[go: up one dir, main page]

JP2009042714A - Water-repellent antireflection structure and manufacturing method thereof - Google Patents

Water-repellent antireflection structure and manufacturing method thereof Download PDF

Info

Publication number
JP2009042714A
JP2009042714A JP2007262897A JP2007262897A JP2009042714A JP 2009042714 A JP2009042714 A JP 2009042714A JP 2007262897 A JP2007262897 A JP 2007262897A JP 2007262897 A JP2007262897 A JP 2007262897A JP 2009042714 A JP2009042714 A JP 2009042714A
Authority
JP
Japan
Prior art keywords
water
repellent
cone
antireflection structure
aspect ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007262897A
Other languages
Japanese (ja)
Other versions
JP2009042714A5 (en
Inventor
Motohiko Kuroda
元彦 黒田
Yuji Noguchi
雄司 野口
Takayuki Fukui
孝之 福井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2007262897A priority Critical patent/JP2009042714A/en
Priority to EP07119949A priority patent/EP1921470A3/en
Priority to US11/935,568 priority patent/US20080107868A1/en
Priority to KR1020070112905A priority patent/KR100957890B1/en
Priority to CN2007101637962A priority patent/CN101178442B/en
Publication of JP2009042714A publication Critical patent/JP2009042714A/en
Publication of JP2009042714A5 publication Critical patent/JP2009042714A5/ja
Priority to US13/616,328 priority patent/US20130011571A1/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Laminated Bodies (AREA)
  • Materials Applied To Surfaces To Minimize Adherence Of Mist Or Water (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)

Abstract

【課題】優れた撥水機能と光の反射防止機能とを兼ね備えた撥水性反射防止構造と共に、このような構造を備えた撥水性反射防止構造体及びその製造方法、さらには、上記撥水性反射防止構造を備えた自動車用部品、例えばディスプレイやウインドウパネルを提供すること。
【解決手段】円形又は多角形底面を有し、円形底面の径又は底面を形成する多角形に外接する円の直径が50〜380nmである無数の錐体状突起2を、50〜380nmのピッチで配置し、これら錐体状突起のアスペクト比を1.5以上とすると共に、その表面を水との接触角が90°以上である材料によって形成する。
【選択図】図1
[PROBLEMS] To provide a water-repellent antireflection structure having an excellent water-repellent function and an anti-reflection function of light, a water-repellent anti-reflective structure having such a structure, a manufacturing method thereof, and the above-mentioned water-repellent reflective structure. Providing automotive parts, such as displays and window panels, with a prevention structure.
An infinite number of cone-shaped protrusions 2 having a circular or polygonal bottom surface and a diameter of the circular bottom surface or a circle circumscribing the polygon forming the bottom surface are 50 to 380 nm, and a pitch of 50 to 380 nm. The aspect ratio of these conical projections is 1.5 or more, and the surface is formed of a material having a contact angle with water of 90 ° or more.
[Selection] Figure 1

Description

本発明は、水滴の付着を防ぐ撥水機能を備えた微細構造から成る撥水性反射防止構造と、このような微細構造を備え、低反射撥水パネルとして、例えば、建築材料や、車両、船舶、航空機などの各種ウインドウパネル、ディスプレイ装置などに好適に使用することができる撥水性反射防止構造体、さらには当該構造体の製造方法に関するものである。   The present invention relates to a water repellent antireflective structure comprising a fine structure having a water repellent function for preventing the attachment of water droplets, and such a fine structure. The present invention relates to a water-repellent antireflection structure that can be suitably used for various window panels such as aircraft, display devices, and the like, and further to a method for manufacturing the structure.

車両、船舶、航空機などの各種ウインドウパネルにおいて、雨を除去するためにワイパーシステムが導入されており、ウインドウパネルの撥水化によって、ワイパーの要らないウインドウパネルを実現し、コスト削減や生産工数削減することが望まれている。   Various types of window panels for vehicles, ships, airplanes, etc. have been equipped with wiper systems to remove rain. By making the window panels water repellent, window panels that do not require wipers have been realized, reducing costs and man-hours. It is hoped to do.

上記のような問題を解決する方法として、近年、使用する光の波長よりも短い格子周期で二次元配列されたサブ波長格子の表面を低表面エネルギーにする方法が開発されている(例えば、特許文献1参照)。
このようなサブ波長格子によれば、表面に屈折率分布を持たせることができ、反射防止特性が得られると共に、表面積を増加させることで撥水特性を持たせることができる。
特開2006−178147号公報
In recent years, as a method for solving the above problems, a method has been developed in which the surface of a sub-wavelength grating that is two-dimensionally arranged with a grating period shorter than the wavelength of light to be used is made to have a low surface energy (for example, patents). Reference 1).
According to such a subwavelength grating, a refractive index distribution can be provided on the surface, an antireflection characteristic can be obtained, and a water repellency characteristic can be provided by increasing the surface area.
JP 2006-178147 A

しかしながら、上記した特許文献1に記載されたサブ波長格子構造では、反射防止特性と撥水特性を両立させることは困難である。   However, in the sub-wavelength grating structure described in Patent Document 1 described above, it is difficult to achieve both antireflection characteristics and water repellency characteristics.

本発明は、上記課題を解決すべくなされたものであって、その目的とするところは、さらに優れた撥水機能を兼ね備えた撥水性反射防止構造と共に、このような構造を備えた撥水性反射防止構造体及びその製造方法、さらには、上記撥水性反射防止構造を備えた自動車用部品、例えばディスプレイやウインドウパネルを提供することにある。   The present invention has been made to solve the above-mentioned problems, and its object is to provide a water-repellent reflection structure having such a structure as well as a water-repellent reflection-preventing structure having a further excellent water-repellent function. An object of the present invention is to provide a prevention structure and a method for manufacturing the same, and further to provide an automotive part having the above water-repellent antireflection structure, for example, a display or a window panel.

本発明者らは、上記目的を達成すべく、鋭意検討を重ねた結果、反射防止機能を発揮する錐体状突起の表面を構成する材料として、水との接触角が90°以上となる材料を用いると共に、当該錐体状突起のアスペクト比を特定することによって上記目的が達成できることを見出し、本発明を完成するに到った。     As a material constituting the surface of the cone-shaped projection that exhibits the antireflection function, the present inventors have made extensive studies to achieve the above object, and a material having a contact angle with water of 90 ° or more. In addition, the inventors have found that the above object can be achieved by specifying the aspect ratio of the cone-shaped projections, and have completed the present invention.

すなわち、本発明は上記知見に基づくものであって、本発明の撥水性反射防止構造は、円形又は多角形底面を有し、円形底面の径又は底面を形成する多角形に外接する円の直径が50〜380nmである無数の錐体状突起が、50〜380nmのピッチで配置されて成り、これら錐体状突起のアスペクト比が1.5以上であると共に、該錐体状突起の少なくとも表面を構成する材料の水に対する接触角が90°以上であることを特徴としている。   That is, the present invention is based on the above knowledge, and the water-repellent antireflection structure of the present invention has a circular or polygonal bottom surface, and the diameter of the circle that circumscribes the diameter of the circular bottom surface or the polygon that forms the bottom surface. Innumerable cone-shaped projections having a diameter of 50 to 380 nm are arranged at a pitch of 50 to 380 nm, the aspect ratio of these cone-shaped projections is 1.5 or more, and at least the surface of the cone-shaped projections The contact angle with respect to water of the material which comprises is characterized by being 90 degrees or more.

本発明の撥水性反射防止構造体は、上記した撥水性反射防止構造を基材の少なくとも一方の面に備えていることを特徴とする。
また、当該撥水性反射防止構造体の製造方法においては、上記撥水性反射防止構造における錐体状突起を反転させた構造の成形型(スタンパ)を準備し、ホットエンボスによってこのような錐体状突起を基材表面に形成したり、上記成形型と基材の間に活性エネルギー線硬化性樹脂を介在させた状態で活性エネルギー線を照射して、当該基材の表面に上記撥水性反射防止構造の錐体状突起を形成したりすることを特徴とている。さらに、本発明の自動車用部品は、本発明の上記撥水性反射防止構造を備えていることを特徴としている。
The water-repellent antireflection structure of the present invention is characterized in that the above-described water-repellent antireflection structure is provided on at least one surface of a substrate.
Further, in the method for producing the water-repellent antireflection structure, a mold (stamper) having a structure in which the cone-shaped projections in the water-repellent antireflection structure are inverted is prepared, and such a cone-shaped structure is formed by hot embossing. Forming protrusions on the surface of the substrate or irradiating active energy rays with the active energy ray-curable resin interposed between the mold and the substrate to prevent the water-repellent antireflection on the surface of the substrate It is characterized by forming a cone-shaped projection having a structure. Furthermore, the automotive component of the present invention is characterized by including the water-repellent antireflection structure of the present invention.

本発明によれば、可視光線の波長よりも小さく、可視光線の波長よりも短いピッチで配列された無数の錐体状突起によって光の反射防止機能が発揮されると共に、錐体状突起のアスペクト比が1.5以上であって、しかも当該錐体状突起の少なくとも表面を構成する材料の水との接触角が90°以上、すなわち当該錐体状突起を構成する材料、又はこれら錐体状突起の表面を被覆する材料として、水との接触角が90°以上となるような材料を用いているので、反射防止性と撥水性とを両立させることができ、これら性能を兼ね備えたパネル等を得ることができる。   According to the present invention, the antireflection function of light is exhibited by the innumerable cone-shaped protrusions arranged at a pitch smaller than the wavelength of visible light and shorter than the wavelength of visible light, and the aspect of the cone-shaped protrusion The contact angle with water of the material constituting at least the surface of the cone-shaped projection is 90 ° or more, that is, the material constituting the cone-shaped projection, or these cone-shaped projections As a material for covering the surface of the protrusion, a material having a contact angle with water of 90 ° or more is used, so that both antireflection properties and water repellency can be achieved. Can be obtained.

以下、本発明の撥水性反射防止構造やこれを適用した構造体について、その製造方法や実施形態などと共に、さらに詳細に説明する。   Hereinafter, the water-repellent antireflection structure of the present invention and the structure to which the water-repellent antireflection structure is applied will be described in more detail along with the manufacturing method and embodiments thereof.

