JP2009013186A - Coated phosphor particles, method for producing coated phosphor particles, phosphor-containing composition, light emitting device, image display device, and illumination device - Google Patents
Coated phosphor particles, method for producing coated phosphor particles, phosphor-containing composition, light emitting device, image display device, and illumination device Download PDFInfo
- Publication number
- JP2009013186A JP2009013186A JP2007172930A JP2007172930A JP2009013186A JP 2009013186 A JP2009013186 A JP 2009013186A JP 2007172930 A JP2007172930 A JP 2007172930A JP 2007172930 A JP2007172930 A JP 2007172930A JP 2009013186 A JP2009013186 A JP 2009013186A
- Authority
- JP
- Japan
- Prior art keywords
- phosphor
- light
- coated
- glass
- phosphor particles
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 title claims abstract description 364
- 239000002245 particle Substances 0.000 title claims abstract description 192
- 239000000203 mixture Substances 0.000 title claims abstract description 127
- 238000005286 illumination Methods 0.000 title claims description 15
- 238000004519 manufacturing process Methods 0.000 title claims description 14
- 239000011521 glass Substances 0.000 claims abstract description 143
- 239000011247 coating layer Substances 0.000 claims abstract description 29
- 150000001342 alkaline earth metals Chemical class 0.000 claims abstract description 18
- 150000001340 alkali metals Chemical class 0.000 claims abstract description 15
- 229910052784 alkaline earth metal Inorganic materials 0.000 claims abstract description 15
- 229910052783 alkali metal Inorganic materials 0.000 claims abstract description 12
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 20
- -1 TeO 2 Inorganic materials 0.000 claims description 19
- 239000000126 substance Substances 0.000 claims description 17
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 12
- 229910015902 Bi 2 O 3 Inorganic materials 0.000 claims description 9
- 150000004767 nitrides Chemical class 0.000 claims description 8
- 229910005191 Ga 2 O 3 Inorganic materials 0.000 claims description 3
- 229910005793 GeO 2 Inorganic materials 0.000 claims description 3
- 230000015572 biosynthetic process Effects 0.000 claims description 3
- 239000004065 semiconductor Substances 0.000 abstract description 17
- 230000004888 barrier function Effects 0.000 abstract description 14
- 230000002776 aggregation Effects 0.000 abstract description 7
- 238000004220 aggregation Methods 0.000 abstract description 5
- 239000011575 calcium Substances 0.000 description 60
- 229910052712 strontium Inorganic materials 0.000 description 54
- 229910052791 calcium Inorganic materials 0.000 description 49
- 229910052788 barium Inorganic materials 0.000 description 48
- 238000000034 method Methods 0.000 description 45
- 239000010408 film Substances 0.000 description 38
- 239000000463 material Substances 0.000 description 30
- 239000011777 magnesium Substances 0.000 description 29
- 238000000576 coating method Methods 0.000 description 28
- 229910052749 magnesium Inorganic materials 0.000 description 28
- 239000011248 coating agent Substances 0.000 description 27
- 239000010410 layer Substances 0.000 description 26
- 229910052693 Europium Inorganic materials 0.000 description 25
- 239000011701 zinc Substances 0.000 description 23
- 239000007788 liquid Substances 0.000 description 22
- 238000010438 heat treatment Methods 0.000 description 21
- 229920001296 polysiloxane Polymers 0.000 description 21
- 239000000843 powder Substances 0.000 description 20
- 229910004283 SiO 4 Inorganic materials 0.000 description 19
- 229910052771 Terbium Inorganic materials 0.000 description 19
- 230000005284 excitation Effects 0.000 description 19
- 230000000052 comparative effect Effects 0.000 description 18
- 239000000523 sample Substances 0.000 description 17
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical compound [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 17
- 229910052751 metal Inorganic materials 0.000 description 16
- 239000002184 metal Substances 0.000 description 16
- 238000002156 mixing Methods 0.000 description 16
- 239000007789 gas Substances 0.000 description 15
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 15
- 229910052727 yttrium Inorganic materials 0.000 description 15
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 14
- 238000006243 chemical reaction Methods 0.000 description 13
- 239000011572 manganese Substances 0.000 description 13
- 239000002609 medium Substances 0.000 description 13
- 229910052725 zinc Inorganic materials 0.000 description 13
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 12
- 150000004645 aluminates Chemical class 0.000 description 12
- 229910052782 aluminium Inorganic materials 0.000 description 12
- 239000000460 chlorine Substances 0.000 description 12
- 238000009826 distribution Methods 0.000 description 12
- 229910052748 manganese Inorganic materials 0.000 description 12
- 238000005259 measurement Methods 0.000 description 12
- 239000000243 solution Substances 0.000 description 12
- 102100032047 Alsin Human genes 0.000 description 11
- 101710187109 Alsin Proteins 0.000 description 11
- 239000012298 atmosphere Substances 0.000 description 11
- 238000001723 curing Methods 0.000 description 11
- 230000006866 deterioration Effects 0.000 description 11
- 238000011156 evaluation Methods 0.000 description 11
- 229910052746 lanthanum Inorganic materials 0.000 description 11
- 229910052684 Cerium Inorganic materials 0.000 description 10
- 150000001875 compounds Chemical class 0.000 description 10
- 229910052760 oxygen Inorganic materials 0.000 description 10
- 229920002050 silicone resin Polymers 0.000 description 10
- 238000001228 spectrum Methods 0.000 description 10
- 239000013078 crystal Substances 0.000 description 9
- 229920005989 resin Polymers 0.000 description 9
- 239000011347 resin Substances 0.000 description 9
- 150000004760 silicates Chemical class 0.000 description 9
- 229910052710 silicon Inorganic materials 0.000 description 9
- 238000004381 surface treatment Methods 0.000 description 9
- 230000010354 integration Effects 0.000 description 8
- 239000002210 silicon-based material Substances 0.000 description 8
- 239000011734 sodium Substances 0.000 description 8
- 229910052688 Gadolinium Inorganic materials 0.000 description 7
- 229910052772 Samarium Inorganic materials 0.000 description 7
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 7
- 238000002844 melting Methods 0.000 description 7
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 6
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 6
- 238000009833 condensation Methods 0.000 description 6
- 230000005494 condensation Effects 0.000 description 6
- OGPBJKLSAFTDLK-UHFFFAOYSA-N europium atom Chemical compound [Eu] OGPBJKLSAFTDLK-UHFFFAOYSA-N 0.000 description 6
- 229910052731 fluorine Inorganic materials 0.000 description 6
- 238000007496 glass forming Methods 0.000 description 6
- 230000009477 glass transition Effects 0.000 description 6
- 150000002500 ions Chemical class 0.000 description 6
- 239000001301 oxygen Substances 0.000 description 6
- 238000005424 photoluminescence Methods 0.000 description 6
- 238000010298 pulverizing process Methods 0.000 description 6
- 229910052708 sodium Inorganic materials 0.000 description 6
- 239000000758 substrate Substances 0.000 description 6
- 238000011282 treatment Methods 0.000 description 6
- 101100476480 Mus musculus S100a8 gene Proteins 0.000 description 5
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 5
- 238000010521 absorption reaction Methods 0.000 description 5
- 229910000272 alkali metal oxide Inorganic materials 0.000 description 5
- 229910000287 alkaline earth metal oxide Inorganic materials 0.000 description 5
- 150000004703 alkoxides Chemical class 0.000 description 5
- 239000003054 catalyst Substances 0.000 description 5
- 230000008859 change Effects 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 238000009792 diffusion process Methods 0.000 description 5
- 238000001035 drying Methods 0.000 description 5
- 229910052733 gallium Inorganic materials 0.000 description 5
- 229910010272 inorganic material Inorganic materials 0.000 description 5
- 239000011147 inorganic material Substances 0.000 description 5
- 230000008018 melting Effects 0.000 description 5
- 239000004570 mortar (masonry) Substances 0.000 description 5
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- 239000010703 silicon Substances 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- 229910015999 BaAl Inorganic materials 0.000 description 4
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- 229910018068 Li 2 O Inorganic materials 0.000 description 4
- 229910019142 PO4 Inorganic materials 0.000 description 4
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 4
- 239000000654 additive Substances 0.000 description 4
- ZYGHJZDHTFUPRJ-UHFFFAOYSA-N coumarin Chemical compound C1=CC=C2OC(=O)C=CC2=C1 ZYGHJZDHTFUPRJ-UHFFFAOYSA-N 0.000 description 4
- 238000007580 dry-mixing Methods 0.000 description 4
- 238000012423 maintenance Methods 0.000 description 4
- 239000011159 matrix material Substances 0.000 description 4
- 239000011368 organic material Substances 0.000 description 4
- 235000021317 phosphate Nutrition 0.000 description 4
- 239000005365 phosphate glass Substances 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 239000010453 quartz Substances 0.000 description 4
- 238000009877 rendering Methods 0.000 description 4
- 239000000377 silicon dioxide Substances 0.000 description 4
- XTQHKBHJIVJGKJ-UHFFFAOYSA-N sulfur monoxide Chemical class S=O XTQHKBHJIVJGKJ-UHFFFAOYSA-N 0.000 description 4
- 239000013008 thixotropic agent Substances 0.000 description 4
- 229910052719 titanium Inorganic materials 0.000 description 4
- 239000010936 titanium Substances 0.000 description 4
- 229910052726 zirconium Inorganic materials 0.000 description 4
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- 229910052581 Si3N4 Inorganic materials 0.000 description 3
- 229910006404 SnO 2 Inorganic materials 0.000 description 3
- 229910004122 SrSi Inorganic materials 0.000 description 3
- 239000012190 activator Substances 0.000 description 3
- 238000012644 addition polymerization Methods 0.000 description 3
- 239000000853 adhesive Substances 0.000 description 3
- 230000001070 adhesive effect Effects 0.000 description 3
- 239000003513 alkali Substances 0.000 description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 3
- 229910052801 chlorine Inorganic materials 0.000 description 3
- 239000003086 colorant Substances 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000003431 cross linking reagent Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000010828 elution Methods 0.000 description 3
- 238000000295 emission spectrum Methods 0.000 description 3
- 239000003822 epoxy resin Substances 0.000 description 3
- 239000010419 fine particle Substances 0.000 description 3
- 239000007850 fluorescent dye Substances 0.000 description 3
- 125000001153 fluoro group Chemical group F* 0.000 description 3
- 125000000962 organic group Chemical group 0.000 description 3
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 3
- 239000010452 phosphate Substances 0.000 description 3
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 3
- 229920000647 polyepoxide Polymers 0.000 description 3
- 229910052706 scandium Inorganic materials 0.000 description 3
- 239000003566 sealing material Substances 0.000 description 3
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 3
- 229910052709 silver Inorganic materials 0.000 description 3
- 239000002002 slurry Substances 0.000 description 3
- 239000003381 stabilizer Substances 0.000 description 3
- 239000006228 supernatant Substances 0.000 description 3
- 229920001187 thermosetting polymer Polymers 0.000 description 3
- KLZUFWVZNOTSEM-UHFFFAOYSA-K Aluminium flouride Chemical compound F[Al](F)F KLZUFWVZNOTSEM-UHFFFAOYSA-K 0.000 description 2
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 229910016066 BaSi Inorganic materials 0.000 description 2
- 229910004706 CaSi2 Inorganic materials 0.000 description 2
- 229910052692 Dysprosium Inorganic materials 0.000 description 2
- 229910052691 Erbium Inorganic materials 0.000 description 2
- 239000004606 Fillers/Extenders Substances 0.000 description 2
- 229910052689 Holmium Inorganic materials 0.000 description 2
- 229910052765 Lutetium Inorganic materials 0.000 description 2
- 229910020068 MgAl Inorganic materials 0.000 description 2
- 238000005481 NMR spectroscopy Methods 0.000 description 2
- 229910052779 Neodymium Inorganic materials 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 229910052777 Praseodymium Inorganic materials 0.000 description 2
- 229910003668 SrAl Inorganic materials 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- 229910052775 Thulium Inorganic materials 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 238000005054 agglomeration Methods 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 235000011114 ammonium hydroxide Nutrition 0.000 description 2
- 239000002585 base Substances 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 229910052797 bismuth Inorganic materials 0.000 description 2
- 229910052794 bromium Inorganic materials 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 238000009125 cardiac resynchronization therapy Methods 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 239000013522 chelant Substances 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- 229960000956 coumarin Drugs 0.000 description 2
- 235000001671 coumarin Nutrition 0.000 description 2
- 238000004132 cross linking Methods 0.000 description 2
- 238000010908 decantation Methods 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 239000002223 garnet Substances 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 125000005843 halogen group Chemical group 0.000 description 2
- 230000007062 hydrolysis Effects 0.000 description 2
- 238000006460 hydrolysis reaction Methods 0.000 description 2
- BDAGIHXWWSANSR-NJFSPNSNSA-N hydroxyformaldehyde Chemical compound O[14CH]=O BDAGIHXWWSANSR-NJFSPNSNSA-N 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 239000011817 metal compound particle Substances 0.000 description 2
- 229910001463 metal phosphate Inorganic materials 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 229910052758 niobium Inorganic materials 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 239000005304 optical glass Substances 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 238000006068 polycondensation reaction Methods 0.000 description 2
- 229910052761 rare earth metal Inorganic materials 0.000 description 2
- 239000011342 resin composition Substances 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- 230000000638 stimulation Effects 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 229910000018 strontium carbonate Inorganic materials 0.000 description 2
- UBXAKNTVXQMEAG-UHFFFAOYSA-L strontium sulfate Chemical compound [Sr+2].[O-]S([O-])(=O)=O UBXAKNTVXQMEAG-UHFFFAOYSA-L 0.000 description 2
- 150000004763 sulfides Chemical class 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 229910052715 tantalum Inorganic materials 0.000 description 2
- LFQCEHFDDXELDD-UHFFFAOYSA-N tetramethyl orthosilicate Chemical compound CO[Si](OC)(OC)OC LFQCEHFDDXELDD-UHFFFAOYSA-N 0.000 description 2
- 230000009974 thixotropic effect Effects 0.000 description 2
- 229910052718 tin Inorganic materials 0.000 description 2
- LWIHDJKSTIGBAC-UHFFFAOYSA-K tripotassium phosphate Chemical compound [K+].[K+].[K+].[O-]P([O-])([O-])=O LWIHDJKSTIGBAC-UHFFFAOYSA-K 0.000 description 2
- PBYZMCDFOULPGH-UHFFFAOYSA-N tungstate Chemical class [O-][W]([O-])(=O)=O PBYZMCDFOULPGH-UHFFFAOYSA-N 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- ONDPHDOFVYQSGI-UHFFFAOYSA-N zinc nitrate Chemical compound [Zn+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O ONDPHDOFVYQSGI-UHFFFAOYSA-N 0.000 description 2
- BCMCBBGGLRIHSE-UHFFFAOYSA-N 1,3-benzoxazole Chemical compound C1=CC=C2OC=NC2=C1 BCMCBBGGLRIHSE-UHFFFAOYSA-N 0.000 description 1
- AVRPFRMDMNDIDH-UHFFFAOYSA-N 1h-quinazolin-2-one Chemical compound C1=CC=CC2=NC(O)=NC=C21 AVRPFRMDMNDIDH-UHFFFAOYSA-N 0.000 description 1
- NOFPXGWBWIPSHI-UHFFFAOYSA-N 2,7,9-trimethylacridine-3,6-diamine;hydrochloride Chemical compound Cl.CC1=C(N)C=C2N=C(C=C(C(C)=C3)N)C3=C(C)C2=C1 NOFPXGWBWIPSHI-UHFFFAOYSA-N 0.000 description 1
- RGDCMZULZLSZFT-UHFFFAOYSA-N 4-pyridin-2-ylisoindole-1,3-dione Chemical compound O=C1NC(=O)C2=C1C=CC=C2C1=CC=CC=N1 RGDCMZULZLSZFT-UHFFFAOYSA-N 0.000 description 1
- HQQTZCPKNZVLFF-UHFFFAOYSA-N 4h-1,2-benzoxazin-3-one Chemical compound C1=CC=C2ONC(=O)CC2=C1 HQQTZCPKNZVLFF-UHFFFAOYSA-N 0.000 description 1
- 229910016569 AlF 3 Inorganic materials 0.000 description 1
- 229910016036 BaF 2 Inorganic materials 0.000 description 1
- 229910016276 Bi2O3—SiO2—B2O3 Inorganic materials 0.000 description 1
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 description 1
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- 229910004261 CaF 2 Inorganic materials 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- 239000004971 Cross linker Substances 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 1
- 229910021380 Manganese Chloride Inorganic materials 0.000 description 1
- GLFNIEUTAYBVOC-UHFFFAOYSA-L Manganese chloride Chemical compound Cl[Mn]Cl GLFNIEUTAYBVOC-UHFFFAOYSA-L 0.000 description 1
- 229910017976 MgO 4 Inorganic materials 0.000 description 1
- 229910017639 MgSi Inorganic materials 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- MQPTWOKRVMPEQH-UHFFFAOYSA-N OB(O)O.OP(O)(O)=O.P Chemical class OB(O)O.OP(O)(O)=O.P MQPTWOKRVMPEQH-UHFFFAOYSA-N 0.000 description 1
- PHXNQAYVSHPINV-UHFFFAOYSA-N P.OB(O)O Chemical class P.OB(O)O PHXNQAYVSHPINV-UHFFFAOYSA-N 0.000 description 1
- FWKJBIILMKHXEI-UHFFFAOYSA-L P.P(=O)(O)([O-])[O-].[Ca+2] Chemical compound P.P(=O)(O)([O-])[O-].[Ca+2] FWKJBIILMKHXEI-UHFFFAOYSA-L 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 229910003564 SiAlON Inorganic materials 0.000 description 1
- 229910002808 Si–O–Si Inorganic materials 0.000 description 1
- 229920000995 Spectralon Polymers 0.000 description 1
