JP2008305772A - Nonaqueous electrolyte solution secondary battery and nonaqueous electrolyte solution - Google Patents
Nonaqueous electrolyte solution secondary battery and nonaqueous electrolyte solution Download PDFInfo
- Publication number
- JP2008305772A JP2008305772A JP2007172720A JP2007172720A JP2008305772A JP 2008305772 A JP2008305772 A JP 2008305772A JP 2007172720 A JP2007172720 A JP 2007172720A JP 2007172720 A JP2007172720 A JP 2007172720A JP 2008305772 A JP2008305772 A JP 2008305772A
- Authority
- JP
- Japan
- Prior art keywords
- battery
- aqueous electrolyte
- negative electrode
- secondary battery
- positive electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000011255 nonaqueous electrolyte Substances 0.000 title claims abstract description 36
- 150000004820 halides Chemical class 0.000 claims abstract description 37
- 230000000737 periodic effect Effects 0.000 claims abstract description 12
- 239000008151 electrolyte solution Substances 0.000 claims description 44
- -1 carbonate ester Chemical class 0.000 claims description 32
- 150000001875 compounds Chemical class 0.000 claims description 23
- 229920000642 polymer Polymers 0.000 claims description 19
- 239000002033 PVDF binder Substances 0.000 claims description 11
- 229920002981 polyvinylidene fluoride Polymers 0.000 claims description 11
- 229910052726 zirconium Inorganic materials 0.000 claims description 7
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical group [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 4
- 239000005001 laminate film Substances 0.000 claims description 4
- 229910052750 molybdenum Inorganic materials 0.000 claims description 4
- 239000011733 molybdenum Substances 0.000 claims description 4
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 claims description 3
- 229910052736 halogen Inorganic materials 0.000 claims description 3
- 150000002367 halogens Chemical class 0.000 claims description 3
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 claims 2
- 229910052801 chlorine Inorganic materials 0.000 claims 2
- 239000000460 chlorine Substances 0.000 claims 2
- 239000003792 electrolyte Substances 0.000 abstract description 22
- 238000007599 discharging Methods 0.000 abstract description 6
- 239000000243 solution Substances 0.000 abstract description 6
- 230000008961 swelling Effects 0.000 abstract description 3
- 230000000452 restraining effect Effects 0.000 abstract 1
- PDKHNCYLMVRIFV-UHFFFAOYSA-H molybdenum;hexachloride Chemical compound [Cl-].[Cl-].[Cl-].[Cl-].[Cl-].[Cl-].[Mo] PDKHNCYLMVRIFV-UHFFFAOYSA-H 0.000 description 40
- 230000014759 maintenance of location Effects 0.000 description 33
- 229910052744 lithium Inorganic materials 0.000 description 26
- SBLRHMKNNHXPHG-UHFFFAOYSA-N 4-fluoro-1,3-dioxolan-2-one Chemical compound FC1COC(=O)O1 SBLRHMKNNHXPHG-UHFFFAOYSA-N 0.000 description 22
- 239000000203 mixture Substances 0.000 description 21
- 239000007773 negative electrode material Substances 0.000 description 20
- VZSRBBMJRBPUNF-UHFFFAOYSA-N 2-(2,3-dihydro-1H-inden-2-ylamino)-N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]pyrimidine-5-carboxamide Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C(=O)NCCC(N1CC2=C(CC1)NN=N2)=O VZSRBBMJRBPUNF-UHFFFAOYSA-N 0.000 description 19
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 19
- 230000008859 change Effects 0.000 description 19
- 239000002904 solvent Substances 0.000 description 19
- 230000000052 comparative effect Effects 0.000 description 17
- HMUNWXXNJPVALC-UHFFFAOYSA-N 1-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperazin-1-yl]-2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethanone Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)N1CCN(CC1)C(CN1CC2=C(CC1)NN=N2)=O HMUNWXXNJPVALC-UHFFFAOYSA-N 0.000 description 14
- 239000007774 positive electrode material Substances 0.000 description 14
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 13
- WZFUQSJFWNHZHM-UHFFFAOYSA-N 2-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperazin-1-yl]-1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethanone Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)N1CCN(CC1)CC(=O)N1CC2=C(CC1)NN=N2 WZFUQSJFWNHZHM-UHFFFAOYSA-N 0.000 description 12
- 229910052782 aluminium Inorganic materials 0.000 description 11
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 11
- VAYTZRYEBVHVLE-UHFFFAOYSA-N 1,3-dioxol-2-one Chemical compound O=C1OC=CO1 VAYTZRYEBVHVLE-UHFFFAOYSA-N 0.000 description 9
- 230000000694 effects Effects 0.000 description 9
- 230000001681 protective effect Effects 0.000 description 8
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 7
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 7
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 7
- 229910001416 lithium ion Inorganic materials 0.000 description 7
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 6
- 239000004698 Polyethylene Substances 0.000 description 6
- 229920000573 polyethylene Polymers 0.000 description 6
- YLZOPXRUQYQQID-UHFFFAOYSA-N 3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)-1-[4-[2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidin-5-yl]piperazin-1-yl]propan-1-one Chemical compound N1N=NC=2CN(CCC=21)CCC(=O)N1CCN(CC1)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F YLZOPXRUQYQQID-UHFFFAOYSA-N 0.000 description 5
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 5
- 239000011149 active material Substances 0.000 description 5
- 239000011230 binding agent Substances 0.000 description 5
- 230000003247 decreasing effect Effects 0.000 description 5
- 150000002500 ions Chemical class 0.000 description 5
- 238000012423 maintenance Methods 0.000 description 5
- 238000002156 mixing Methods 0.000 description 5
- 150000003839 salts Chemical class 0.000 description 5
- OHVLMTFVQDZYHP-UHFFFAOYSA-N 1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)-2-[4-[2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidin-5-yl]piperazin-1-yl]ethanone Chemical compound N1N=NC=2CN(CCC=21)C(CN1CCN(CC1)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)=O OHVLMTFVQDZYHP-UHFFFAOYSA-N 0.000 description 4
- 239000004743 Polypropylene Substances 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 239000010439 graphite Substances 0.000 description 4
- 229910002804 graphite Inorganic materials 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 229920001155 polypropylene Polymers 0.000 description 4
- 239000002002 slurry Substances 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 3
- 239000003575 carbonaceous material Substances 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 3
- 239000002131 composite material Substances 0.000 description 3
- 150000005676 cyclic carbonates Chemical class 0.000 description 3
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 description 3
- 239000011245 gel electrolyte Substances 0.000 description 3
- 239000011572 manganese Substances 0.000 description 3
- 239000007769 metal material Substances 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 229910021470 non-graphitizable carbon Inorganic materials 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- 229910052718 tin Inorganic materials 0.000 description 3
- 238000004804 winding Methods 0.000 description 3
- BQCIDUSAKPWEOX-UHFFFAOYSA-N 1,1-Difluoroethene Chemical compound FC(F)=C BQCIDUSAKPWEOX-UHFFFAOYSA-N 0.000 description 2
- ZZXUZKXVROWEIF-UHFFFAOYSA-N 1,2-butylene carbonate Chemical compound CCC1COC(=O)O1 ZZXUZKXVROWEIF-UHFFFAOYSA-N 0.000 description 2
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 2
- BJWMSGRKJIOCNR-UHFFFAOYSA-N 4-ethenyl-1,3-dioxolan-2-one Chemical compound C=CC1COC(=O)O1 BJWMSGRKJIOCNR-UHFFFAOYSA-N 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 2
- NIPNSKYNPDTRPC-UHFFFAOYSA-N N-[2-oxo-2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 NIPNSKYNPDTRPC-UHFFFAOYSA-N 0.000 description 2
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 2
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 2
- 150000004651 carbonic acid esters Chemical class 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000000571 coke Substances 0.000 description 2
- 239000006258 conductive agent Substances 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- FKRCODPIKNYEAC-UHFFFAOYSA-N ethyl propionate Chemical compound CCOC(=O)CC FKRCODPIKNYEAC-UHFFFAOYSA-N 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 239000011888 foil Substances 0.000 description 2
- 230000004927 fusion Effects 0.000 description 2
- UPWPDUACHOATKO-UHFFFAOYSA-K gallium trichloride Chemical compound Cl[Ga](Cl)Cl UPWPDUACHOATKO-UHFFFAOYSA-K 0.000 description 2
- GAEKPEKOJKCEMS-UHFFFAOYSA-N gamma-valerolactone Chemical compound CC1CCC(=O)O1 GAEKPEKOJKCEMS-UHFFFAOYSA-N 0.000 description 2
- 229910052732 germanium Inorganic materials 0.000 description 2
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 2
- 229910021469 graphitizable carbon Inorganic materials 0.000 description 2
- 150000003949 imides Chemical class 0.000 description 2
- 150000002484 inorganic compounds Chemical class 0.000 description 2
- 229910010272 inorganic material Inorganic materials 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- AMXOYNBUYSYVKV-UHFFFAOYSA-M lithium bromide Chemical compound [Li+].[Br-] AMXOYNBUYSYVKV-UHFFFAOYSA-M 0.000 description 2
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 2
- 229910003002 lithium salt Inorganic materials 0.000 description 2
- 159000000002 lithium salts Chemical class 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- NUJOXMJBOLGQSY-UHFFFAOYSA-N manganese dioxide Chemical compound O=[Mn]=O NUJOXMJBOLGQSY-UHFFFAOYSA-N 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- BHIWKHZACMWKOJ-UHFFFAOYSA-N methyl isobutyrate Chemical compound COC(=O)C(C)C BHIWKHZACMWKOJ-UHFFFAOYSA-N 0.000 description 2
- 239000012046 mixed solvent Substances 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- 229920000620 organic polymer Polymers 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 239000002861 polymer material Substances 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 239000006104 solid solution Substances 0.000 description 2
- WNXJIVFYUVYPPR-UHFFFAOYSA-N 1,3-dioxolane Chemical compound C1COCO1 WNXJIVFYUVYPPR-UHFFFAOYSA-N 0.000 description 1
- LDXJRKWFNNFDSA-UHFFFAOYSA-N 2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)-1-[4-[2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidin-5-yl]piperazin-1-yl]ethanone Chemical compound C1CN(CC2=NNN=C21)CC(=O)N3CCN(CC3)C4=CN=C(N=C4)NCC5=CC(=CC=C5)OC(F)(F)F LDXJRKWFNNFDSA-UHFFFAOYSA-N 0.000 description 1
- IHCCLXNEEPMSIO-UHFFFAOYSA-N 2-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperidin-1-yl]-1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethanone Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C1CCN(CC1)CC(=O)N1CC2=C(CC1)NN=N2 IHCCLXNEEPMSIO-UHFFFAOYSA-N 0.000 description 1
- VWIIJDNADIEEDB-UHFFFAOYSA-N 3-methyl-1,3-oxazolidin-2-one Chemical compound CN1CCOC1=O VWIIJDNADIEEDB-UHFFFAOYSA-N 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- JGFBQFKZKSSODQ-UHFFFAOYSA-N Isothiocyanatocyclopropane Chemical compound S=C=NC1CC1 JGFBQFKZKSSODQ-UHFFFAOYSA-N 0.000 description 1
- 229910010238 LiAlCl 4 Inorganic materials 0.000 description 1
- 229910015015 LiAsF 6 Inorganic materials 0.000 description 1
- 229910013063 LiBF 4 Inorganic materials 0.000 description 1
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 1
- 229910010707 LiFePO 4 Inorganic materials 0.000 description 1
- 229910015643 LiMn 2 O 4 Inorganic materials 0.000 description 1
- 229910013870 LiPF 6 Inorganic materials 0.000 description 1