図1(a)及び(b)は、本発明の撥水性反射防止構造の代表例を示す正面図及び平面図である。図に示す撥水性反射防止構造1は、上記したように、可視光線の波長よりも小さい50〜380nmの円形又は多角形底面(図1においては円形底面のものを示している)を有する無数の錐体状突起2から成っている。これら錐体状突起が可視光線の波長よりも小さい50〜380nmのピッチPで配置されていることから、厚み方向の各断面における材料の占有面積によって定まる厚み方向の屈折率が急激に変化することがない。そして、空気の屈折率1.0から、材料の屈折率までなだらかに、直線的に変化するようになることから、当該撥水性反射防止構造1に入射した光は、ほとんど回折や反射が生じることなく直進することとなって、入射表面における光の反射率を効果的に低減することができる。   1A and 1B are a front view and a plan view showing a typical example of the water-repellent antireflection structure of the present invention. As described above, the water-repellent antireflection structure 1 shown in the figure has an infinite number of circular or polygonal bottom surfaces (showing the circular bottom surface in FIG. 1) of 50 to 380 nm smaller than the wavelength of visible light. It consists of cone-shaped projections 2. Since these pyramidal projections are arranged at a pitch P of 50 to 380 nm smaller than the wavelength of visible light, the refractive index in the thickness direction determined by the area occupied by the material in each cross section in the thickness direction changes abruptly. There is no. And since the refractive index of air changes from 1.0 to the refractive index of the material, the light incident on the water-repellent antireflection structure 1 is almost diffracted and reflected. Therefore, the light reflectance at the incident surface can be effectively reduced.

一方、平面上のある領域に上記のような無数の錐体状突起から成る微細構造を形成することによって、表面積が増大し、領域内における水に対する平面の表面張力が見かけ上増大し、これによって微細構造表面が撥水化する。
また、錐体状突起の形状によっては、水に対する平面の見かけ上の表面張力の増大だけではなく、水滴付着時に微細構造との間に空気の層を形成させることにより、撥水機能を著しく向上させることができる。
On the other hand, by forming a fine structure composed of innumerable pyramidal projections in a certain area on the plane, the surface area is increased, and the surface tension of the plane with respect to water in the area is apparently increased. The microstructure surface becomes water repellent.
In addition, depending on the shape of the cone-shaped protrusion, not only the apparent surface tension of the plane with respect to water increases, but also the water repellent function is significantly improved by forming an air layer between the water and the fine structure when adhering to the water droplets. Can be made.

まず、材料の水に対する接触角と撥水特性との関係は、図2のようになる。つまり、材料の水に対する接触角が90°以上であるとき、その材料は撥水特性を持ち、さらに材料の水に対する接触角が大きくなるにつれて撥水特性が向上する。一方、材料の水に対する接触角が90°より小さいとき、その材料は撥水特性を持たず、親水特性を持つようになる。
したがって、本発明では撥水特性を向上することを目的としているため、材料の水に対する接触角が90°以上の材料を選択することになる。
First, the relationship between the water contact angle of the material and the water repellency is as shown in FIG. That is, when the contact angle of the material with respect to water is 90 ° or more, the material has water repellency, and the water repellency is improved as the contact angle of the material with respect to water increases. On the other hand, when the contact angle of water with respect to the material is smaller than 90 °, the material does not have water repellency and has hydrophilic properties.
Therefore, since the present invention aims to improve the water repellency, a material having a water contact angle of 90 ° or more is selected.

本発明においては、反射防止構造と撥水構造が両立するための条件として、錐体状突起2の表面を形成する材料の接触角とアスペクト比の関係に注目した。
錐体状突起2の表面を形成する材料の水に対する接触角は、上記理由により90°以上とし、かつ、アスペクト比を1.5以上とすることによって、水滴と微細構造の間に空気の層を確実に形成して撥水性を確保しながら、反射防止機能を効果的に発揮させることができる。その結果、反射防止と撥水機能を両立させることができる。
In the present invention, attention was paid to the relationship between the contact angle and the aspect ratio of the material forming the surface of the cone-shaped protrusion 2 as a condition for achieving both the antireflection structure and the water-repellent structure.
The contact angle with respect to water of the material forming the surface of the cone-shaped projection 2 is 90 ° or more for the above-mentioned reason, and the aspect ratio is 1.5 or more, whereby an air layer is formed between the water droplet and the fine structure. The antireflection function can be effectively exhibited while reliably forming the water and ensuring water repellency. As a result, both antireflection and water repellent functions can be achieved.

上記錐体状突起2の底面の大きさは、その形状が円形の場合にはその直径D、多角形である場合には当該底面を形成する多角形に外接する円の直径Dで表すものとする。当該直径Dは、可視光線の波長以下、具体的には50〜380nm、好ましくは50〜250nmの範囲とする。
ここで、上記直径Dが380nmより大きい場合には、拡散や回折が発生して光の反射率が大きくなってしまう。一方、50nmより小さい場合には、このような微細構造を均一かつ工業的に得ることが極めて困難となる。
The size of the bottom surface of the cone-shaped projection 2 is expressed by the diameter D when the shape is circular, and when the shape is a polygon, the size is expressed by the diameter D of the circle circumscribing the polygon forming the bottom surface. To do. The diameter D is not more than the wavelength of visible light, specifically 50 to 380 nm, preferably 50 to 250 nm.
Here, when the diameter D is larger than 380 nm, diffusion or diffraction occurs and the reflectance of light increases. On the other hand, if it is smaller than 50 nm, it is very difficult to obtain such a fine structure uniformly and industrially.

上記錐体状突起2のピッチPは、具体的には頂点間距離、あるいは底面の重心(円形の場合には中心に一致する)間距離として定義される。このピッチPについても、可視光線の波長以下、具体的には50〜380nm、好ましくは50〜250nmの範囲とする必要がある。
これは、ピッチPが380nmを超えると、上記同様に、拡散や回折光が発生して反射防止性が低下する。また、50nm未満とすることは、工業的に困難であることによる。なお、錐体状突起2は、D=Pとなる場合が最も密に配列された状態となることから、このようにすることが好ましい。
Specifically, the pitch P of the cone-shaped protrusions 2 is defined as a distance between the vertices or a distance between the centers of gravity of the bottom surfaces (in the case of a circle, which coincides with the center). The pitch P also needs to be equal to or less than the wavelength of visible light, specifically 50 to 380 nm, preferably 50 to 250 nm.
When the pitch P exceeds 380 nm, diffusion and diffracted light are generated as described above, and the antireflection property is lowered. Moreover, it is because it is industrially difficult to set it as less than 50 nm. In addition, since the cone-shaped protrusion 2 is in the most densely arranged state when D = P, it is preferable to do so.

一方、錐体状突起2のアスペクト比は、当該錐体状突起2の底面径D、又は底面を形成する多角形に外接する円の直径Dに対する錐体状突起2の高さHの比(H/D)で表される。本発明においては、当該アスペクト比(H/D)を1.5以上範囲とすることを要する。
すなわち、錐体状突起2のアスペクト比(H/D)が1.5未満の場合には、水滴との間に空気の層が形成したり、反射防止効果を確保したりすることが難くなる。
On the other hand, the aspect ratio of the cone-shaped projection 2 is the ratio of the height H of the cone-shaped projection 2 to the bottom surface diameter D of the cone-shaped projection 2 or the diameter D of the circle circumscribing the polygon forming the bottom surface ( H / D). In the present invention, the aspect ratio (H / D) needs to be in the range of 1.5 or more.
That is, when the aspect ratio (H / D) of the cone-shaped protrusion 2 is less than 1.5, it is difficult to form an air layer between the droplets and to ensure an antireflection effect. .

さらに、当該アスペクト比が3を超えると、錐体状突起2が外力を受けたときに破損し易くなり、これら機能を長期に亘って維持することが困難となる。したがって、アスペクト比を3以下とすると耐久性の観点から好ましい。
また、特に反射防止効果を重視する場合には、当該当該アスペクト比(H/D)を2以上とすることが望ましい。
Furthermore, when the aspect ratio exceeds 3, the cone-shaped protrusion 2 is likely to be damaged when receiving an external force, and it is difficult to maintain these functions for a long period of time. Therefore, an aspect ratio of 3 or less is preferable from the viewpoint of durability.
In particular, when importance is placed on the antireflection effect, the aspect ratio (H / D) is preferably 2 or more.

また、図1においては、本発明の撥水性反射防止構造1を構成する錐体状突起2の形状として、円錐形のものを示した。しかし、本発明における錐体状突起2の形状としては、正確な円錐(母線が直線)や角錐(稜が直線、側面が平面)のみならず、底面から先端側に向かって断面積が順次小さくなるような形状である限り、母線が曲線である円錐状のものや、側面が曲面をなす角錐状であってもよい。また、成形性や耐破損性を考慮して、先端部を平坦にしたり、丸みをつけたりした円錐台状や角錐台状とすることも可能である。
さらには、錐体状突起2の底面の中心と頂点(錐台状突起においては上面の中心点)を結ぶ直線は、必ずしも底面に対して垂直である必要はなく、上記の数値を満たしてさえいれば傾いていてもよい。
このように、本発明において『錐体状』とは、正確な円錐や角錐のみならず、釣り鐘形や椎の実形の変形円錐状や、曲面から成る側面を有する変形角錐状のもの、さらには先端突起のない円錐台や角錐台状のもの、傾斜したものをも含めた形状を意味する。
Moreover, in FIG. 1, the cone-shaped thing was shown as a shape of the cone-shaped processus | protrusion 2 which comprises the water-repellent antireflection structure 1 of this invention. However, as the shape of the cone-shaped projection 2 in the present invention, not only an accurate cone (a generatrix is a straight line) and a pyramid (a ridge is a straight line, a side is a plane), but the cross-sectional area is gradually reduced from the bottom to the tip side. As long as it has such a shape, it may be a cone having a curved bus line or a pyramid having a curved side surface. In consideration of formability and breakage resistance, it is also possible to make the tip part flat or rounded with a truncated cone shape or a truncated pyramid shape.
Furthermore, the straight line connecting the center and vertex of the bottom surface of the cone-shaped protrusion 2 (the center point of the upper surface in the truncated cone-shaped protrusion) does not necessarily need to be perpendicular to the bottom surface, and even satisfies the above numerical value. If it is, it may be tilted.
Thus, in the present invention, “conical shape” means not only an accurate cone or pyramid, but also a deformed cone shape of a bell shape or a real shape of a vertebra, a deformed pyramid shape having a curved side surface, Means a shape including a truncated cone, a truncated pyramid, and an inclined one without a tip protrusion.

錐体状突起2の底面形状としては、上記数値を満たす限り、円形であっても多角形であっても良いことは上記したとおりであるが、方向性をなくして、特定波長の反射率を向上させ、さらに平均反射率を下げるには円形であることが好ましい。   As described above, the bottom shape of the cone-shaped protrusion 2 may be circular or polygonal as long as the above numerical value is satisfied. A circular shape is preferable for improving and further reducing the average reflectance.