- 229910052769 Ytterbium Inorganic materials 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 229910052910 alkali metal silicate Inorganic materials 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- QVQLCTNNEUAWMS-UHFFFAOYSA-N barium oxide Inorganic materials [Ba]=O QVQLCTNNEUAWMS-UHFFFAOYSA-N 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 1
- 239000004327 boric acid Substances 0.000 description 1
- ZSJHIZJESFFXAU-UHFFFAOYSA-N boric acid;phosphoric acid Chemical class OB(O)O.OP(O)(O)=O ZSJHIZJESFFXAU-UHFFFAOYSA-N 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 239000005388 borosilicate glass Substances 0.000 description 1
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 229920006217 cellulose acetate butyrate Polymers 0.000 description 1
- 239000012461 cellulose resin Substances 0.000 description 1
- 239000012700 ceramic precursor Substances 0.000 description 1
- VYXSBFYARXAAKO-WTKGSRSZSA-N chembl402140 Chemical compound Cl.C1=2C=C(C)C(NCC)=CC=2OC2=C\C(=N/CC)C(C)=CC2=C1C1=CC=CC=C1C(=O)OCC VYXSBFYARXAAKO-WTKGSRSZSA-N 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- BRCRFYDCLUTJRQ-UHFFFAOYSA-N chloroboronic acid Chemical compound OB(O)Cl BRCRFYDCLUTJRQ-UHFFFAOYSA-N 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 230000003081 coactivator Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000013005 condensation curing Methods 0.000 description 1
- 239000012611 container material Substances 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 229910021419 crystalline silicon Inorganic materials 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 239000002612 dispersion medium Substances 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000000921 elemental analysis Methods 0.000 description 1
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000012053 enzymatic serum creatinine assay Methods 0.000 description 1
- SEACYXSIPDVVMV-UHFFFAOYSA-L eosin Y Chemical compound [Na+].[Na+].[O-]C(=O)C1=CC=CC=C1C1=C2C=C(Br)C(=O)C(Br)=C2OC2=C(Br)C([O-])=C(Br)C=C21 SEACYXSIPDVVMV-UHFFFAOYSA-L 0.000 description 1
- 230000003631 expected effect Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000011152 fibreglass Substances 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 150000002222 fluorine compounds Chemical class 0.000 description 1
- 229910021485 fumed silica Inorganic materials 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- 239000000156 glass melt Substances 0.000 description 1
- 239000002241 glass-ceramic Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- 239000012760 heat stabilizer Substances 0.000 description 1
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 230000003301 hydrolyzing effect Effects 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 150000003949 imides Chemical class 0.000 description 1
- 230000003100 immobilizing effect Effects 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- PNDPGZBMCMUPRI-UHFFFAOYSA-N iodine Chemical compound II PNDPGZBMCMUPRI-UHFFFAOYSA-N 0.000 description 1
- 238000007561 laser diffraction method Methods 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- HYLDLLCHFLSKAG-UHFFFAOYSA-M lissamine flavine FF Chemical compound [Na+].C1=CC(C)=CC=C1N(C1=O)C(=O)C2=C3C1=CC=CC3=C(N)C(S([O-])(=O)=O)=C2 HYLDLLCHFLSKAG-UHFFFAOYSA-M 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- PQXKHYXIUOZZFA-UHFFFAOYSA-M lithium fluoride Inorganic materials [Li+].[F-] PQXKHYXIUOZZFA-UHFFFAOYSA-M 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 239000011565 manganese chloride Substances 0.000 description 1
- 229940099607 manganese chloride Drugs 0.000 description 1
- 235000002867 manganese chloride Nutrition 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 239000000113 methacrylic resin Substances 0.000 description 1
- 238000004452 microanalysis Methods 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 238000010060 peroxide vulcanization Methods 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 239000013034 phenoxy resin Substances 0.000 description 1
- 229920006287 phenoxy resin Polymers 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920002285 poly(styrene-co-acrylonitrile) Polymers 0.000 description 1
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 description 1
- 229920005668 polycarbonate resin Polymers 0.000 description 1
- 239000004431 polycarbonate resin Substances 0.000 description 1
- 238000012643 polycondensation polymerization Methods 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 229910000160 potassium phosphate Inorganic materials 0.000 description 1
- 235000011009 potassium phosphates Nutrition 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- DNXIASIHZYFFRO-UHFFFAOYSA-N pyrazoline Chemical compound C1CN=NC1 DNXIASIHZYFFRO-UHFFFAOYSA-N 0.000 description 1
- IZMJMCDDWKSTTK-UHFFFAOYSA-N quinoline yellow Chemical compound C1=CC=CC2=NC(C3C(C4=CC=CC=C4C3=O)=O)=CC=C21 IZMJMCDDWKSTTK-UHFFFAOYSA-N 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 238000000550 scanning electron microscopy energy dispersive X-ray spectroscopy Methods 0.000 description 1
- 238000000790 scattering method Methods 0.000 description 1
- 239000000565 sealant Substances 0.000 description 1
- 239000013049 sediment Substances 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- SCPYDCQAZCOKTP-UHFFFAOYSA-N silanol Chemical compound [SiH3]O SCPYDCQAZCOKTP-UHFFFAOYSA-N 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000005361 soda-lime glass Substances 0.000 description 1
- PUZPDOWCWNUUKD-UHFFFAOYSA-M sodium fluoride Inorganic materials [F-].[Na+] PUZPDOWCWNUUKD-UHFFFAOYSA-M 0.000 description 1
- 239000001488 sodium phosphate Substances 0.000 description 1
- 229910000162 sodium phosphate Inorganic materials 0.000 description 1
- 238000003980 solgel method Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 229910052950 sphalerite Inorganic materials 0.000 description 1
- 238000001694 spray drying Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- IATRAKWUXMZMIY-UHFFFAOYSA-N strontium oxide Inorganic materials [O-2].[Sr+2] IATRAKWUXMZMIY-UHFFFAOYSA-N 0.000 description 1
- 125000005504 styryl group Chemical group 0.000 description 1
- GZCRRIHWUXGPOV-UHFFFAOYSA-N terbium atom Chemical compound [Tb] GZCRRIHWUXGPOV-UHFFFAOYSA-N 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- FRNOGLGSGLTDKL-UHFFFAOYSA-N thulium atom Chemical class [Tm] FRNOGLGSGLTDKL-UHFFFAOYSA-N 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- 150000003852 triazoles Chemical class 0.000 description 1
- RYFMWSXOAZQYPI-UHFFFAOYSA-K trisodium phosphate Chemical compound [Na+].[Na+].[Na+].[O-]P([O-])([O-])=O RYFMWSXOAZQYPI-UHFFFAOYSA-K 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- UKRDPEFKFJNXQM-UHFFFAOYSA-N vinylsilane Chemical compound [SiH3]C=C UKRDPEFKFJNXQM-UHFFFAOYSA-N 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 229910052724 xenon Inorganic materials 0.000 description 1
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 1
- 229910052984 zinc sulfide Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/31—Structure, shape, material or disposition of the layer connectors after the connecting process
- H01L2224/32—Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
- H01L2224/321—Disposition
- H01L2224/32151—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/32221—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/32245—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/4805—Shape
- H01L2224/4809—Loop shape
- H01L2224/48091—Arched
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/481—Disposition
- H01L2224/48151—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/48221—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/48245—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
- H01L2224/48247—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/481—Disposition
- H01L2224/48151—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/48221—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/48245—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
- H01L2224/48257—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a die pad of the item
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/73—Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
- H01L2224/732—Location after the connecting process
- H01L2224/73251—Location after the connecting process on different surfaces
- H01L2224/73265—Layer and wire connectors
Landscapes
- Luminescent Compositions (AREA)
- Led Device Packages (AREA)
Abstract
【課題】 蛍光体が凝集することなく、ガスバリヤ性が良好で、半導体発光装置の耐久性を向上させうる被覆蛍光体粒子、および蛍光体含有組成物を提供する。
【解決手段】 (A)蛍光体粒子を(B)アルカリ金属、アルカリ土類金属およびZnから選択される1以上を含有するガラス組成物で被覆した被覆蛍光体粒子であって、前記ガラス組成物の屈伏点が800℃以下であること、および/または前記ガラス組成物が形成する被覆層の膜厚が、0.1μm以上10μm以下であること、を特徴とする被覆蛍光体粒子。
【選択図】 なし
PROBLEM TO BE SOLVED: To provide a coated phosphor particle and a phosphor-containing composition that have good gas barrier properties and can improve the durability of a semiconductor light emitting device without aggregation of the phosphor.
SOLUTION: (A) phosphor particles coated with a glass composition containing one or more selected from (B) alkali metal, alkaline earth metal and Zn, wherein the glass composition The coated phosphor particles, wherein the yield point of the glass composition is 800 ° C. or less and / or the film thickness of the coating layer formed by the glass composition is 0.1 μm or more and 10 μm or less.
[Selection figure] None
Description
本発明は、被覆蛍光体粒子、および被覆蛍光体粒子の製造方法、並びに前記被覆蛍光体粒子を用いた蛍光体含有組成物、および発光装置、並びに前記発光装置を用いた画像表示装置および照明装置に関する。より詳しくは、蛍光体が凝集することなくその表面がガラスによって被覆され、ガスバリヤ性が良好な被覆蛍光体粒子、および被覆蛍光体粒子の製造方法、並びに前記被覆蛍光体粒子を用いた蛍光体含有組成物、および発光装置、並びに前記発光装置を用いた画像表示装置および照明装置に関する。 The present invention relates to a coated phosphor particle, a method for producing the coated phosphor particle, a phosphor-containing composition using the coated phosphor particle, a light emitting device, and an image display device and an illumination device using the light emitting device. About. More specifically, the surface of the phosphor is coated with glass without agglomeration, and the coated phosphor particles have good gas barrier properties, the method for producing the coated phosphor particles, and the phosphor containing the coated phosphor particles. The present invention relates to a composition, a light emitting device, and an image display device and an illumination device using the light emitting device.
蛍光体は従来からCRT、蛍光ランプなどに工業的に大量に使用されてきたが、これらの用途では蛍光体を塗布する際に水性スラリーとして使用する方法が工業的に確立されており、水分で劣化する蛍光体は使用できなかった。
一方、近年、半導体発光チップから発する光を蛍光体により波長変換し、白色発光装置を作製する技術が実用化されている。ここで使用される蛍光体は、前記のCRT、蛍光ランプとは異なり製造工程上水性スラリーとする必要がない。従って、発光特性に優れていれば、水分による劣化が多少認められても、封止剤により蛍光体を封入することにより、短期的な使用については問題にならない場合がある。
Conventionally, phosphors have been used industrially in large quantities for CRTs, fluorescent lamps, etc. However, in these applications, a method of using them as aqueous slurries when applying phosphors has been established industrially. Deteriorating phosphors could not be used.
On the other hand, in recent years, a technology for producing a white light emitting device by converting the wavelength of light emitted from a semiconductor light emitting chip with a phosphor has been put into practical use. Unlike the CRT and fluorescent lamp, the phosphor used here does not need to be an aqueous slurry in the manufacturing process. Therefore, if the light emission characteristics are excellent, even if some deterioration due to moisture is recognized, there may be no problem for short-term use by encapsulating the phosphor with the sealant.
しかしながら、長期的な使用については実用性に不十分な点が多く、かかる蛍光体の水分による劣化対策が求められていた。即ち半導体発光装置用の蛍光体の中には高温高湿条件で徐々に分解したり、高温高湿条件での点灯により劣化するという問題があった。
かかる技術背景にあって、蛍光体粒子の耐湿性等の向上を目的として、蛍光体粒子を有機材料、無機材料及びガラス材料等でコーティングする方法(特許文献1〜3)、蛍光体粒子の表面を化学気相反応法によって被覆する方法(特許文献4)、金属化合物の粒子を付着させる方法(特許文献5)等の方法が開示されている。
In such a technical background, for the purpose of improving the moisture resistance of the phosphor particles, a method of coating the phosphor particles with an organic material, an inorganic material, a glass material, etc. (
しかしながら、半導体発光装置に用いて長期的に使用できる実用レベルの被覆蛍光体粒子を得るにはさらなる検討が必要であった。
また、特許文献1〜3に記載されるようなガラス材料被覆の一般的方法、即ち蛍光体粒子上に形成されたゲル化層を乾燥・加熱して緻密化させて被覆蛍光体粒子を得る場合は、蛍光体粒子が凝集して被覆される場合があり、蛍光体粒子の均一性、分散性に問題が生じる場合があった。また、特許文献4の化学気相反応法は被覆するガラスが単一組成である場合には使用可能であるが、複数の成分からなるガラス組成物は各成分の蒸着条件が異なるため、緻密な被覆層を形成することは困難であった。
However, further studies have been necessary to obtain a practical level of coated phosphor particles that can be used for a long period of time in semiconductor light emitting devices.
Moreover, the general method of glass material coating as described in
本発明者等は上述の課題に鑑み、鋭意研究を重ねた結果、半導体発光装置における前記被覆蛍光体の耐久性は、被覆蛍光体粒子の耐水性(水溶性)よりも、被覆層のガスバリヤ性に依存する傾向があることを見出した。従来の被覆層は、ある程度の緻密性を有するため、一定の粘度を有する液相の水をブロックすることはでき、耐水性付与という点ではある程度の効果があった。しかしながら、前記被覆層の緻密性は、ガスの進入をブロックするレベルに至っているとまではいえず、これが、実際に半導体発光装置に用いて長期的に使用できるレベルに至らない原因であることを見出した。また、上述の耐水性のみならず、酸素透過性も蛍光体の劣化に起因することがあるため、かかる点でもガスバリヤ性を有するほどの緻密性が必要であることを見出した。 As a result of intensive studies in view of the above-mentioned problems, the present inventors have determined that the durability of the coated phosphor in a semiconductor light-emitting device is greater than the water resistance (water solubility) of the coated phosphor particles. Found that there is a tendency to depend on. Since the conventional coating layer has a certain degree of denseness, it can block liquid phase water having a certain viscosity, and has a certain effect in terms of imparting water resistance. However, it cannot be said that the denseness of the coating layer has reached a level that blocks the ingress of gas, and this is the reason that it does not reach a level that can actually be used for a long time in a semiconductor light emitting device. I found it. Moreover, since not only the above-mentioned water resistance but also oxygen permeability may be caused by the deterioration of the phosphor, it has been found that such a denseness as to have gas barrier properties is necessary.
例えば蛍光体粒子上に形成されたゲル化層を乾燥・加熱して緻密化させて被覆蛍光体粒子を得る方法(前記特許文献1〜3)は、乾燥・加熱工程でゲル化層が大きく収縮し、最終的に蛍光体上に存在する皮膜は非連続部分がいくらか存在するため、ガスバリヤ性が不十分であることが推測される。また、蛍光体粒子の表面を化学気相反応法によって被覆する方法(特許文献4)でも、ガスバリヤ性の高い緻密な被覆層を形成することが困難であり、緻密化しようとして加熱すると縮合・収縮して亀裂が生じることが推測される。また、金属化合物の粒子を付着させる方法(前記特許文献5)は、粒子が付着されない部分が存在するため、十分なガスバリヤ性を担保できないことが推測される。
For example, in the method for obtaining coated phosphor particles by drying and heating the densified layer formed on the phosphor particles to obtain coated phosphor particles (the above-mentioned
そこで、発明者らは、蛍光体上に形成されたゲル化層を乾燥・加熱して緻密化するのではなく、蛍光体の種類に応じて選択される特定のガラス粉を蛍光体表面に付着させ、しかる後に加熱してガラス粉を溶融させることにより、蛍光体上に連続な皮膜を形成でき、これが上記問題を解決することを見出し本発明を完成した。 また、かかる方法によれば、
蛍光体粒子の凝集をも抑制し、蛍光体の種類によらず良好な連続被膜 を形成しうること
を見出した。
Therefore, the inventors attach a specific glass powder selected according to the type of phosphor to the phosphor surface, rather than drying and heating the gelled layer formed on the phosphor. Then, by heating and then melting the glass powder, it was found that a continuous film could be formed on the phosphor, which solved the above problems, and the present invention was completed. Also, according to such a method,
It has also been found that agglomeration of phosphor particles can be suppressed and a good continuous film can be formed regardless of the type of phosphor.
すなわち、本発明の要旨は下記〔1〕〜〔11〕に存する。
〔1〕(A)蛍光体粒子を(B)アルカリ金属、アルカリ土類金属およびZnから選択される1以上を含有するガラス組成物で被覆した被覆蛍光体粒子であって、前記(B)ガラス組成物の屈伏点が700℃以下であることを特徴とする被覆蛍光体粒子(以下、「第一の本発明の被覆蛍光体粒子」と称することがある)。
〔2〕(A)蛍光体粒子を(B)アルカリ金属、アルカリ土類金属およびZnから選択される1以上を含有するガラス組成物、で被覆した被覆蛍光体粒子であって、前記(B)ガラス組成物が形成する被覆層の膜厚が、0.1μm以上10μm以下であることを特徴とする被覆蛍光体粒子(以下、「第二の本発明の被覆蛍光体粒子」と称することがある)。〔3〕前記(A)蛍光体粒子が、窒化物および/または酸化物である前記〔1〕または〔2〕に記載の被覆蛍光体粒子。
〔4〕前記(B)ガラス組成物が、下記(I)および(II)の化合物を含有する前記〔1〕〜〔3〕の被覆蛍光体粒子。
(I)SiO2、B2O3、P2O5、GeO2、TeO2、Al2O3、Ga2O3、およびBi2O3から選択される1以上を含む、Zachariasenによるガラス形成酸化物
(II)アルカリ金属原子、アルカリ土類金属原子、およびZnから選択される1以上を含む網目修飾酸化物
〔5〕前記(B)ガラス組成物における鉛の含有量が0.1重量%以下である前記〔1〕〜〔4〕に記載の被覆蛍光体粒子。
〔6〕前記(B)ガラス組成物が形成する被覆層が連続膜である前記〔1〕〜〔5〕に記載の被覆蛍光体粒子。
〔7〕(A)蛍光体粒子、および(B)アルカリ金属、アルカリ土類金属およびZnから選択される1以上を含有するガラス組成物を混合し、前記(B)ガラス組成物の屈伏点以上で加熱することを特徴とする被覆蛍光体粒子の製造方法。
〔8〕前記〔1〕〜〔6〕に記載の被覆蛍光体粒子を含むことを特徴とする蛍光体含有組成物。
〔9〕前記〔1〕〜〔6〕に記載の被覆蛍光体粒子を用いて形成された発光装置。
〔10〕前記〔9〕に記載の発光装置を光源として備えることを特徴とする画像表示装置。
〔11〕前記〔9〕に記載の発光装置を光源として備えることを特徴とする照明装置。
That is, the gist of the present invention resides in the following [1] to [11].
[1] Coated phosphor particles obtained by coating (A) phosphor particles with a glass composition containing one or more selected from (B) alkali metal, alkaline earth metal and Zn, Coated phosphor particles having a yield point of 700 ° C. or lower (hereinafter, sometimes referred to as “coated phosphor particles of the first aspect of the present invention”).
[2] Coated phosphor particles obtained by coating (A) phosphor particles with (B) a glass composition containing one or more selected from alkali metals, alkaline earth metals and Zn, wherein (B) The thickness of the coating layer formed by the glass composition is 0.1 μm or more and 10 μm or less, and may be referred to as “coated phosphor particles of the second aspect of the present invention”. ). [3] The coated phosphor particle according to [1] or [2], wherein the (A) phosphor particle is a nitride and / or an oxide.
[4] The coated phosphor particles according to the above [1] to [3], wherein the glass composition (B) contains the following compounds (I) and (II).
(I) Glass formation with Zachariasen comprising one or more selected from SiO 2 , B 2 O 3 , P 2 O 5 , GeO 2 , TeO 2 , Al 2 O 3 , Ga 2 O 3 , and Bi 2 O 3 Oxide (II) Network-modified oxide containing one or more selected from alkali metal atoms, alkaline earth metal atoms, and Zn [5] The lead content in the glass composition (B) is 0.1% by weight The coated phosphor particles according to [1] to [4] above.
[6] The coated phosphor particle according to [1] to [5], wherein the coating layer formed by the glass composition (B) is a continuous film.
[7] (A) phosphor particles, and (B) a glass composition containing one or more selected from alkali metals, alkaline earth metals and Zn are mixed, and the above-mentioned (B) yield point or more of the glass composition A method for producing coated phosphor particles, characterized by heating with
[8] A phosphor-containing composition comprising the coated phosphor particles according to [1] to [6].
[9] A light-emitting device formed using the coated phosphor particles according to [1] to [6].
[10] An image display device comprising the light-emitting device according to [9] as a light source.
[11] An illumination device comprising the light-emitting device according to [9] as a light source.