- 229910012513 LiSbF 6 Inorganic materials 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- RJUFJBKOKNCXHH-UHFFFAOYSA-N Methyl propionate Chemical compound CCC(=O)OC RJUFJBKOKNCXHH-UHFFFAOYSA-N 0.000 description 1
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 1
- AFCARXCZXQIEQB-UHFFFAOYSA-N N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CCNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 AFCARXCZXQIEQB-UHFFFAOYSA-N 0.000 description 1
- VCUFZILGIRCDQQ-KRWDZBQOSA-N N-[[(5S)-2-oxo-3-(2-oxo-3H-1,3-benzoxazol-6-yl)-1,3-oxazolidin-5-yl]methyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C1O[C@H](CN1C1=CC2=C(NC(O2)=O)C=C1)CNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F VCUFZILGIRCDQQ-KRWDZBQOSA-N 0.000 description 1
- 229910003266 NiCo Inorganic materials 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- DHXVGJBLRPWPCS-UHFFFAOYSA-N Tetrahydropyran Chemical compound C1CCOCC1 DHXVGJBLRPWPCS-UHFFFAOYSA-N 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical group [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- XHCLAFWTIXFWPH-UHFFFAOYSA-N [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] XHCLAFWTIXFWPH-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- NFMAZVUSKIJEIH-UHFFFAOYSA-N bis(sulfanylidene)iron Chemical compound S=[Fe]=S NFMAZVUSKIJEIH-UHFFFAOYSA-N 0.000 description 1
- PWLNAUNEAKQYLH-UHFFFAOYSA-N butyric acid octyl ester Natural products CCCCCCCCOC(=O)CCC PWLNAUNEAKQYLH-UHFFFAOYSA-N 0.000 description 1
- OJIJEKBXJYRIBZ-UHFFFAOYSA-N cadmium nickel Chemical compound [Ni].[Cd] OJIJEKBXJYRIBZ-UHFFFAOYSA-N 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 1
- 239000005539 carbonized material Substances 0.000 description 1
- 150000001733 carboxylic acid esters Chemical class 0.000 description 1
- 229940112021 centrally acting muscle relaxants carbamic acid ester Drugs 0.000 description 1
- 150000005678 chain carbonates Chemical class 0.000 description 1
- CKFRRHLHAJZIIN-UHFFFAOYSA-N cobalt lithium Chemical compound [Li].[Co] CKFRRHLHAJZIIN-UHFFFAOYSA-N 0.000 description 1
- 238000000748 compression moulding Methods 0.000 description 1
- 229920001940 conductive polymer Polymers 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 239000011889 copper foil Substances 0.000 description 1
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 1
- 150000002019 disulfides Chemical class 0.000 description 1
- 239000011808 electrode reactant Substances 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- HHEIMYAXCOIQCJ-UHFFFAOYSA-N ethyl 2,2-dimethylpropanoate Chemical compound CCOC(=O)C(C)(C)C HHEIMYAXCOIQCJ-UHFFFAOYSA-N 0.000 description 1
- VAJCYQHLYBTSHG-UHFFFAOYSA-N ethyl n,n-diethylcarbamate Chemical compound CCOC(=O)N(CC)CC VAJCYQHLYBTSHG-UHFFFAOYSA-N 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000007849 furan resin Substances 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- HCDGVLDPFQMKDK-UHFFFAOYSA-N hexafluoropropylene Chemical group FC(F)=C(F)C(F)(F)F HCDGVLDPFQMKDK-UHFFFAOYSA-N 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 229910000339 iron disulfide Inorganic materials 0.000 description 1
- WDAXFOBOLVPGLV-UHFFFAOYSA-N isobutyric acid ethyl ester Natural products CCOC(=O)C(C)C WDAXFOBOLVPGLV-UHFFFAOYSA-N 0.000 description 1
- 150000003951 lactams Chemical class 0.000 description 1
- 150000002596 lactones Chemical class 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000011244 liquid electrolyte Substances 0.000 description 1
- GELKBWJHTRAYNV-UHFFFAOYSA-K lithium iron phosphate Chemical compound [Li+].[Fe+2].[O-]P([O-])([O-])=O GELKBWJHTRAYNV-UHFFFAOYSA-K 0.000 description 1
- MHCFAGZWMAWTNR-UHFFFAOYSA-M lithium perchlorate Chemical compound [Li+].[O-]Cl(=O)(=O)=O MHCFAGZWMAWTNR-UHFFFAOYSA-M 0.000 description 1
- 229910001537 lithium tetrachloroaluminate Inorganic materials 0.000 description 1
- 229910001496 lithium tetrafluoroborate Inorganic materials 0.000 description 1
- MCVFFRWZNYZUIJ-UHFFFAOYSA-M lithium;trifluoromethanesulfonate Chemical compound [Li+].[O-]S(=O)(=O)C(F)(F)F MCVFFRWZNYZUIJ-UHFFFAOYSA-M 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000002905 metal composite material Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- LGRLWUINFJPLSH-UHFFFAOYSA-N methanide Chemical compound [CH3-] LGRLWUINFJPLSH-UHFFFAOYSA-N 0.000 description 1
- VAGMFMWZIMXAGK-UHFFFAOYSA-N methyl n,n-diethylcarbamate Chemical compound CCN(CC)C(=O)OC VAGMFMWZIMXAGK-UHFFFAOYSA-N 0.000 description 1
- 229940017219 methyl propionate Drugs 0.000 description 1
- KKQAVHGECIBFRQ-UHFFFAOYSA-N methyl propyl carbonate Chemical compound CCCOC(=O)OC KKQAVHGECIBFRQ-UHFFFAOYSA-N 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- CWQXQMHSOZUFJS-UHFFFAOYSA-N molybdenum disulfide Chemical compound S=[Mo]=S CWQXQMHSOZUFJS-UHFFFAOYSA-N 0.000 description 1
- MPDOUGUGIVBSGZ-UHFFFAOYSA-N n-(cyclobutylmethyl)-3-(trifluoromethyl)aniline Chemical compound FC(F)(F)C1=CC=CC(NCC2CCC2)=C1 MPDOUGUGIVBSGZ-UHFFFAOYSA-N 0.000 description 1
- UUIQMZJEGPQKFD-UHFFFAOYSA-N n-butyric acid methyl ester Natural products CCCC(=O)OC UUIQMZJEGPQKFD-UHFFFAOYSA-N 0.000 description 1
- 239000011331 needle coke Substances 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000010955 niobium Substances 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 229920006284 nylon film Polymers 0.000 description 1
- 239000010450 olivine Substances 0.000 description 1
- 229910052609 olivine Inorganic materials 0.000 description 1
- 239000005486 organic electrolyte Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000002006 petroleum coke Substances 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 239000006253 pitch coke Substances 0.000 description 1
- 229920001197 polyacetylene Polymers 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920000767 polyaniline Polymers 0.000 description 1
- 229920006254 polymer film Polymers 0.000 description 1
- 239000003505 polymerization initiator Substances 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920000193 polymethacrylate Polymers 0.000 description 1
- 229920005672 polyolefin resin Polymers 0.000 description 1
- 229920000128 polypyrrole Polymers 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 229920000123 polythiophene Polymers 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 239000002296 pyrolytic carbon Substances 0.000 description 1
- HNJBEVLQSNELDL-UHFFFAOYSA-N pyrrolidin-2-one Chemical compound O=C1CCCN1 HNJBEVLQSNELDL-UHFFFAOYSA-N 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 229910052596 spinel Inorganic materials 0.000 description 1
- 239000011029 spinel Substances 0.000 description 1
- HXJUTPCZVOIRIF-UHFFFAOYSA-N sulfolane Chemical compound O=S1(=O)CCCC1 HXJUTPCZVOIRIF-UHFFFAOYSA-N 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- CFJRPNFOLVDFMJ-UHFFFAOYSA-N titanium disulfide Chemical compound S=[Ti]=S CFJRPNFOLVDFMJ-UHFFFAOYSA-N 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- JOYRKODLDBILNP-UHFFFAOYSA-N urethane group Chemical group NC(=O)OCC JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 1
- 229910001935 vanadium oxide Inorganic materials 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0567—Liquid materials characterised by the additives
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0568—Liquid materials characterised by the solutes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/058—Construction or manufacture
- H01M10/0587—Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/131—Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/133—Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/10—Primary casings; Jackets or wrappings
- H01M50/116—Primary casings; Jackets or wrappings characterised by the material
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Secondary Cells (AREA)
Abstract
Description
本発明は、サイクル特性を良好に維持したまま、高温環境下の膨張を減少した非水電解液二次電池に関する。 The present invention relates to a non-aqueous electrolyte secondary battery having reduced expansion under a high temperature environment while maintaining good cycle characteristics.
近年、カメラ一体型VTR、デジタルスチルカメラ、携帯電話、携帯情報端末、ノート型コンピュータ等のポータブル電子機器が多く登場し、その小型軽量化が図られている。そしてこれらの電子機器のポータブル電源として、電池、特に二次電池について、エネルギー密度を向上させるための研究開発が活発に進められている。中でも、負極活物質に炭素、正極活物質にリチウム−遷移金属複合酸化物、電解液に炭酸エステル混合物を使用するリチウムイオン二次電池は、従来の非水系電解液二次電池である鉛電池、ニッケルカドミウム電池と比較して大きなエネルギー密度が得られるため、広く実用化されている。また、外装にアルミニウムラミネートフィルムを使用するラミネート電池は、外装が薄く軽量なため活物質の量を増加させることができ、エネルギー密度が大きい。 In recent years, many portable electronic devices such as a camera-integrated VTR, a digital still camera, a mobile phone, a personal digital assistant, and a notebook computer have appeared, and their size and weight have been reduced. As portable power sources for these electronic devices, research and development for improving the energy density of batteries, particularly secondary batteries, are being actively promoted. Among them, a lithium ion secondary battery that uses carbon as a negative electrode active material, a lithium-transition metal composite oxide as a positive electrode active material, and a carbonate ester mixture as an electrolyte is a lead battery that is a conventional non-aqueous electrolyte secondary battery, Since a large energy density can be obtained compared to a nickel cadmium battery, it is widely put into practical use. In addition, a laminate battery using an aluminum laminate film for the exterior can increase the amount of active material and has a high energy density because the exterior is thin and lightweight.
一方で、電池が高温環境下にさらされると電解液中の炭酸エステルが電極と反応することで分解し、ガスが発生することがある。このような現象はラミネート電池のような薄型の電池においては電池の膨張につながるため特に問題となる。そこでフルオロエチレンカーボネートを電解液に添加する事により、充放電サイクル時の放電容量維持率の低下を抑制する事が提案されている(特許文献1)。 On the other hand, when the battery is exposed to a high temperature environment, the carbonic acid ester in the electrolytic solution may be decomposed by reacting with the electrode to generate gas. Such a phenomenon is particularly problematic in a thin battery such as a laminate battery because it leads to battery expansion. In view of this, it has been proposed to add a fluoroethylene carbonate to the electrolytic solution to suppress a decrease in the discharge capacity retention rate during the charge / discharge cycle (Patent Document 1).
しかしフルオロエチレンカーボネートを用いた場合、高温環境下で電池膨張を抑制するには未だ不十分であり、改善の余地があった。そこで本発明は、かかる問題点を鑑みてなされたものであり、充放電効率を維持しつつ高温保存時における膨張を抑制することのできる電池を提供することを目的とする。 However, when fluoroethylene carbonate is used, it is still insufficient for suppressing battery expansion in a high temperature environment, and there is room for improvement. Therefore, the present invention has been made in view of such problems, and an object thereof is to provide a battery capable of suppressing expansion during high-temperature storage while maintaining charge / discharge efficiency.
本発明では、電解液中に特定元素のハロゲン化物を含むことにより、良好な充放電サイクル特性を維持したまま、高温環境下の膨張が減少する事を見出した。
すなわち本発明は下記の非水電解液二次電池及び非水電解液を提供する。
(1)正極および負極と共に非水電解液を備えた非水電解液二次電池であって、
前記非水電解液が、Zr、周期律表第5族、第6族、及び第12〜第15族からなる群より選ばれる元素のハロゲン化物を含むことを特徴とする非水電解液二次電池。
(2)Zr、周期律表第5族、第6族、及び第12〜15族からなる群より選ばれる元素のハロゲン化物を含むことを特徴とする非水電解液。
In the present invention, it has been found that by containing a halide of a specific element in an electrolytic solution, expansion under a high temperature environment is reduced while maintaining good charge / discharge cycle characteristics.
That is, the present invention provides the following non-aqueous electrolyte secondary battery and non-aqueous electrolyte.
(1) A nonaqueous electrolyte secondary battery comprising a nonaqueous electrolyte together with a positive electrode and a negative electrode,
The non-aqueous electrolyte secondary contains a halide of an element selected from the group consisting of Zr, groups 5 and 6 of the periodic table, and groups 12 to 15 battery.