そして、上記錐体状突起2の稜線、すなわち円錐状突起においては母線、角錐状突起においては頂点と底面多角形の頂点を結ぶ線は、式(1)で表されるような線形式(但し、n=1.1〜3)で表される形状となっていることが望ましい。このようにすることによって、微細構造の頂点から底面までの屈折率の変化の割合が均一なものとなって、反射防止機能をより向上させることができる。
すなわち、錐体状突起2の頂点を通る垂直断面における底辺をX軸上に、頂点をZ軸上にとると、稜線上のZ座標値は、式(1)に基づいて、図3のように表わすことができる。このとき、頂点の位置によって定数項を加えて補正することもできる。
Z=H−{H/(D/2)}×X・・・(1)
The ridgeline of the cone-shaped protrusion 2, that is, a generatrix line in the cone-shaped protrusion, and a line connecting the apex of the bottom polygon in the pyramid-shaped protrusion is a linear form represented by the formula (1) (however, N = 1.1-3) is desirable. By doing so, the rate of change in refractive index from the top to the bottom of the fine structure becomes uniform, and the antireflection function can be further improved.
That is, when the base in the vertical cross section passing through the apex of the cone-shaped projection 2 is taken on the X axis and the apex is taken on the Z axis, the Z coordinate value on the ridge line is as shown in FIG. Can be expressed as At this time, correction can also be made by adding a constant term depending on the position of the vertex.
Z = H− {H / (D / 2) n } × X n (1)

また、上記錐体状突起2は、上記の数値を満たしている限り、規則的な配列であっても、不規則なランダム配列であってもよい。さらには、形状の異なる2種類以上の微細構造が含まれていてもよいが、反射防止機能の均一性を向上させるためには、同一の錐体状突起が均一の間隔に配置された周期構造を有していることが好ましく、さらには正方配列又は六方細密配列されていることが望ましい。   Further, the conical protrusions 2 may be in a regular arrangement or an irregular random arrangement as long as the above numerical values are satisfied. Furthermore, two or more types of fine structures having different shapes may be included, but in order to improve the uniformity of the antireflection function, a periodic structure in which the same cone-shaped projections are arranged at uniform intervals. It is preferable to have a square arrangement or a hexagonal close arrangement.

上記錐体状突起2を構成する材料自身、又は当該錐体状突起2の表面に被覆される材料の水滴との接触角は110°以上である場合、さらに優れた撥水性を示すようになる。
なお、本発明の撥水性反射防止構造においては、雨滴に対する撥水性を考慮して、錐体状突起2の表面を構成する材料の塗れ性を、水との接触角をもって規定している。しかし、本発明の撥水性反射防止構造を、水以外の液体と接触するような用途、例えば各種プラント装置における反応器や蒸留塔などののぞき窓パネルや、内視鏡のレンズ表面などに適用する場合には、それぞれの用途に応じて、接触する液体に対する接触角を規定以上とすることが必要になる。
When the contact angle between the material constituting the cone-shaped protrusion 2 itself or the water droplet of the material coated on the surface of the cone-shaped protrusion 2 is 110 ° or more, the water-repellent property is further improved. .
In the water-repellent antireflection structure of the present invention, in consideration of water repellency against raindrops, the wettability of the material constituting the surface of the cone-shaped projection 2 is defined by the contact angle with water. However, the water-repellent antireflection structure of the present invention is applied to applications that come into contact with liquids other than water, for example, viewing window panels such as reactors and distillation towers in various plant devices, and lens surfaces of endoscopes. In some cases, it is necessary to set the contact angle with respect to the contacting liquid to be greater than or equal to the specified value according to each application.

本発明の撥水性反射防止構造体の製造に際して、上記した錐体状突起を成形する方法としては、特に限定されるものではないが、熱プレス法(ホットエンボス法)、射出成形法などを挙げることができ、特に光の波長以下の微細構造を容易に成形できる方法としてナノインプリントが好適に用いられる。このナノインプリントの方法としては、熱及び活性エネルギー線のどちらを用いる方法であってもよい。   In the production of the water-repellent antireflection structure of the present invention, the method for forming the above-mentioned cone-shaped protrusion is not particularly limited, and examples thereof include a hot press method (hot embossing method) and an injection molding method. In particular, nanoimprinting is suitably used as a method for easily forming a microstructure having a wavelength equal to or smaller than the wavelength of light. The nanoimprinting method may be a method using either heat or active energy rays.

熱を用いる方法は、熱可塑性樹脂を加熱して、金型を押し当てることによって当該樹脂に上記のような錐体状突起を転写する方法である。また、活性エネルギー線を用いる方法は、型に活性エネルギー線により重合し硬化するポリマー又はオリゴマー、モノマーなどを入れ、紫外線やX線などの活性エネルギー線を照射することによって固化させる方法である。     The method using heat is a method of transferring the cone-shaped projections as described above to the resin by heating the thermoplastic resin and pressing a mold. The method using active energy rays is a method in which a polymer, oligomer, monomer or the like that is polymerized and cured by active energy rays is put in a mold and solidified by irradiation with active energy rays such as ultraviolet rays or X-rays.

上記の成形に用いられるスタンパとしては、上記のような微細な錐体状突起を形成できる方法であれば、特にその製造方法に限定はなく、生産性やコストなどを考慮して適宜なものを使用することができる。
なお、本発明において、ナノインプリントとは、数nmから数10μm程度の範囲の転写を言う。
The stamper used for the above molding is not particularly limited as long as it is a method capable of forming the above-mentioned fine cone-shaped projections, and an appropriate one is considered in consideration of productivity and cost. Can be used.
In the present invention, nanoimprint means transfer in the range of several nanometers to several tens of micrometers.

本発明に使用するプレス装置としては、加熱・加圧機構を有するものや、光透過性スタンパの上方より活性エネルギー線を照射できる機構を有するものがパターン転写を効率良く行う上で好ましい。   As the press apparatus used in the present invention, a press machine having a heating / pressurizing mechanism and a press machine having a mechanism capable of irradiating an active energy ray from above the light transmissive stamper are preferable for efficient pattern transfer.

上記スタンパは、転写されるべき微細なパターンを有するものであり、スタンパにパターンを形成する方法については、特に制限ななく、例えばフォトリソグラフィや電子線描画法等を、所望する加工精度に応じて選択することができる。
また、スタンパの材料としては、シリコンウエハ、各種金属材料、ガラス、セラミック、プラスチック、炭素材料等、強度と要求される精度の加工性を有するものであればよく、 具体的には、Si、SiC、SiN、多結晶Si、ガラス、Ni、Cr、Cu、C、さらにはこれらを1種以上含むものを例示することができる。
The stamper has a fine pattern to be transferred, and the method for forming the pattern on the stamper is not particularly limited. For example, photolithography, electron beam drawing, or the like can be used depending on the desired processing accuracy. You can choose.
The stamper material may be a silicon wafer, various metal materials, glass, ceramics, plastics, carbon materials, etc., as long as it has strength and workability with the required accuracy. Specifically, Si, SiC , SiN, polycrystalline Si, glass, Ni, Cr, Cu, C, and those containing one or more of these.

上記構造を形成するための材料(基材)としては、上記に示すいずれかの方法により上記錐体状突起から成る微細構造を付与できる基材であればよい。例えば、ポリエチレン、ポリプロピレン、ポリビニルアルコール、ポリ塩化ビニリデン、ポリエチレンテレフタレート、ポリ塩化ビニール、ポリスチレン、ABS樹脂、AS樹脂、アクリル樹脂、ポリアミド、ポリアセタール、ポリブチレンテレフタレート、ガラス強化ポリエチレンテレフタレート、ポリカーボネート、変性ポリフェニレンエーテル、ポリフェニレンスルフィド、ポリエーテルエーテルケトン、液晶性ポリマー、フッ素樹脂、ポリアレート、ポリスルホン、ポリエーテルスルホン、ポリアミドイミド、ポリエーテルイミド、熱可塑性ポリイミド等の熱可塑性樹脂や、フェノール樹脂、メラミン樹脂、ユリア樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、アルキド樹脂、シリコーン樹脂、ジアリルフタレート樹脂、ポリアミドビスマレイミド、ポリビスアミドトリアゾール等の熱硬化性樹脂、さらにはこれらを2種以上ブレンドした材料を用いることが可能であって、とりわけ透明性があるものは、例えば窓(ウインドシールド)や計器類のカバーなどに好適に用いることができる。   As a material (base material) for forming the structure, any material may be used as long as it can provide a fine structure composed of the cone-shaped projections by any of the methods described above. For example, polyethylene, polypropylene, polyvinyl alcohol, polyvinylidene chloride, polyethylene terephthalate, polyvinyl chloride, polystyrene, ABS resin, AS resin, acrylic resin, polyamide, polyacetal, polybutylene terephthalate, glass reinforced polyethylene terephthalate, polycarbonate, modified polyphenylene ether, Thermoplastic resins such as polyphenylene sulfide, polyether ether ketone, liquid crystalline polymer, fluororesin, polyarate, polysulfone, polyethersulfone, polyamideimide, polyetherimide, thermoplastic polyimide, phenol resin, melamine resin, urea resin, epoxy Resin, unsaturated polyester resin, alkyd resin, silicone resin, diallyl phthalate resin, polyamid It is possible to use thermosetting resins such as bismaleimide and polybisamidotriazole, and further blended materials of two or more of them, and those that are particularly transparent include, for example, windows (windshields) and instruments. It can be suitably used for a cover or the like.

活性エネルギー線を用いる場合は、活性エネルギー線により重合を開始できる樹脂が用いられる。このような樹脂としては、例えば紫外線硬化型アクリルウレタン系樹脂、紫外線硬化型ポリエステルアクリレート系樹脂、紫外線硬化型エポキシアクリレート樹脂、紫外線硬化型ポリオールアクリレート樹脂、紫外線硬化型エポキシ樹脂などを例示することができ、必要に応じて、活性エネルギー線を照射することによりラジカルを発生する重合開始剤を用いることもでき、より強固に固めるためイソシアネートのような硬化剤を加えることもできる。
また、ここで用いられる活性エネルギー線としては、一般に紫外線やX線、その他電子線、電磁波などが挙げられるが、特に限定されるものではない。
When using an active energy ray, a resin capable of initiating polymerization by the active energy ray is used. Examples of such resins include UV curable acrylic urethane resins, UV curable polyester acrylate resins, UV curable epoxy acrylate resins, UV curable polyol acrylate resins, and UV curable epoxy resins. If necessary, a polymerization initiator that generates radicals by irradiating active energy rays can be used, and a curing agent such as isocyanate can be added in order to solidify more firmly.
In addition, examples of the active energy ray used here generally include ultraviolet rays, X-rays, other electron beams, electromagnetic waves, and the like, but are not particularly limited.

本発明においては、水との接触角をさらに大きくして撥水性をより向上させようとする場合には、上記のようにして得られた錐体状突起の表面に、本発明で規定した水に対する接触角をもつ材料を被覆することになる。   In the present invention, when it is intended to further improve the water repellency by further increasing the contact angle with water, the water defined in the present invention is applied to the surface of the cone-shaped protrusion obtained as described above. A material having a contact angle with respect to is coated.