本発明によれば、蛍光体が凝集することなく、ガスバリヤ性が良好で、半導体発光装置の耐久性を向上させうる被覆蛍光体粒子、および蛍光体含有組成物を提供することが出来る。また、前記被覆蛍光体粒子を用いることにより、長期的に使用できる耐久性に優れた発光装置、並びに前記発光装置を用いた画像表示装置及び照明装置を提供することが出来る。 According to the present invention, it is possible to provide a coated phosphor particle and a phosphor-containing composition that have good gas barrier properties and can improve the durability of a semiconductor light-emitting device without aggregation of the phosphor. Further, by using the coated phosphor particles, it is possible to provide a light emitting device with excellent durability that can be used for a long period of time, and an image display device and an illumination device using the light emitting device.
以下、本発明の各要素について詳細に説明するが、本発明は以下の説明に限定されるものではなく、その要旨の範囲内において種々に変更して実施することができる。
[1](A)蛍光体粒子
本発明の表面処理方法の対象となる蛍光体粒子(以下、適宜「蛍光体」と称することがある。)は、特に限定は無いが、発光特性が優れているが耐湿性が低い蛍光体粒子、酸素の暴露により劣化しやすい蛍光体粒子、イオンの溶出が起こりやすい蛍光体粒子、電気分解により劣化しやすい蛍光体粒子、臭気のある蛍光体粒子等は、本発明の表面処理方法により、発光装置等に好ましく利用することができるので好適である。即ち、本発明の表面処理によりガスバリヤ性が担保され、水蒸気、酸素、臭気原因物質がブロックされる。また、蛍光体由来のイオンの溶出によるパッケージ、封止材などの周辺部材の劣化が抑制される。また、漏れ電流による蛍光体の劣化を抑制することができる。以下、蛍光体の具体例を例示するが、例示の一般式においては、構造の一部のみが異なる蛍光体を、適宜省略して示している。例えば、「Y2SiO5:Ce3+」、「Y2SiO5:Tb3+」及び「Y2SiO5:Ce3+,Tb3+」を「Y2SiO5:Ce3+,Tb3+」と、「La2O2S:Eu」、「Y2O2S:Eu」及び「(La,Y)2O2S:Eu」を「(La,Y)2O2S:Eu」とまとめて示している。省略箇所はカンマ(,)で区切って示す。
Hereinafter, although each element of this invention is demonstrated in detail, this invention is not limited to the following description, It can implement in various changes within the range of the summary.
[1] (A) Phosphor Particles There are no particular limitations on the phosphor particles (hereinafter also referred to as “phosphors” as appropriate) that are the targets of the surface treatment method of the present invention, but they have excellent light emission characteristics. Phosphor particles with low moisture resistance, phosphor particles that are easily degraded by exposure to oxygen, phosphor particles that are susceptible to ion elution, phosphor particles that are susceptible to degradation by electrolysis, phosphor particles with odor, etc. The surface treatment method of the present invention is preferable because it can be preferably used for a light emitting device or the like. That is, the gas barrier property is ensured by the surface treatment of the present invention, and water vapor, oxygen and odor-causing substances are blocked. Further, deterioration of peripheral members such as a package and a sealing material due to elution of ions derived from the phosphor is suppressed. Moreover, deterioration of the phosphor due to leakage current can be suppressed. Hereinafter, specific examples of the phosphor are illustrated, but in the illustrated general formula, phosphors that are different only in a part of the structure are appropriately omitted. For example, “Y 2 SiO 5 : Ce 3+ ”, “Y 2 SiO 5 : Tb 3+ ” and “Y 2 SiO 5 : Ce 3+ , Tb 3+ ” are changed to “Y 2 SiO 5 : Ce 3+ , Tb 3+ ”, “ “La 2 O 2 S: Eu”, “Y 2 O 2 S: Eu” and “(La, Y) 2 O 2 S: Eu” are collectively shown as “(La, Y) 2 O 2 S: Eu”. ing. Omitted parts are shown separated by commas (,).
[1−1]好ましい蛍光体粒子
本発明の被覆処理方法の対象として好ましい蛍光体としては、無機蛍光体と有機蛍光体が挙げられる。
無機蛍光体としては、例えば母体結晶としてM3SiO5、MS、MGa2S4、MAlSiN3、M2Si5N8、MSi2N2O2からなる群(ただし、Mは、Ca,Sr,Baからなる群から選ばれる1種、または2種以上を表す)の少なくとも一つを含有し、かつ付活剤としてCr,Mn,Fe,Bi,Ce,Pr,Nd,Sm,Eu,Tb,Dy,Ho,Er,Tm,Ybの少なくとも一つを含有する蛍光体が挙げられる。
[1-1] Preferred phosphor particles
Preferred phosphors for use in the coating treatment method of the present invention include inorganic phosphors and organic phosphors.
As the inorganic phosphor, for example, a group consisting of M 3 SiO 5 , MS, MGa 2 S 4 , MAlSiN 3 , M 2 Si 5 N 8 , MSi 2 N 2 O 2 as a base crystal (where M is Ca, Sr , Ba represents at least one selected from the group consisting of Ba, and an activator is Cr, Mn, Fe, Bi, Ce, Pr, Nd, Sm, Eu, Tb. , Dy, Ho, Er, Tm, and a phosphor containing at least one of Yb.
上記蛍光体の具体例としては、たとえば、Ba3SiO5:Eu、(Sr1-aBaa)3SiO5:Eu、Sr3SiO5:Eu、CaS:Eu、SrS:Eu、BaS:Eu、CaS:Ce、SrS:Ce、BaS:Ce、CaGa2S4:Eu、SrGa2S4:Eu、BaGa2S4:Eu、CaGa2S4:Ce、SrGa2S4:Ce、BaGa2S4:Ce、CaAlSiN3:Eu、SrAlSiN3:Eu、(Ca1-aSra)AlSiN3:Eu、CaAlSiN3:Ce、SrAlSiN3:Ce、(Ca1-aSra)AlSiN3:Ce、Ca2Si5N8:Eu、Sr2Si5N8:Eu、Ba2Si5N8:Eu、(Ca1-aSra)2Si5N8:Eu、Ca2Si5N8:Ce、Sr2Si5N8:Ce、Ba2Si5N8:Ce、(Ca1-aSra)2Si5N8:Ce、CaSi2N2O2:Eu、SrSi2N2O2:Eu、BaSi2N2O2:Eu、CaSi2N2O2:Ce、SrSi2N2O2:Ce、BaSi2N2O2:Ce、(Ba,Sr,Ca)2SiO4:Eu、Ba3Si6O9N4:Eu、(以上に関し、aは0≦a≦1を満たす。)が挙げられる。
中でも、CaS、CaGa2S4:Eu、SrGa2S4:Eu、(Sr0.8Ca0.2)AlSiN3:Eu、(Ba,Sr,Ca)2SiO4:Eu、Ba3Si6O9N4:Eu、(Sr,Ca)AlSiN3:Eu、を好ましいものとして挙げることが出来る。
Specific examples of the phosphor include, for example, Ba 3 SiO 5 : Eu, (Sr 1 -a Ba a ) 3 SiO 5 : Eu, Sr 3 SiO 5 : Eu, CaS: Eu, SrS: Eu, BaS: Eu. , CaS: Ce, SrS: Ce , BaS: Ce, CaGa 2 S 4: Eu, SrGa 2 S 4: Eu, BaGa 2 S 4: Eu, CaGa 2 S 4: Ce, SrGa 2 S 4: Ce, BaGa 2 S 4: Ce, CaAlSiN 3: Eu, SrAlSiN 3: Eu, (Ca 1-a Sr a) AlSiN 3: Eu, CaAlSiN 3: Ce, SrAlSiN 3: Ce, (Ca 1-a Sr a) AlSiN 3: Ce , Ca 2 Si 5 N 8: Eu, Sr 2 Si 5 N 8: Eu, Ba 2 Si 5 N 8: Eu, (Ca 1-a Sr a) 2 Si 5 N 8: E , Ca 2 Si 5 N 8: Ce, Sr 2 Si 5 N 8: Ce, Ba 2 Si 5 N 8: Ce, (Ca 1-a Sr a) 2 Si 5 N 8: Ce, CaSi 2 N 2 O 2 : Eu, SrSi 2 N 2 O 2: Eu, BaSi 2 N 2 O 2: Eu, CaSi 2 N 2 O 2: Ce, SrSi 2 N 2 O 2: Ce, BaSi 2 N 2 O 2: Ce, (Ba , Sr, Ca) 2 SiO 4 : Eu, Ba 3 Si 6 O 9 N 4 : Eu (in relation to the above, a satisfies 0 ≦ a ≦ 1).
Among them, CaS, CaGa 2 S 4 : Eu, SrGa 2 S 4 : Eu, (Sr 0.8 Ca 0.2 ) AlSiN 3 : Eu, (Ba, Sr, Ca) 2 SiO 4 : Eu, Ba 3 Si 6 Preferred examples include O 9 N 4 : Eu and (Sr, Ca) AlSiN 3 : Eu.
[1−2]その他の蛍光体粒子
また、上記蛍光体以外にも、耐久性向上、分散性向上等、目的に応じてその他の蛍光体を用いることもできる。
かかる蛍光体の組成には特に制限はないが、結晶母体であるY2O3、Zn2SiO4等に代表される金属酸化物、Sr2Si5N8等に代表される金属窒化物、Ca5(PO
4)3Cl等に代表されるリン酸塩及びZnS、SrS、CaS等に代表される硫化物に
、Ce、Pr、Nd、Pm、Sm、Eu、Tb、Dy、Ho、Er、Tm、Yb等の希土類金属のイオンやAg、Cu、Au、Al、Mn、Sb等の金属のイオンを付活元素又は共付活元素として組み合わせたものが好ましい。
[1-2] Other phosphor particles
In addition to the above phosphors, other phosphors can be used depending on the purpose, such as improved durability and improved dispersibility.
The composition of the phosphor is not particularly limited, but a metal oxide represented by Y 2 O 3 , Zn 2 SiO 4 or the like that is a crystal matrix, a metal nitride represented by Sr 2 Si 5 N 8 or the like, Ca 5 (PO
4) 3 Cl or the like phosphate and ZnS typified, SrS, a sulfide typified by CaS, Ce, Pr, Nd, Pm, Sm, Eu, Tb, Dy, Ho, Er, Tm, Yb A combination of rare earth metal ions such as Ag, Cu, Au, Al, Mn, Sb and the like as activators or coactivators is preferred.
結晶母体の好ましい例としては、例えば、(Zn,Cd)S、SrGa2S4、SrS、ZnS等の硫化物、Y2O2S等の酸硫化物、(Y,Gd)3Al5O12、YAlO3、BaMgAl10O17、(Ba,Sr)(Mg,Mn)Al10O17、(Ba,Sr,C
a)(Mg,Zn,Mn)Al10O17、BaAl12O19、CeMgAl11O19
、(Ba,Sr,Mg)O・Al2O3、BaAl2Si2O8、SrAl2O4、Sr4Al14O25、Y3Al5O12等のアルミン酸塩、Y2SiO5、Zn2SiO4等の珪酸塩、SnO2、Y2O3等の酸化物、GdMgB5O10、(Y,Gd)BO3等の硼酸塩、Ca10(PO4)6(F,Cl)2、(Sr,Ca,Ba,Mg)10(PO4)6Cl2等のハロリン酸塩、Sr2P2O7、(La,Ce)PO4等のリン酸塩等を挙げることができる。
Preferred examples of the crystal matrix include sulfides such as (Zn, Cd) S, SrGa 2 S 4 , SrS, and ZnS, oxysulfides such as Y 2 O 2 S, and (Y, Gd) 3 Al 5 O. 12, YAlO 3, BaMgAl 10 O 17, (Ba, Sr) (Mg, Mn) Al 10 O 17, (Ba, Sr, C
a) (Mg, Zn, Mn ) Al 10 O 17, BaAl 12 O 19, CeMgAl 11 O 19
, (Ba, Sr, Mg) O.Al 2 O 3 , BaAl 2 Si 2 O 8 , SrAl 2 O 4 , Sr 4 Al 14 O 25 , Y 3 Al 5 O 12, etc., aluminates such as Y 2 SiO 5 Silicate such as Zn 2 SiO 4 , oxide such as SnO 2 and Y 2 O 3 , borate such as GdMgB 5 O 10 and (Y, Gd) BO 3 , Ca 10 (PO 4 ) 6 (F, Cl ) 2 , halophosphates such as (Sr, Ca, Ba, Mg) 10 (PO 4 ) 6 Cl 2 , phosphates such as Sr 2 P 2 O 7 , (La, Ce) PO 4, etc. it can.
ただし、上記の結晶母体及び付活元素又は共付活元素は、元素組成には特に制限はなく、同族の元素と一部置き換えることもでき、得られた蛍光体は近紫外から可視領域の光を吸収して可視光を発するものであれば用いることが可能である。
具体的には、蛍光体として以下に挙げるものを用いることが可能であるが、これらはあくまでも例示であり、本発明で使用できる蛍光体はこれらに限られるものではない。
However, the crystal matrix and the activator element or coactivator element are not particularly limited in element composition, and can be partially replaced with elements of the same family, and the obtained phosphor is light in the near ultraviolet to visible region. Any material that absorbs and emits visible light can be used.
Specifically, the following phosphors can be used, but these are merely examples, and phosphors that can be used in the present invention are not limited to these.
[1−2−1]橙色ないし赤色蛍光体
橙色ないし赤色の蛍光を発する蛍光体(以下適宜、「橙色ないし赤色蛍光体」とい う。)としては、以下のものが挙げられる。橙色ないし赤色蛍光体の発光ピーク波長は、通常580nm以上、好ましくは585nm以上、また通常780nm以下、好ましくは700nm以下の波長範囲にあることが好適である。このような橙色ないし赤色蛍光体としては、例えば、赤色破断面を有する破断粒子から構成され、赤色領域の発光を行なう(Mg,Ca,Sr,Ba)2Si5N8:Euで表わされるユウロピウム付活アルカリ土類シリコンナイトライド系蛍光体、規則的な結晶成長形状としてほぼ球形状を有する成長粒子から構成され、赤色領域の発光を行なう(Y,La,Gd,Lu)2O2S:Euで表わされるユウロピウム付活希土類オキシカルコゲナイド系蛍光体等が挙げられる。 更に、特開2004−300247号公報に記載された、Ti、Zr、Hf、Nb、Ta、W、及びMoよりなる群から選ばれる少なくも1種の元素を含有する酸窒化物及び/又は酸硫化物を含有する蛍光体であって、Al元素の一部又は全てがGa元素で置換されたアルファサイアロン構造をもつ酸窒化物を含有する蛍光体も、本実施形態において用いることができる。なお、これらは酸窒化物及び/又は酸硫化物を含有する蛍光体である。
[1-2-1] Orange to red phosphor
Examples of phosphors that emit orange to red fluorescence (hereinafter appropriately referred to as “orange to red phosphors”) include the following. The emission peak wavelength of the orange to red phosphor is preferably in the wavelength range of usually 580 nm or more, preferably 585 nm or more, and usually 780 nm or less, preferably 700 nm or less. Examples of such orange to red phosphors include europium composed of broken particles having a red fracture surface and emitting red region (Mg, Ca, Sr, Ba) 2 Si 5 N 8 : Eu. The activated alkaline earth silicon nitride phosphor is composed of growing particles having a substantially spherical shape as a regular crystal growth shape, and emits light in the red region (Y, La, Gd, Lu) 2 O 2 S: Examples include europium activated rare earth oxychalcogenide phosphors represented by Eu. Furthermore, the oxynitride and / or acid containing at least one element selected from the group consisting of Ti, Zr, Hf, Nb, Ta, W, and Mo described in JP-A No. 2004-300247 A phosphor containing a sulfide and containing an oxynitride having an alpha sialon structure in which a part or all of the Al element is substituted with a Ga element can also be used in this embodiment. These are phosphors containing oxynitride and / or oxysulfide.