(2) A nonaqueous electrolytic solution comprising a halide of an element selected from the group consisting of Zr, groups 5 and 6, and groups 12 to 15 of the periodic table.
本発明の非水電解液及び非水電解液二次電池によれば、電解液中に含有される特定元素のハロゲン化物が初回充電時に電極表面で分解してハロゲン化リチウムの保護皮膜を形成する事で電解液と電池活物質との反応による気体発生を抑制すると考えられる。これにより、高温保存時の電池膨張を抑制するとともに、優れた充放電効率を保持することができる。 According to the non-aqueous electrolyte and the non-aqueous electrolyte secondary battery of the present invention, a halide of a specific element contained in the electrolyte is decomposed on the electrode surface during the first charge to form a lithium halide protective film. This is considered to suppress gas generation due to the reaction between the electrolytic solution and the battery active material. Thereby, while suppressing battery expansion at the time of high temperature preservation | save, the outstanding charging / discharging efficiency can be hold | maintained.
以下、本発明を実施するための最良の形態について、図面を参照して説明するが、本発明は以下の形態に限定されるものではない。 Hereinafter, the best mode for carrying out the present invention will be described with reference to the drawings, but the present invention is not limited to the following mode.
図1は、本発明の一実施の形態に係るラミネート型電池の構成を模式的に表したものである。この二次電池は、いわゆるラミネートフィルム型といわれるものであり、正極リード21および負極リード22が取り付けられた巻回電極体20をフィルム状の外装部材30の内部に収容したものである。
FIG. 1 schematically shows a configuration of a laminated battery according to an embodiment of the present invention. This secondary battery is a so-called laminate film type, and has a
正極リード21および負極リード22は、それぞれ、外装部材30の内部から外部に向かい例えば同一方向に導出されている。正極リード21および負極リード22は、例えば、アルミニウム、銅、ニッケルあるいはステンレスなどの金属材料によりそれぞれ構成されており、それぞれ薄板状または網目状とされている。
The positive electrode lead 21 and the
外装部材30は、例えば、ナイロンフィルム、アルミニウム箔およびポリエチレンフィルムをこの順に貼り合わせた矩形状のアルミラミネートフィルムにより構成されている。外装部材30は、例えば、ポリエチレンフィルム側と巻回電極体20とが対向するように配設されており、各外縁部が融着あるいは接着剤により互いに密着されている。外装部材30と正極リード21および負極リード22との間には、外気の侵入を防止するための密着フィルム31が挿入されている。密着フィルム31は、正極リード21および負極リード22に対して密着性を有する材料、例えば、ポリエチレン、ポリプロピレン、変性ポリエチレンあるいは変性ポリプロピレンなどのポリオレフィン樹脂により構成されている。
The
なお、外装部材30は、上述したアルミラミネートフィルムに代えて、他の構造を有するラミネートフィルム、ポリプロピレンなどの高分子フィルムあるいは金属フィルムにより構成するようにしてもよい。
The
図2は、図1に示した巻回電極体20のI−I線に沿った断面構造を表すものである。巻回電極体20は、正極23と負極24とをセパレータ25および電解質層26を介して積層し、巻回したものであり、最外周部は保護テープ27により保護されている。
FIG. 2 shows a cross-sectional structure taken along line II of the spirally
(活物質層)
正極23は、正極集電体23Aの両面に正極活物質層23Bが設けられた構造を有している。負極24は、負極集電体24Aの両面に負極活物質層24Bが設けられた構造を有しており、負極活物質層24Bと正極活物質層23Bとが対向するように配置されている。本発明の非水電解液二次電池において、上記正極活物質層23Bおよび負極活物質層24Bの片面あたりの厚さはそれぞれ40μm以上、好ましくは80μm以下である。より好ましくは40μm以上60μm以下の範囲である。活物質層の厚さを40μm以上とすることで、電池の高容量化を図ることができる。また、80μm以下とすることで充放電を繰り返した時の放電容量維持率を大きくできる。
(Active material layer)
The positive electrode 23 has a structure in which a positive electrode active material layer 23B is provided on both surfaces of a positive electrode
(正極)
正極集電体23Aは、例えば、アルミニウム、ニッケルあるいはステンレスなどの金属材料により構成されている。正極活物質層24Bは、例えば、正極活物質として、リチウムを吸蔵および放出可能な正極材料のいずれか1種または複数種を含んでおり、必要に応じて炭素材料などの導電剤およびポリフッ化ビニリデンなどの結着剤を含んでいてもよい。
(Positive electrode)
The positive electrode
リチウムを吸蔵および放出することが可能な正極材料としては、例えば、コバルト酸リチウム、ニッケル酸リチウム、およびこれらの固溶体(Li(NiCoyMnz)O2))(x、yおよびzの値は0<x<1、0<y<1、0≦z<1、x+y+z=1である。)、マンガンスピネル(LiMn2O4)およびその固溶体(Li(Mn2−vNiv)O4)(vの値はv<2である。)などのリチウム複合酸化物、並びにリン酸鉄リチウム(LiFePO4)などのオリビン構造を有するリン酸化合物が好ましい。高いエネルギー密度を得ることができるからである。また、リチウムを吸蔵および放出することが可能な正極材料としては、例えば、酸化チタン、酸化バナジウムおよび二酸化マンガンなどの酸化物、二硫化鉄、二硫化チタンおよび硫化モリブデンなどの二硫化物、硫黄、並びにポリアニリンおよびポリチオフェンなどの導電性高分子も挙げられる。 Examples of the positive electrode material capable of inserting and extracting lithium include lithium cobaltate, lithium nickelate, and solid solutions thereof (Li (NiCo y Mn z ) O 2 )) (x, y, and z have values of 0 <x <1, 0 <y <1, 0 ≦ z <1, x + y + z = 1.), Manganese spinel (LiMn 2 O 4 ) and its solid solution (Li (Mn 2−v Ni v ) O 4 ) (The value of v is v <2.) Lithium composite oxides and the like, and phosphate compounds having an olivine structure such as lithium iron phosphate (LiFePO 4 ) are preferable. This is because a high energy density can be obtained. Examples of the positive electrode material capable of inserting and extracting lithium include oxides such as titanium oxide, vanadium oxide and manganese dioxide, disulfides such as iron disulfide, titanium disulfide and molybdenum sulfide, sulfur, And conductive polymers such as polyaniline and polythiophene.
(負極)
負極24は、例えば、対向する一対の面を有する負極集電体24Aの両面に負極活物質層24Bが設けられた構造を有している。負極集電体24Aは、例えば、銅、ニッケルおよびステンレスなどの金属材料により構成されている。
(Negative electrode)
The
負極活物質層24Bは、負極活物質として、リチウムを吸蔵および放出することが可能な負極材料のいずれか1種または複数種を含んでいる。なお、この二次電池では、リチウムを吸蔵および放出することが可能な負極材料の充電容量が、正極23の充電容量よりも大きくなっており、充電の途中において負極24にリチウム金属が析出しないようになっている。
The negative electrode active material layer 24B includes one or more negative electrode materials capable of occluding and releasing lithium as a negative electrode active material. In this secondary battery, the charge capacity of the negative electrode material capable of inserting and extracting lithium is larger than the charge capacity of the positive electrode 23 so that lithium metal does not deposit on the
リチウムを吸蔵および放出することが可能な負極材料としては、例えば、難黒鉛化性炭素、易黒鉛化性炭素、黒鉛、熱分解炭素類、コークス類、ガラス状炭素類、有機高分子化合物焼成体、炭素繊維または活性炭などの炭素材料が挙げられる。このうち、コークス類には、ピッチコークス、ニードルコークスあるいは石油コークスなどがある。有機高分子化合物焼成体とは、フェノール樹脂やフラン樹脂等の高分子材料を適当な温度で焼成して炭素化したものをいい、一部には難黒鉛化性炭素または易黒鉛化性炭素に分類されるものもある。また、高分子材料としてはポリアセチレンあるいはポリピロールなどがある。これら炭素材料は、充放電時に生じる結晶構造の変化が非常に少なく、高い充放電容量を得ることができると共に、良好なサイクル特性を得ることができるので好ましい。特に黒鉛は、電気化学当量が大きく、高いエネルギー密度を得ることができ好ましい。また、難黒鉛化性炭素は、優れた特性が得られるので好ましい。さらにまた、充放電電位が低いもの、具体的には充放電電位がリチウム金属に近いものが、電池の高エネルギー密度化を容易に実現することができるので好ましい。 Examples of the negative electrode material capable of inserting and extracting lithium include non-graphitizable carbon, graphitizable carbon, graphite, pyrolytic carbons, cokes, glassy carbons, and fired organic polymer compounds And carbon materials such as carbon fiber or activated carbon. Among these, examples of coke include pitch coke, needle coke, and petroleum coke. An organic polymer compound fired body refers to a carbonized material obtained by firing a polymer material such as phenol resin or furan resin at an appropriate temperature, and in part, it is made of non-graphitizable carbon or graphitizable carbon. Some are classified. Examples of the polymer material include polyacetylene and polypyrrole. These carbon materials are preferable because the change in crystal structure that occurs during charge and discharge is very small, a high charge and discharge capacity can be obtained, and good cycle characteristics can be obtained. In particular, graphite is preferable because it has a high electrochemical equivalent and can provide a high energy density. Further, non-graphitizable carbon is preferable because excellent characteristics can be obtained. Furthermore, those having a low charge / discharge potential, specifically, those having a charge / discharge potential close to that of lithium metal are preferable because a high energy density of the battery can be easily realized.
また、負極材料としては、上記に示した炭素材料の他に、ケイ素、スズ、及びそれらの化合物、マグネシウム、アルミニウム、ゲルマニウム等、リチウムと合金を作る元素を含む材料を用いてもよい。更にチタンのようにリチウムと複合酸化物を形成する元素を含む材料も考えられる。 Further, as the negative electrode material, in addition to the carbon material shown above, a material containing an element that forms an alloy with lithium, such as silicon, tin, and a compound thereof, magnesium, aluminum, germanium, or the like may be used. Further, a material containing an element that forms a composite oxide with lithium, such as titanium, can be considered.
(セパレータ)
セパレータ25は、正極23と負極24とを隔離し、両極の接触による電流の短絡を防止しつつ、リチウムイオンを通過させるものである。このセパレータ25は、例えば、ポリテトラフルオロエチレン、ポリプロピレンおよびポリエチレンなどよりなる合成樹脂製の多孔質膜、またはセラミック製の多硬質膜により構成されており、これらの複数種の多孔質膜を積層した構造とされていてもよい。セパレータ25には、例えば液状の電解質である電解液が含浸されている。
(Separator)
The separator 25 separates the positive electrode 23 and the
(非水電解液)
本発明における非水電解液(以下、単に電解液とも言う。)は、Zr、周期律表第5族、第6族、及び第12〜15族からなる群より選ばれる元素のハロゲン化物(以下単に「ハロゲン化物」とも言う。)を含有する。これらのハロゲン化物は初回充電時に電極表面で分解してハロゲン化リチウムの保護皮膜を形成する事で電解液と電池活物質との反応による気体発生を抑制すると考えられる。また、これらのハロゲン化物は電解液に溶解する際、溶液中にハロゲン化物イオンは生成しないと考えられる。ハロゲン化物イオンが存在すれば電解液中のリチウムイオンと結合し不溶性の塩化リチウムになって白濁するが、本発明で用いる上記ハロゲン化物は電解液中に溶解してもそのような現象は見られない。
(Nonaqueous electrolyte)
In the present invention, the nonaqueous electrolytic solution (hereinafter also simply referred to as the electrolytic solution) is a halide of an element selected from the group consisting of Zr, Group 5 of the periodic table, Group 6 and Groups 12 to 15 (hereinafter referred to as the electrolyte). Simply referred to as "halide"). These halides are considered to suppress gas generation due to the reaction between the electrolytic solution and the battery active material by decomposing on the electrode surface during the first charge to form a protective film of lithium halide. Further, when these halides are dissolved in the electrolytic solution, it is considered that halide ions are not generated in the solution. If halide ions are present, they bind to lithium ions in the electrolyte solution and become insoluble lithium chloride, resulting in white turbidity. However, even if the halide used in the present invention is dissolved in the electrolyte solution, such a phenomenon is observed. Absent.