このような被覆処理方法としては、錐体状突起によって形成される微細な凹凸構造を被覆材料によって埋めてしまうことのない方法であれば特に限定されないが、例えば、LB法、PVD法、CVD法、自己組織化法、スパッタ法、単分子を溶剤で希釈したものを塗布する方法などが挙げられる。
例えば、上記のような被覆処理に用いられる水に対する接触角が110°以上となる撥水材料としては、例えば長鎖アルコキシシラン、フルオロアルコキシシラン、ポリジメチルシロキサン等を挙げることができる。
Such a coating treatment method is not particularly limited as long as the fine uneven structure formed by the cone-shaped protrusions is not filled with the coating material. For example, the LB method, the PVD method, and the CVD method are used. , Self-organization method, sputtering method, and a method of applying a single molecule diluted with a solvent.
For example, examples of the water-repellent material having a contact angle with water of 110 ° or more used for the coating treatment as described above include long-chain alkoxysilanes, fluoroalkoxysilanes, and polydimethylsiloxane.

なお、錐体状突起を形成する前の平板に、上記のような材料による任意の厚さの撥水処理を施したのち、上記した方法によって錐体状突起を形成するようになすことも可能である。   It is also possible to form a cone-shaped projection by the above-mentioned method after subjecting the flat plate before forming the cone-shaped projection to a water repellent treatment with an arbitrary thickness using the above materials. It is.

本発明の撥水性反射防止構造体は、上記撥水性反射防止構造を少なくとも基材の一方の面に形成したものであるが、光の入射面と透過光の出射面の両面に形成することが好ましい。
錐体状突起から成る撥水性反射防止構造の形成については、特に限定はなく、例えば、基材に直接形成する方法や、基材と同じ屈折率で成形が容易な材料を塗布して薄膜を作り、そこに上記の錐体状突起を転写する方法などがある。
The water-repellent antireflective structure of the present invention is formed by forming the water-repellent antireflective structure on at least one surface of the substrate, and may be formed on both the light incident surface and the transmitted light exit surface. preferable.
There is no particular limitation on the formation of the water-repellent antireflection structure composed of the cone-shaped projections. There is a method of making and transferring the above-mentioned cone-shaped projections there.

このような構造は、成形品に付与し、表示装置に組み込む際に、最前面に付与することが最も効果的であり、この構造を少なくとも一面に付与すれば、その裏面には、材料に接触角の限定がない従来の反射防止方法を適用することもできる。
このような反射防止方法としては、例えば、光の波長以下の微細構造のみを付与した反射防止構造を利用する方法、あるいは反射防止層の膜厚を制御し薄膜表面と基材接着面との反射光を干渉させ反射光を打ち消す方法などが挙げられる。
When such a structure is applied to a molded product and incorporated in a display device, it is most effective to apply it to the front surface. If this structure is applied to at least one surface, the back surface is in contact with the material. It is also possible to apply a conventional antireflection method with no corner limitation.
As such an antireflection method, for example, a method of using an antireflection structure provided with only a fine structure having a wavelength equal to or less than the wavelength of light, or a reflection between a thin film surface and a substrate adhesion surface by controlling the film thickness of the antireflection layer Examples include a method of canceling reflected light by causing interference of light.

本発明の撥水性反射防止構造を備えた成形品(撥水性反射防止構造体)は、例えば、自動車やバイクのメーターパネル、携帯電話、電子手帳などのモバイル機器、看板、時計など、表示装置の最前面で反射防止機能を必要とし、雨などの水や、油汚れにさらされる可能性があるような表示装置に使用される。
表示装置の形式としては特に限定されず、例えば、アナログメーターのように機械的な表示と照明を組み合わせた方式、デジタルメーターやモニターのように液晶やLED、ELなどのバックライトや発光面を用いた方式、モバイル機器のように反射方式の液晶を用いることもある。
The molded article (water-repellent anti-reflection structure) having the water-repellent anti-reflection structure of the present invention is, for example, a mobile device such as an automobile or motorcycle meter panel, a mobile phone, an electronic notebook, a signboard, a clock, or the like. It is used for display devices that require an antireflection function at the forefront and that may be exposed to water such as rain or oil stains.
The type of display device is not particularly limited. For example, a combination of mechanical display and illumination, such as an analog meter, and a backlight or light emitting surface such as a liquid crystal, LED, or EL, such as a digital meter or monitor are used. In some cases, a reflective liquid crystal is used as in conventional mobile devices.

上記のような成型品は、光に曝される場所に用いられることから、光による劣化を防止するために、材料に紫外線吸収剤や酸化防止剤、ラジカル補足剤などを添加しておくことが望ましい。
また、樹脂の劣化による黄変を補うためのブルーイング剤や蛍光発色顔料を用いることもできる。
Since such molded products are used in places exposed to light, in order to prevent deterioration due to light, it is possible to add UV absorbers, antioxidants, radical scavengers, etc. to the material. desirable.
Further, a bluing agent or a fluorescent coloring pigment for compensating for yellowing due to deterioration of the resin can be used.

本発明の撥水性反射防止構造体は、基材の少なくとも一方の表面に、上記撥水性反射防止構造を形成したものであるから、光の反射を極めて低レベルに抑えることができ、上記したように、自動車を始めとする各種の部品、例えばメーターカバー、ウインドシールドに適用することによって、屋外景色や内装などの映り込みを防止することができると共に、極めて優れた撥水性を示すことから、汚れ除去性が向上し、ワイパーの不要なウインドシールドを実現することも可能になる。   Since the water-repellent antireflection structure of the present invention has the above-mentioned water-repellent antireflection structure formed on at least one surface of a substrate, the reflection of light can be suppressed to an extremely low level, as described above. In addition, by applying it to various parts including automobiles, such as meter covers and windshields, it is possible to prevent reflection of outdoor scenery and interiors, etc. The removability is improved, and it is possible to realize a windshield that does not require a wiper.

以下に、本発明を実施例に基づいて、さらに具体的に説明するが、本発明はこれらの実施例のみに限定されないことは言うまでもない。なお、本明細書において、濃度や含有量などについての「%」は、特記しない限り、質量百分率を表すものとする。   Hereinafter, the present invention will be described more specifically based on examples. However, it is needless to say that the present invention is not limited to these examples. In the present specification, “%” for concentration, content, and the like represents a mass percentage unless otherwise specified.

(実施例1)
市販の電子線描画装置を用いて、開口径250nm、深さ375nmの円錐状凹部がピッチ250nmに正方配列したスタンパを作製した。このスタンパを用いて、厚さ2mmのアクリル板の表裏両面に、底面径D=250nm、高さH=375nmの円錐形突起(アスペクト比:1.5)がピッチP=250nmに正方配列されて成る、撥水性反射防止構造を転写した。この表面に、フルオロアルキルシラン(フロロテクノロジー製:フロロサーFG−5010、接触角118°)によるCVD処理を施すことによって、本例の撥水性反射防止構造体を得た。
Example 1
A stamper in which conical concave portions having an opening diameter of 250 nm and a depth of 375 nm were squarely arranged at a pitch of 250 nm was produced using a commercially available electron beam drawing apparatus. Using this stamper, conical protrusions (aspect ratio: 1.5) having a bottom diameter D = 250 nm and a height H = 375 nm are squarely arranged at a pitch P = 250 nm on both sides of an acrylic plate having a thickness of 2 mm. The water-repellent antireflection structure was transferred. By subjecting this surface to a CVD treatment with fluoroalkylsilane (Fluorotechnology: Fluorosor FG-5010, contact angle 118 °), the water-repellent antireflection structure of this example was obtained.

このようにして得られた撥水性反射防止構造体について、以下の要領によって、反射防止機能、水との接触角、撥水性及び耐久性について評価した。   The water repellent antireflection structure thus obtained was evaluated for the antireflection function, the contact angle with water, the water repellency and the durability in the following manner.

〔反射率測定〕
反射防止機能の評価方法としては、380〜780nmの各波長について、変角分光光度計(大塚電子製:可視・近赤外自動変角測定装置)により、基準サンプルに鏡面アルミニウムを用いて、入射角0°のときの反射率を測定し、その値に基準補正係数を乗算し、得られたスペクトルから平均反射率を算出した。
(Reflectance measurement)
As an evaluation method of the anti-reflection function, for each wavelength of 380 to 780 nm, incidence is performed using a specular aluminum as a reference sample by a variable angle spectrophotometer (manufactured by Otsuka Electronics: visible / near infrared automatic variable angle measuring device). The reflectance at an angle of 0 ° was measured, the value was multiplied by a reference correction coefficient, and the average reflectance was calculated from the obtained spectrum.

〔水の接触角〕
水の接触角の評価方法としては、接触角計(協和界面化学社製:CA−X)を用いて、シリンジによりサンプル表面上に10μLの水を静置して、その接触角を5回計測し、その平均値をもって接触角とした。
[Contact angle of water]
As a method for evaluating the contact angle of water, using a contact angle meter (Kyowa Interface Chemical Co., Ltd .: CA-X), 10 μL of water was allowed to stand on the sample surface with a syringe, and the contact angle was measured five times. The average value was used as the contact angle.

〔撥水性〕
撥水機能の評価方法としては、JIS L1092に規定された方法に基づき、スプレーテスタ(東洋精器製)を用いて、以下の基準によって評価した。
◎:表面に液滴が付着しない
○:液滴の接着面が半球状である
×:表面に液滴が付着する
[Water repellency]
As a method for evaluating the water repellent function, evaluation was performed based on the following criteria using a spray tester (manufactured by Toyo Seiki Co., Ltd.) based on the method defined in JIS L1092.
◎: Droplet does not adhere to the surface ○: Adhesive surface of the droplet is hemispherical ×: Droplet adheres to the surface

〔耐久性〕
耐久性の評価方法としては、トライボギア(HEIDON)を用いて、摩耗布:ブロード布 荷重:1N スライド速度30往復/分で100回摺動を行い、上記撥水性評価と同様の方法で評価した。
◎:表面に液滴が付着しない
○:液滴の接着面が半球状である
×:表面に液滴が付着する
〔durability〕
As a durability evaluation method, tribogear (HEIDON) was used, and abrasion cloth: broad cloth, load: 1N, sliding was performed 100 times at a sliding speed of 30 reciprocations / minute, and evaluation was performed in the same manner as the above water repellency evaluation.
◎: Droplet does not adhere to the surface ○: Adhesive surface of the droplet is hemispherical ×: Droplet adheres to the surface

当該実施例1で得られた撥水性反射防止構造体の可視光範囲(380〜780nm)での平均反射率は0.65%であった。また、この撥水性反射防止構造体表面での水滴の接触角は145°、撥水性評価は「◎」、耐久性についても「◎」であった。これらの結果を表1に示す。   The average reflectance in the visible light range (380 to 780 nm) of the water-repellent antireflection structure obtained in Example 1 was 0.65%. Further, the contact angle of water droplets on the surface of the water repellent antireflection structure was 145 °, the water repellency evaluation was “」 ”, and the durability was“ 「”. These results are shown in Table 1.