また、その他、赤色蛍光体としては、(La,Y)2O2S:Eu等のEu付活酸硫化物蛍光体、Y(V,P)O4:Eu、Y2O3:Eu等のEu付活酸化物蛍光体、(Ba,Sr,Ca,Mg)2SiO4:Eu,Mn、(Ba,Mg)2SiO4:Eu,Mn等のEu,Mn付活珪酸塩蛍光体、LiW2O8:Eu、LiW2O8:Eu,Sm、Eu2W2O9、Eu2W2O9:Nb、Eu2W2O9:Sm等のEu付活タングステン酸塩蛍光体、(Ca,Sr)S:Eu等のEu付活硫化物蛍光体、YAlO3:Eu等のEu付活アルミン酸塩蛍光体、LiY9(SiO4)6O2:Eu、Ca2Y8(SiO4)6O2:Eu、(Sr,Ba,Ca)3SiO5:Eu、Sr2BaSiO5:Eu等のEu付活珪酸塩蛍光体、(Y,Gd)3Al5O12:Ce、(Tb,Gd)3Al5O12:Ce等のCe付活アルミン酸塩蛍光体、(Mg,Ca,Sr,Ba)2Si5N8:Eu、(Mg,Ca,Sr,Ba)SiN2:Eu、(Mg,Ca,Sr,Ba)AlSiN3:Eu等のEu付活窒化物蛍光体、(Mg,Ca,Sr,Ba)AlSiN3:Ce等のCe付活窒化物蛍光体、(Sr,Ca,Ba,Mg)10(PO4)6Cl2:Eu,Mn等のEu,Mn付活ハロリン酸塩蛍光体、Ba3MgSi2O8:Eu,Mn、(Ba,Sr,Ca,Mg)3(Zn,Mg)Si2O8:Eu,Mn等のEu,Mn付活珪酸塩蛍光体、3.5MgO・0.5MgF2・GeO2:Mn等のMn付活ゲルマン酸塩蛍光体、Eu付活αサイアロン等のEu付活酸窒化物蛍光体、(Gd,Y,Lu,La)2O3:Eu,Bi等のEu,Bi付活酸化物蛍光体、(Gd,Y,Lu,La)2O2S:Eu,Bi等のEu,Bi付活酸硫化物蛍光体、(Gd,Y,Lu,La)VO4:Eu,Bi等のEu,Bi付活バナジン酸塩蛍光体、SrY2S4:Eu,Ce等のEu,Ce付活硫化物蛍光体、CaLa2S4:Ce等のCe付活硫化物蛍光体、(Ba,Sr,Ca)MgP2O7:Eu,Mn、(Sr,Ca,Ba,Mg,Zn)2P2O7:Eu,Mn等のEu,Mn付活リン酸塩蛍光体、(Y,Lu)2WO6:Eu,Mo等のEu,Mo付活タングステン酸塩蛍光体、(Ba,Sr,Ca)xSiyNz:Eu,Ce(但し、x、y、zは、1以上の整数を表わす。)等のEu,Ce付活窒化物蛍光体、(Ca,Sr,Ba,Mg)10(PO4)6(F,Cl,Br,OH)2:Eu,Mn等のEu,Mn付活ハロリン酸塩蛍光体、((Y,Lu,Gd,Tb)1−x−yScxCey)2(Ca,Mg)1−r(Mg,Zn)2+rSiz−qGeqO12+δ等のCe付活珪酸塩蛍光体等を用いることも可能である。 Also, other examples of the red phosphor, (La, Y) 2 O 2 S: Eu Tsukekatsusan sulfide phosphor such as Eu, Y (V, P) O 4: Eu, Y 2 O 3: Eu , etc. Eu-activated oxide phosphor, (Ba, Sr, Ca, Mg) 2 SiO 4: Eu, Mn, (Ba, Mg) 2 SiO 4: Eu, Eu such as Mn, Mn-activated silicate phosphor, Eu-activated tungstate phosphors such as LiW 2 O 8 : Eu, LiW 2 O 8 : Eu, Sm, Eu 2 W 2 O 9 , Eu 2 W 2 O 9 : Nb, Eu 2 W 2 O 9 : Sm (Ca, Sr) S: Eu-activated sulfide phosphors such as Eu, YAlO 3 : Eu-activated aluminate phosphors such as Eu, LiY 9 (SiO 4 ) 6 O 2 : Eu, Ca 2 Y 8 (SiO 4 ) 6 O 2 : Eu, (Sr, Ba, Ca) 3 SiO 5 : Eu, Sr 2 Ba-activated silicate phosphors such as BaSiO 5 : Eu, (Y, Gd) 3 Al 5 O 12 : Ce, (Tb, Gd) 3 Al 5 O 12 : Ce-activated aluminate phosphors such as Ce, (Mg, Ca, Sr, Ba ) 2 Si 5 N 8: Eu, (Mg, Ca, Sr, Ba) SiN 2: Eu, (Mg, Ca, Sr, Ba) AlSiN 3: Eu -activated nitride such as Eu Phosphors, Ce-activated nitride phosphors such as (Mg, Ca, Sr, Ba) AlSiN 3 : Ce, (Sr, Ca, Ba, Mg) 10 (PO 4 ) 6 Cl 2 : Eu, Mn, etc. Eu, Mn-activated halophosphate phosphor, Ba 3 MgSi 2 O 8 : Eu, Mn, (Ba, Sr, Ca, Mg) 3 (Zn, Mg) Si 2 O 8 : Eu, Mn, etc. activated silicate phosphor, 3.5MgO · 0.5MgF 2 · Ge 2: Mn activated germanate salt phosphors such as Mn, Eu Tsukekatsusan nitride phosphor such as Eu-activated α-sialon, (Gd, Y, Lu, La) 2 O 3: Eu, Bi, etc. Eu, Bi-activated oxide phosphor, (Gd, Y, Lu, La) 2 O 2 S: Eu, Bi-activated oxysulfide phosphor such as Eu, Bi, (Gd, Y, Lu, La) VO 4 : Eu, Bi activated vanadate phosphors such as Eu, Bi, etc., SrY 2 S 4 : Eu, Ce activated sulfide phosphors such as Eu, Ce, etc., Ce activated sulfide fluorescence such as CaLa 2 S 4 : Ce, etc. (Ba, Sr, Ca) MgP 2 O 7 : Eu, Mn, (Sr, Ca, Ba, Mg, Zn) 2 P 2 O 7 : Eu, Mn-activated phosphate phosphors such as Eu and Mn , (Y, Lu) 2 WO 6 : Eu, Mo-activated tungstate phosphor such as Eu, Mo, (Ba, Sr, Ca) x Si y Nz: Eu, Ce (where x, y, z represent an integer of 1 or more. Eu, Ce activated nitride phosphors such as (Ca, Sr, Ba, Mg) 10 (PO 4 ) 6 (F, Cl, Br, OH) 2 : Eu, Mn activated halophosphorus such as Eu, Mn Acid salt phosphor, ((Y, Lu, Gd, Tb) 1-xy Sc x Ce y ) 2 (Ca, Mg) 1-r (Mg, Zn) 2 + r Siz -q Ge q O 12 + δ It is also possible to use a Ce-activated silicate phosphor or the like.
赤色蛍光体としては、β−ジケトネート、β−ジケトン、芳香族カルボン酸、又は、ブレンステッド酸等のアニオンを配位子とする希土類元素イオン錯体からなる赤色有機蛍光体、ペリレン系顔料(例えば、ジベンゾ{[f,f’]−4,4’,7,7’−テトラフェニル}ジインデノ[1,2,3−cd:1’,2’,3’−lm]ペリレン)、アントラキノン系顔料、レーキ系顔料、アゾ系顔料、キナクリドン系顔料、アントラセン系顔料、イソインドリン系顔料、イソインドリノン系顔料、フタロシアニン系顔料、トリフェニルメタン系塩基性染料、インダンスロン系顔料、インドフェノール系顔料、シアニン系顔料、ジオキサジン系顔料を用いることも可能である。 Examples of red phosphors include β-diketonates, β-diketones, aromatic carboxylic acids, red organic phosphors composed of rare earth element ion complexes having an anion such as Bronsted acid as a ligand, and perylene pigments (for example, Dibenzo {[f, f ′]-4,4 ′, 7,7′-tetraphenyl} diindeno [1,2,3-cd: 1 ′, 2 ′, 3′-lm] perylene), anthraquinone pigment, Lake pigments, azo pigments, quinacridone pigments, anthracene pigments, isoindoline pigments, isoindolinone pigments, phthalocyanine pigments, triphenylmethane basic dyes, indanthrone pigments, indophenol pigments, It is also possible to use a cyanine pigment or a dioxazine pigment.
また、赤色蛍光体のうち、ピーク波長が580nm以上、好ましくは590nm以上、また、620nm以下、好ましくは610nm以下の範囲内にあるものは、橙色蛍光体として好適に用いることができる。このような橙色蛍光体の例としては、(Sr,Ba,Ca)3SiO5:Eu、Sr2BaSiO5:Eu等のEu付活珪酸塩蛍光体、(Sr,Mg)3(PO4)2:Sn2+等のSn付活リン酸塩蛍光体等が挙げられる。 Of the red phosphors, those having a peak wavelength in the range of 580 nm or more, preferably 590 nm or more, and 620 nm or less, preferably 610 nm or less can be suitably used as the orange phosphor. Examples of such orange phosphors include Eu-activated silicate phosphors such as (Sr, Ba, Ca) 3 SiO 5 : Eu, Sr 2 BaSiO 5 : Eu, (Sr, Mg) 3 (PO 4 ). 2 : Sn-activated phosphate phosphors such as Sn 2+ and the like.
以上例示した赤色蛍光体は、何れか一種を単独で使用してもよく、二種以上を任意の組み合わせ及び比率で併用してもよい。
以上の例示の中でも、赤色蛍光体としては、(Ca,Sr,Ba)AlSiN3:Eu、(Ca,Sr,Ba)AlSiN3:Ce、(La,Y)2O2S:Euが好ましく、(Sr,Ca)AlSiN3:Eu、(La,Y)2O2S:Euが特に好ましい。
また、以上例示の中でも、橙色蛍光体としては(Sr,Ba)3SiO5:Euが好ましい。
Any one of the red phosphors exemplified above may be used alone, or two or more may be used in any combination and ratio.
Among the above examples, as the red phosphor, (Ca, Sr, Ba) AlSiN 3 : Eu, (Ca, Sr, Ba) AlSiN 3 : Ce, (La, Y) 2 O 2 S: Eu are preferable, (Sr, Ca) AlSiN 3 : Eu and (La, Y) 2 O 2 S: Eu are particularly preferable.
Moreover, among the above examples, (Sr, Ba) 3 SiO 5 : Eu is preferable as the orange phosphor.
[1−2−2]緑色蛍光体
緑色の蛍光を発する蛍光体(以下適宜、「緑色蛍光体」という。)としては、以下のも
のが挙げられる。緑色蛍光体の発光ピーク波長は、通常490nm以上、好ましくは510nm以上、より好ましくは515nm以上、また、通常560nm以下、好ましく
は540nm以下、より好ましくは535nm以下の波長範囲にあることが好適である。
[1-2-2] Green phosphor
Examples of phosphors that emit green fluorescence (hereinafter referred to as “green phosphors” as appropriate) include the following. The emission peak wavelength of the green phosphor is usually 490 nm or more, preferably 510 nm or more, more preferably 515 nm or more, and usually 560 nm or less, preferably
Is preferably in the wavelength range of 540 nm or less, more preferably 535 nm or less.
このような緑色蛍光体として、例えば、破断面を有する破断粒子から構成され、緑色領域の発光を行なう(Mg,Ca,Sr,Ba)Si2O2N2:Euで表わされるユウロピウム付活アルカリ土類シリコンオキシナイトライド系蛍光体、破断面を有する破断粒子から構成され、緑色領域の発光を行なう(Ba,Ca,Sr,Mg)2SiO4:Euで表わされるユウロピウム付活アルカリ土類シリケート系蛍光体等が挙げられる。 As such a green phosphor, for example, a europium-activated alkali represented by (Mg, Ca, Sr, Ba) Si 2 O 2 N 2 : Eu that is composed of fractured particles having a fracture surface and emits light in the green region. Europium-activated alkaline earth silicate composed of an earth silicon oxynitride phosphor, broken particles having a fracture surface, and emitting green light (Ba, Ca, Sr, Mg) 2 SiO 4 : Eu System phosphors and the like.
また、その他、緑色蛍光体としては、Sr4Al14O25:Eu、(Ba,Sr,Ca)Al2O4:Eu等のEu付活アルミン酸塩蛍光体、(Sr,Ba)Al2Si2O8:Eu、(Ba,Mg)2SiO4:Eu、(Ba,Sr,Ca,Mg)2SiO4:Eu、(Ba,Sr,Ca)2(Mg,Zn)Si2O7:Eu、(Ba,Ca,Sr,Mg)9(Sc,Y,Lu,Gd)2(Si,Ge)6O24:Eu等のEu付活珪酸塩蛍光体、Y2SiO5:Ce,Tb等のCe,Tb付活珪酸塩蛍光体、Sr2P2O7−Sr2B2O5:Eu等のEu付活硼酸リン酸塩蛍光体、Sr2Si3O8−2SrCl2:Eu等のEu付活ハロ珪酸塩蛍光体、Zn2SiO4:Mn等のMn付活珪酸塩蛍光体、CeMgAl11O19:Tb、Y3Al5O12:Tb等のTb付活アルミン酸塩蛍光体、Ca2Y8(SiO4)6O2:Tb、La3Ga5SiO14:Tb等のTb付活珪酸塩蛍光体、(Sr,Ba,Ca)Ga2S4:Eu,Tb,Sm等のEu,Tb,Sm付活チオガレート蛍光体、Y3(Al,Ga)5O12:Ce、(Y,Ga,Tb,La,Sm,Pr,Lu)3(Al,Ga)5O12:Ce等のCe付活アルミン酸塩蛍光体、Ca3Sc2Si3O12:Ce、Ca3(Sc,Mg,Na,Li)2Si3O12:Ce等のCe付活珪酸塩蛍光体、CaSc2O4:Ce等のCe付活酸化物蛍光体、SrSi2O2N2:Eu、(Mg,Sr,Ba,Ca)Si2O2N2:Eu、Eu付活βサイアロン等のEu付活酸窒化物蛍光体、BaMgAl10O17:Eu,Mn等のEu,Mn付活アルミン酸塩蛍光体、SrAl2O4:Eu等のEu付活アルミン酸塩蛍光体、(La,Gd,Y)2O2S:Tb等のTb付活酸硫化物蛍光体、LaPO4:Ce,Tb等のCe,Tb付活リン酸塩蛍光体、ZnS:Cu,Al、ZnS:Cu,Au,Al等の硫化物蛍光体、(Y,Ga,Lu,Sc,La)BO3:Ce,Tb、Na2Gd2B2O7:Ce,Tb、(Ba,Sr)2(Ca,Mg,Zn)B2O6:K,Ce,Tb等のCe,Tb付活硼酸塩蛍光体、Ca8Mg(SiO4)4Cl2:Eu,Mn等のEu,Mn付活ハロ珪酸塩蛍光体、(Sr,Ca,Ba)(Al,Ga,In)2S4:Eu等のEu付活チオアルミネート蛍光体やチオガレート蛍光体、(Ca,Sr)8(Mg,Zn)(SiO4)4Cl2:Eu,Mn等のEu,Mn付活ハロ珪酸塩蛍光体、MSi2O2N2:Eu、M3Si6O9N4:Eu、M2Si7O10N4:Eu(但し、Mはアルカリ土類金属元素を表わす。)等のEu付活酸窒化物蛍光体等を用いることも可能である。
また、緑色蛍光体としては、ピリジン−フタルイミド縮合誘導体、ベンゾオキサジノン系、キナゾリノン系、クマリン系、キノフタロン系、ナルタル酸イミド系等の蛍光色素、テルビウム錯体等の有機蛍光体を用いることも可能である。
Other green phosphors include Eu-activated aluminate phosphors such as Sr 4 Al 14 O 25 : Eu, (Ba, Sr, Ca) Al 2 O 4 : Eu, and (Sr, Ba) Al 2. Si 2 O 8 : Eu, (Ba, Mg) 2 SiO 4 : Eu, (Ba, Sr, Ca, Mg) 2 SiO 4 : Eu, (Ba, Sr, Ca) 2 (Mg, Zn) Si 2 O 7 : Eu, (Ba, Ca, Sr, Mg) 9 (Sc, Y, Lu, Gd) 2 (Si, Ge) 6 O 24 : Eu-activated silicate phosphor such as Eu, Y 2 SiO 5 : Ce, Ce, Tb-activated silicate phosphors such as Tb, Sr 2 P 2 O 7 —Sr 2 B 2 O 5 : Eu-activated borate phosphate phosphors such as Eu, Sr 2 Si 3 O 8 -2SrCl 2 : Eu-activated halo silicate phosphor such as Eu, Zn 2 SiO 4: M such as Mn Activated silicate phosphors, CeMgAl 11 O 19: Tb, Y 3 Al 5 O 12: Tb -activated aluminate phosphors such as Tb, Ca 2 Y 8 (SiO 4) 6 O 2: Tb, La 3 Ga 5 SiO 14: Tb-activated silicate phosphors such as Tb, (Sr, Ba, Ca ) Ga 2 S 4: Eu, Tb, Eu and Sm and the like, Tb, Sm-activated thiogallate phosphor, Y 3 (Al, Ga) 5 O 12 : Ce, (Y, Ga, Tb, La, Sm, Pr, Lu) 3 (Al, Ga) 5 O 12 : Ce-activated aluminate phosphor such as Ce, Ca 3 Sc 2 Si 3 O 12 : Ce, Ca 3 (Sc, Mg, Na, Li) 2 Si 3 O 12 : Ce activated silicate phosphor such as Ce, Ce activated oxide phosphor such as CaSc 2 O 4 : Ce, SrSi 2 O 2 N 2 : Eu, (Mg, Sr, B a, Ca) Si 2 O 2 N 2 : Eu, Eu-activated oxynitride phosphors such as Eu-activated β sialon, BaMgAl 10 O 17 : Eu, Mn-activated aluminate phosphors such as Eu and Mn, Eu-activated aluminate phosphors such as SrAl 2 O 4 : Eu, Tb-activated oxysulfide phosphors such as (La, Gd, Y) 2 O 2 S: Tb, and Ce such as LaPO 4 : Ce, Tb , Tb-activated phosphate phosphors, sulfide phosphors such as ZnS: Cu, Al, ZnS: Cu, Au, Al, (Y, Ga, Lu, Sc, La) BO 3 : Ce, Tb, Na 2 Gd 2 B 2 O 7 : Ce, Tb, (Ba, Sr) 2 (Ca, Mg, Zn) B 2 O 6 : Ce, Tb activated borate phosphor such as K, Ce, Tb, Ca 8 Mg ( SiO 4 ) 4 Cl 2 : Eu, Mn activated halosilicate phosphor such as Eu, Mn, ( Sr, Ca, Ba) (Al, Ga, In) 2 S 4 : Eu-activated thioaluminate phosphor such as Eu, thiogallate phosphor, (Ca, Sr) 8 (Mg, Zn) (SiO 4 ) 4 Cl 2: Eu, Eu such as Mn, Mn-activated halo silicate phosphor, MSi 2 O 2 N 2: Eu, M 3 Si 6 O 9 N 4: Eu, M 2 Si 7 O 10 N 4: Eu ( where , M represents an alkaline earth metal element. It is also possible to use Eu-activated oxynitride phosphors such as
In addition, as the green phosphor, it is also possible to use a pyridine-phthalimide condensed derivative, a benzoxazinone-based, a quinazolinone-based, a coumarin-based, a quinophthalone-based, a nartaric imide-based fluorescent dye, or an organic phosphor such as a terbium complex. is there.
[1−2−3]青色蛍光体
青色の蛍光を発する蛍光体(以下適宜、「青色蛍光体」という。)としては以下の
ものが挙げられる。青色蛍光体の発光ピーク波長は、通常420nm以上、好ましくは430nm以上、より好ましくは440nm以上、また、通常490nm以下、好ましくは470nm以下、より好ましくは460nm以下の波長範囲にあることが好適である。
[1-2-3] Blue phosphor
Examples of phosphors emitting blue fluorescence (hereinafter referred to as “blue phosphors” as appropriate) include:
Things. The emission peak wavelength of the blue phosphor is usually 420 nm or more, preferably 430 nm or more, more preferably 440 nm or more, and usually 490 nm or less, preferably 470 nm or less, more preferably 460 nm or less. .
このような青色蛍光体としては、規則的な結晶成長形状としてほぼ六角形状を有する成長粒子から構成され、青色領域の発光を行なうBaMgAl10O17:Euで表わされるユウロピウム付活バリウムマグネシウムアルミネート系蛍光体、規則的な結晶成長形状としてほぼ球形状を有する成長粒子から構成され、青色領域の発光を行なう(Ca,Sr,Ba)5(PO4)3Cl:Euで表わされるユウロピウム付活ハロリン酸カルシウム系蛍光体、規則的な結晶成長形状としてほぼ立方体形状を有する成長粒子から構成され、青色領域の発光を行なう(Ca,Sr,Ba)2B5O9Cl:Euで表わされるユウロピウム付活アルカリ土類クロロボレート系蛍光体、破断面を有する破断粒子から構成され、青緑色領域の発光を行なう(Sr,Ca,Ba)Al2O4:Eu又は(Sr,Ca,Ba)4Al14O25:Euで表わされるユウロピウム付活アルカリ土類アルミネート系蛍光体等が挙げられる。 As such a blue phosphor, a europium-activated barium magnesium aluminate system represented by BaMgAl 10 O 17 : Eu composed of growing particles having a substantially hexagonal shape as a regular crystal growth shape and emitting light in a blue region. Europium activated halo represented by (Ca, Sr, Ba) 5 (PO 4 ) 3 Cl: Eu, which is composed of phosphors and growing particles having a substantially spherical shape as a regular crystal growth shape, and emits light in a blue region. Calcium phosphate phosphor, composed of growing particles having a substantially cubic shape as a regular crystal growth shape, emits light in the blue region, and is activated by europium represented by (Ca, Sr, Ba) 2 B 5 O 9 Cl: Eu Consists of alkaline earth chloroborate phosphors, fractured particles with fractured surfaces, and light emission in the blue-green region And (Sr, Ca, Ba) Al 2 O 4 : Eu or (Sr, Ca, Ba) 4 Al 14 O 25 : Eu are europium activated alkaline earth aluminate phosphors.