上記Zr、周期律表第5族、第6族、及び第12〜15族からなる群より選ばれる元素としては、ジルコニウム、第5族のバナジウム、ニオブ、タンタル、第6族のモリブデン、タングステン、第12族の亜鉛、第13族のアルミニウム、ガリウム、インジウム、第14族のケイ素、ゲルマニウム、スズ、第15族のリン、アンチモンが挙げられる。これらの中でも、酸化物皮膜を形成しやすい観点から第6族または第13族から選ばれる元素が好ましく、モリブデンが最も好ましい。 The element selected from the group consisting of Zr, Group 5 and Group 6 and Group 12 to 15 of the periodic table is zirconium, Group 5 vanadium, niobium, tantalum, Group 6 molybdenum, tungsten, Examples include Group 12 zinc, Group 13 aluminum, gallium, indium, Group 14 silicon, germanium, tin, Group 15 phosphorus and antimony. Among these, from the viewpoint of easily forming an oxide film, an element selected from Group 6 or Group 13 is preferable, and molybdenum is most preferable.
また、ハロゲン化物の中でも塩化物が効果的と考えられる。塩化物に比べ、フッ化物はイオン性が大きいため有機電解液への溶解度が小さく、臭化物は生成する臭化リチウムの溶解度が大きいため保護皮膜になりにくいためである。 Of the halides, chloride is considered effective. This is because, compared with chloride, fluoride has a high ionicity and thus has a low solubility in an organic electrolyte solution, and bromide has a high solubility in lithium bromide to be formed, so that it is difficult to form a protective film.
上記ハロゲン化物の非水電解液中における濃度は0.02〜0.50質量%が好ましく、0.05〜0.2質量%がより好ましい。濃度が0.02〜0.50質量%の範囲であれば十分な皮膜が形成し、かつ抵抗が小さいため好ましい。 The concentration of the halide in the non-aqueous electrolyte is preferably 0.02 to 0.50 mass%, more preferably 0.05 to 0.2 mass%. A concentration in the range of 0.02 to 0.50 mass% is preferable because a sufficient film is formed and the resistance is small.
これらのハロゲン化物は炭酸エステルと組み合わせると効果的である。これらの炭酸エステルは別の機構で保護皮膜を形成する事により気体発生を抑制すると考えられる。炭酸エステルとしては、ビニレンカーボネート、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネートおよびビニルエチレンカーボネートなどの環状炭酸エステルや、これらの一部がハロゲンで置換されたハロゲン化炭酸エステル等が好ましい。炭酸エステルの含有量は0.1〜2質量%が好ましい。この範囲とすることで十分な皮膜が形成し、かつ抵抗が小さくなる。 These halides are effective when combined with carbonates. These carbonic acid esters are thought to suppress gas generation by forming a protective film by another mechanism. As the carbonate, cyclic carbonates such as vinylene carbonate, ethylene carbonate, propylene carbonate, butylene carbonate, and vinyl ethylene carbonate, halogenated carbonates in which a part thereof is substituted with halogen, and the like are preferable. The content of carbonate is preferably 0.1 to 2% by mass. By setting it within this range, a sufficient film is formed and the resistance is reduced.
本発明における非水電解液にはさらに、溶媒と、溶媒に溶解された電解質塩とを含んでいる。電解液に用いる溶媒は、比誘電率が30以上の高誘電率溶媒であることが好ましい。これによりリチウムイオンの数を増加させることができるからである。電解液における高誘電率溶媒の含有量は、15〜50質量%の範囲内とすることが好ましい。この範囲内とすることにより、より高い充放電効率が得られるからである。 The nonaqueous electrolytic solution in the present invention further contains a solvent and an electrolyte salt dissolved in the solvent. The solvent used for the electrolytic solution is preferably a high dielectric constant solvent having a relative dielectric constant of 30 or more. This is because the number of lithium ions can be increased. The content of the high dielectric constant solvent in the electrolytic solution is preferably in the range of 15 to 50% by mass. It is because higher charging / discharging efficiency is obtained by setting it within this range.
高誘電率溶媒としては、例えば、ビニレンカーボネート、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネートおよびビニルエチレンカーボネートなどの環状炭酸エステル、またはγ−ブチロラクトンあるいはγ−バレロラクトンなどのラクトン、N−メチル−2−ピロリドンなどのラクタム、N−メチル−2−オキサゾリジノンなどの環式カルバミン酸エステル、並びにテトラメチレンスルホンなどのスルホン化合物が挙げられる。特に環状炭酸エステルが好ましく、エチレンカーボネート、炭素−炭素二重結合を有するビニレンカーボネートがより好ましい。また、上記高誘電率溶媒は、1種を単独で用いてもよく、複数種を混合して用いてもよい。 Examples of the high dielectric constant solvent include cyclic carbonates such as vinylene carbonate, ethylene carbonate, propylene carbonate, butylene carbonate and vinyl ethylene carbonate, lactones such as γ-butyrolactone and γ-valerolactone, and N-methyl-2-pyrrolidone. And lactams such as N-methyl-2-oxazolidinone, and sulfone compounds such as tetramethylene sulfone. Cyclic carbonates are particularly preferable, and ethylene carbonate and vinylene carbonate having a carbon-carbon double bond are more preferable. Moreover, the said high dielectric constant solvent may be used individually by 1 type, and may mix and use multiple types.
電解液に用いる溶媒は、上記高誘電率溶媒に、粘度が1mPa・s以下の低粘度溶媒を混合して用いることが好ましい。これにより高いイオン伝導性を得ることができるからである。高誘電率溶媒に対する低粘度溶媒の比率(質量比)は、高誘電率溶媒:低粘度溶媒=2:8〜5:5の範囲内とすることが好ましい。この範囲内とすることでより高い効果が得られるからである。 The solvent used for the electrolytic solution is preferably used by mixing a low-viscosity solvent having a viscosity of 1 mPa · s or less with the high dielectric constant solvent. This is because high ion conductivity can be obtained. The ratio (mass ratio) of the low-viscosity solvent to the high-dielectric-constant solvent is preferably in the range of high-dielectric-constant solvent: low-viscosity solvent = 2: 8 to 5: 5. It is because a higher effect can be obtained by setting it within this range.
低粘度溶媒としては、例えば、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネートおよびメチルプロピルカーボネートなどの鎖状炭酸エステル、酢酸メチル、酢酸エチル、プロピオン酸メチル、プロピオン酸エチル、酪酸メチル、イソ酪酸メチル、トリメチル酢酸メチルおよびトリメチル酢酸エチルなどの鎖状カルボン酸エステル、N,N−ジメチルアセトアミドなどの鎖状アミド、N,N−ジエチルカルバミン酸メチルおよびN,N−ジエチルカルバミン酸エチルなどの鎖状カルバミン酸エステル、ならびに1,2−ジメトキシエタン、テトラヒドロフラン、テトラヒドロピランおよび1,3−ジオキソランなどのエーテルが挙げられる。これらの低粘度溶媒は1種を単独で用いてもよく、複数種を混合して用いてもよい。 Examples of the low viscosity solvent include chain carbonates such as dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, and methyl propyl carbonate, methyl acetate, ethyl acetate, methyl propionate, ethyl propionate, methyl butyrate, methyl isobutyrate, and trimethyl. Chain carboxylic acid esters such as methyl acetate and ethyl trimethylacetate, chain amides such as N, N-dimethylacetamide, chain carbamic acid esters such as methyl N, N-diethylcarbamate and ethyl N, N-diethylcarbamate And ethers such as 1,2-dimethoxyethane, tetrahydrofuran, tetrahydropyran and 1,3-dioxolane. These low-viscosity solvents may be used alone or in combination of two or more.
電解質塩としては、例えば、六フッ化リン酸リチウム(LiPF6)、四フッ化ホウ酸リチウム(LiBF4)、六フッ化ヒ酸リチウム(LiAsF6)、六フッ化アンチモン酸リチウム(LiSbF6)、過塩素酸リチウム(LiClO4)および四塩化アルミニウム酸リチウム(LiAlCl4)などの無機リチウム塩、並びにトリフルオロメタンスルホン酸リチウム(CF3SO3Li)、リチウムビス(トリフルオロメタンスルホン)イミド[(CF3SO2)2NLi]、リチウムビス(ペンタフルオロエタンスルホン)イミド[(C2F5SO2)2NLi]およびリチウムトリス(トリフルオロメタンスルホン)メチド[(CF3SO2)3CLi]などのパーフルオロアルカンスルホン酸誘導体のリチウム塩が挙げられる。電解質塩は1種を単独で用いてもよく、複数種を混合して用いてもよい。電解液中における電解質塩の含有量は、6〜25重量%であることが好ましい。 As the electrolyte salt, e.g., lithium hexafluorophosphate (LiPF 6), lithium tetrafluoroborate (LiBF 4), lithium hexafluoroarsenate (LiAsF 6), lithium hexafluoro antimonate (LiSbF 6) , Inorganic lithium salts such as lithium perchlorate (LiClO 4 ) and lithium tetrachloroaluminate (LiAlCl 4 ), and lithium trifluoromethanesulfonate (CF 3 SO 3 Li), lithium bis (trifluoromethanesulfone) imide [(CF 3 SO 2 ) 2 NLi], lithium bis (pentafluoroethanesulfone) imide [(C 2 F 5 SO 2 ) 2 NLi] and lithium tris (trifluoromethanesulfone) methide [(CF 3 SO 2 ) 3 CLi] Of perfluoroalkanesulfonic acid derivatives Lithium salts. One electrolyte salt may be used alone, or a plurality of electrolyte salts may be mixed and used. The content of the electrolyte salt in the electrolytic solution is preferably 6 to 25% by weight.
(高分子化合物)
本発明の電池は、電解液により膨潤して電解液を保持する保持体となる高分子化合物を含むことにより、ゲル状としてもよい。電解液により膨潤する高分子化合物を含むことにより高いイオン伝導率を得ることができ、優れた充放電効率が得られると共に、電池の漏液を防止することができるからである。電解液に高分子化合物を添加して用いる場合、電解液における高分子化合物の含有量は、0.1質量%以上2.0質量%以下の範囲内とすることが好ましい。また、セパレータの両面にポリフッ化ビニリデン等の高分子化合物を塗布して用いる場合は、電解液と高分子化合物の質量比を50:1〜10:1の範囲内とすることが好ましい。この範囲内とすることにより、より高い充放電効率が得られるからである。
(Polymer compound)
The battery of the present invention may be in the form of a gel by containing a polymer compound that swells with the electrolyte and serves as a holding body that holds the electrolyte. It is because high ion conductivity can be obtained by including a polymer compound that swells with the electrolytic solution, excellent charge / discharge efficiency can be obtained, and battery leakage can be prevented. When a polymer compound is added to the electrolytic solution and used, the content of the polymer compound in the electrolytic solution is preferably in the range of 0.1% by mass to 2.0% by mass. Further, when a polymer compound such as polyvinylidene fluoride is applied on both sides of the separator, the mass ratio of the electrolytic solution to the polymer compound is preferably in the range of 50: 1 to 10: 1. It is because higher charging / discharging efficiency is obtained by setting it within this range.
前記高分子化合物としては、例えば、下式(1)に示すポリビニルホルマール、ポリエチレンオキサイド並びにポリエチレンオキサイドを含む架橋体などのエーテル系高分子化合物、下式(2)に示すポリメタクリレートなどのエステル系高分子化合物、アクリレート系高分子化合物、および下式(3)に示すポリフッ化ビニリデン、並びにフッ化ビニリデンとヘキサフルオロプロピレンとの共重合体などのフッ化ビニリデンの重合体が挙げられる。高分子化合物は1種を単独で用いてもよく、複数種を混合して用いてもよい。特に、高温保存時の膨潤防止効果の観点からは、ポリフッ化ビニリデンなどのフッ素系高分子化合物を用いることが望ましい。 Examples of the polymer compound include ether-based polymer compounds such as polyvinyl formal, polyethylene oxide and polyethylene oxide represented by the following formula (1), and ester-based polymers such as polymethacrylate represented by the following formula (2). Examples thereof include a polymer of vinylidene fluoride such as a molecular compound, an acrylate polymer compound, and polyvinylidene fluoride represented by the following formula (3), and a copolymer of vinylidene fluoride and hexafluoropropylene. A high molecular compound may be used individually by 1 type, and multiple types may be mixed and used for it. In particular, from the viewpoint of the effect of preventing swelling during high temperature storage, it is desirable to use a fluorine-based polymer compound such as polyvinylidene fluoride.