(実施例2)
市販の電子線描画装置を用いて、開口径250nm、深さ375nmの円錐状凹部がピッチ250nmに六方最密配列したスタンパを作製した。このスタンパに紫外線硬化性アクリルモノマーを塗付し、紫外線を照射することによって、厚さ2mmのアクリル板の表裏両面に、底面径D=250nm、高さH=375nmの円錐形突起(アスペクト比:1.5)がピッチP=250nmに六方配列されて成る反射防止構造を転写した。そして、この表面に、真空蒸着法による撥水処理(ティーアンドケー株式会社:ナノスB、接触角116°)を施すことによって、本例の撥水性反射防止構造体を得た。
そして、このようにして得られた撥水性反射防止構造体について、同様の性能評価を行った結果、平均反射率は0.68%、当該構造体の表面での水滴の接触角は144°、撥水性及び耐久性についてはいずれも「◎」であった。これらの結果を表1に併せて示す。
(Example 2)
A stamper in which conical recesses having an opening diameter of 250 nm and a depth of 375 nm were arranged in a hexagonal close-packed manner at a pitch of 250 nm was produced using a commercially available electron beam drawing apparatus. By applying UV curable acrylic monomer to this stamper and irradiating with UV light, both sides of the acrylic plate having a thickness of 2 mm have conical projections (aspect ratio: D = 250 nm, height H = 375 nm). 1.5) was transferred to the antireflection structure in which hexagonal arrangement with a pitch P = 250 nm. And the water-repellent antireflection structure of this example was obtained by giving this surface a water-repellent treatment (T & K Corporation: Nanos B, contact angle 116 °) by a vacuum deposition method.
And as a result of performing the same performance evaluation about the water-repellent antireflection structure thus obtained, the average reflectance is 0.68%, the contact angle of water droplets on the surface of the structure is 144 °, The water repellency and durability were both “◎”. These results are also shown in Table 1.

(実施例3)
市販の電子線描画装置を用いて、開口径が250nm、深さが500nmであって、n=1.5次の(1)式で表わされる稜線形状を有する略円錐状凹部がピッチ250nmに六方最密配列したスタンパを作製した。このスタンパに紫外線硬化性アクリルモノマーを塗付し、紫外線を照射することによって、厚さ2mmのアクリル板の表裏両面に、底面径D=250nm、高さH=500nmの略円錐形突起(アスペクト比:2)がピッチP=250nmに六方配列されて成る反射防止構造を転写した。次いで、真空蒸着法により上記実施例3と同様の撥水処理を施すことによって、本例の撥水性反射防止構造体を得た。
そして、上記実施例1と同様の性能評価を行った結果、平均反射率は0.09%、当該撥水性反射防止構造体表面における水滴の接触角は162°、撥水性及び耐久性についてはいずれも「◎」であった。これらの結果を表1に併せて示す。
(Example 3)
Using a commercially available electron beam drawing apparatus, an approximately conical concave portion having an opening diameter of 250 nm, a depth of 500 nm, and a ridge line shape represented by the equation (1) of n = 1.5 is hexagonal at a pitch of 250 nm. Close-packed stampers were produced. By applying ultraviolet curable acrylic monomer to this stamper and irradiating with ultraviolet rays, a substantially conical protrusion (aspect ratio) having a bottom diameter D = 250 nm and a height H = 500 nm is formed on both sides of the acrylic plate having a thickness of 2 mm. : 2) was transferred an antireflection structure in which hexagonal arrangement was performed at a pitch P = 250 nm. Next, the water-repellent antireflection structure of this example was obtained by performing the same water-repellent treatment as in Example 3 by vacuum deposition.
And as a result of performing the performance evaluation similar to the said Example 1, an average reflectance is 0.09%, the contact angle of the water droplet in the said water-repellent antireflection structure surface is 162 degrees, and about water repellency and durability, either Was also “◎”. These results are also shown in Table 1.

(実施例4〜6)
上記実施例2と同様な方法でスタンパの深さを変えることによって、アスペクト比:2.5(実施例4)、アスペクト比:3.0(実施例5)、アスペクト比:4.0(実施例6)であるそれぞれの撥水性反射防止構造体を得た。
そして、同様の性能評価を行った結果を表1に併せて示す。
(Examples 4 to 6)
By changing the stamper depth in the same manner as in Example 2, the aspect ratio: 2.5 (Example 4), the aspect ratio: 3.0 (Example 5), and the aspect ratio: 4.0 (Implementation) Each water-repellent antireflection structure as in Example 6) was obtained.
And the result of having performed the same performance evaluation is combined with Table 1, and is shown.

(実施例7)
市販の電子線描画装置を用いて、開口径250nm、深さ375nmの円錐状凹部がピッチ250nmに六方最密配列したスタンパを作製した。このスタンパを用いて、水との接触角が110°であって、厚さ2mmのパーフルオロアルキルメタクリレート板の表裏両面に、底面径D=250nm、高さH=375nmの円錐形突起(アスペクト比:1.5)がピッチP=250nmに六方配列されて成る撥水性反射防止構造を転写し、本例の撥水性反射防止構造体を得た。
そして、このようにして得られた撥水性反射防止構造体について、上記実施例1と同様の性能評価を行ったところ、平均反射率は0.71%であった。また、当該撥水性反射防止構造体表面における水滴の接触角は142°、撥水性及び耐久性についてはいずれも「◎」であった。これらの結果を表1に併せて示す。
(Example 7)
A stamper in which conical recesses having an opening diameter of 250 nm and a depth of 375 nm were arranged in a hexagonal close-packed manner at a pitch of 250 nm was produced using a commercially available electron beam drawing apparatus. Using this stamper, conical protrusions (aspect ratio) having a bottom surface diameter D = 250 nm and a height H = 375 nm on the front and back surfaces of a perfluoroalkyl methacrylate plate having a contact angle with water of 110 ° and a thickness of 2 mm. : 1.5) was transferred in a hexagonal arrangement with a pitch P = 250 nm to transfer the water-repellent antireflection structure, and the water-repellent antireflection structure of this example was obtained.
And about the water-repellent antireflection structure obtained in this way, when the same performance evaluation as the said Example 1 was performed, the average reflectance was 0.71%. The contact angle of water droplets on the surface of the water-repellent antireflection structure was 142 °, and the water repellency and durability were both “「 ”. These results are also shown in Table 1.

(実施例8)
上記実施例7と同様な方法でスタンパの深さを変えることによって、アスペクト比が2.0である本例の撥水性反射防止構造体を得た。
そして、同様の性能評価を行った結果を表1に併せて示す。
(Example 8)
By changing the depth of the stamper in the same manner as in Example 7, a water repellent antireflection structure of this example having an aspect ratio of 2.0 was obtained.
And the result of having performed the same performance evaluation is combined with Table 1, and is shown.

(実施例9)
市販の電子線描画装置を用いて、開口径250nm、深さ500nmの円錐状凹部がピッチ250nmに六方最密配列したスタンパを作製した。このスタンパを用いて、平面時の反射率が7%、水との接触角が30°であって、厚さが2mmのガラス板の表裏両面に、底面径D=250nm、高さH=500nmの円錐形突起(アスペクト比:2)がピッチP=250nmに六方最密配列されて成る反射防止構造を転写した。次いで、フルオロアルコキシシランとしてCF(CF(CHSi(OCH(接触角:110°)をスピンコート法により表面処理し、本例の撥水性反射防止構造体を得た。
そして、上記実施例1と同様の性能評価を行った結果、平均反射率は0.41%、当該撥水性反射防止構造体表面における水滴の接触角は161°、撥水性評価結果は「◎」であったが、耐久性については「○」であった。これらの結果を表1に併せて示す。
Example 9
A stamper in which conical recesses having an opening diameter of 250 nm and a depth of 500 nm were arranged in a hexagonal close-packed manner at a pitch of 250 nm was produced using a commercially available electron beam drawing apparatus. Using this stamper, the flat surface has a reflectivity of 7%, a contact angle with water of 30 °, and has a bottom surface diameter D = 250 nm and a height H = 500 nm on both front and back surfaces of a glass plate having a thickness of 2 mm. The antireflection structure in which the conical protrusions (aspect ratio: 2) were arranged in a hexagonal close-packed manner at a pitch P = 250 nm was transferred. Next, CF 3 (CF 2 ) 7 (CH 2 ) 2 Si (OCH 3 ) 3 (contact angle: 110 °) as a fluoroalkoxysilane was surface-treated by a spin coating method, and the water-repellent antireflection structure of this example was obtained. Obtained.
And as a result of performing performance evaluation similar to the said Example 1, an average reflectance is 0.41%, the contact angle of the water droplet on the said water-repellent antireflection structure surface is 161 degrees, and a water-repellent evaluation result is "(double-circle)". However, the durability was “◯”. These results are also shown in Table 1.

(実施例10,11)
上記実施例7と同様な方法でスタンパの深さを変えることによって、アスペクト比:2.5(実施例10)及びアスペクト比:3.0(実施例11)であるそれぞれの撥水性反射防止構造体を得た。
そして、同様の性能評価を行った結果を表1に併せて示す。
(Examples 10 and 11)
By changing the stamper depth in the same manner as in Example 7, the respective water-repellent antireflection structures having an aspect ratio of 2.5 (Example 10) and an aspect ratio of 3.0 (Example 11) are obtained. Got the body.
And the result of having performed the same performance evaluation is combined with Table 1, and is shown.

(実施例12)
市販の電子線描画装置を用いて、開口径250nm、深さ375nmの円錐状凹部がピッチ250nmに正方配列したスタンパを作製した。このスタンパを用いて、水との接触角が100°、厚さ2mmのフッ素をグラフト重合したアクリル板の表裏両面に、底面径D=250nm、高さH=375nmの円錐形突起(アスペクト比:1.5)がピッチP=250nmに正方配列されて成る撥水性反射防止構造を転写し、本例の撥水性反射防止構造体を得た。
このようにして得られた撥水性反射防止構造体について、同様の性能評価を行った結果、平均反射率は0.80%、構造体表面での水滴の接触角は128°、撥水性及び耐久性についてはいずれも「○」であった。これらの結果を表2に示す。
Example 12
A stamper in which conical concave portions having an opening diameter of 250 nm and a depth of 375 nm were squarely arranged at a pitch of 250 nm was produced using a commercially available electron beam drawing apparatus. Using this stamper, conical projections with a bottom diameter D = 250 nm and a height H = 375 nm (aspect ratio: 100 nm) are formed on both front and back surfaces of an acrylic plate grafted with fluorine having a contact angle with water of 100 ° and a thickness of 2 mm. 1.5) was transferred to form a water-repellent antireflection structure having a square arrangement with a pitch P = 250 nm, thereby obtaining the water-repellent antireflection structure of this example.
As a result of performing the same performance evaluation on the water-repellent antireflection structure thus obtained, the average reflectance was 0.80%, the contact angle of water droplets on the surface of the structure was 128 °, and the water repellency and durability. The sexes were all “◯”. These results are shown in Table 2.

