 1. 前記液溜まりは所定の隙間を空けて設けられた2枚の板状部材の間に、前記液体を圧送することで前記板状部材の間から凸状に盛り上がった液面であることを特徴とする請求項6〜9の何れか1項に記載の液滴吐出ヘッド。   The liquid reservoir is a liquid surface that protrudes in a convex shape from between the plate-like members by pumping the liquid between two plate-like members provided with a predetermined gap therebetween. The droplet discharge head according to any one of claims 6 to 9. 前記液溜まりは多孔質の弾性体に染み込ませた前記液体であることを特徴とする請求項6〜9の何れか1項に記載の液滴吐出ヘッド。   The droplet discharge head according to claim 6, wherein the liquid pool is the liquid soaked in a porous elastic body.
JP2007043194A 2007-02-23 2007-02-23 Droplet discharg head Withdrawn JP2008207336A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007043194A JP2008207336A (en) 2007-02-23 2007-02-23 Droplet discharg head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007043194A JP2008207336A (en) 2007-02-23 2007-02-23 Droplet discharg head

Publications (1)

Publication Number Publication Date
JP2008207336A true JP2008207336A (en) 2008-09-11

Family

ID=39784069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007043194A Withdrawn JP2008207336A (en) 2007-02-23 2007-02-23 Droplet discharg head

Country Status (1)

Country Link
JP (1) JP2008207336A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010143048A (en) * 2008-12-18 2010-07-01 Fuji Xerox Co Ltd Liquid droplet jetting head and liquid droplet jetting device
US8016391B2 (en) 2004-11-05 2011-09-13 Fuji Xerox Co, Ltd. Inkjet recording head and inkjet recording device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8016391B2 (en) 2004-11-05 2011-09-13 Fuji Xerox Co, Ltd. Inkjet recording head and inkjet recording device
JP2010143048A (en) * 2008-12-18 2010-07-01 Fuji Xerox Co Ltd Liquid droplet jetting head and liquid droplet jetting device
US8123335B2 (en) 2008-12-18 2012-02-28 Fuji Xerox Co., Ltd. Liquid droplet ejecting head and liquid droplet ejecting apparatus

Similar Documents

Publication Publication Date Title
KR101347144B1 (en) Restrictor with structure for preventing back flow and inkjet head having the same
JP6477041B2 (en) Liquid ejector
US8282194B2 (en) Liquid ejecting head and liquid ejecting apparatus
JP2004001472A (en) Printing system
JP2004268359A (en) Inkjet head and its manufacturing method
JP2010143048A (en) Liquid droplet jetting head and liquid droplet jetting device
CN101011881B (en) Inkjet print-head employing piezoelectric actuator
US9475292B2 (en) Liquid ejecting head and liquid ejecting apparatus
JP2009220471A (en) Liquid discharging head and liquid discharging device
JP2008207336A (en) Droplet discharg head
JP2012240274A (en) Liquid droplet ejection head cleaning device, liquid droplet ejection head, and image forming apparatus
CN104070801B (en) Fluid jetting head and liquid injection apparatus
JP4466331B2 (en) Inkjet recording head and inkjet recording apparatus
JP2004160827A (en) Droplet discharge head, method of manufacturing the same, ink cartridge, and inkjet recording apparatus
JP4539295B2 (en) Inkjet recording head and inkjet recording apparatus
JP4765601B2 (en) Droplet discharge head
JP2002052730A (en) Method for filling ink into ink jet recording apparatus, and ink jet recording apparatus and ink jet head
JP4636165B2 (en) Droplet discharge apparatus and image forming apparatus
KR20070078206A (en) Driving Method of Inkjet Printhead with Piezoelectric Actuator
JP3627782B2 (en) On-demand multi-nozzle inkjet head
JP4548489B2 (en) Droplet discharge head
JP6160033B2 (en) Liquid ejecting head and liquid ejecting apparatus
JP2014180824A (en) Liquid jetting device
TWI432335B (en) Efficient inkjet nozzle assembly
JP2018094745A (en) Liquid injection head and liquid injection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20100121

Free format text: JAPANESE INTERMEDIATE CODE: A621

A761 Written withdrawal of application

Effective date: 20110823

Free format text: JAPANESE INTERMEDIATE CODE: A761