前記式(1)〜(3)において、s、t、uはそれぞれ100〜10000の整数であり、RはCxH2x−1Oy(xは1〜8、yは0〜4)で示される。 In the formulas (1) to (3), s, t and u are each an integer of 100 to 10000, R is C x H 2x-1 O y (x is 1 to 8, y is 0 to 4) Indicated.
(製造方法)
この二次電池は、例えば、次のようにして製造することができる。
(Production method)
For example, the secondary battery can be manufactured as follows.
正極は、例えば次の方法で作製できる。まず、正極活物質と、導電剤と、結着剤とを混合して正極合剤を調製し、この正極合剤をN−メチル−2−ピロリドンなどの溶剤に分散させてペースト状の正極合剤スラリーとする。続いて、この正極合剤スラリーを正極集電体23Aに塗布し溶剤を乾燥させたのち、ロールプレス機などにより圧縮成型して正極活物質層23Bを形成し、正極23を作製する。この際、正極活物質層23Bの厚さは40μm以上となるようにする。
The positive electrode can be produced, for example, by the following method. First, a positive electrode active material, a conductive agent, and a binder are mixed to prepare a positive electrode mixture, and the positive electrode mixture is dispersed in a solvent such as N-methyl-2-pyrrolidone to obtain a paste-like positive electrode mixture. A slurry is obtained. Subsequently, the positive electrode mixture slurry is applied to the positive electrode
また、負極は、例えば次の方法で作製できる。まず、構成元素としてケイ素およびスズのうちの少なくとも一方を含む負極活物質と、導電剤と、結着剤とを混合して負極合剤を調製したのち、この負極合剤をN−メチル−2−ピロリドンなどの溶剤に分散させてペースト状の負極合剤スラリーとする。次いで、この負極合剤スラリーを負極集電体24Aに塗布し乾燥させ、圧縮成型することにより、上述した負極活物質よりなる負極活物質粒子を含有する負極活物質層24Bを形成し、負極24を得る。この際、負極活物質層24Bの厚さは40μm以上となるようにする。
Moreover, a negative electrode can be produced by the following method, for example. First, after preparing a negative electrode mixture by mixing a negative electrode active material containing at least one of silicon and tin as constituent elements, a conductive agent, and a binder, the negative electrode mixture was mixed with N-methyl-2. -Disperse in a solvent such as pyrrolidone to obtain a paste-like negative electrode mixture slurry. Next, the negative electrode mixture slurry is applied to the negative electrode
つぎに、正極23および負極24のそれぞれに、電解液と、高分子化合物と、混合溶剤とを含む前駆溶液を塗布し、混合溶剤を揮発させて電解質層26を形成する。次いで、正極集電体23Aに正極リード21を取り付けると共に、負極集電体24Aに負極リード22を取り付ける。続いて、電解質層26が形成された正極23と負極24とをセパレータ25を介して積層し積層体としたのち、この積層体をその長手方向に巻回して、最外周部に保護テープ27を接着して巻回電極体20を形成する。そののち、例えば、外装部材30の間に巻回電極体20を挟み込み、外装部材30の外縁部同士を熱融着などにより密着させて封入する。その際、正極リード21および負極リード22と外装部材30との間には密着フィルム31を挿入する。これにより、図1、2に示した二次電池が完成する。
Next, a precursor solution containing an electrolytic solution, a polymer compound, and a mixed solvent is applied to each of the positive electrode 23 and the
また、この二次電池は、次のようにして作製してもよい。まず、上述したようにして正極23および負極24を作製し、正極23および負極24に正極リード21および負極リード22を取り付けたのち、正極23と負極24とをセパレータ25を介して積層して巻回し、最外周部に保護テープ27を接着して、巻回電極体20の前駆体である巻回体を形成する。次いで、この巻回体を外装部材30に挟み、一辺を除く外周縁部を熱融着して袋状とし、外装部材30の内部に収納する。続いて、電解液と、高分子化合物の原料であるモノマーと、必要に応じて重合開始剤あるいは重合禁止剤などの他の材料とを含む電解質用組成物を用意し、外装部材30の内部に注入したのち、外装部材30の開口部を熱融着して密封する。そののち、必要に応じて熱を加えてモノマーを重合させて高分子化合物とすることによりゲル状の電解質層26を形成し、図1、2に示した二次電池を組み立てる。
Further, this secondary battery may be manufactured as follows. First, the positive electrode 23 and the
この二次電池では、充電を行うと、例えば、正極23からリチウムイオンが放出され、電解液を介して負極24に吸蔵される。一方、放電を行うと、例えば、負極24からリチウムイオンが放出され、電解液を介して正極24に吸蔵される。
In the secondary battery, when charged, for example, lithium ions are extracted from the positive electrode 23 and inserted in the
以上、実施の形態を挙げて本発明を説明したが、本発明は実施の形態に限定されず、種々の変形が可能である。例えば、上記実施の形態およびでは、電解質として電解液を用いる場合について説明し、更に、電解液を高分子化合物に保持させたゲル状電解質を用いる場合についても説明したが、他の電解質を用いるようにしてもよい。他の電解質としては、例えば、イオン伝導性セラミックス、イオン伝導性ガラスあるいはイオン性結晶などのイオン伝導性無機化合物と電解液とを混合したもの、または他の無機化合物と電解液とを混合したもの、またはこれらの無機化合物とゲル状電解質とを混合したものが挙げられる。 Although the present invention has been described with reference to the embodiment, the present invention is not limited to the embodiment, and various modifications can be made. For example, in the above embodiment and the case where an electrolytic solution is used as the electrolyte, and the case where a gel electrolyte in which the electrolytic solution is held in a polymer compound is also described, other electrolytes are used. It may be. Other electrolytes include, for example, a mixture of an ion conductive ceramic such as ion conductive ceramics, ion conductive glass or ionic crystal and an electrolyte, or a mixture of another inorganic compound and an electrolyte. Or a mixture of these inorganic compounds and a gel electrolyte.
また、上記実施の形態では、電極反応物質としてリチウムを用いる電池について説明したが、ナトリウム(Na)あるいはカリウム(K)などの他のアルカリ金属、またはマグネシウムあるいはカルシウム(Ca)などのアルカリ土類金属、またはアルミニウムなどの他の軽金属を用いる場合についても、本発明を適用することができる。 In the above embodiment, a battery using lithium as an electrode reactant has been described. However, another alkali metal such as sodium (Na) or potassium (K), or an alkaline earth metal such as magnesium or calcium (Ca). The present invention can also be applied to the case of using other light metals such as aluminum.
更に、上記実施の形態では、負極の容量が、リチウムの吸蔵および放出による容量成分により表されるいわゆるリチウムイオン二次電池、あるいは、負極活物質にリチウム金属を用い、負極の容量が、リチウムの析出および溶解による容量成分により表されるいわゆるリチウム金属二次電池について説明したが、本発明は、リチウムを吸蔵および放出することが可能な負極材料の充電容量を正極の充電容量よりも小さくすることにより、負極の容量がリチウムの吸蔵および放出による容量成分と、リチウムの析出および溶解による容量成分とを含み、かつその和により表されるようにした二次電池についても同様に適用することができる。 Further, in the above embodiment, the capacity of the negative electrode is a so-called lithium ion secondary battery represented by a capacity component due to insertion and extraction of lithium, or lithium metal is used for the negative electrode active material, and the capacity of the negative electrode is Although a so-called lithium metal secondary battery represented by a capacity component due to precipitation and dissolution has been described, the present invention makes the charge capacity of the negative electrode material capable of occluding and releasing lithium smaller than the charge capacity of the positive electrode. Thus, the present invention can be similarly applied to a secondary battery in which the capacity of the negative electrode includes a capacity component due to insertion and extraction of lithium and a capacity component due to precipitation and dissolution of lithium, and is expressed by the sum thereof. .
更にまた、上記実施の形態では、ラミネート型の二次電池を具体的に挙げて説明したが、本発明は上記形状に限定されない事は言うまでもない。すなわち、筒型電池、角型電池、等にも適用可能である。また、本発明は、二次電池に限らず、一次電池などの他の電池についても同様に適用することができる。 Furthermore, in the above embodiment, the laminate type secondary battery has been specifically described, but it goes without saying that the present invention is not limited to the above shape. That is, the present invention can be applied to a cylindrical battery, a square battery, and the like. Further, the present invention is not limited to the secondary battery but can be similarly applied to other batteries such as a primary battery.
<実施例1−1〜1−13>
(実施例1−1)
先ず、正極活物質としてリチウム・コバルト複合酸化物(LiCoO2)を94重量部と、導電材としてグラファイトを3重量部と、結着剤としてポリフッ化ビニリデン(PVdF)を3重量部とを均質に混合してN−メチルピロリドンを添加し正極合剤塗液を得た。次に、得られた正極合剤塗液を、厚み20μmのアルミニウム箔上の両面に均一に塗布、乾燥して片面当たり40mg/cm2の正極合剤層を形成した。これを幅50mm、長さ300mmの形状に切断して正極を作成した。
次に、負極活物質として黒鉛97重量部、結着剤としてPVdFを3重量部とを均質に混合してN−メチルピロリドンを添加し負極合剤塗液を得た。次に、得られた負極合剤塗液を、負極集電体となる厚み15μmの銅箔上の両面に均一に塗布、乾燥して片面当たり20mg/cm2の負極合剤層を形成した。これを幅50mm、長さ300mmの形状に切断して負極を作成した。
電解液はエチレンカーボネート(EC)/エチルメチルカーボネート(EMC)/六フッ化リン酸リチウム/塩化モリブデン(V)=34/51/14.9/0.1の割合(質量比)で混合して作成した。塩化モリブデン(V)はシグマ−アルドリッチ−ジャパンから入手した(後述のハロゲン化物も同様)。
<Examples 1-1 to 1-13>
(Example 1-1)
First, 94 parts by weight of lithium-cobalt composite oxide (LiCoO 2 ) as a positive electrode active material, 3 parts by weight of graphite as a conductive material, and 3 parts by weight of polyvinylidene fluoride (PVdF) as a binder are homogeneous. After mixing, N-methylpyrrolidone was added to obtain a positive electrode mixture coating solution. Next, the obtained positive electrode mixture coating solution was uniformly applied on both surfaces of an aluminum foil having a thickness of 20 μm and dried to form a positive electrode mixture layer of 40 mg / cm 2 per side. This was cut into a shape having a width of 50 mm and a length of 300 mm to produce a positive electrode.
Next, 97 parts by weight of graphite as a negative electrode active material and 3 parts by weight of PVdF as a binder were homogeneously mixed, and N-methylpyrrolidone was added to obtain a negative electrode mixture coating solution. Next, the obtained negative electrode mixture coating liquid was uniformly applied on both sides of a 15 μm thick copper foil serving as a negative electrode current collector and dried to form a negative electrode mixture layer of 20 mg / cm 2 per side. This was cut into a shape having a width of 50 mm and a length of 300 mm to prepare a negative electrode.
The electrolyte was mixed at a ratio (mass ratio) of ethylene carbonate (EC) / ethyl methyl carbonate (EMC) / lithium hexafluorophosphate / molybdenum chloride (V) = 34/51 / 14.9 / 0.1. Created. Molybdenum chloride (V) was obtained from Sigma-Aldrich Japan (the same applies to halides described below).
この正極と負極を、厚さ9μmの微多孔性ポリエチレンフィルムからなるセパレータを介して積層して巻き取り、アルミニウムラミネートフィルムからなる袋に入れた。この袋に電解液を2g注液後、袋を熱融着してラミネート型電池を作成した。この電池の容量は700mAhであった。 The positive electrode and the negative electrode were laminated and wound up via a separator made of a microporous polyethylene film having a thickness of 9 μm, and placed in a bag made of an aluminum laminate film. After 2 g of electrolyte solution was poured into this bag, the bag was heat-sealed to produce a laminate type battery. The capacity of this battery was 700 mAh.