また、その他、青色蛍光体としては、Sr2P2O7:Sn等のSn付活リン酸塩蛍光体、(Sr,Ca,Ba)Al2O4:Eu又は(Sr,Ca,Ba)4Al14O25:Eu、BaMgAl10O17:Eu、BaAl8O13:Eu等のEu付活アルミン酸塩蛍光体、SrGa2S4:Ce、CaGa2S4:Ce等のCe付活チオガレート蛍光体、(Ba,Sr,Ca)MgAl10O17:Eu、BaMgAl10O17:Eu,Tb,Sm等のEu付活アルミン酸塩蛍光体、(Ba,Sr,Ca)MgAl10O17:Eu,Mn等のEu,Mn付活アルミン酸塩蛍光体、(Sr,Ca,Ba,Mg)10(PO4)6Cl2:Eu、(Ba,Sr,Ca)5(PO4)3(Cl,F,Br,OH):Eu,Mn,Sb等のEu付活ハロリン酸塩蛍光体、BaAl2Si2O8:Eu、(Sr,Ba)3MgSi2O8:Eu等のEu付活珪酸塩蛍光体、Sr2P2O7:Eu等のEu付活リン酸塩蛍光体、ZnS:Ag、ZnS:Ag,Al等の硫化物蛍光体、Y2SiO5:Ce等のCe付活珪酸塩蛍光体、CaWO4等のタングステン酸塩蛍光体、(Ba,Sr,Ca)BPO5:Eu,Mn、(Sr,Ca)10(PO4)6・nB2O3:Eu、2SrO・0.84P2O5・0.16B2O3:Eu等のEu,Mn付活硼酸リン酸塩蛍光体、Sr2Si3O8・2SrCl2:Eu等のEu付活ハロ珪酸塩蛍光体等を用いることも可能である。 Other blue phosphors include Sn-activated phosphate phosphors such as Sr 2 P 2 O 7 : Sn, (Sr, Ca, Ba) Al 2 O 4 : Eu or (Sr, Ca, Ba). 4 Al 14 O 25 : Eu, BaMgAl 10 O 17 : Eu, BaAl 8 O 13 : Eu-activated aluminate phosphors such as Eu, SrGa 2 S 4 : Ce, CaGa 2 S 4 : Ce-activated such as Ce Thiogallate phosphor, (Ba, Sr, Ca) MgAl 10 O 17 : Eu, BaMgAl 10 O 17 : Eu-activated aluminate phosphor such as Eu, Tb, Sm, (Ba, Sr, Ca) MgAl 10 O 17 : Eu, Mn activated aluminate phosphor such as Eu, Mn, (Sr, Ca, Ba, Mg) 10 (PO 4 ) 6 Cl 2 : Eu, (Ba, Sr, Ca) 5 (PO 4 ) 3 (Cl, F, Br, OH): Eu , Mn, Eu -activated halophosphate phosphors such as Sb, BaAl 2 Si 2 O 8 : Eu, (Sr, Ba) 3 MgSi 2 O 8: Eu -activated silicate such as Eu Salt phosphors, Eu-activated phosphate phosphors such as Sr 2 P 2 O 7 : Eu, sulfide phosphors such as ZnS: Ag, ZnS: Ag, Al, and Ce-activated such as Y 2 SiO 5 : Ce Silicate phosphor, tungstate phosphor such as CaWO 4 , (Ba, Sr, Ca) BPO 5 : Eu, Mn, (Sr, Ca) 10 (PO 4 ) 6 .nB 2 O 3 : Eu, 2SrO. 0.84P 2 O 5 .0.16B 2 O 3 : Eu, Mn-activated borate phosphate phosphor such as Eu, Eu-activated halosilicate phosphor such as Sr 2 Si 3 O 8 · 2SrCl 2 : Eu Etc. can also be used.
また、青色蛍光体としては、例えば、ナフタル酸イミド系、ベンゾオキサゾール系、スチリル系、クマリン系、ピラゾリン系、トリアゾール系化合物の蛍光色素、ツリウム錯体等の有機蛍光体等を用いることも可能である。 以上の例示の中でも、青色蛍光体としては、BaMgAl10O17:Eu、(Ba,Ca,Mg)2SiO4:Eu、(Sr,Ca,Ba,Mg)10(PO4)6Cl2:Euが好ましく、BaMgAl10O17:Euが特に好ましい。 Further, as the blue phosphor, for example, naphthalic acid imide-based, benzoxazole-based, styryl-based, coumarin-based, pyrazoline-based, triazole-based fluorescent dyes, organic phosphors such as thulium complexes, and the like can be used. . Among the above examples, as the blue phosphor, BaMgAl 10 O 17 : Eu, (Ba, Ca, Mg) 2 SiO 4 : Eu, (Sr, Ca, Ba, Mg) 10 (PO 4 ) 6 Cl 2 : Eu is preferred, and BaMgAl 10 O 17 : Eu is particularly preferred.
[1−2−4]黄色蛍光体
黄色の蛍光を発する蛍光体(以下適宜、「黄色蛍光体」という。)としては、以下のも
のが挙げられる。黄色蛍光体の発光ピーク波長は、通常530nm以上、好ましくは540nm以上、より好ましくは550nm以上、また、通常620nm以下、好ましくは600nm以下、より好ましくは580nm以下の波長範囲にあることが好適である。
[1-2-4] Yellow phosphor
Examples of the phosphor that emits yellow fluorescence (hereinafter, appropriately referred to as “yellow phosphor”) include the following. The emission peak wavelength of the yellow phosphor is usually in the wavelength range of 530 nm or more, preferably 540 nm or more, more preferably 550 nm or more, and usually 620 nm or less, preferably 600 nm or less, more preferably 580 nm or less. .
このような黄色蛍光体としては、各種の酸化物系、窒化物系、酸窒化物系、硫化物系、酸硫化物系等の蛍光体が挙げられる。
特に、RE3M5O12:Ce(ここで、REは、Y、Tb、Gd、Lu、及びSmからなる群から選ばれる少なくとも1種類の元素を表わし、Mは、Al、Ga、及びScからなる群から選ばれる少なくとも1種類の元素を表わす。)やMa 3Mb 2Mc 3O12:Ce(ここで、Maは2価の金属元素、Mbは3価の金属元素、Mcは4価の金属元素を表わす。)等で表わされるガーネット構造を有するガーネット系蛍光体、AE2MdO4:Eu(ここで、AEは、Ba、Sr、Ca、Mg、及びZnからなる群から選ばれる少なくとも1種類の元素を表わし、Mdは、Si、及び/又はGeを表わす。)等で表わされるオルソシリケート系蛍光体、これらの系の蛍光体の構成元素の酸素の一部を窒素で置換した酸窒化物系蛍光体、AEAlSiN3:Ce(ここで、AEは、Ba、Sr、Ca、Mg及びZnからなる群から選ばれる少なくとも1種類の元素を表わす。)等のCaAlSiN3構造を有する窒化物系蛍光体等のCeで付活した蛍光体が挙げられる。
Examples of such yellow phosphors include various oxide-based, nitride-based, oxynitride-based, sulfide-based, and oxysulfide-based phosphors.
In particular, RE 3 M 5 O 12 : Ce (where RE represents at least one element selected from the group consisting of Y, Tb, Gd, Lu, and Sm, and M represents Al, Ga, and Sc. And M a 3 M b 2 M c 3 O 12 : Ce (where M a is a divalent metal element and M b is a trivalent metal element) , M c represents a tetravalent metal element) garnet phosphor having a garnet structure represented by like, AE 2 M d O 4: . Eu ( where, AE is, Ba, Sr, Ca, Mg , and An orthosilicate phosphor represented by at least one element selected from the group consisting of Zn, M d represents Si and / or Ge, and the like, oxygen of constituent elements of the phosphors of these systems Acid in which a part of Compound phosphor, AEAlSiN 3: Ce (., Where, AE is, Ba, Sr, Ca, represents at least one element selected from the group consisting of Mg and Zn) nitride having CaAlSiN 3 structures such as system Examples thereof include phosphors activated with Ce such as phosphors.
また、その他、黄色蛍光体としては、CaGa2S4:Eu、(Ca,Sr)Ga2S4:Eu、(Ca,Sr)(Ga,Al)2S4:Eu等の硫化物系蛍光体、Cax(Si,Al)12(O,N)16:Eu等のSiAlON構造を有する酸窒化物系蛍光体等のEuで付活した蛍光体を用いることも可能である。 また、黄色蛍光体としては、例えば、brilliant sulfoflavine FF (Colour Index Number 56205)、basic yellow HG (Colour Index Number 46040)、eosine (Colour Index Number 45380)、rhodamine 6G(Colour Index Number 45160)等の蛍光染料等を用いることも可能である。 In addition, as yellow phosphors, sulfide-based fluorescence such as CaGa 2 S 4 : Eu, (Ca, Sr) Ga 2 S 4 : Eu, (Ca, Sr) (Ga, Al) 2 S 4 : Eu, etc. It is also possible to use a phosphor activated by Eu, such as an oxynitride phosphor having a SiAlON structure such as a body, Cax (Si, Al) 12 (O, N) 16 : Eu. Examples of yellow phosphors include fluorescent dyes such as brilliant sulfoflavine FF (Colour Index Number 56205), basic yellow HG (Colour Index Number 46040), eosine (Colour Index Number 45380), and rhodamine 6G (Colour Index Number 45160). Etc. can also be used.
[1−4]蛍光体粒子の物性
本発明の蛍光体に使用する蛍光体の粒径には特に制限はないが、中央粒径(D50)で通常0.1μm以上、好ましくは2μm以上、さらに好ましくは10μm以上である。また、通常100μm以下、好ましくは50μm以下、さらに好ましくは25μm以下である。D50が小さすぎると、輝度が低下し、蛍光体粒子が凝集してしまう虞がある。一方、D50が大きすぎると、塗布ムラやディスペンサー等の閉塞が生じる虞がある。
[1-4] Physical properties of phosphor particles
There is no particular limitation on the particle size of the phosphors used in the phosphor of the present invention, the median particle diameter (D 50) in a conventional 0.1μm or more, preferably 2μm or more, more preferably 10μm or more. Moreover, it is 100 micrometers or less normally, Preferably it is 50 micrometers or less, More preferably, it is 25 micrometers or less. If D 50 is too small, and the luminance decreases, there is a possibility that phosphor particles tend to aggregate. On the other hand, when D 50 is too large, there is a possibility that clogging of such coating unevenness or dispenser may occur.
蛍光体粒子の粒度分布(QD)は、蛍光体含有組成物中での粒子の分散状態をそろえるために小さい方が好ましいが、小さくするためには分級収率が下がってコストアップにつながるので、通常0.03以上、好ましくは0.05以上、更に好ましくは0.07以上である。また、通常0.4以下、好ましくは0.3以下、更に好ましくは0.2以下である。また、蛍光体粒子の形状は、特に限定されない。 The particle size distribution (QD) of the phosphor particles is preferably small in order to align the dispersed state of the particles in the phosphor-containing composition, but in order to reduce the particle size, the classification yield decreases, leading to an increase in cost. Usually, it is 0.03 or more, preferably 0.05 or more, more preferably 0.07 or more. Moreover, it is 0.4 or less normally, Preferably it is 0.3 or less, More preferably, it is 0.2 or less. Further, the shape of the phosphor particles is not particularly limited.
なお、本発明において、中央粒径(D50)、粒度分布(QD)は、重量基準粒度分布曲線から得ることが出来る。前記重量基準粒度分布曲線は、レーザ回折・散乱法により粒度分布を測定し得られるもので、具体的には、例えば以下のように測定することが出来る。
気温25℃、湿度70%の環境下において、エチレングリコールなどの溶媒に蛍光体を分散させる。
In the present invention, the median particle size (D 50 ) and particle size distribution (QD) can be obtained from a weight-based particle size distribution curve. The weight-based particle size distribution curve is obtained by measuring the particle size distribution by a laser diffraction / scattering method, and specifically, for example, can be measured as follows.
A phosphor is dispersed in a solvent such as ethylene glycol under an environment of an air temperature of 25 ° C. and a humidity of 70%.
レーザ回折式粒度分布測定装置(堀場製作所 LA−300)により、粒径範囲0.1μm〜600μmにて測定する。
この重量基準粒度分布曲線において積算値が50%のときの粒径値を中央粒径D50と表記する。また、積算値が25%及び75%の時の粒径値をそれぞれD25、D75と表記し、QD=(D75−D25)/(D75+D25)と定義する。QDが小さいことは粒度分布が狭いことを意味する。
Measurement is performed with a laser diffraction particle size distribution measuring apparatus (Horiba, Ltd. LA-300) in a particle size range of 0.1 μm to 600 μm.
Integrated value in the weight particle size distribution curve is denoted a particle size value when the 50% and median particle diameter D 50. Further, the particle size values when the integrated values are 25% and 75% are expressed as D 25 and D 75 , respectively, and defined as QD = (D 75 −D 25 ) / (D 75 + D 25 ). A small QD means a narrow particle size distribution.
[1−5]蛍光体の表面処理
本発明に使用する蛍光体粒子は、更に、耐水性を高める目的で、表面処理が行われていてもよい。
かかる表面処理の例としては、例えば特表2006−523245号公報に記載されるような、蛍光体粒子を熱処理などを行うことにより、蛍光体粒子の元来の成分を化学的に変性させることによって被覆物を形成させる等の公知の表面処理が挙げられる。
また、金属リン酸塩を被覆する表面処理も有効である。具体的には、例えば以下の(i)〜(iii)の手順で進められる表面処理方法が挙げられる。(i)所定量のリン酸カリウム、リン酸ナトリウムなどの水溶性のリン酸塩と塩化カルシウム、硫酸ストロンチウム、塩化マンガン、硝酸亜鉛等のアルカリ土類金属、Zn及びMnの中の少なくとも1種の水溶性の金属塩化合物とを蛍光体懸濁液中に添加し、攪拌する。(ii)アルカリ土類金属、Zn及びMnの中の少なくとも1種の金属のリン酸塩を懸濁液中で生成させると共に、生成したこれらの金属リン酸塩を蛍光体表面に沈積させる。(iii)水分を除去する。
[1-5] Phosphor surface treatment
The phosphor particles used in the present invention may be further subjected to a surface treatment for the purpose of improving water resistance.
As an example of such a surface treatment, for example, as described in JP-T-2006-523245, the phosphor particles are subjected to a heat treatment to chemically modify the original components of the phosphor particles. Known surface treatments such as forming a coating may be mentioned.
Further, a surface treatment for coating a metal phosphate is also effective. Specifically, for example, a surface treatment method that can be performed by the following procedures (i) to (iii) can be given. (I) A predetermined amount of a water-soluble phosphate such as potassium phosphate and sodium phosphate and at least one of alkaline earth metals such as calcium chloride, strontium sulfate, manganese chloride and zinc nitrate, Zn and Mn A water-soluble metal salt compound is added to the phosphor suspension and stirred. (Ii) A phosphate of at least one metal among alkaline earth metals, Zn and Mn is formed in the suspension, and the generated metal phosphate is deposited on the phosphor surface. (Iii) Remove moisture.
[2](B)ガラス組成物
[2−1]好ましいガラス組成物
本発明に用いられるガラス組成物は、アルカリ金属、アルカリ土類金属およびZnから選択される1以上を含有する。好ましくは下記(I)および(II)の化合物を含有する。
(I)SiO2、B2O3、P2O5、GeO2、TeO2、Al2O3、Ga2O3、およびBi2O3から選択される1以上を含む、Zachariasenによるガラス形成酸化物
(II)アルカリ金属原子、アルカリ土類金属原子、およびZnから選択される1以上を含む網目修飾酸化物
前記(I)成分における「Zachariasenによるガラス形成酸化物」とは、非特許文献W.H. Zachariasen, J. Am. Chem. Soc. , 54, 3841−3851(1932)において提唱された概念である、ガラスの基本骨格であるガラス形成酸化物をいう。これらの中では、SiO2、B2O3、P2O5、Al2O3を含むガラス形成酸化物が好ましく、Al2O3、SiO2、P2O5を含むガラス形成酸化物が特に好ましく、Al2O3、P2O5をともに含むものが最も好ましい。
[2] (B) Glass Composition [2-1] Preferred Glass Composition The glass composition used in the present invention contains one or more selected from alkali metals, alkaline earth metals and Zn. Preferably, the following compounds (I) and (II) are contained.
(I) Glass formation with Zachariasen comprising one or more selected from SiO 2 , B 2 O 3 , P 2 O 5 , GeO 2 , TeO 2 , Al 2 O 3 , Ga 2 O 3 , and Bi 2 O 3 Oxide (II) Network-modified oxide containing one or more selected from alkali metal atoms, alkaline earth metal atoms, and Zn “Glass-forming oxide by Zachariasen” in the component (I) is a non-patent document W. H. Zachariasen, J. Am. Chem. Soc., 54, 3841-3851 (1932), a glass-forming oxide that is the basic skeleton of glass. Among these, preferably glass forming oxides including SiO 2, B 2 O 3, P 2 O 5, Al 2
前記(I)成分の配合量は、ガラス組成物全体に対して、通常20重量%以上、好ましくは30重量%以上、さらに好ましくは33重量%以上であり、通常90重量%以下、好ましくは80重量%以下、さらに好ましくは70重量%以下である。前記(I)成分の配合量が少なすぎると機械的強度が低下したり、耐水性が劣ったりする場合がある、多すぎると、屈伏点が高くなる場合がある。 The blending amount of the component (I) is usually 20% by weight or more, preferably 30% by weight or more, more preferably 33% by weight or more, and usually 90% by weight or less, preferably 80% with respect to the whole glass composition. % By weight or less, more preferably 70% by weight or less. If the blending amount of the component (I) is too small, the mechanical strength may be lowered or the water resistance may be poor. If it is too much, the yield point may be increased.
また、本発明において、(II)アルカリ金属原子、アルカリ土類金属原子、およびZnから選択される1以上を含む網目修飾酸化物とは、屈伏点を低下させたり、耐久性を向上させるはたらきがある。これらの中ではBaO、SrO,ZnO、Li2O,Na2O,K2O,MgOを含む網目修飾酸化物が好ましく、Li2O,Na2O,K2O,ZnO,CaOを含む網目修飾酸化物が特に好ましい。 In the present invention, (II) a network-modified oxide containing one or more selected from an alkali metal atom, an alkaline earth metal atom, and Zn serves to lower the yield point or improve the durability. is there. Among these, a network modification oxide containing BaO, SrO, ZnO, Li 2 O, Na 2 O, K 2 O, and MgO is preferable, and a network containing Li 2 O, Na 2 O, K 2 O, ZnO, and CaO is preferable. Modified oxides are particularly preferred.
前記(II)成分の配合量は、ガラス組成物全体に対して、通常10重量%以上、好ましくは20重量%以上、さらに好ましくは30重量%以上であり、通常80重量%以下、好ましくは70重量%以下、さらに好ましくは67重量%以下である。前記(II)成分の配合量が多すぎると耐久性が低下する場合があり、少なすぎると、屈伏点が高くなる場合がある。 The amount of the component (II) is usually 10% by weight or more, preferably 20% by weight or more, more preferably 30% by weight or more, and usually 80% by weight or less, preferably 70%, based on the entire glass composition. % By weight or less, more preferably 67% by weight or less. If the amount of the component (II) is too large, the durability may decrease, and if it is too small, the yield point may increase.