(実施例13〜15)
上記実施例12と同様な方法で、開口径や深さを変えたスタンパを用いることによって、底面径D:250nm、高さH:500nm、アスペクト比:2.0(実施例13)、底面径D:200nm、高さH:500nm、アスペクト比:2.5(実施例14)、底面径D:250nm、高さH:750nm、アスペクト比:3.0(実施例15)であるそれぞれの撥水性反射防止構造体を得た。
そして、同様の性能評価を行った結果を表2に併せて示す。
(Examples 13 to 15)
By using a stamper having a different opening diameter and depth in the same manner as in Example 12, the bottom diameter D: 250 nm, the height H: 500 nm, the aspect ratio: 2.0 (Example 13), and the bottom diameter D: 200 nm, height H: 500 nm, aspect ratio: 2.5 (Example 14), bottom diameter D: 250 nm, height H: 750 nm, aspect ratio: 3.0 (Example 15) An aqueous antireflection structure was obtained.
And the result of having performed the same performance evaluation is combined with Table 2, and is shown.

(実施例16)
市販の電子線描画装置を用いて、開口径250nm、深さ375nmの円錐状凹部がピッチ250nmに正方配列したスタンパを作製した。このスタンパを用いて、水との接触角が92°、厚さ2mmのアクリル板の表裏両面に、底面径D=250nm、高さH=375nmの円錐形突起(アスペクト比:1.5)がピッチP=250nmに正方配列されて成る微細構造を転写し、本例の撥水性反射防止構造体を得た。
そして、上記実施例1と同様の性能評価を行った結果、平均反射率は1.0%、当該撥水性反射防止構造体表面における水滴接触角は120°、撥水性及び耐久性についてはいずれも「○」であった。これらの結果を表2に併せて示す。
(Example 16)
A stamper in which conical concave portions having an opening diameter of 250 nm and a depth of 375 nm were squarely arranged at a pitch of 250 nm was produced using a commercially available electron beam drawing apparatus. Using this stamper, conical protrusions (aspect ratio: 1.5) having a bottom diameter D = 250 nm and a height H = 375 nm are formed on both front and back surfaces of an acrylic plate having a contact angle with water of 92 ° and a thickness of 2 mm. A fine structure formed by square arrangement at a pitch P = 250 nm was transferred to obtain a water-repellent antireflection structure of this example.
And as a result of performing the performance evaluation similar to the said Example 1, an average reflectance is 1.0%, the water-drop contact angle in the said water-repellent anti-reflective structure surface is 120 degrees, and both about water repellency and durability It was “○”. These results are also shown in Table 2.

(実施例17〜19)
上記実施例16と同様な方法で、スタンパの深さを変えることによって、アスペクト比:2.0(実施例17)、アスペクト比:2.5(実施例18)、及びアスペクト比:3.0(実施例19)であるそれぞれの撥水性反射防止構造体を得た。
そして、上記実施例1と同様の性能評価を行った。その結果を表2に併せて示す。
(Examples 17 to 19)
By changing the depth of the stamper in the same manner as in Example 16, the aspect ratio: 2.0 (Example 17), the aspect ratio: 2.5 (Example 18), and the aspect ratio: 3.0 Each water-repellent antireflection structure which is (Example 19) was obtained.
And performance evaluation similar to the said Example 1 was performed. The results are also shown in Table 2.

(比較例1)
市販の電子線描画装置を用いて、開口径250nm、深さ250nmの円錐状凹部がピッチ250nmに六方最密配列したスタンパを作製した。このスタンパに紫外線硬化性アクリルモノマーを塗付し、紫外線を照射することによって、厚さ2mmのアクリル板の表裏両面に、底面径D=250nm、高さH=250nmの円錐形突起(アスペクト比:1.0)がピッチP=250nmに六方配列されて成る反射防止構造を転写した。そして、この表面に、真空蒸着法による撥水処理(ティーアンドケー株式会社:ナノスB、接触角116°)を施すことによって、本例の撥水性反射防止構造体を得た。
そして、このようにして得られた撥水性反射防止構造体について、上記実施例1と同様の性能評価を行った結果、平均反射率は0.92%、当該構造体の表面での水滴の接触角は134°、撥水性及び耐久性についてはいずれも「○」であった。これらの結果を表1に併せて示す。
(Comparative Example 1)
A stamper in which conical concave portions having an opening diameter of 250 nm and a depth of 250 nm were arranged in a hexagonal close-packed manner at a pitch of 250 nm was produced using a commercially available electron beam drawing apparatus. By applying an ultraviolet curable acrylic monomer to the stamper and irradiating with ultraviolet rays, conical protrusions (aspect ratio: aspect ratio: D = 250 nm on the bottom surface) and H = 250 nm on the front and back surfaces of the acrylic plate having a thickness of 2 mm. 1.0) is transferred to form an antireflection structure in which hexagonal arrangement is performed at a pitch P = 250 nm. And the water-repellent antireflection structure of this example was obtained by giving this surface a water-repellent treatment (T & K Corporation: Nanos B, contact angle 116 °) by a vacuum deposition method.
And as a result of performing performance evaluation similar to the said Example 1 about the water-repellent antireflection structure obtained in this way, an average reflectance is 0.92% and the contact of the water droplet on the surface of the said structure The angle was 134 °, and the water repellency and durability were all “◯”. These results are also shown in Table 1.

(比較例2)
市販の電子線描画装置を用いて、開口径が300nm、深さが330nmであって、n=1.5次の(1)式で表わされる稜線形状を有する略円錐状凹部がピッチ300nmに六方配列したスタンパを作製した。このスタンパに紫外線硬化性アクリルモノマーを塗付し、紫外線を照射することによって、厚さ2mmのアクリル板の表裏両面に、底面径D=300nm、高さH=330nmの略円錐形突起(アスペクト比:1.1)がピッチP=300nmに六方配列されて成る微細構造を転写した。次いで、この表面に真空蒸着法によって、上記同様の撥水処理(ティーアンドケー株式会社:ナノスB、接触角116°)を施すことによって、本例の撥水性反射防止構造体を得た。
このようにして得られた撥水性反射防止構造体について、同様の性能評価を行った結果、平均反射率は0.90%であった。また、当該構造体表面における水滴の接触角は136°、撥水性及び耐久性についてはいずれも「○」であった。これらの結果を表1に併せて示す。
(Comparative Example 2)
Using a commercially available electron beam drawing apparatus, an approximately conical concave portion having an opening diameter of 300 nm, a depth of 330 nm, and an ridge line shape represented by the equation (1) of n = 1.5 is hexagonal at a pitch of 300 nm. An arrayed stamper was made. By applying ultraviolet curable acrylic monomer to this stamper and irradiating with ultraviolet rays, a substantially conical protrusion (aspect ratio) having a bottom surface diameter D = 300 nm and a height H = 330 nm is formed on both front and back surfaces of an acrylic plate having a thickness of 2 mm. : 1.1) was transferred to form a fine structure in which hexagonal arrangement was performed at a pitch P = 300 nm. Next, this surface was subjected to the same water-repellent treatment (T & K Corporation: Nanos B, contact angle 116 °) by a vacuum vapor deposition method to obtain the water-repellent antireflection structure of this example.
The water repellent antireflection structure thus obtained was subjected to the same performance evaluation. As a result, the average reflectance was 0.90%. Further, the contact angle of water droplets on the surface of the structure was 136 °, and the water repellency and durability were both “◯”. These results are also shown in Table 1.

(比較例3)
上記比較例2と同様な方法でスタンパの深さを変えることによって、アスペクト比が1.4である本例の撥水性反射防止構造体を得た。
そして、同様の性能評価を行い、その結果を表1に併せて示す。
(Comparative Example 3)
By changing the stamper depth in the same manner as in Comparative Example 2, a water-repellent antireflection structure of this example having an aspect ratio of 1.4 was obtained.
And the same performance evaluation was performed and the result is combined with Table 1 and shown.

(比較例4)
市販の電子線描画装置を用いて、開口径250nm、深さ250nmの円錐状凹部がピッチ250nmに六方最密配列したスタンパを作製した。このスタンパを用いて、水との接触角が110°であって、厚さ2mmのパーフルオロアルキルメタクリレート板の表裏両面に、底面径D=250nm、高さH=250nmの円錐形突起(アスペクト比:1.0)がピッチP=250nmに六方細密配列されて成る撥水性反射防止構造を転写し、本例の撥水性反射防止構造体を得た。
そして、このようにして得られた撥水性反射防止構造体について、上記実施例1と同様の性能評価を行ったところ、平均反射率は0.95%であった。また、当該撥水性反射防止構造体表面における水滴の接触角は120°、撥水性及び耐久性についてはいずれも「○」であった。これらの結果を表1に併せて示す。
(Comparative Example 4)
A stamper in which conical recesses having an opening diameter of 250 nm and a depth of 250 nm were arranged in a hexagonal close-packed manner at a pitch of 250 nm was produced using a commercially available electron beam drawing apparatus. Using this stamper, a conical protrusion (aspect ratio) having a bottom surface diameter D = 250 nm and a height H = 250 nm on the front and back surfaces of a perfluoroalkyl methacrylate plate having a contact angle with water of 110 ° and a thickness of 2 mm. : 1.0) was transferred to form a water-repellent antireflection structure having a hexagonal close-packed arrangement with a pitch P = 250 nm to obtain the water-repellent antireflection structure of this example.
The water repellent antireflection structure thus obtained was evaluated for performance in the same manner as in Example 1. As a result, the average reflectance was 0.95%. Further, the contact angle of water droplets on the surface of the water-repellent antireflection structure was 120 °, and the water repellency and durability were both “◯”. These results are also shown in Table 1.

(比較例5,6)
上記比較例4と同様な方法でスタンパの深さを変えることによって、アスペクト比:1.1(比較例5)及びアスペクト比:1.4(比較例6)であるそれぞれの撥水性反射防止構造体を得た。
そして、同様の性能評価を行った結果を表1に併せて示す。
(Comparative Examples 5 and 6)
By changing the stamper depth in the same manner as in Comparative Example 4, each water-repellent antireflection structure having an aspect ratio of 1.1 (Comparative Example 5) and an aspect ratio of 1.4 (Comparative Example 6) is obtained. Got the body.
And the result of having performed the same performance evaluation is combined with Table 1, and is shown.

(比較例7)
市販の電子線描画装置を用いて、開口径500nm、深さ500nmの円錐状凹部がピッチ500nmに正方配列したスタンパを作製した。このスタンパを用いて、水との接触角が100°、厚さ2mmのフッ素をグラフト重合したアクリル板の表裏両面に、底面径D=500nm、高さH=500nmの円錐形突起(アスペクト比:1.0)がピッチP=500nmに正方配列されて成る微細構造を転写し、本例の撥水性反射防止構造体を得た。
そして、上記実施例1と同様の性能評価を行った結果、平均反射率は0.98%、当該撥水性反射防止構造体表面における水滴接触角は120°、撥水性は「○」、耐久性は「○」であった。これらの結果を表2に併せて示す。
(Comparative Example 7)
A stamper in which conical concave portions having an opening diameter of 500 nm and a depth of 500 nm were squarely arranged at a pitch of 500 nm was produced using a commercially available electron beam drawing apparatus. Using this stamper, conical protrusions with a bottom diameter D = 500 nm and a height H = 500 nm (aspect ratio: aspect ratio: on both the front and back surfaces of an acrylic plate graft-polymerized with fluorine having a contact angle with water of 100 ° and a thickness of 2 mm. 1.0) was transferred to form a water-repellent antireflection structure of the present example.
As a result of performance evaluation similar to Example 1, the average reflectance was 0.98%, the water droplet contact angle on the surface of the water-repellent antireflection structure was 120 °, the water repellency was “◯”, and the durability Was "○". These results are also shown in Table 2.