この電池を23℃環境下700mAで4.2Vを上限として3時間充電した後、90℃で4時間保存した時の電池厚みの変化を膨張率(%)として表1に示した。なお、膨張率は保存前の電池厚みを分母とし、保存時に増加した厚みを分子として算出した値である。また23℃環境下700mAで4.2Vを上限として3時間充電した後、700mAで3.0Vを下限とする放電を300回繰り返した時の放電容量維持率を表1に示す。 Table 1 shows the change in battery thickness as a percentage of expansion when the battery was charged at 700 mA at 23 ° C and 4.2 V as the upper limit for 3 hours and then stored at 90 ° C for 4 hours. The expansion coefficient is a value calculated using the battery thickness before storage as the denominator and the thickness increased during storage as the numerator. In addition, Table 1 shows discharge capacity retention rates when charging at 700 mA and upper limit of 4.2 V for 3 hours in a 23 ° C. environment and then repeating discharge at 700 mA and lower limit of 3.0 V for 300 times.
(実施例1−2、1−3)
塩化モリブデン(V)の濃度をそれぞれ0.02質量%、0.50質量%とし、それにあわせて六フッ化リン酸リチウムを増減した以外は実施例1−1と同様にラミネート型電池を作成した。電池厚みの変化を膨張率(%)と放電を300回繰り返した時の放電容量維持率を表1に示す。
(Examples 1-2 and 1-3)
A laminated battery was prepared in the same manner as in Example 1-1 except that the concentration of molybdenum chloride (V) was 0.02% by mass and 0.50% by mass, respectively, and lithium hexafluorophosphate was increased or decreased accordingly. . Table 1 shows the expansion rate (%) of the change in battery thickness and the discharge capacity retention rate when the discharge was repeated 300 times.
(実施例1−4〜1−13)
塩化モリブデン(V)に替えて、表1に示す各ハロゲン化物を配合した以外は実施例1−1と同様にラミネート型電池を作成した。電池厚みの変化を膨張率(%)と放電を300回繰り返した時の放電容量維持率を表1に示す。
(Examples 1-4 to 1-13)
A laminated battery was prepared in the same manner as in Example 1-1 except that each halide shown in Table 1 was blended instead of molybdenum chloride (V). Table 1 shows the expansion rate (%) of the change in battery thickness and the discharge capacity retention rate when the discharge was repeated 300 times.
(比較例1−1)
塩化モリブデン(V)を配合せず、その分六フッ化リン酸リチウムを増量した以外は実施例1−1と同様にラミネート型電池を作成した。電池厚みの変化を膨張率(%)と放電を300回繰り返した時の放電容量維持率を表1に示す。
(Comparative Example 1-1)
A laminated battery was prepared in the same manner as in Example 1-1 except that molybdenum chloride (V) was not blended and the amount of lithium hexafluorophosphate was increased accordingly. Table 1 shows the expansion rate (%) of the change in battery thickness and the discharge capacity retention rate when the discharge was repeated 300 times.
表1に示したように、電解液中に塩化モリブデンを含有する実施例1−1は、含有しない比較例1−1と比べ電池の膨張率が20%も減少し、300サイクル後の放電容量維持率が向上した。すなわち、本願特有のハロゲン化物を電解液に配合することで、高温保存時の電池の膨張を抑制し、サイクル特性を向上することが分かった。 As shown in Table 1, in Example 1-1 containing molybdenum chloride in the electrolytic solution, the expansion coefficient of the battery decreased by 20% compared to Comparative Example 1-1 not containing, and the discharge capacity after 300 cycles. Maintenance rate improved. That is, it was found that by adding a halide unique to the present application to the electrolytic solution, expansion of the battery during high-temperature storage is suppressed and cycle characteristics are improved.
また、塩化モリブデン配合量が実施例1−1よりも少ない実施例1−2では、膨張率が実施例1−1よりは高い結果となったが、塩化モリブデンを配合しない比較例1−1と比べて10%減少することができた。一方、塩化モリブデン配合量が実施例1−1よりも多い実施例1−3では、膨張率をさらに低減することができた。また、300サイクル後の放電容量維持率は実施例1−2、1−3共に実施例1−1と同程度まで向上した。すなわち、ハロゲン化物の最適な含有量は0.02〜0.50質量%であることが分かった。 Further, in Example 1-2 in which the amount of molybdenum chloride blended is smaller than that in Example 1-1, the expansion coefficient was higher than in Example 1-1, but Comparative Example 1-1 in which no molybdenum chloride was blended was used. Compared to 10%. On the other hand, in Example 1-3 in which the amount of molybdenum chloride blended was larger than that in Example 1-1, the expansion coefficient could be further reduced. Further, the discharge capacity retention ratio after 300 cycles was improved to the same level as in Example 1-1 in both Examples 1-2 and 1-3. That is, the optimum content of halide was found to be 0.02 to 0.50 mass%.
ハロゲン化物を変化させた実施例1−4〜1−13はいずれも電池の膨張率を10%台まで低減する事ができ、300サイクル後の放電容量維持率が向上した。特に塩化ガリウム(III)を配合した実施例1−10は、塩化モリブデン(V)を0.5質量%配合した実施例1−3に比べ5分の1の配合量であったが実施例3−1と同程度の膨張低減化効果が得られた。すなわち、塩化モリブデン以外の、Zr、周期律表第5族、第6族、及び第12〜第15族からなる群より選ばれる元素の塩化物を電解液に配合することによっても、高温保存時の電池の膨張を抑制し、サイクル特性を向上することが分かった。 In each of Examples 1-4 to 1-13 in which the halide was changed, the expansion rate of the battery could be reduced to the 10% range, and the discharge capacity retention rate after 300 cycles was improved. In particular, Example 1-10 blended with gallium chloride (III) was one-fifth of the blend amount of Example 1-3 blended with 0.5% by mass of molybdenum chloride (V). The same expansion reduction effect as that of -1 was obtained. That is, other than molybdenum chloride, Zr, a chloride of an element selected from the group consisting of Groups 5 and 6, and Groups 12 to 15 of the periodic table may be blended in the electrolyte solution at high temperature storage. It was found that the expansion of the battery was suppressed and the cycle characteristics were improved.
<実施例2−1〜2−18>
(実施例2−1)
電解液中にフルオロエチレンカーボネート(FEC)を1質量%配合し、その分エチレンカーボネート(EC)を減量した以外は実施例1−1と同様にラミネート型電池を作成した。電池厚みの変化を膨張率(%)と放電を300回繰り返した時の放電容量維持率を表2に示す。
<Examples 2-1 to 2-18>
(Example 2-1)
A laminate type battery was prepared in the same manner as in Example 1-1 except that 1% by mass of fluoroethylene carbonate (FEC) was blended in the electrolytic solution and the amount of ethylene carbonate (EC) was reduced accordingly. Table 2 shows the expansion rate (%) of the change in battery thickness and the discharge capacity retention rate when the discharge was repeated 300 times.
(実施例2−2、2−3)
塩化モリブデン(V)の濃度をそれぞれ0.02質量%、0.50質量%とし、それにあわせて六フッ化リン酸リチウムを増減した以外は実施例2−2と同様にラミネート型電池を作成した。電池厚みの変化を膨張率(%)と放電を300回繰り返した時の放電容量維持率を表2に示す。
(Example 2-2, 2-3)
A laminated battery was prepared in the same manner as in Example 2-2, except that the concentration of molybdenum chloride (V) was 0.02 mass% and 0.50 mass%, respectively, and lithium hexafluorophosphate was increased or decreased accordingly. . Table 2 shows the expansion rate (%) of the change in battery thickness and the discharge capacity retention rate when the discharge was repeated 300 times.
(実施例2−4)
電解液中にビニレンカーボネート(VC)を1質量%配合し、その分エチレンカーボネート(EC)を減量した以外は実施例1−1と同様にラミネート型電池を作成した。電池厚みの変化を膨張率(%)と放電を300回繰り返した時の放電容量維持率を表2に示す。
(Example 2-4)
A laminate type battery was prepared in the same manner as in Example 1-1 except that 1% by mass of vinylene carbonate (VC) was blended in the electrolytic solution and the amount of ethylene carbonate (EC) was reduced accordingly. Table 2 shows the expansion rate (%) of the change in battery thickness and the discharge capacity retention rate when the discharge was repeated 300 times.
(実施例2−5〜2−18)
塩化モリブデン(V)に替えて、表2に示す各ハロゲン化物を配合した以外は実施例2−2と同様にラミネート型電池を作成した。電池厚みの変化を膨張率(%)と放電を300回繰り返した時の放電容量維持率を表2に示す。
(Examples 2-5 to 2-18)
A laminated battery was prepared in the same manner as in Example 2-2 except that each halide shown in Table 2 was blended instead of molybdenum chloride (V). Table 2 shows the expansion rate (%) of the change in battery thickness and the discharge capacity retention rate when the discharge was repeated 300 times.
(比較例2−1)
塩化モリブデン(V)を配合せず、その分六フッ化リン酸リチウムを増量した以外は実施例2−2と同様にラミネート型電池を作成した。電池厚みの変化を膨張率(%)と放電を300回繰り返した時の放電容量維持率を表2に示す。
(Comparative Example 2-1)
A laminate type battery was prepared in the same manner as in Example 2-2 except that molybdenum chloride (V) was not blended and the amount of lithium hexafluorophosphate was increased accordingly. Table 2 shows the expansion rate (%) of the change in battery thickness and the discharge capacity retention rate when the discharge was repeated 300 times.
表2に示したように、電解液中に塩化モリブデンとFECを含有する実施例2−1は、FECを含有するが塩化モリブデンを含有しない比較例2−1と比べ電池の膨張率が20%以上減少し、300サイクル後の放電容量維持率が向上した。すなわち、FEC単独よりも、FECとハロゲン化物を併用すると、より電池膨張抑制効果及び放電容量維持率に優れることが分かった。 As shown in Table 2, Example 2-1 containing molybdenum chloride and FEC in the electrolytic solution had a battery expansion rate of 20% compared to Comparative Example 2-1 containing FEC but no molybdenum chloride. As a result, the discharge capacity retention rate after 300 cycles was improved. That is, it was found that when FEC and a halide are used in combination rather than FEC alone, the battery expansion suppressing effect and the discharge capacity retention rate are more excellent.
また、塩化モリブデンのみを含有する実施例1−1の方が、FECのみを含有する比較例2−1よりも、膨張率、放電容量維持率ともに良好な結果となった。すなわち、FECよりもハロゲン化物の方が電池膨張抑制効果及び放電容量維持率に優れていることが分かった。 In addition, Example 1-1 containing only molybdenum chloride gave better results in both expansion coefficient and discharge capacity maintenance rate than Comparative Example 2-1 containing only FEC. That is, it was found that the halide was superior in the battery expansion suppressing effect and the discharge capacity retention rate than the FEC.
また、塩化モリブデン配合量が実施例2−1よりも少ない実施例2−2では、膨張率が実施例2−1よりは高い結果となったが、塩化モリブデンを配合しない比較例2−1と比べて10%減少することができた。一方、塩化モリブデン配合量が実施例2−1よりも多い実施例2−3では、膨張率は同程度であった。すなわち、FECと併用した場合のハロゲン化物の最適な含有量は0.02〜0.50質量%であることが分かった。 Further, in Example 2-2 in which the amount of molybdenum chloride blended is smaller than that in Example 2-1, the expansion coefficient was higher than that in Example 2-1, but Comparative Example 2-1 without blending molybdenum chloride and Compared to 10%. On the other hand, in Example 2-3 in which the amount of molybdenum chloride blended was larger than that in Example 2-1, the expansion rate was similar. That is, it was found that the optimum content of halide when used in combination with FEC was 0.02 to 0.50 mass%.
FECの代わりにVCを用いた実施例2−4は、実施例2−1よりもわずかに低い膨張率を示したが、300サイクル後の放電容量維持率は実施例2−1よりも向上した。 Example 2-4 using VC instead of FEC showed a slightly lower expansion rate than Example 2-1, but the discharge capacity retention rate after 300 cycles was improved over Example 2-1. .