(I)および(II)の組み合わせとしては、例えばP2O5を含むガラス形成酸化物およびNa2Oを含む網目修飾酸化物の組み合わせを挙げることができる。
また、(I)および(II)の重量比としては、通常90:10〜20:80好ましくは80:20〜20:80である。
また、第一の本発明の被覆蛍光体粒子においては、ガラス組成物の屈伏点が700℃以下、好ましくは650℃以下、さらに好ましくは600℃以下である。また、通常100℃以上、好ましくは200℃以上、さらに好ましくは250℃以上である。屈伏点が大きすぎると溶融して被覆する際に高温になり過ぎ、蛍光体そのものの劣化あるいは、蛍光体とガラス組成物との反応により蛍光体の発光特性の低下が起こる場合があり、小さすぎると被覆の安定性が低下する。
Examples of the combination of (I) and (II), and a combination of network-modifying oxide containing glass-forming oxides and Na 2 O including, for example, P 2 O 5.
The weight ratio of (I) and (II) is usually 90:10 to 20:80, preferably 80:20 to 20:80.
In the coated phosphor particles of the first invention, the yield point of the glass composition is 700 ° C. or lower, preferably 650 ° C. or lower, more preferably 600 ° C. or lower. Moreover, it is 100 degreeC or more normally, Preferably it is 200 degreeC or more, More preferably, it is 250 degreeC or more. If the yield point is too large, it will become too hot when it is melted and coated, and the phosphor itself may deteriorate, or the phosphor's luminescent properties may deteriorate due to the reaction between the phosphor and the glass composition. And the stability of the coating is reduced.
また、本発明の被覆蛍光体粒子における屈伏点の低い、いわゆる低融点ガラスはリン酸系(P2O5を含有する)ガラス組成物であることが好ましい。
また、ガラスの屈伏点を低下させ、耐久性を向上させる目的で、フッ素原子を含有していることが更に好ましい。前記フッ素原子はガラスに含有されていなくても、ガラス組成物被覆時(原料混合時および/または溶融時)にAlF3,LiF、NaF,CaF2、SrF2,BaF2,ZnF2、MgF2などのフッ素化合物を添加してもよい。
Further, the so-called low melting point glass having a low yield point in the coated phosphor particles of the present invention is preferably a phosphoric acid-based (containing P 2 O 5 ) glass composition.
Further, it is more preferable to contain a fluorine atom for the purpose of reducing the yield point of the glass and improving the durability. Even if the fluorine atom is not contained in the glass, it is AlF 3 , LiF, NaF, CaF 2 , SrF 2 , BaF 2 , ZnF 2 , MgF 2 when the glass composition is coated (at the time of raw material mixing and / or melting). You may add fluorine compounds, such as.
なお、フッ素原子は、ガラス組成物の屈伏点低下、耐久性向上の効果の他に、蛍光体表面との親和性を向上させる効果も併せて奏するものと推測される。すなわち、蛍光体とガラスとの膨張係数のマッチングと密着のための界面層形成機能があると推察される。蛍光体とガラス層の界面で、密着性が増していることから、ガラス成分の少なくとも一部が、蛍光体とガラスとの界面から浸透していると推測される。フッ化物イオンはこの浸透を促進すると推察される。蛍光体表面との親和性が増加する限りにおいては、添加物の種類に制限は無く、塩素、ヨウ素、臭素も使用できるが、安定性の点でフッ素が好ましい。 In addition to the effects of lowering the yield point and improving the durability of the glass composition, the fluorine atom is presumed to have the effect of improving the affinity with the phosphor surface. That is, it is speculated that there is an interface layer forming function for matching and adhesion of the expansion coefficient between the phosphor and the glass. Since adhesion is increased at the interface between the phosphor and the glass layer, it is estimated that at least a part of the glass component penetrates from the interface between the phosphor and the glass. It is speculated that fluoride ions promote this penetration. As long as the affinity with the phosphor surface increases, the type of additive is not limited, and chlorine, iodine, and bromine can be used, but fluorine is preferred from the viewpoint of stability.
また、本発明の被覆蛍光体粒子におけるガラス組成物は、鉛の含有量が通常0.1重量%以下、好ましくは0.01重量%以下、さらに好ましくは0.001重量%以下である。鉛の含有量は少なすぎるほど好ましく、多すぎると廃棄時に有害元素による汚染の可能性がある。
本発明の被覆蛍光体粒子におけるガラス組成物の好ましい具体例としては、例えばP2O5が34重量%以上50重量%以下、Li2Oが2重量%以上9重量%以下、Na2Oが7重量%以上28重量%以下、R2O(但し、Rはアルカリ金属)が17重量%以上41重量%以下、Al2O3が6.5重量%以上30重量%以下、ZnOが0重量%以上22重量%以下、BaOが0重量%以上21重量%以下、SrOが0重量%以上18重量%以下、CaOが0重量%以上16重量%以下、RO(但し、Rはアルカリ土類金属)が0重量%以上34重量%以下、Fが0重量%以上32重量%以下の組成であるガラス組成物を挙げることができる。R2Oは、好ましくは、K2Oが挙げられ、3重量%以上27重量%以下であることが好ましい。ROは、MgOが好ましく、0重量%以上14重量%以下であることが好ましい。Fは1.5−32%であることが好ましい。
The glass composition in the coated phosphor particles of the present invention has a lead content of usually 0.1% by weight or less, preferably 0.01% by weight or less, more preferably 0.001% by weight or less. The lead content is preferably as low as possible. If it is too high, there is a possibility of contamination by harmful elements during disposal.
Preferable specific examples of the glass composition in the coated phosphor particles of the present invention include, for example, P 2 O 5 of 34 wt% to 50 wt%, Li 2 O of 2 wt% to 9 wt%, and Na 2 O of 7 wt% to 28 wt%, R 2 O (where R is an alkali metal) is 17 wt% to 41 wt%, Al 2 O 3 is 6.5 wt% to 30 wt%, and ZnO is 0 wt% % To 22% by weight, BaO from 0% to 21% by weight, SrO from 0% to 18% by weight, CaO from 0% to 16% by weight, RO (where R is an alkaline earth metal) ) Is from 0% by weight to 34% by weight, and F is from 0% by weight to 32% by weight. R 2 O is preferably, K 2 O, and the like, is preferably 3 wt% or more 27 wt% or less. RO is preferably MgO, and preferably 0 wt% or more and 14 wt% or less. F is preferably 1.5-32%.
本発明に用いるガラス組成物は、公知のものを使用することができる。例えば国際公開2003/037813号パンフレット、特開2003−26439号公報、特開平5−193979号公報に記載の公知のガラス組成物を挙げることができる。
また、市販のガラス組成物を使用することができる。具体的には、OPTICAL GLASS DATA BOOK(Version 5.00 2005年4月28日発行、2005年7月5日改定)に記載の住田光学ガラス社製「K−PG325」、「K−PG375」、「K−PG395」、「K−PMK10」、「K−PMK10」、「K−PSKn2」、「K−BK7」、「K−BPG2」、「K−SKF6」、「K−LaK7」、「K−CaFK95」、「K−PFK85」、「K−PFK80」、「K−GFK70」、「K−GFK68」、「K−CD45」、「K−CD120」、「K−LaFK55」、「K−LaFK60」、「K−PSK200」、「K−PSFn1」、「K−PSFn2」、「K−PSFn3」、「K−PSFn4」、「K−PSFn5」、「K−PMK10」、「K−PSK100」、「K−VC80」、「K−VC81」、「K−VC82」、「K−VC89」、光ガラス社製「P−SK5S」、「P−SK12S」、「P−LAK13S」、「P−LAF010S」、「P−FKH2S」、「P−LASF03S」、「P−FK01S」、旭ファイバーガラス社製「ZP150」、旭テクノグラス社製「SK−231」、「SK−360」、「K801」、「K805」、「K806」、「K807」、「K808」、「LS−5」、「BS−7」、「FF201」、「FF209」、2007年旭硝子 エレクトロニクス用ASF粉末ガラス,ATG粉末ガラスカタログに記載の旭硝子社製「IWF−7574」、「FF201」、「FF209」、「K301」、「K303」、「K304」、「K805」、「K807」、「K808」、「K834」、「K835」、「K836」、「LS−5」、「KF9079」、「ASF1495」、「ASF1560」、「ASF1561」、「ASF1620B」、「ASF1620M」、「ASF1700」、「ASF1702」、「ASF1710」、「ASF1765B」、「ASF1768」、「ASF1771」、「ASF1800」、「ASF1891」、「ASF1891F」、「ASF1898」、「ASF1939」、「ASF1941」、「ASF1941B」、「開発品1991」等を挙げることができる。
Known glass compositions can be used for the glass composition used in the present invention. Examples thereof include known glass compositions described in International Publication No. 2003/037813, JP-A No. 2003-26439, and JP-A No. 5-199379.
Moreover, a commercially available glass composition can be used. Specifically, “K-PG325”, “K-PG375” manufactured by Sumita Optical Glass Co., Ltd. described in OPTICAL GLASS DATA BOOK (Version 5.00 issued on April 28, 2005, revised on July 5, 2005), “K-PG395”, “K-PMK10”, “K-PMK10”, “K-PSKn2”, “K-BK7”, “K-BPG2”, “K-SKF6”, “K-LaK7”, “K -CaFK95 "," K-PFK85 "," K-PFK80 "," K-GFK70 "," K-GFK68 "," K-CD45 "," K-CD120 "," K-LaFK55 "," K-LaFK60 " ”,“ K-PSK200 ”,“ K-PSFn1 ”,“ K-PSFn2 ”,“ K-PSFn3 ”,“ K-PSFn4 ”,“ K-PSFn5 ”,“ K-PMK1 ” ”,“ K-PSK100 ”,“ K-VC80 ”,“ K-VC81 ”,“ K-VC82 ”,“ K-VC89 ”,“ P-SK5S ”,“ P-SK12S ”,“ P ”manufactured by Hikari Glass Co., Ltd. -LAK13S "," P-LAF010S "," P-FKH2S "," P-LASF03S "," P-FK01S ", Asahi Fiber Glass" ZP150 ", Asahi Techno Glass" SK-231 "," SK -360 "," K801 "," K805 "," K806 "," K807 "," K808 "," LS-5 "," BS-7 "," FF201 "," FF209 ", 2007 ASF for Asahi Glass Electronics “IWF-7574”, “FF201”, “FF209”, “K301”, “K303”, “K30” manufactured by Asahi Glass Co., Ltd. ”,“ K805 ”,“ K807 ”,“ K808 ”,“ K834 ”,“ K835 ”,“ K836 ”,“ LS-5 ”,“ KF9079 ”,“ ASF1495 ”,“ ASF1560 ”,“ ASF1561 ”,“ ASF1620B ” "," ASF1620M "," ASF1700 "," ASF1702 "," ASF1710 "," ASF1765B "," ASF1768 "," ASF1771 "," ASF1800 "," ASF1891 "," ASF1891F "," ASF1898 "," ASF1939 " “ASF1941”, “ASF1941B”, “developed product 1991” and the like can be mentioned.
また、本発明のガラス被覆に用いることが出来るガラスとしては、例えば、ガラス軟化点が550℃前後であるBi2O3−SiO2−B2O3系ガラス、ガラス転移点が約500〜700℃であるSiO2−B2O3−R2O、SiO2−B2O3−RO−R2O系ガラス(但し、Rはアルカリ金属、またはアルカリ土類金属を示す。)を用いた無鉛ガラスセラミックスが挙げられる。 Examples of the glass that can be used for the glass coating of the present invention include Bi 2 O 3 —SiO 2 —B 2 O 3 glass having a glass softening point of around 550 ° C., and a glass transition point of about 500 to 700. SiO 2 —B 2 O 3 —R 2 O, SiO 2 —B 2 O 3 —RO—R 2 O-based glass (wherein R represents an alkali metal or an alkaline earth metal) at a temperature of 0 ° C. was used. Examples include lead-free glass ceramics.
その他、従来使用されてきた用途に着目すると、ガラス、セラミックス、金属の接着、封着に用いられる粉末ガラス、各種セラミックス、金属粉末の焼結温度を低下させるための添加剤として使用されているBi2O3−B2O3−SiO2、B2O3−ZnO、SiO2−B2O3−R2O、SiO2−B2O3−RO系などの粉末ガラス(但し、R2Oは、アルカリ金属酸化物、ROは、アルカリ土類金属酸化物を示す。)が挙げられる。 In addition, focusing on the applications that have been used in the past, Bi used as an additive for lowering the sintering temperature of glass, ceramics, powdered glass used for adhesion and sealing, various ceramics, and metal powder. 2 O 3 -B 2 O 3 -SiO 2, B 2 O 3 -ZnO, SiO 2 -B 2 O 3 -R 2 O, powdered glass such as SiO 2 -B 2 O 3 -RO based (wherein, R 2 O represents an alkali metal oxide, and RO represents an alkaline earth metal oxide.).
以下、さらにガラスの構成元素に着目して詳しく例示する。
本発明で好ましく用いられるガラスは、非Pb含有低融点ガラスであり、このガラスは従来のPb含有低融点ガラスにおいて、 Pb をBi に置き換える、Zn あるいはSn
を採用する、 ガラスの基礎組成をリン酸塩系ガラスに変える、アルカリ・ホウ酸成分を増やす、フッ化物を導入する、などの方法により、非Pb化を実現したものである。
Hereinafter, further detailed examples will be given focusing on the constituent elements of the glass.
The glass preferably used in the present invention is a non-Pb-containing low-melting glass, and this glass is a conventional Pb-containing low-melting glass, in which Pb is replaced with Bi, Zn or Sn.
Non-Pb conversion is achieved by adopting a method such as changing the basic composition of glass to phosphate glass, increasing the alkali / boric acid component, and introducing fluoride.
ビスマス(Bi)導入ガラスの例としては、Bi2O3−B2O3系ガラス組成物が挙げられる。具体的には、37Bi2O3−39.3B2O3−7.2BaO−16.7CuO、 65Bi2O3−25ZnO−7.5B2O3−2.0Al2O3、Bi2O3
を27重量%以上55重量%以下含有するBi2O3−ZnO−B2O3 系ガラス組成
物、Bi2O3−SiO2系ベースの結晶化ガラス粉末(Bi2O3含有量は50−62重量%)、SiO2−B2O3−Bi2O3−ZnO 系ガラス組成物などが挙げられる。
Examples of bismuth (Bi) -introduced glass include Bi 2 O 3 —B 2 O 3 -based glass compositions. Specifically, 37Bi 2 O 3 -39.3B 2 O 3 -7.2BaO-16.7CuO, 65Bi 2 O 3 -25ZnO-7.5B 2 O 3 -2.0Al 2
Bi 2 O 3 —ZnO—B 2 O 3 -based glass composition containing 27 wt% or more and 55 wt% or less, Bi 2 O 3 —SiO 2 -based crystallized glass powder (Bi 2 O 3 content is 50 -62 wt%), SiO 2 -B 2 O 3 -Bi 2 O 3 -ZnO based glass composition, and the like.
リン酸塩ガラスの例としては、リン酸塩ガラスは他成分に対する溶解度も大きく,低い溶融温度をもつため好ましく用いられる。具体例として、P2O5:Na2O: CaO
: BaO: Al2O3:B2O3=30〜40:10〜20:10〜20:10〜20:2〜8:1〜5のガラス組成物を挙げることができる。
アルミナの添加は化学的耐久性向上に効果的だが,低融点性にマイナスに影響する場合がある。リン酸塩ガラスをベースとして、SnO が加えられ、更に通常のガラス形成酸
化物であるB2O3またはSiO2 が添加される場合もある。P2O5−SnO 系ガラス組成物、P2O5−SnO−B2O3 系ガラス組成物、P2O5−SnO−SiO2 系ガラス組成物を挙げることができる。 その他、CuO−P2O5−RO系ガラス組成物(但し、Rは、Zn、Ba、Ca、Mg、Sr、Sn、Ni、Fe、Mnのいずれかを示す。)が挙げられる。その他、P2O5−ZnO−SnO−R2O−RO(但し、R2Oは、アルカリ金属酸化物、ROは、アルカリ土類金属酸化物を示す。)、SrO−ZnO−P2O5、10SrO−50ZnO−40P2O5のガラス組成物が挙げられる。
As an example of phosphate glass, phosphate glass is preferably used because it has high solubility in other components and has a low melting temperature. As a specific example, P 2 O 5 : Na 2 O: CaO
: BaO: Al 2 O 3: B 2
Addition of alumina is effective in improving chemical durability, but it may negatively affect low melting point. SnO 2 is added based on phosphate glass, and B 2 O 3 or SiO 2 , which is a normal glass forming oxide, may be added. P 2 O 5 —SnO 2 glass composition, P 2 O 5 —SnO—B 2 O 3 glass composition, and P 2 O 5 —SnO—SiO 2 glass composition can be exemplified. In addition, a CuO—P 2 O 5 —RO-based glass composition (where R represents any one of Zn, Ba, Ca, Mg, Sr, Sn, Ni, Fe, and Mn) can be given. In addition, P 2 O 5 —ZnO—SnO—R 2 O—RO (where R 2 O represents an alkali metal oxide, and RO represents an alkaline earth metal oxide), SrO—ZnO—P 2 O 5 , 10SrO-50ZnO-40P 2 O 5 glass composition.
アルカリ・ホウケイ酸塩ガラスの例としては、R2O−RO−B2O3−SiO2 系
ガラス組成物(但し、R2Oは、アルカリ金属酸化物、ROは、アルカリ土類金属酸化物を示す。)が挙げられる。具体的には、B2O3−SiO2−Al2O3−ZrO2系ガラス組成物、SiO2−B2O3−ZnO−R2O−RO系ガラス組成物(但し、R2Oは、アルカリ金属酸化物、ROは、アルカリ土類金属酸化物を示す。)、SiO2−B2O3−Al2O3−RO−R2O 系ガラス組成物(但し、R2Oは、アルカリ金属酸化物、ROは、アルカリ土類金属酸化物を示す。)などが挙げられる。
Examples of alkali borosilicate glass include R 2 O—RO—B 2 O 3 —SiO 2 glass composition (where R 2 O is an alkali metal oxide, RO is an alkaline earth metal oxide) Is shown.). Specifically, B 2 O 3 —SiO 2 —Al 2 O 3 —ZrO 2 glass composition, SiO 2 —B 2 O 3 —ZnO—R 2 O—RO glass composition (provided that R 2 O Is an alkali metal oxide, RO is an alkaline earth metal oxide), SiO 2 —B 2 O 3 —Al 2 O 3 —RO—R 2 O glass composition (where R 2 O is , Alkali metal oxides, and RO are alkaline earth metal oxides).