(比較例8,9)
上記比較例7と同様な方法でスタンパの深さを変えることによって、アスペクト比:1.1(比較例8)及びアスペクト比:1.4(比較例9)であるそれぞれの撥水性反射防止構造体を得た。
そして、同様の性能評価を行った結果を表1に併せて示す。
(Comparative Examples 8 and 9)
By changing the depth of the stamper in the same manner as in Comparative Example 7, the respective water-repellent antireflection structures having an aspect ratio of 1.1 (Comparative Example 8) and an aspect ratio of 1.4 (Comparative Example 9) Got the body.
And the result of having performed the same performance evaluation is combined with Table 1, and is shown.

(比較例10)
市販の電子線描画装置を用いて、開口径250nm、深さ250nmの円錐状凹部がピッチ250nmに正方配列したスタンパを作製した。このスタンパを用いて、水との接触角が92°、厚さ2mmのアクリル板の表裏両面に、底面径D=250nm、高さH=250nmの円錐形突起(アスペクト比:1.0)がピッチP=250nmに正方配列されて成る微細構造を転写し、本例の撥水性反射防止構造体を得た。
そして、上記実施例と同様の性能評価を行った結果、平均反射率は1.19%、当該撥水性反射防止構造体表面における水滴接触角は112°、撥水性評価結果は「×」、耐久性についても「×」であった。これらの結果を表2に併せて示す。
(Comparative Example 10)
A stamper in which conical concave portions having an opening diameter of 250 nm and a depth of 250 nm were squarely arranged at a pitch of 250 nm was produced using a commercially available electron beam drawing apparatus. Using this stamper, conical protrusions (aspect ratio: 1.0) having a bottom surface diameter D = 250 nm and a height H = 250 nm are formed on the front and back surfaces of an acrylic plate having a contact angle with water of 92 ° and a thickness of 2 mm. A fine structure formed by square arrangement at a pitch P = 250 nm was transferred to obtain a water-repellent antireflection structure of this example.
As a result of performance evaluation similar to the above example, the average reflectance was 1.19%, the water droplet contact angle on the surface of the water-repellent antireflection structure was 112 °, the water repellency evaluation result was “x”, and durability The sex was also “x”. These results are also shown in Table 2.

(比較例11,12)
上記比較例10と同様な方法でスタンパの深さを変えることによって、アスペクト比:1.1(比較例11)及びアスペクト比:1.4(比較例12)であるそれぞれの撥水性反射防止構造体を得た。
そして、同様の性能評価を行った結果を表2に併せて示す。
(Comparative Examples 11 and 12)
By changing the stamper depth in the same manner as in Comparative Example 10, the water-repellent antireflection structure having an aspect ratio of 1.1 (Comparative Example 11) and an aspect ratio of 1.4 (Comparative Example 12) is obtained. Got the body.
And the result of having performed the same performance evaluation is combined with Table 2, and is shown.

(比較例13)
平面時の反射率が7%、水との接触角が102°であって、厚さ2mmのアクリル製平板について、上記同様の性能評価を行った結果、撥水性は「×」であった。
(Comparative Example 13)
As a result of performing the same performance evaluation on an acrylic flat plate having a reflectivity of 7% when flat and a contact angle with water of 102 ° and a thickness of 2 mm, the water repellency was “x”.

Figure 2009042714
Figure 2009042714

Figure 2009042714
Figure 2009042714

また、本発明による撥水性反射防止構造体における錐体状突起のアスペクト比の撥水特性に対する効果を確認するために、得られた撥水性反射防止構造体の水との接触角からこの構造体表面の材料の水に対する接触角を差し引いた値(アスペクト比による撥水性反射防止構造体の接触角増加分):Δを実施例1〜19及び比較例1〜12について求めた。 その結果を図4に示す。なお、表1には記載していないが、構造体表面に、水に対する接触角118°の材料を用いた構造体であって、アスペクト比が1.5である構造体(実施例1)以外のデータも図4に加えてある。   Further, in order to confirm the effect of the aspect ratio of the cone-shaped protrusions on the water-repellent property in the water-repellent anti-reflective structure according to the present invention, the structure is obtained from the contact angle with water of the obtained water-repellent anti-reflective structure. Value obtained by subtracting the contact angle of the surface material with respect to water (the increase in the contact angle of the water-repellent antireflection structure by the aspect ratio): Δ was determined for Examples 1 to 19 and Comparative Examples 1 to 12. The result is shown in FIG. Although not described in Table 1, a structure using a material having a contact angle of 118 ° with respect to water on the surface of the structure and having an aspect ratio of 1.5 (Example 1) These data are also added to FIG.

表1,2及び図4より、撥水性反射防止構造体における錐体状突起のアスペクト比が1.5以上となると、アスペクト比による撥水性反射防止構造体の接触角増加分Δが急激に増加し、撥水性反射防止構造体の水との接触角が120°以上となる。また、撥水性反射防止構造体の平均反射率も1%以下を示すことから、本発明の撥水性反射防止構造体は、反射防止性と撥水性を両立することができることがわかる。
さらに、構造体表面の材料の水に対する接触角が110°以上のとき、撥水性反射防止構造体における錐体状突起のアスペクト比の撥水特性への効果が特に大きくなることが分かる。したがって、構造体表面の材料の水に対する接触角が110°以上となると、撥水性反射防止構造体の水との接触角が142°以上となり、本発明の撥水性反射防止構造体は反射防止性と極めて優れた撥水性(超撥水性)を両立できることがわかる。
From Tables 1 and 2 and FIG. 4, when the aspect ratio of the cone-shaped protrusions in the water-repellent antireflection structure is 1.5 or more, the contact angle increase Δ of the water-repellent antireflection structure due to the aspect ratio increases rapidly. In addition, the contact angle of the water-repellent antireflection structure with water is 120 ° or more. Moreover, since the average reflectance of the water-repellent antireflection structure also shows 1% or less, it can be seen that the water-repellent antireflection structure of the present invention can achieve both antireflection and water repellency.
Furthermore, it can be seen that when the contact angle of the material on the surface of the structure with respect to water is 110 ° or more, the effect of the aspect ratio of the cone-shaped protrusions on the water-repellent property in the water-repellent antireflection structure is particularly large. Accordingly, when the contact angle of the material on the structure surface with respect to water is 110 ° or more, the contact angle with water of the water repellent antireflection structure is 142 ° or more, and the water repellent antireflection structure of the present invention has antireflection properties. It can be seen that both excellent water repellency (super water repellency) can be achieved.

また、表1及び2より、撥水性反射防止構造体における錐体状突起のアスペクト比が2以上となると、撥水性反射防止構造体の平均反射率は0.5%以下となることが分かる。したがって、本発明の撥水性反射防止構造体は、さらに優れた反射防止性と撥水性を両立することが分かる。   Tables 1 and 2 show that when the aspect ratio of the cone-shaped protrusions in the water-repellent antireflection structure is 2 or more, the average reflectance of the water-repellent antireflection structure is 0.5% or less. Therefore, it can be seen that the water-repellent antireflection structure of the present invention achieves both excellent antireflection properties and water repellency.

そして、表1及び2より、撥水性反射防止構造体における錐体状突起のアスペクト比が4以上となると、耐久性に劣ることが分かる。したがって、耐久性の観点から錐体状突起のアスペクト比を3以下とすることが好ましい。   From Tables 1 and 2, it can be seen that when the aspect ratio of the cone-shaped protrusions in the water-repellent antireflection structure is 4 or more, the durability is poor. Therefore, it is preferable that the aspect ratio of the cone-shaped protrusion is 3 or less from the viewpoint of durability.

(a)及び(b)は本発明の撥水性反射防止構造の一例を示す正面図及び平面図である。(A) And (b) is the front view and top view which show an example of the water-repellent antireflection structure of this invention. 材料の水に対する接触角と撥水特性との関係を表した説明図である。It is explanatory drawing showing the relationship between the contact angle with respect to the water of material, and a water-repellent property. 本発明の撥水性反射防止微細構造における錐体状突起の稜線形状をn次の式(1)で表した説明図である。It is explanatory drawing which represented the ridgeline shape of the cone-shaped processus | protrusion in the water-repellent antireflection fine structure of this invention by n-order Formula (1). 本発明における撥水性反射防止微細構造体における錐体状突起のアスペクト比の撥水特性に対する寄与を表すグラフである。It is a graph showing the contribution with respect to the water-repellent property of the aspect ratio of the cone-shaped protrusion in the water-repellent antireflection microstructure in the present invention.

符号の説明Explanation of symbols

1 撥水性反射防止構造
2 錐体状突起
1 water-repellent antireflection structure 2 cone-shaped projection

Claims (11)