ハロゲン化物を変化させた実施例2−4〜2−18はいずれも、ハロゲン化物を含まない比較例2−1に比べ電池の膨張率を低減する事ができ、300サイクル後の放電容量維持率が向上した。すなわち、塩化モリブデン以外の、Zr、周期律表第5族、第6族、及び第12〜第15族からなる群より選ばれる元素の塩化物を電解液に配合することによっても、高温保存時の電池の膨張を抑制し、サイクル特性を向上することが分かった。 Any of Examples 2-4 to 2-18 in which the halide was changed can reduce the expansion coefficient of the battery as compared with Comparative Example 2-1 containing no halide, and the discharge capacity retention rate after 300 cycles. Improved. That is, other than molybdenum chloride, Zr, a chloride of an element selected from the group consisting of Groups 5 and 6, and Groups 12 to 15 of the periodic table may be blended in the electrolyte solution at high temperature storage. It was found that the expansion of the battery was suppressed and the cycle characteristics were improved.
<実施例3−1〜3−13>
(実施例3−1)
セパレータの厚さを7μmとし、その両面にポリフッ化ビニリデンを2μmずつ塗布したセパレータを使用した以外は実施例1−1と同様にラミネート型電池を作製した。このとき、電解液とポリフッ化ビニリデンとの質量比は20:1であった。電池厚みの変化を膨張率(%)と放電を300回繰り返した時の放電容量維持率を表3に示す。
<Examples 3-1 to 3-13>
(Example 3-1)
A laminate type battery was produced in the same manner as in Example 1-1, except that a separator having a thickness of 7 μm and a separator coated with 2 μm of polyvinylidene fluoride on both sides was used. At this time, the mass ratio of the electrolytic solution to polyvinylidene fluoride was 20: 1. Table 3 shows the expansion rate (%) of the change in battery thickness and the discharge capacity retention rate when the discharge was repeated 300 times.
(実施例3−2、3−3)
塩化モリブデン(V)の濃度をそれぞれ0.05質量%、0.50質量%とし、それにあわせて六フッ化リン酸リチウムを増減した以外は実施例3−1と同様にラミネート型電池を作成した。電池厚みの変化を膨張率(%)と放電を300回繰り返した時の放電容量維持率を表3に示す。
(Examples 3-2 and 3-3)
A laminate type battery was prepared in the same manner as in Example 3-1, except that the concentration of molybdenum chloride (V) was 0.05 mass% and 0.50 mass%, respectively, and lithium hexafluorophosphate was increased or decreased accordingly. . Table 3 shows the expansion rate (%) of the change in battery thickness and the discharge capacity retention rate when the discharge was repeated 300 times.
(実施例3−4〜3−13)
塩化モリブデン(V)に替えて、表3に示す各ハロゲン化物を配合した以外は実施例3−1と同様にラミネート型電池を作成した。電池厚みの変化を膨張率(%)と放電を300回繰り返した時の放電容量維持率を表3に示す。
(Examples 3-4 to 3-13)
A laminated battery was prepared in the same manner as in Example 3-1, except that each halide shown in Table 3 was blended instead of molybdenum chloride (V). Table 3 shows the expansion rate (%) of the change in battery thickness and the discharge capacity retention rate when the discharge was repeated 300 times.
(比較例3−1)
塩化モリブデン(V)を配合せず、その分六フッ化リン酸リチウムを増量した以外は実施例3−1と同様にラミネート型電池を作成した。電池厚みの変化を膨張率(%)と放電を300回繰り返した時の放電容量維持率を表3に示す。
(Comparative Example 3-1)
A laminated battery was prepared in the same manner as in Example 3-1, except that molybdenum chloride (V) was not blended and the amount of lithium hexafluorophosphate was increased accordingly. Table 3 shows the expansion rate (%) of the change in battery thickness and the discharge capacity retention rate when the discharge was repeated 300 times.
表3に示したように、電解液中に塩化モリブデンを含有する実施例3−1は、含有しない比較例3−1と比べ電池の膨張率が減少し、300サイクル後の放電容量維持率が向上した。また、ポリフッ化ビニリデンを含まない実施例1−1と比べて、膨張抑制効果がさらに向上した。これより、電解液に塩化モリブデンを含有することに加え、高分子化合物としてポリフッ化ビニリデンを使用することで、電池の膨張抑制効果をさらに向上できることが分かった。 As shown in Table 3, in Example 3-1, which contains molybdenum chloride in the electrolytic solution, the expansion coefficient of the battery is reduced compared to Comparative Example 3-1, which does not contain, and the discharge capacity maintenance rate after 300 cycles is reduced. Improved. Moreover, the expansion | swelling suppression effect improved further compared with Example 1-1 which does not contain a polyvinylidene fluoride. From this, it was found that, in addition to containing molybdenum chloride in the electrolytic solution, the effect of suppressing the expansion of the battery can be further improved by using polyvinylidene fluoride as the polymer compound.
また、塩化モリブデン配合量が実施例3−1よりも少ない実施例3−2では、膨張率が実施例3−1よりは高い結果となったが、塩化モリブデンを配合しない比較例3−1と比べて減少することができた。一方、塩化モリブデン配合量が実施例3−1よりも多い実施例3−3では、膨張率をさらに低減することができた。また、300サイクル後の放電容量維持率は実施例3−2、3−3共に実施例3−1と同程度まで向上した。 Further, in Example 3-2 in which the amount of molybdenum chloride blended is smaller than that in Example 3-1, the expansion coefficient was higher than that in Example 3-1, but Comparative Example 3-1 without blending molybdenum chloride and It was able to decrease compared with. On the other hand, in Example 3-3 in which the amount of molybdenum chloride blended was larger than that in Example 3-1, the expansion coefficient could be further reduced. Further, the discharge capacity retention ratio after 300 cycles was improved to the same level as in Example 3-1 in both Examples 3-2 and 3-3.
ハロゲン化物を変化させた実施例3−4〜3−13は、ハロゲン化物を配合しない比較例3−1と比べいずれも電池の膨張率を低減する事ができ、300サイクル後の放電容量維持率が向上した。特に塩化ガリウム(III)を配合した実施例3−10は、塩化モリブデン(V)を0.5質量%配合した実施例3−3に比べ5分の1の配合量であったが実施例3−3と同程度の膨張低減化効果が得られた。 Each of Examples 3-4 to 3-13 in which the halide was changed can reduce the expansion coefficient of the battery as compared with Comparative Example 3-1 in which no halide is blended, and the discharge capacity retention rate after 300 cycles. Improved. In particular, Example 3-10 in which gallium (III) chloride was blended was one-fifth of the amount of Example 3-3 in which 0.5 mass% of molybdenum chloride (V) was blended. The expansion reduction effect comparable to -3 was obtained.
<実施例4−1〜4−18>
(実施例4−1)
電解液中にフルオロエチレンカーボネート(FEC)を1質量%配合し、その分エチレンカーボネート(EC)を減量した以外は実施例1−1と同様にラミネート型電池を作成した。電池厚みの変化を膨張率(%)と放電を300回繰り返した時の放電容量維持率を表4に示す。
<Examples 4-1 to 4-18>
(Example 4-1)
A laminate type battery was prepared in the same manner as in Example 1-1 except that 1% by mass of fluoroethylene carbonate (FEC) was blended in the electrolytic solution and the amount of ethylene carbonate (EC) was reduced accordingly. Table 4 shows the expansion rate (%) of the change in battery thickness and the discharge capacity retention rate when the discharge was repeated 300 times.
(実施例4−2、4−3)
塩化モリブデン(V)の濃度をそれぞれ0.05質量%、0.50質量%とし、それにあわせて六フッ化リン酸リチウムを増減した以外は実施例4−2と同様にラミネート型電池を作成した。電池厚みの変化を膨張率(%)と放電を300回繰り返した時の放電容量維持率を表4に示す。
(Examples 4-2 and 4-3)
A laminate type battery was prepared in the same manner as in Example 4-2 except that the concentration of molybdenum chloride (V) was 0.05 mass% and 0.50 mass%, respectively, and lithium hexafluorophosphate was increased or decreased accordingly. . Table 4 shows the expansion rate (%) of the change in battery thickness and the discharge capacity retention rate when the discharge was repeated 300 times.
(実施例4−4)
電解液中にビニレンカーボネート(VC)を1質量%配合し、その分エチレンカーボネート(EC)を減量した以外は実施例1−1と同様にラミネート型電池を作成した。電池厚みの変化を膨張率(%)と放電を300回繰り返した時の放電容量維持率を表4に示す。
(Example 4-4)
A laminate type battery was prepared in the same manner as in Example 1-1 except that 1% by mass of vinylene carbonate (VC) was blended in the electrolytic solution and the amount of ethylene carbonate (EC) was reduced accordingly. Table 4 shows the expansion rate (%) of the change in battery thickness and the discharge capacity retention rate when the discharge was repeated 300 times.
(実施例4−5〜4−18)
塩化モリブデン(V)に替えて、表4に示す各ハロゲン化物を配合した以外は実施例4−2と同様にラミネート型電池を作成した。電池厚みの変化を膨張率(%)と放電を300回繰り返した時の放電容量維持率を表4に示す。
(Examples 4-5 to 4-18)
A laminated battery was prepared in the same manner as in Example 4-2 except that each halide shown in Table 4 was blended instead of molybdenum chloride (V). Table 4 shows the expansion rate (%) of the change in battery thickness and the discharge capacity retention rate when the discharge was repeated 300 times.
(比較例4−1)
塩化モリブデン(V)を配合せず、その分六フッ化リン酸リチウムを増量した以外は実施例4−2と同様にラミネート型電池を作成した。電池厚みの変化を膨張率(%)と放電を300回繰り返した時の放電容量維持率を表4に示す。
(Comparative Example 4-1)
A laminate type battery was prepared in the same manner as in Example 4-2 except that molybdenum chloride (V) was not blended and the amount of lithium hexafluorophosphate was increased accordingly. Table 4 shows the expansion rate (%) of the change in battery thickness and the discharge capacity retention rate when the discharge was repeated 300 times.
表4に示したように、電解液中に塩化モリブデンとFECを含有する実施例4−1は、FECを含有するが塩化モリブデンを含有しない比較例4−1と比べ電池の膨張率が15%減少し、300サイクル後の放電容量維持率が向上した。すなわち、FEC単独よりも、FECとハロゲン化物を併用すると、より電池膨張抑制効果及び放電容量維持率に優れることが分かった。 As shown in Table 4, Example 4-1 containing molybdenum chloride and FEC in the electrolytic solution had a battery expansion rate of 15% compared to Comparative Example 4-1 containing FEC but not containing molybdenum chloride. The discharge capacity retention rate after 300 cycles was improved. That is, it was found that when FEC and a halide are used in combination rather than FEC alone, the battery expansion suppressing effect and the discharge capacity retention rate are more excellent.
また、塩化モリブデンのみを含有する実施例3−1の方が、FECのみを含有する比較例4−1よりも、膨張率、放電容量維持率ともに良好な結果となった。すなわち、FECよりもハロゲン化物の方が電池膨張抑制効果及び放電容量維持率に優れていることが分かった。 In addition, Example 3-1 containing only molybdenum chloride gave better results in both expansion coefficient and discharge capacity maintenance rate than Comparative Example 4-1 containing only FEC. That is, it was found that the halide was superior in the battery expansion suppressing effect and the discharge capacity retention rate than the FEC.
また、塩化モリブデン配合量が実施例4−1よりも少ない実施例4−2では、膨張率が実施例4−1よりは高い結果となったが、塩化モリブデンを配合しない比較例4−1と比べて減少することができた。一方、塩化モリブデン配合量が実施例4−1よりも多い実施例4−3では、膨張率は同程度であった。すなわち、FECと併用した場合のハロゲン化物の最適な含有量は0.02〜0.50質量%であることが分かった。 Moreover, in Example 4-2 in which the amount of molybdenum chloride is less than that of Example 4-1, the expansion coefficient was higher than that of Example 4-1, but Comparative Example 4-1 without molybdenum chloride and It was able to decrease compared with. On the other hand, in Example 4-3 in which the amount of molybdenum chloride blended was larger than that in Example 4-1, the expansion rate was similar. That is, it was found that the optimum content of halide when used in combination with FEC was 0.02 to 0.50 mass%.