また、第二の本発明の被覆蛍光体粒子においては、前記ガラス組成物が形成する被覆層の膜厚が0.1μm以上、好ましくは0.5μm以上であり、10μm以下、好ましくは5μm以下、さらに好ましくは2μm以下である。被覆層の膜厚が大きすぎると、蛍光体の発光強度が低下する。小さすぎると耐湿性、ガスバリヤ性が不十分となる。被覆層の膜厚は、以下の(i)〜(iii)のいずれかの方法により測定することができる。
(i)走査型電子顕微鏡(SEM)で蛍光体粒子10個を任意に選択し、その膜厚を目視により測定し、平均値を求める。
(ii)SEM−EDX(エネルギー分散型X線分析)EPMA(エレクトロン・プローブ、マイクロ・アナリシス)、またはSEMとCL(電子線励起による発光)の組み合わせなどを用いて、任意に選択した蛍光体粒子10個の断面の元素分析を行い、得られる膜厚を測定し、平均値を求める。
(iii)被覆処理前後の中央粒径D50の差を求め、これを膜厚とする。但し、本発明の
被覆処理において凝集する蛍光体粒子の膜厚を測定する場合は、凝集を超音波等でほぐした後、測定するか、前記(i)又は(ii)を採用する。
本発明の被覆蛍光体粒子においては、前記ガラス組成物が形成する被覆層が連続膜であることが好ましい。ここで、連続膜とは、被覆蛍光体粒子を走査型電子顕微鏡で観察した際に、被覆層が蛍光体周囲を連続して被覆しており、実質的に断裂されていない状態をいう。
In the coated phosphor particles of the second invention, the coating layer formed by the glass composition has a film thickness of 0.1 μm or more, preferably 0.5 μm or more, 10 μm or less, preferably 5 μm or less, More preferably, it is 2 μm or less. When the film thickness of the coating layer is too large, the emission intensity of the phosphor is lowered. If it is too small, the moisture resistance and gas barrier properties will be insufficient. The film thickness of the coating layer can be measured by any of the following methods (i) to (iii).
(I) Ten phosphor particles are arbitrarily selected with a scanning electron microscope (SEM), the film thickness is visually measured, and an average value is obtained.
(Ii) Phosphor particles arbitrarily selected using SEM-EDX (energy dispersive X-ray analysis) EPMA (electron probe, micro analysis), or a combination of SEM and CL (light emission by electron beam excitation) Elemental analysis of 10 cross sections is performed, the film thickness obtained is measured, and the average value is obtained.
(Iii) The difference between the median particle diameters D 50 before and after the coating treatment is determined, and this is defined as the film thickness. However, when measuring the film thickness of the phosphor particles aggregated in the coating treatment of the present invention, measurement is performed after loosening the aggregation with ultrasonic waves or the like, or the above (i) or (ii) is adopted.
In the coated phosphor particles of the present invention, the coating layer formed by the glass composition is preferably a continuous film. Here, the continuous film means a state in which, when the coated phosphor particles are observed with a scanning electron microscope, the coating layer continuously covers the periphery of the phosphor and is not substantially torn.
[2−2]被覆性が良好な蛍光体粒子とガラス組成物の組み合わせ
前述の[1−1]および[1−2]に記載の蛍光体粒子の中でも、[3]で述する被覆蛍光体粒子の製造方法により被覆性が良好なものとしては、窒化物および/または酸化物蛍光体粒子が挙げられる。
被覆性が良好であるためには、蛍光体粒子とガラス組成物の組み合わせが重要である。即ち、蛍光体表面とガラス組成物の溶融液との濡れ性が良好であるのが好ましい。具体的には、以下の性質を有していることが好ましい。
(i)溶融状態におけるガラス組成物の蛍光体粒子平面上での接触角が、通常140度以下、好ましくは130度以下、さらに好ましくは120度以下であり、通常2度以上、好ましくは5度以上、さらに好ましくは10度以上であること。
(ii)ガラス組成物成分と蛍光体粒子の表面で化学反応が起こること。
(iii)上記化学反応の反応温度が蛍光体粒子の劣化に影響しないこと。即ち、反応温度が通常800℃以下、好ましくは600℃以下であること。
[2-2] Combination of phosphor particles having good coverage and glass composition Among the phosphor particles described in [1-1] and [1-2], the coated phosphor described in [3] Nitride and / or oxide phosphor particles may be mentioned as those having good coverage by the particle production method.
A combination of phosphor particles and a glass composition is important for good coverage. That is, it is preferable that the wettability between the phosphor surface and the melt of the glass composition is good. Specifically, it preferably has the following properties.
(I) The contact angle of the glass composition in the molten state on the phosphor particle plane is usually 140 degrees or less, preferably 130 degrees or less, more preferably 120 degrees or less, usually 2 degrees or more, preferably 5 degrees. Above, more preferably 10 degrees or more.
(Ii) A chemical reaction occurs on the surface of the glass composition component and the phosphor particles.
(Iii) The reaction temperature of the chemical reaction does not affect the deterioration of the phosphor particles. That is, the reaction temperature is usually 800 ° C. or lower, preferably 600 ° C. or lower.
接触角の測定は公知の方法が採用できる。接触角の計測にあたっては、被覆温度、被服雰囲気での蛍光体表面の平均的な接触角を計測することが好ましい。例えば、英弘精機社製「OCA 15 plus」などを用い、温度制御機構「TEC700」などにより加熱状態での動的接触角を計測し、前進角の平均値をもって蛍光体表面に対するガラス融液の接触角とすることが出来る。 A known method can be employed for measuring the contact angle. In measuring the contact angle, it is preferable to measure the average contact angle of the phosphor surface in the coating temperature and the clothing atmosphere. For example, by using “OCA 15 plus” manufactured by EKO, etc., the dynamic contact angle in the heated state is measured by the temperature control mechanism “TEC700”, etc., and the glass melt contacts the phosphor surface with the average value of the advance angle. It can be a corner.
このような被覆性が良好な蛍光体粒子とガラス組成物の組み合わせとしては、例えば、以下の組み合わせを挙げることができる。 Examples of the combination of the phosphor particles having a good coating property and the glass composition include the following combinations.
また、蛍光体粒子とガラス組成物の親和性との観点から、蛍光体粒子の水中(pH5.6)でのゼータ電位(mV)は、通常−5以下、好ましくは−10以下、さらに好ましくは−20以下、特に好ましくは−21以下である。 一方、ガラス組成物の水中(pH5.6)でのゼータ電位(mV)は、通常−50以下、好ましくは−60以下、さらに好ましくは−50以下である。ガラス組成物のゼータ電位が大きすぎると蛍光体粒子との親和性が低くなる場合がある。 Further, from the viewpoint of the affinity between the phosphor particles and the glass composition, the zeta potential (mV) of the phosphor particles in water (pH 5.6) is usually −5 or less, preferably −10 or less, more preferably. -20 or less, particularly preferably -21 or less. On the other hand, the zeta potential (mV) of the glass composition in water (pH 5.6) is usually −50 or less, preferably −60 or less, and more preferably −50 or less. If the zeta potential of the glass composition is too large, the affinity with the phosphor particles may be lowered.
[3]被覆蛍光体粒子の製造方法
本発明の被覆蛍光体粒子の製造方法としては、例えば、(A)蛍光体粒子、および(B)アルカリ金属、アルカリ土類金属およびZnから選択された1以上を含有するガラス組成物を混合し、前記(B)ガラス組成物の屈伏点以上で加熱する方法を挙げることができる。
[3−1](A)蛍光体粒子と(B)ガラス組成物の混合する工程
本発明に使用する(A)蛍光体の粒径は[1−4]に記載の通りであるが、(B)ガラス組成物の粒径に比較して大きいことが望ましい。本発明に使用するガラス組成物の形状について制限はないが通常、粒状、繊維状のものが使用できる。例えばガラス組成物として粒状のものを用いる場合は、中央粒径(D50)で、通常0.01μm以上、好ましくは0.1μm以上、通常20μm以下、好ましくは10μm以下である。ガラス組成物を粒状あるいは粉末状に粉砕する方法に特に制限は無いが、乳鉢による粉砕、メディアを用いる振動ミル、ボールミル、ジェットミル、遊星ボールミルなどを用いることが出来る。
[3] Method for Producing Coated Phosphor Particles As a method for producing the coated phosphor particles of the present invention, for example, (A) phosphor particles, and (B) 1 selected from alkali metals, alkaline earth metals, and Zn are used. The glass composition containing the above can be mixed, and the method of heating above the yield point of the said (B) glass composition can be mentioned.
[3-1] Step of mixing (A) phosphor particles and (B) glass composition The particle size of (A) phosphor used in the present invention is as described in [1-4]. B) It is desirable that it is larger than the particle size of the glass composition. Although there is no restriction | limiting about the shape of the glass composition used for this invention, Usually, a granular and fibrous thing can be used. For example, when using a granular glass composition, the median particle size (D 50 ) is usually 0.01 μm or more, preferably 0.1 μm or more, usually 20 μm or less, preferably 10 μm or less. The method for pulverizing the glass composition into a granular or powder form is not particularly limited, and pulverization with a mortar, vibration mill using media, ball mill, jet mill, planetary ball mill, and the like can be used.
蛍光体粒子を被覆する場合、被覆厚みは耐湿性を保ちながら、できるだけ薄いことが膜による光吸収を避ける意味で好ましい。この点から被覆層の膜厚は通常0.1μm以上、好ましくは0.5μm以上であり、10μm以下、好ましくは5μm以下、さらに好ましくは2μm以下である。被覆層の膜厚は[2−1]で記載と同様の方法により測定できる。
以上の点から配合すべきガラス組成物の量は、蛍光体粒子の比表面積を求め、ガラス組成物の密度を用いて連続皮膜が形成されたときの所定の膜厚となる量として決定できる。
When the phosphor particles are coated, it is preferable that the coating thickness is as thin as possible while keeping moisture resistance, in order to avoid light absorption by the film. From this point, the film thickness of the coating layer is usually 0.1 μm or more, preferably 0.5 μm or more, 10 μm or less, preferably 5 μm or less, and more preferably 2 μm or less. The film thickness of the coating layer can be measured by the same method as described in [2-1].
From the above points, the amount of the glass composition to be blended can be determined as the amount of the predetermined film thickness when the specific surface area of the phosphor particles is obtained and the continuous film is formed using the density of the glass composition.
蛍光体粒子とガラス組成物の混合法に制限はないが蛍光体が水分に対し劣化する場合には湿式混合法は避け、乾式混合法を採用することが好ましい。乾式混合法の例としては、乳鉢と乳棒等を用いる粉砕、振動ミル、ハンマーミル、ロールミル、ボールミル、ジェットミル等の乾式粉砕機を用いる粉砕、リボンブレンダー、V型ブレンダー、ヘンシェルミキサー等の混合機、を用いる粉砕、およびこれらを組み合わせた乾式混合法等を挙げることができる。組み合わせた乾式混合法としては、乾式粉砕機を用いる粉砕および乳鉢と乳棒を用いる混合の組み合わせ、混合機を用いる粉砕および乳鉢と乳棒を用いる混合の組み合わせ等を挙げることができる。 There is no limitation on the mixing method of the phosphor particles and the glass composition, but when the phosphor deteriorates against moisture, it is preferable to avoid the wet mixing method and adopt the dry mixing method. Examples of dry mixing methods include pulverization using a mortar and pestle, pulverization using a dry pulverizer such as a vibration mill, hammer mill, roll mill, ball mill, jet mill, etc., mixers such as a ribbon blender, V-type blender, Henschel mixer, etc. And a dry mixing method combining these. Examples of the combined dry mixing method include a combination of pulverization using a dry pulverizer and mixing using a mortar and a pestle, a combination of pulverization using a mixer and mixing using a mortar and pestle, and the like.
混合に際し、蛍光体粒子の表面電荷とガラス組成物の表面電荷は、特に制約は無いが、同電荷であっても、少なくとも一方が小さい値であるか、ともに大きくない値であることが好ましい。互いに異なることがさらに好ましい。両者の電荷が異なると、静電引力により蛍光体粒子の表面にガラス組成物が容易に付着し、後段の加熱処理の際、良好な連続皮膜を得ることができる。粉体の表面電荷はブローオフ帯電測定器で容易に測定することができる。電荷が同一である場合には、必要に応じて蛍光体粒子を表面処理することにより電荷を変更する方法等を用いればよい。 At the time of mixing, the surface charge of the phosphor particles and the surface charge of the glass composition are not particularly limited, but it is preferable that at least one of the surface charges is a small value or a value that is not large. More preferably, they are different from each other. When the charges are different from each other, the glass composition easily adheres to the surface of the phosphor particles due to electrostatic attraction, and a good continuous film can be obtained during the subsequent heat treatment. The surface charge of the powder can be easily measured with a blow-off charge measuring device. In the case where the charges are the same, a method of changing the charges by surface-treating the phosphor particles as necessary may be used.
[3−2]加熱工程
(A)蛍光体粒子と(B)ガラス組成物の混合後の加熱は、(B)ガラス組成物の屈伏点以上で加熱する方法であれば特に限定はない。以下に、加熱方法の一例を挙げる。
蛍光体粒子とガラス組成物の混合物を反応性の低いルツボまたはトレーに充填する。容器材質に特に制限は無いが、石英、アルミナ、黒鉛、ステンレス、白金、モリブデン、タングステン、窒化ケイ素などを用いることが出来る。耐熱衝撃性、蛍光体への汚染の少なさ、価格の点で、石英が好ましい。加熱処理による被覆方法に特に制限は無いが、ガラスによる蛍光体粒子同士の付着を防ぐためには流動状態で加熱する方法を用いても良い。成膜性を向上させるため、ガラス粒子を予め蛍光体表面に均一に付着させても良い。具体的には、分散媒に分散させたガラス粒子と蛍光体粒子からなるスラリーを噴霧乾燥する方法、静電付着を利用して蛍光体表面にガラス粒子を付着させる方法、衝撃力による打ち込み、メカノケミカル反応を利用して蛍光体粒子表面にガラス粒子を固定化させる方法などが挙げられる。
[3-2] Heating Step (A) The heating after mixing the phosphor particles and the (B) glass composition is not particularly limited as long as it is a method of heating above the yield point of the (B) glass composition. An example of the heating method is given below.
A mixture of phosphor particles and glass composition is filled into a less reactive crucible or tray. Although there is no restriction | limiting in particular in a container material, Quartz, an alumina, graphite, stainless steel, platinum, molybdenum, tungsten, silicon nitride, etc. can be used. Quartz is preferable in terms of thermal shock resistance, less contamination of the phosphor, and cost. Although there is no restriction | limiting in particular in the coating method by heat processing, In order to prevent adhesion of the fluorescent substance particles by glass, you may use the method heated in a fluid state. In order to improve the film formability, the glass particles may be uniformly adhered to the phosphor surface in advance. Specifically, a method of spray-drying a slurry made of glass particles and phosphor particles dispersed in a dispersion medium, a method of attaching glass particles to the phosphor surface using electrostatic adhesion, implantation by impact force, mechano Examples include a method of immobilizing glass particles on the surface of phosphor particles using a chemical reaction.
また、蛍光体とガラス粉末を加熱処理する際に、ガラス同士の付着を防ぐため、例えば、流動状態、転動状態で加熱しても良い。
加熱雰囲気は蛍光体粒子の種類によって異なる。大気中で加熱すると劣化する蛍光体にあっては劣化の起こらない雰囲気を採用することが好ましい。
加熱による劣化の原因としては結晶母体の変化及びまたは発光中心イオンの価数変化が挙げられる。発光中心イオンの価数が変化しない雰囲気であれば特に制限は無いが、Eu2+やCe3+など、最高酸化数より低い価数の発行中心イオンを含有する蛍光体に関しては、不活性雰囲気で加熱することが好ましい。雰囲気中の酸素濃度は通常100ppm以下、好ましくは20ppm以下、更に好ましくは10ppm以下である。通常使用する蛍光体の製造時の雰囲気下で加熱してもよい。また、加熱雰囲気が蛍光体粒子とガラス組成物との親和性に影響を与える場合もあるため、被覆状態が良好となる加熱雰囲気を選択する。加熱雰囲気以外にも、ガラス粉末、蛍光体粉末の含水率などは被覆状態に影響を与える可能性があるため、乾燥して用いるなど適切な前処理を行うことが好ましい。
Further, when the phosphor and the glass powder are heat-treated, for example, in order to prevent adhesion between the glasses, the phosphor and the glass powder may be heated in a fluidized state or a rolling state.
The heating atmosphere varies depending on the type of phosphor particles. For a phosphor that deteriorates when heated in the air, it is preferable to employ an atmosphere in which deterioration does not occur.
Causes of deterioration due to heating include a change in the crystal matrix and / or a change in the valence of the luminescent center ion. The atmosphere is not particularly limited as long as the valence of the luminescent center ion does not change. However, for a phosphor containing the issuing center ion having a valence lower than the maximum oxidation number, such as Eu 2+ and Ce 3+ , an inert atmosphere. It is preferable to heat with. The oxygen concentration in the atmosphere is usually 100 ppm or less, preferably 20 ppm or less, more preferably 10 ppm or less. You may heat in the atmosphere at the time of manufacture of the fluorescent substance normally used. In addition, since the heating atmosphere may affect the affinity between the phosphor particles and the glass composition, a heating atmosphere in which the covering state is favorable is selected. In addition to the heating atmosphere, the moisture content of the glass powder and the phosphor powder may affect the coating state. Therefore, it is preferable to perform an appropriate pretreatment such as drying.
ガラスで蛍光体表面を被覆し、緻密な膜を形成するため、加熱温度は使用するガラス組成の屈伏点以上で加熱することが必要である。
屈伏点とは伸びが停止し、収縮が始まる温度を言う。
屈伏点の測定方法は下記の通りである。
炉内温度精度が±1℃の示差熱膨張計を用いて、毎分5℃の昇温速度で試料(φ4×20mm)を加熱し、温度とガラスの伸びを測定して求める。
加熱時間は皮膜が形成されるに要する物質移動の時間であり、所定温度に到達後一定時間保持する。通常1分以上、好ましくは5分以上、通常2時間以下、好ましくは0.5時間以下である。
In order to coat the phosphor surface with glass and form a dense film, it is necessary to heat at a heating temperature equal to or higher than the yield point of the glass composition to be used.
The yield point is the temperature at which elongation stops and contraction begins.
The method for measuring the yield point is as follows.
Using a differential thermal dilatometer with a furnace temperature accuracy of ± 1 ° C., a sample (φ4 × 20 mm) is heated at a rate of temperature increase of 5 ° C. per minute, and the temperature and elongation of the glass are measured.
The heating time is a time required for mass transfer required for forming a film, and is maintained for a certain time after reaching a predetermined temperature. Usually 1 minute or longer, preferably 5 minutes or longer, usually 2 hours or shorter, preferably 0.5 hours or shorter.
[4]被覆蛍光体粒子の特性
本発明の被覆蛍光体粒子は、以下の特性を有する。以下の特性により、本発明の被覆蛍光体粒子は、従来の皮膜形成方法と比較して、ガラスによる連続皮膜がより十分に形成され、ガスバリヤ性が高いものと考えられる。
[4] Characteristics of coated phosphor particles The coated phosphor particles of the present invention have the following characteristics. Due to the following characteristics, it is considered that the coated phosphor particles of the present invention are more sufficiently formed with a continuous film made of glass and have a higher gas barrier property than the conventional film forming method.