円形又は多角形底面を有し、円形底面の径又は多角形底面に外接する円の直径が50〜380nmである無数の錐体状突起が、50〜380nmのピッチで配置されて成り、上記錐体状突起のアスペクト比が1.5以上であると共に、錐体状突起の少なくとも表面を構成する材料の水に対する接触角が90°以上であることを特徴とする撥水性反射防止構造。   Innumerable cone-shaped projections having a circular or polygonal bottom surface and a diameter of the circular bottom surface or a circle circumscribing the polygonal bottom surface being 50 to 380 nm are arranged at a pitch of 50 to 380 nm, and the cone A water-repellent antireflection structure, wherein an aspect ratio of a body-like protrusion is 1.5 or more, and a contact angle with respect to water of a material constituting at least a surface of the cone-like protrusion is 90 ° or more. 上記錐体状突起の少なくとも表面を構成する材料の水に対する接触角が110°以上であることを特徴とする請求項1に記載の撥水性反射防止構造。   The water repellent antireflection structure according to claim 1, wherein a contact angle with respect to water of a material constituting at least a surface of the conical protrusion is 110 ° or more. 上記錐体状突起のアスペクト比が2以上であることを特徴とする請求項1又は2に記載の撥水性反射防止構造。   The water-repellent antireflection structure according to claim 1, wherein an aspect ratio of the cone-shaped protrusion is 2 or more. 上記錐体状突起のアスペクト比が3以下であることを特徴とする請求項1〜3のいずれか1つの項に記載の撥水性反射防止構造。   The water-repellent antireflection structure according to any one of claims 1 to 3, wherein an aspect ratio of the conical protrusion is 3 or less. 上記錐体状突起が正方配列又は六方配列されていることを特徴とする請求項1〜4のいずれか1つの項に記載の撥水性反射防止構造。   The water-repellent antireflection structure according to any one of claims 1 to 4, wherein the cone-shaped projections are arranged in a square or hexagonal arrangement. 上記錐体状突起の稜線形状が次式(1)で表され、次数nが1.1〜5であることを特徴とする請求項1〜5のいずれか1つの項に記載の撥水性反射防止構造。
Z=H−{H/(D/2)}×X ・・・(1)
The water-repellent reflection according to any one of claims 1 to 5, wherein the ridge line shape of the cone-shaped protrusion is represented by the following formula (1), and the order n is 1.1 to 5. Prevention structure.
Z = H− {H / (D / 2) n } × X n (1)
請求項1〜6のいずれか1つの項に記載の撥水性反射防止構造を、基材の少なくとも一方の面に備えていることを特徴とする撥水性反射防止構造体。   A water repellent antireflective structure comprising the water repellent antireflective structure according to any one of claims 1 to 6 on at least one surface of a substrate. 上記基材が透明材料から成ることを特徴とする請求項7に記載の撥水性反射防止構造体。   8. The water repellent antireflection structure according to claim 7, wherein the substrate is made of a transparent material. 請求項7又は8に記載の撥水性反射防止構造体を製造するに際して、上記錐体状突起をホットエンボスによって基材に形成することを特徴とする撥水性反射防止構造体の製造方法。   9. The method for producing a water-repellent antireflection structure according to claim 7, wherein the cone-shaped projections are formed on a substrate by hot embossing when the water-repellent antireflection structure according to claim 7 is produced. 請求項7又は8に記載の撥水性反射防止構造体を製造するに際して、上記錐体状突起を反転させた微細構造を備えた成形型と基材の間に活性エネルギー線硬化性樹脂を介在させた状態で活性エネルギー線を照射し、当該基材の表面に上記錐体状突起を形成することを特徴とする撥水性反射防止構造体の製造方法。   When manufacturing the water-repellent antireflection structure according to claim 7 or 8, an active energy ray-curable resin is interposed between a mold having a microstructure in which the cone-shaped projections are inverted and a substrate. A method for producing a water-repellent antireflective structure, comprising irradiating active energy rays in a wet state to form the cone-shaped projections on the surface of the substrate. 請求項1〜6のいずれか1つの項に記載の撥水性反射防止構造を備えていることを特徴とする自動車用部品。   An automotive part comprising the water-repellent antireflection structure according to any one of claims 1 to 6.
JP2007262897A 2006-11-08 2007-10-09 Water-repellent antireflection structure and manufacturing method thereof Pending JP2009042714A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2007262897A JP2009042714A (en) 2006-11-08 2007-10-09 Water-repellent antireflection structure and manufacturing method thereof
EP07119949A EP1921470A3 (en) 2006-11-08 2007-11-05 Water Repellent Anti-Reflective Structure and Method of Manufacturing the Same
US11/935,568 US20080107868A1 (en) 2006-11-08 2007-11-06 Water repellent anti-reflective structure and method of manufacturing the same
KR1020070112905A KR100957890B1 (en) 2006-11-08 2007-11-07 Water repellent antireflective structure, automobile parts having same and method for manufacturing same
CN2007101637962A CN101178442B (en) 2006-11-08 2007-11-08 Water repellent anti-reflective structure and method of manufacturing the same
US13/616,328 US20130011571A1 (en) 2006-11-08 2012-09-14 Water repellent anti-reflective structure and method of manufacturing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006302710 2006-11-08
JP2007187951 2007-07-19
JP2007262897A JP2009042714A (en) 2006-11-08 2007-10-09 Water-repellent antireflection structure and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2009042714A true JP2009042714A (en) 2009-02-26
JP2009042714A5 JP2009042714A5 (en) 2009-09-10

Family

ID=40443466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007262897A Pending JP2009042714A (en) 2006-11-08 2007-10-09 Water-repellent antireflection structure and manufacturing method thereof

Country Status (2)

Country Link
JP (1) JP2009042714A (en)
CN (1) CN101178442B (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010188584A (en) * 2009-02-17 2010-09-02 Nissan Motor Co Ltd Frictional flaw resistant water repellent configuration and frictional flaw resistant water repellent structure
JP2010188582A (en) * 2009-02-17 2010-09-02 Nissan Motor Co Ltd Antistatic water-repellent configuration, and antistatic water-repellent structure
JP2010201799A (en) * 2009-03-04 2010-09-16 Nissan Motor Co Ltd Water-repellent structure and water-repellent structure body
JP2012011685A (en) * 2010-07-01 2012-01-19 Mitsubishi Rayon Co Ltd Molding, method for manufacturing the molding, and water-repellent article with the molding
JP2015038630A (en) * 2009-10-29 2015-02-26 エルジー・ケム・リミテッド Substrate having low reflection and high contact angle, and production method for the same
JPWO2014038288A1 (en) * 2012-09-05 2016-08-08 シャープ株式会社 Moth eye film
JP2019188897A (en) * 2018-04-20 2019-10-31 矢崎総業株式会社 Cover for vehicle display unit and vehicle display device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6049979B2 (en) * 2009-07-03 2016-12-21 ソニー株式会社 Optical element and display device
CN103728736B (en) * 2013-12-31 2015-04-22 江苏大学 Anti-fog self-cleaning lens and preparation method thereof
CN104267536A (en) * 2014-10-30 2015-01-07 成都瑞途电子有限公司 Display screen for electronic device
CN107976728A (en) * 2017-12-28 2018-05-01 武汉华星光电技术有限公司 Micro-structure, display device and its display panel

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002267816A (en) * 2001-03-08 2002-09-18 Dainippon Printing Co Ltd Sheet for providing an antireflection layer for use in injection molding, an injection molding method using the same, and an injection molded article having an antireflection layer laminated thereon
JP2003172808A (en) * 2001-12-06 2003-06-20 Hitachi Maxell Ltd Super water-repellent plastic substrate and anti-reflective coating
JP2003279706A (en) * 2002-03-25 2003-10-02 Sanyo Electric Co Ltd Antireflection member
JP2005173457A (en) * 2003-12-15 2005-06-30 Konica Minolta Holdings Inc Optical element and optical system having antireflection structure
JP2006257249A (en) * 2005-03-17 2006-09-28 Nissan Motor Co Ltd Droplet guide structure
JP2006331757A (en) * 2005-05-25 2006-12-07 Omron Corp Surface light source device, image display device using it and electronic apparatus
JP2007086283A (en) * 2005-09-21 2007-04-05 Kanagawa Acad Of Sci & Technol Antireflection film and method for producing the same, stamper for producing antireflection film and method for producing the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002267816A (en) * 2001-03-08 2002-09-18 Dainippon Printing Co Ltd Sheet for providing an antireflection layer for use in injection molding, an injection molding method using the same, and an injection molded article having an antireflection layer laminated thereon
JP2003172808A (en) * 2001-12-06 2003-06-20 Hitachi Maxell Ltd Super water-repellent plastic substrate and anti-reflective coating
JP2003279706A (en) * 2002-03-25 2003-10-02 Sanyo Electric Co Ltd Antireflection member
JP2005173457A (en) * 2003-12-15 2005-06-30 Konica Minolta Holdings Inc Optical element and optical system having antireflection structure
JP2006257249A (en) * 2005-03-17 2006-09-28 Nissan Motor Co Ltd Droplet guide structure
JP2006331757A (en) * 2005-05-25 2006-12-07 Omron Corp Surface light source device, image display device using it and electronic apparatus
JP2007086283A (en) * 2005-09-21 2007-04-05 Kanagawa Acad Of Sci & Technol Antireflection film and method for producing the same, stamper for producing antireflection film and method for producing the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010188584A (en) * 2009-02-17 2010-09-02 Nissan Motor Co Ltd Frictional flaw resistant water repellent configuration and frictional flaw resistant water repellent structure
JP2010188582A (en) * 2009-02-17 2010-09-02 Nissan Motor Co Ltd Antistatic water-repellent configuration, and antistatic water-repellent structure
JP2010201799A (en) * 2009-03-04 2010-09-16 Nissan Motor Co Ltd Water-repellent structure and water-repellent structure body
JP2015038630A (en) * 2009-10-29 2015-02-26 エルジー・ケム・リミテッド Substrate having low reflection and high contact angle, and production method for the same
JP2012011685A (en) * 2010-07-01 2012-01-19 Mitsubishi Rayon Co Ltd Molding, method for manufacturing the molding, and water-repellent article with the molding
JPWO2014038288A1 (en) * 2012-09-05 2016-08-08 シャープ株式会社 Moth eye film
JP2019188897A (en) * 2018-04-20 2019-10-31 矢崎総業株式会社 Cover for vehicle display unit and vehicle display device

Also Published As

Publication number Publication date
CN101178442B (en) 2010-12-08
CN101178442A (en) 2008-05-14

Similar Documents

Publication Publication Date Title
JP2009042714A (en) Water-repellent antireflection structure and manufacturing method thereof
KR100957890B1 (en) Water repellent antireflective structure, automobile parts having same and method for manufacturing same
JP2008158293A (en) Hydrophilic antireflection structure
JP4689718B2 (en) Transparent molded body and antireflection article using the same
JP4930657B2 (en) Water repellent film and automotive parts provided with the same
JP5201537B2 (en) Water repellent structure and water repellent structure
JP6052641B2 (en) Antifouling film and automobile parts using the same
JP2008122435A (en) Water-repellent antireflection structure and manufacturing method thereof
JP4894663B2 (en) Water-repellent structure and water-repellent molded product
JP2008090212A (en) Anti-reflection optical structure, anti-reflection optical structure and manufacturing method thereof
EP2428825A1 (en) Antireflection film, display device and light transmissive member
JP5267798B2 (en) Scratch-resistant water-repellent structure and scratch-resistant water-repellent structure
JP2007264594A (en) Antireflection fine structure, antireflection molded body, and method for producing the same
JP2008203473A (en) Antireflection structure and structure
JP2009075539A (en) Antireflection structure and antireflection molded body
JP5522339B2 (en) Water repellent structure and water repellent structure
JP2007322763A (en) Anti-reflection structure, anti-reflection structure and manufacturing method thereof
JP2014071323A (en) Anti-reflection article
WO2015145703A1 (en) Anti-fouling surface structure and motor vehicle component
KR20180095721A (en) Optical adhesive
JP2009294341A (en) Water-repellent antireflection structure and water-repellent antireflection molding
CN116134268A (en) Light guide member for lighting device, and building member
JP2011169961A (en) Hydrophilic antireflection structure and method of manufacturing the same
CA3132787A1 (en) Optical transmission element, having a super-hydrophobic nanostructured surface having an anti-reflective property and covered with a conformal high-hardness thin film deposit
JP2014071292A (en) Anti-reflection article

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090724

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120419

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120525

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130507