FECの代わりにVCを用いた実施例4−4は、実施例4−1と同程度の膨張率を示し、300サイクル後の放電容量維持率は実施例4−1よりも向上した。 Example 4-4 using VC instead of FEC showed the same expansion coefficient as that of Example 4-1, and the discharge capacity retention rate after 300 cycles was higher than that of Example 4-1.
ハロゲン化物を変化させた実施例4−4〜4−18はいずれも、ハロゲン化物を含まない比較例4−1に比べ電池の膨張率を低減する事ができ、300サイクル後の放電容量維持率が向上した。すなわち、塩化モリブデン以外の、Zr、周期律表第5族、第6族、及び第12〜第15族からなる群より選ばれる元素の塩化物を電解液に配合することによっても、高温保存時の電池の膨張を抑制し、サイクル特性を向上することが分かった。 Any of Examples 4-4 to 4-18 in which the halide was changed can reduce the expansion coefficient of the battery as compared with Comparative Example 4-1 not containing a halide, and the discharge capacity retention rate after 300 cycles. Improved. That is, other than molybdenum chloride, Zr, a chloride of an element selected from the group consisting of Groups 5 and 6, and Groups 12 to 15 of the periodic table may be blended in the electrolyte solution at high temperature storage. It was found that the expansion of the battery was suppressed and the cycle characteristics were improved.
20…巻回電極体、23…正極、23A…正極集電体、23B…正極活物質層、24…負極、24A…負極集電体、24B…負極活物質層、25…セパレータ、21…正極リード、22…負極リード、26…電解質層、27…保護テープ、30…外装部材、31…密着フィルム。
DESCRIPTION OF
Claims (15)
前記非水電解液が、Zr、周期律表第5族、第6族、及び第12〜第15族からなる群より選ばれる元素のハロゲン化物を含むことを特徴とする非水電解液二次電池。 A non-aqueous electrolyte secondary battery comprising a non-aqueous electrolyte together with a positive electrode and a negative electrode,
The non-aqueous electrolyte secondary contains a halide of an element selected from the group consisting of Zr, groups 5 and 6 of the periodic table, and groups 12 to 15 battery.
Priority Applications (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2007172720A JP2008305772A (en) | 2007-05-08 | 2007-06-29 | Nonaqueous electrolyte solution secondary battery and nonaqueous electrolyte solution |
| KR1020080041963A KR20080099166A (en) | 2007-05-08 | 2008-05-06 | Non-aqueous electrolyte secondary battery and non-aqueous electrolyte |
| US12/116,678 US20080280210A1 (en) | 2007-05-08 | 2008-05-07 | Non-aqueous electrolytic solution secondary battery and non-aqueous electrolytic solution |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2007123484 | 2007-05-08 | ||
| JP2007172720A JP2008305772A (en) | 2007-05-08 | 2007-06-29 | Nonaqueous electrolyte solution secondary battery and nonaqueous electrolyte solution |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JP2008305772A true JP2008305772A (en) | 2008-12-18 |
Family
ID=40113887
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2007172720A Pending JP2008305772A (en) | 2007-05-08 | 2007-06-29 | Nonaqueous electrolyte solution secondary battery and nonaqueous electrolyte solution |
Country Status (3)
| Country | Link |
|---|---|
| JP (1) | JP2008305772A (en) |
| KR (1) | KR20080099166A (en) |
| CN (1) | CN101304105A (en) |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2015153491A (en) * | 2014-02-12 | 2015-08-24 | 株式会社Gsユアサ | Nonaqueous electrolyte secondary battery, and power storage device |
| WO2017065145A1 (en) * | 2015-10-15 | 2017-04-20 | セントラル硝子株式会社 | Electrolyte solution for nonaqueous electrolyte batteries, and nonaqueous electrolyte battery using same |
| JP2018116798A (en) * | 2017-01-17 | 2018-07-26 | 株式会社Gsユアサ | Nonaqueous electrolyte and nonaqueous electrolyte power storage device |
Families Citing this family (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR20170113333A (en) | 2016-03-31 | 2017-10-12 | 주식회사 엘지화학 | Manufacturing method of secondary battery |
| CN109193030B (en) * | 2018-08-30 | 2020-06-12 | 南开大学 | Lithium oxygen battery electrolyte taking molybdenum pentachloride as redox medium and preparation and application thereof |
Citations (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH03289065A (en) * | 1990-04-04 | 1991-12-19 | Furukawa Battery Co Ltd:The | Nonaqueous electrolyte for lithium secondary battery |
| JPH06293991A (en) * | 1992-08-14 | 1994-10-21 | Sony Corp | Aluminum nonaqueous electrolyte, battery using the electrolyte and aluminum electrodepositing method |
| JPH07142090A (en) * | 1993-11-18 | 1995-06-02 | Yoshiharu Matsuda | Lithium secondary battery electrolyte containing additive |
| JPH08153521A (en) * | 1994-11-28 | 1996-06-11 | Sanyo Electric Co Ltd | Nonaqueous electrolyte battery |
| JPH08171936A (en) * | 1994-12-16 | 1996-07-02 | Sanyo Electric Co Ltd | Lithium secondary battery |
| JP2003151626A (en) * | 2001-10-31 | 2003-05-23 | Samsung Sdi Co Ltd | Organic electrolyte for lithium secondary battery and lithium secondary battery using the same |
| JP2004185810A (en) * | 2001-11-20 | 2004-07-02 | Canon Inc | Electrode material for lithium secondary battery, electrode structure having the electrode material, secondary battery having the electrode structure, method of manufacturing the electrode material, method of manufacturing the electrode structure, and manufacturing of the secondary battery Method |
| JP2005025992A (en) * | 2003-06-30 | 2005-01-27 | Japan Storage Battery Co Ltd | Nonaqueous secondary battery |
| JP2005085609A (en) * | 2003-09-09 | 2005-03-31 | Sanyo Electric Co Ltd | Nonaqueous electrolyte secondary battery |
| JP2005251516A (en) * | 2004-03-03 | 2005-09-15 | Sanyo Electric Co Ltd | Nonaqueous electrolyte secondary battery |
| JP2005317399A (en) * | 2004-04-28 | 2005-11-10 | Sony Corp | Electrolyte, negative electrode, and battery |
| WO2007069852A1 (en) * | 2005-12-14 | 2007-06-21 | Lg Chem, Ltd. | Non-aqueous electrolyte and secondary battery comprising the same |
-
2007
- 2007-06-29 JP JP2007172720A patent/JP2008305772A/en active Pending
-
2008
- 2008-05-06 KR KR1020080041963A patent/KR20080099166A/en not_active Withdrawn
- 2008-05-07 CN CNA2008100969151A patent/CN101304105A/en active Pending
Patent Citations (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH03289065A (en) * | 1990-04-04 | 1991-12-19 | Furukawa Battery Co Ltd:The | Nonaqueous electrolyte for lithium secondary battery |
| JPH06293991A (en) * | 1992-08-14 | 1994-10-21 | Sony Corp | Aluminum nonaqueous electrolyte, battery using the electrolyte and aluminum electrodepositing method |
| JPH07142090A (en) * | 1993-11-18 | 1995-06-02 | Yoshiharu Matsuda | Lithium secondary battery electrolyte containing additive |
| JPH08153521A (en) * | 1994-11-28 | 1996-06-11 | Sanyo Electric Co Ltd | Nonaqueous electrolyte battery |
| JPH08171936A (en) * | 1994-12-16 | 1996-07-02 | Sanyo Electric Co Ltd | Lithium secondary battery |
| JP2003151626A (en) * | 2001-10-31 | 2003-05-23 | Samsung Sdi Co Ltd | Organic electrolyte for lithium secondary battery and lithium secondary battery using the same |
| JP2004185810A (en) * | 2001-11-20 | 2004-07-02 | Canon Inc | Electrode material for lithium secondary battery, electrode structure having the electrode material, secondary battery having the electrode structure, method of manufacturing the electrode material, method of manufacturing the electrode structure, and manufacturing of the secondary battery Method |
| JP2005025992A (en) * | 2003-06-30 | 2005-01-27 | Japan Storage Battery Co Ltd | Nonaqueous secondary battery |
| JP2005085609A (en) * | 2003-09-09 | 2005-03-31 | Sanyo Electric Co Ltd | Nonaqueous electrolyte secondary battery |
| JP2005251516A (en) * | 2004-03-03 | 2005-09-15 | Sanyo Electric Co Ltd | Nonaqueous electrolyte secondary battery |
| JP2005317399A (en) * | 2004-04-28 | 2005-11-10 | Sony Corp | Electrolyte, negative electrode, and battery |
| WO2007069852A1 (en) * | 2005-12-14 | 2007-06-21 | Lg Chem, Ltd. | Non-aqueous electrolyte and secondary battery comprising the same |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2015153491A (en) * | 2014-02-12 | 2015-08-24 | 株式会社Gsユアサ | Nonaqueous electrolyte secondary battery, and power storage device |
| WO2017065145A1 (en) * | 2015-10-15 | 2017-04-20 | セントラル硝子株式会社 | Electrolyte solution for nonaqueous electrolyte batteries, and nonaqueous electrolyte battery using same |
| JPWO2017065145A1 (en) * | 2015-10-15 | 2018-10-25 | セントラル硝子株式会社 | Non-aqueous electrolyte battery electrolyte and non-aqueous electrolyte battery using the same |
| JP2018116798A (en) * | 2017-01-17 | 2018-07-26 | 株式会社Gsユアサ | Nonaqueous electrolyte and nonaqueous electrolyte power storage device |
Also Published As
| Publication number | Publication date |
|---|---|
| CN101304105A (en) | 2008-11-12 |
| KR20080099166A (en) | 2008-11-12 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP4992921B2 (en) | Non-aqueous electrolyte secondary battery | |
| JP5163065B2 (en) | Non-aqueous electrolyte secondary battery and non-aqueous electrolyte composition | |
| JP5181430B2 (en) | Secondary battery | |
| JP2008004503A (en) | Nonaqueous electrolyte composition, and nonaqueous electrolyte secondary battery | |
| JP2007207617A (en) | Non-aqueous solvent, non-aqueous electrolyte composition, and non-aqueous electrolyte secondary battery | |
| JP4655118B2 (en) | Non-aqueous electrolyte battery and non-aqueous electrolyte composition | |
| JP2009152133A (en) | Nonaqueous electrolyte secondary battery | |
| JP5045882B2 (en) | Electrolyte and battery | |
| JP2009302022A (en) | Nonaqueous electrolyte secondary battery | |
| JP2009211941A (en) | Nonaqueous electrolyte secondary battery | |
| JP2009158460A (en) | Nonaqueous electrolyte secondary battery | |
| JP2010262905A (en) | Non-aqueous electrolyte battery | |
| JP2008218381A (en) | Nonaqueous electrolyte battery | |
| JP2009252645A (en) | Non-aqueous electrolyte secondary battery and non-aqueous electrolyte composition | |
| JP2008066062A (en) | Non-aqueous electrolyte composition and non-aqueous electrolyte secondary battery | |
| JP2008305772A (en) | Nonaqueous electrolyte solution secondary battery and nonaqueous electrolyte solution | |
| JP2008192391A (en) | Nonaqueous electrolyte composition and nonaqueous secondary battery | |
| JP2009123497A (en) | Nonaqueous electrolyte composition and nonaqueous electrolyte battery | |
| JP2009123498A (en) | Nonaqueous electrolyte composition and nonaqueous electrolyte battery | |
| JP2008210769A (en) | Nonaqueous electrolyte battery | |
| JP2009099448A (en) | Non-aqueous electrolytic liquid secondary battery and non-aqueous electrolytic liquid composition | |
| JP2009093843A (en) | Nonaqueous electrolyte secondary battery | |
| JP2009054354A (en) | Nonaqueous electrolytic solution composition, and nonaqueous electrolytic solution secondary battery | |
| JP2010153207A (en) | Nonaqueous electrolyte secondary battery | |
| JP2008305771A (en) | Nonaqueous solution battery |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20090723 |
|
| RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20090825 |
|
| A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100309 |
|
| A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120424 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120501 |
|
| A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120629 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20121002 |
|
| A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20121116 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130219 |
|
| A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20130702 |