[4−1]輝度、色度
本発明の被覆蛍光体粒子に形成される被覆層は、光透過性が高く、UV-可視光領域で透
明なので、被覆前の蛍光体粒子の輝度、色度はほとんど影響を受けない。具体的には、本発明の被覆前の蛍光体粒子に対する被覆蛍光体粒子の輝度維持率(被覆蛍光体粒子の輝度/被覆前の蛍光体粒子の輝度×100)は、通常70%以上、好ましくは80%以上、さらに好ましくは90%以上である。色度の変化は、CIE座標の値で±0.05以下である。
[4-1] Luminance and chromaticity Since the coating layer formed on the coated phosphor particles of the present invention has high light transmittance and is transparent in the UV-visible light region, the luminance and chromaticity of the phosphor particles before coating. Is hardly affected. Specifically, the luminance maintenance ratio of the coated phosphor particles with respect to the phosphor particles before coating of the present invention (luminance of the coated phosphor particles / luminance of the phosphor particles before coating × 100) is usually 70% or more, preferably Is 80% or more, more preferably 90% or more. The change in chromaticity is ± 0.05 or less in terms of CIE coordinates.
[4−2]粒度分布
本発明の被覆蛍光体粒子に形成される被覆層は、上述のように連続した薄膜であり、被覆処理前の蛍光体の粒度分布はほとんど影響を受けない。
[4−3]耐湿性
本発明の被覆蛍光体粒子は、ガスバリヤ性が高く、下記の高温高湿劣化試験で重量増加が認められない。
[4−3−A]高温高湿劣化試験
(i)試料となる被覆蛍光体粒子の重量を測定する。
(ii)前記被覆蛍光体粒子を雰囲気温度85℃/相対温度85%に保たれたチャンバーに静置する。
(iii)200時間後及び400時間後における前記被覆蛍光体粒子の重量をそれぞれ
測定し下記式によりそれぞれの重量増加率を算出する。
重量増加率(%)={(iii)における測定重量}/{(i)における測定重量}×100
本発明の被覆蛍光体粒子が上記高温高湿劣化試験で重量増加が認められない理由は次のように推察される。即ち、従来の被覆層構造では、水蒸気の透過を防ぐことができないのに対し、本発明の被覆層構造は水蒸気の侵入する空隙が存在しない。
[4-2] Particle size distribution The coating layer formed on the coated phosphor particles of the present invention is a continuous thin film as described above, and the particle size distribution of the phosphor before coating treatment is hardly affected.
[4-3] Moisture resistance The coated phosphor particles of the present invention have high gas barrier properties, and no increase in weight is observed in the following high temperature and high humidity deterioration test.
[4-3-A] High-temperature and high-humidity deterioration test (i) The weight of the coated phosphor particles as a sample is measured.
(Ii) The coated phosphor particles are allowed to stand in a chamber maintained at an atmospheric temperature of 85 ° C./relative temperature of 85%.
(Iii) The weights of the coated phosphor particles after 200 hours and 400 hours are measured, and the respective weight increase rates are calculated by the following formulas.
Weight increase rate (%) = {measured weight in (iii)} / {measured weight in (i)} × 100
The reason why the coated phosphor particles of the present invention do not increase in weight in the high temperature and high humidity deterioration test is presumed as follows. That is, the conventional coating layer structure cannot prevent the permeation of water vapor, whereas the coating layer structure of the present invention does not have a void into which water vapor enters.
[5]蛍光体含有組成物
本発明の蛍光体含有組成物は、前記の本発明の被覆蛍光体粒子、液状媒体、およびその他任意成分を配合することにより得ることが出来る。以下、蛍光体含有組成物について説明する。
[5−1]液状媒体
使用される液状媒体としては無機系材料および/または有機系材料が使用できる。
無機系材料としては、例えば、金属アルコキシド、セラミック前駆体ポリマー若しくは金属アルコキシドを含有する溶液をゾル−ゲル法により加水分解重合して成る溶液、またはこれらの組み合わせを固化した無機系材料(例えばシロキサン結合を有する無機系材料)等を挙げることができる。
有機系材料としては、熱可塑性樹脂、熱硬化性樹脂、光硬化性樹脂等が挙げられる。具体的には、例えば、ポリメタアクリル酸メチル等のメタアクリル樹脂;ポリスチレン、スチレン−アクリロニトリル共重合体等のスチレン樹脂;ポリカーボネート樹脂;ポリエステル樹脂;フェノキシ樹脂;ブチラール樹脂;ポリビニルアルコール;エチルセルロース、セルロースアセテート、セルロースアセテートブチレート等のセルロース系樹脂;エポキシ樹脂;フェノール樹脂;シリコーン樹脂等が挙げられる。特に照明など大出力の発光装置が必要な場合、耐熱性や耐光性等を目的として珪素含有化合物を使用するのが好ましい。
[5] Phosphor-containing composition The phosphor-containing composition of the present invention can be obtained by blending the coated phosphor particles of the present invention, a liquid medium, and other optional components. Hereinafter, the phosphor-containing composition will be described.
[5-1] Liquid medium As the liquid medium to be used, an inorganic material and / or an organic material can be used.
As the inorganic material, for example, a solution obtained by hydrolytic polymerization of a solution containing a metal alkoxide, a ceramic precursor polymer or a metal alkoxide by a sol-gel method, or a combination thereof is solidified (for example, a siloxane bond). Inorganic materials having
Examples of organic materials include thermoplastic resins, thermosetting resins, and photocurable resins. Specifically, for example, methacrylic resin such as polymethylmethacrylate; styrene resin such as polystyrene and styrene-acrylonitrile copolymer; polycarbonate resin; polyester resin; phenoxy resin; butyral resin; polyvinyl alcohol; Cellulose resins such as cellulose acetate butyrate; epoxy resins; phenol resins; silicone resins. In particular, when a high-power light-emitting device such as illumination is required, it is preferable to use a silicon-containing compound for the purpose of heat resistance and light resistance.
珪素含有化合物とは分子中に珪素原子を有する化合物をいい、ポリオルガノシロキサン等の有機材料(シリコーン系材料)、酸化ケイ素、窒化ケイ素、酸窒化ケイ素等の無機材料、及びホウケイ酸塩、ホスホケイ酸塩、アルカリケイ酸塩等のガラス材料を挙げることができる。中でも、ハンドリングの容易さ等の点から、シリコーン系材料が好ましい。 A silicon-containing compound is a compound having a silicon atom in the molecule, organic materials such as polyorganosiloxane (silicone-based materials), inorganic materials such as silicon oxide, silicon nitride, and silicon oxynitride, and borosilicates and phosphosilicates. Examples thereof include glass materials such as salts and alkali silicates. Among these, silicone materials are preferable from the viewpoint of ease of handling.
[5−1−1]シリコーン系材料
シリコーン系材料とは、通常、シロキサン結合を主鎖とする有機重合体をいい、例えば一般組成式で表される化合物及び/またはそれらの混合物が挙げられる。
(R1R2R3SiO1/2)M(R4R5SiO2/2)D(R6SiO3/2)T(SiO4/2)Q
ここで、R1からR6は同じであっても異なってもよく、有機官能基、水酸基、水素原子からなる群から選択される。またM、D、T及びQは0から1未満であり、M+D+T+Q=1を
満足する数である。
シリコーン系材料を半導体発光素子の封止に用いる場合、液状のシリコーン系材料を用いて封止した後、熱や光によって硬化させて用いることができる。
[5-1-1] Silicone material
The silicone-based material usually refers to an organic polymer having a siloxane bond as a main chain, and examples thereof include a compound represented by a general composition formula and / or a mixture thereof.
(R 1 R 2 R 3 SiO 1/2 ) M (R 4 R 5 SiO 2/2 ) D (R 6 SiO 3/2 ) T (SiO 4/2 ) Q
Here, the R 1 R 6 may be the same or different, organic functional group, hydroxyl group, is selected from the group consisting of a hydrogen atom. M, D, T, and Q are 0 to less than 1 and satisfy M + D + T + Q = 1.
When a silicone material is used for sealing a semiconductor light emitting device, it can be used after being sealed with a liquid silicone material and then cured by heat or light.
[5−1−2]シリコーン系材料の種類
シリコーン系材料を硬化のメカニズムにより分類すると、通常付加重合硬化タイプ、縮重合硬化タイプ、紫外線硬化タイプ、パーオキサイド架硫タイプなどのシリコーン系材料を挙げることができる。これらの中では、付加重合硬化タイプ(付加型シリコーン樹脂)、縮合硬化タイプ(縮合型シリコーン樹脂)、紫外線硬化タイプが好適である。以下、付加型シリコーン系材料、及び縮合型シリコーン系材料について説明する。
[5-1-2] Types of silicone materials
When silicone materials are classified according to the curing mechanism, silicone materials such as an addition polymerization curing type, a condensation polymerization curing type, an ultraviolet curing type, and a peroxide vulcanization type can be mentioned. Among these, addition polymerization curing type (addition type silicone resin), condensation curing type (condensation type silicone resin), and ultraviolet curing type are preferable. Hereinafter, the addition type silicone material and the condensation type silicone material will be described.
[5−1−2−1]付加型シリコーン系材料
付加型シリコーン系材料とは、ポリオルガノシロキサン鎖が、有機付加結合により架橋されたものをいう。代表的なものとしては、例えばビニルシランとヒドロシランをPt触媒などの付加型触媒の存在下反応させて得られるSi−C−C−Si結合を架橋点に有する化合物等を挙げることができる。これらは市販のものを使用することができ、例えば付加重合硬化タイプの具体的商品名としては、信越化学工業社製「LPS−1400」「LPS−2410」「LPS−3400」等が挙げられる。
[5-1-2-1] Addition type silicone material
The addition-type silicone material refers to a material in which a polyorganosiloxane chain is crosslinked by an organic addition bond. A typical example is a compound having a Si—C—C—Si bond at a crosslinking point obtained by reacting vinylsilane and hydrosilane in the presence of an addition catalyst such as a Pt catalyst. Commercially available products can be used. Specific examples of addition polymerization curing type trade names include “LPS-1400”, “LPS-2410”, and “LPS-3400” manufactured by Shin-Etsu Chemical Co., Ltd.
[5−1−2−2]縮合型シリコーン系材料
縮合型シリコーン系材料とは、例えば、アルキルアルコキシシランの加水分解・重縮合で得られるSi−O−Si結合を架橋点に有する化合物を挙げることができる。
具体的には、下記一般式(1)及び/又は(2)で表わされる化合物、及び/又はそのオリゴマーを加水分解・重縮合して得られる重縮合物が挙げられる。
[5-1-2-2] Condensation type silicone material
Examples of the condensation type silicone material include a compound having a Si—O—Si bond obtained by hydrolysis and polycondensation of an alkylalkoxysilane at a crosslinking point.
Specific examples include polycondensates obtained by hydrolysis and polycondensation of compounds represented by the following general formula (1) and / or (2) and / or oligomers thereof.
Mm+XnY1 m-1 (1) M m + X n Y 1 m-1 (1)
(式(1)中、Mは、ケイ素、アルミニウム、ジルコニウム、及びチタンより選択される少なくとも1種の元素を表わし、Xは、加水分解性基を表わし、Y1は、1価の有機基を
表わし、mは、Mの価数を表わす1以上の整数を表わし、nは、X基の数を表わす1以上の整数を表わす。但し、m≧nである。)
(In the formula (1), M represents at least one element selected from silicon, aluminum, zirconium, and titanium, X represents a hydrolyzable group, and Y 1 represents a monovalent organic group. M represents one or more integers representing the valence of M, and n represents one or more integers representing the number of X groups, provided that m ≧ n.
(Ms+XtY1 s−t−1)uY2 (2) (M s + X t Y 1 s-t-1) u Y 2 (2)
(式(2)中、Mは、ケイ素、アルミニウム、ジルコニウム、及びチタンより選択される少なくとも1種の元素を表わし、Xは、加水分解性基を表わし、Y1は、1価の有機基を
表わし、Y2は、u価の有機基を表わし、sは、Mの価数を表わす1以上の整数を表わし
、tは、1以上、s−1以下の整数を表わし、uは、2以上の整数を表わす。)
また、硬化触媒としては、例えば金属キレート化合物などを好適なものとして用いることができる。金属キレート化合物は、Ti、Ta、Zrのいずれか1以上を含むものが好ましく、Zrを含むものがさらに好ましい。
(In the formula (2), M is silicon, aluminum, zirconium, and represents at least one element selected from titanium, X represents a hydrolyzable group, Y 1 is a monovalent organic group Y 2 represents a u-valent organic group, s represents an integer of 1 or more representing the valence of M, t represents an integer of 1 or more and s−1 or less, and u represents 2 or more. Represents an integer.)
Moreover, as a curing catalyst, a metal chelate compound etc. can be used suitably, for example. The metal chelate compound preferably contains one or more of Ti, Ta, and Zr, and more preferably contains Zr.
縮合型シリコーン系材料は公知のものを使用することができ、例えば、特開2006−77234号公報、特開2006−291018号公報、特開2006−316264号公報、特開2006−336010号公報、特開2006−348284号公報、および国際公開2006/090804号パンフレットに記載の半導体発光デバイス用部材が好適である。 A well-known thing can be used for a condensation type silicone type material, for example, Unexamined-Japanese-Patent No. 2006-77234, Unexamined-Japanese-Patent No. 2006-291018, Unexamined-Japanese-Patent No. 2006-316264, Unexamined-Japanese-Patent No. 2006-336010, The semiconductor light-emitting device members described in JP-A-2006-348284 and International Publication No. 2006/090804 are suitable.
シリコーン系材料の中で、特に好ましい材料について、以下に説明する。
シリコーン系材料は、一般に半導体発光素子や素子を配置する基板、パッケージ等との接着性が弱いことが欠点とされるが、密着性が高いシリコーン系材料として、特に、以下の特徴〈1〉〜〈3〉のうち1つ以上を有するシリコーン系材料が好ましい。
〈1〉ケイ素含有率が20重量%以上である。
〈2〉後に詳述する方法によって測定した固体Si−核磁気共鳴(NMR)スペクトルにおいて、下記(a)及び/又は(b)のSiに由来するピークを少なくとも1つ有する。
Of the silicone materials, particularly preferred materials will be described below.
Silicone-based materials generally have a drawback of poor adhesion to semiconductor light-emitting elements, substrates on which the elements are arranged, packages, and the like, but as silicone-based materials having high adhesion, the following characteristics <1> to A silicone material having one or more of <3> is preferred.
<1> The silicon content is 20% by weight or more.
<2> The solid Si-nuclear magnetic resonance (NMR) spectrum measured by the method described in detail later has at least one peak derived from Si in the following (a) and / or (b).
(a)ピークトップの位置がテトラメトキシシランを基準としてケミカルシフト−40ppm以上、0ppm以下の領域にあり、ピークの半値幅が0.3ppm以上、3.0ppm以下であるピーク。
(b)ピークトップの位置がテトラメトキシシランを基準としてケミカルシフト−80ppm以上、−40ppm未満の領域にあり、ピークの半値幅が0.3ppm以上5.0ppm以下であるピーク。
〈3〉シラノール含有率が0.01重量%以上、10重量%以下である。
(A) A peak whose peak top position is in a region where the chemical shift is −40 ppm or more and 0 ppm or less with respect to tetramethoxysilane, and the half width of the peak is 0.3 ppm or more and 3.0 ppm or less.
(B) A peak whose peak top position is in a region where the chemical shift is −80 ppm or more and less than −40 ppm with respect to tetramethoxysilane, and the half width of the peak is 0.3 ppm or more and 5.0 ppm or less.
<3> The silanol content is 0.01% by weight or more and 10% by weight or less.
本発明においては、上記の特徴〈1〉〜〈3〉のうち、特徴〈1〉を有するシリコーン系材料が好ましい。さらに好ましくは、上記の特徴〈1〉及び〈2〉を有するシリコーン系材料が好ましい。特に好ましくは、上記の特徴〈1〉〜〈3〉を全て有するシリコーン系材料が好ましい。また、上記の特徴を有するシリコーン系材料の中でも、縮合型シリコーン系材料が耐熱性、耐光性等の観点より好ましい。 In the present invention, among the above features <1> to <3>, a silicone material having the feature <1> is preferable. More preferably, a silicone material having the above characteristics <1> and <2> is preferable. Particularly preferably, a silicone material having all of the above features <1> to <3> is preferable. Of the silicone materials having the above characteristics, a condensation type silicone material is preferable from the viewpoint of heat resistance, light resistance, and the like.
[5−1−3]液状媒体の含有量
液状媒体は、本発明の蛍光体含有組成物全体に対して、通常50重量%以上、好ましくは75重量%以上であり、通常99重量%以下、好ましくは95重量%以下である。
液状媒体の量が多い場合には特段の問題は起こらないが、半導体発光装置とした場合に所望の色度座標、演色指数、発光効率等を得るには、通常、上記のような配合比率で蛍光体を添加する必要がある。少なすぎると流動性がなく取り扱いにくい。
液状媒体は、前述の様に、本発明の蛍光体含有組成物において、主にバインダーとしての役割を有する。液状媒体は単独で用いてもよいが、複数を混合してもよい。例えば、耐熱性や耐光性等を目的として珪素含有化合物を使用する場合は、珪素含有化合物の耐久性を損なわない程度に、エポキシ樹脂など他の熱硬化性樹脂を含有してもよい。この場合、他の熱硬化性樹脂の含有量は、通常、バインダーに対して25重量%以下、好ましくは10重量%以下である。
[5-1-3] Content of liquid medium The liquid medium is usually 50% by weight or more, preferably 75% by weight or more, and usually 99% by weight or less, based on the entire phosphor-containing composition of the present invention. Preferably it is 95 weight% or less.
When the amount of the liquid medium is large, no particular problem occurs. However, in order to obtain a desired chromaticity coordinate, color rendering index, luminous efficiency, etc. in the case of a semiconductor light-emitting device, the above-mentioned blending ratio is usually used. It is necessary to add a phosphor. If it is too small, it is difficult to handle because it is not fluid.
As described above, the liquid medium mainly has a role as a binder in the phosphor-containing composition of the present invention. Although a liquid medium may be used independently, multiple may be mixed. For example, when a silicon-containing compound is used for the purpose of heat resistance, light resistance, etc., other thermosetting resins such as an epoxy resin may be contained to the extent that the durability of the silicon-containing compound is not impaired. In this case, the content of the other thermosetting resin is usually 25% by weight or less, preferably 10% by weight or less based on the binder.
[5−2]その他の成分
本発明の蛍光体含有組成物は、上記成分の他に、本発明の被覆蛍光体粒子以外の蛍光体、フュームドシリカなどのチキソトロープ剤、色素、酸化防止剤、安定化剤(燐系加工安定化剤などの加工安定化剤、酸化安定化剤、熱安定化剤、紫外線吸収剤などの耐光性安定化剤など)、光拡散材、フィラーなど、当該分野で公知の添加物のいずれをも用いることができる。
[5-2] Other ingredients
In addition to the above components, the phosphor-containing composition of the present invention comprises a phosphor other than the coated phosphor particles of the present invention, a thixotropic agent such as fumed silica, a dye, an antioxidant, and a stabilizer (phosphorous processing stability). Processing additives such as oxidizers, oxidation stabilizers, heat stabilizers, light-resistant stabilizers such as UV absorbers, etc.), light diffusing materials, fillers, etc. Can be used.
[5−3]蛍光体含有組成物の製造方法
本発明の蛍光体含有組成物の製造法には特に制限はなく、本発明の被覆蛍光体粒子および必要に応じて添加するその他成分が液状媒体中に均一に分散する方法であれば良い。
例えば、チキソトロープ剤の配合量は液状媒体100重量部に対して通常0.1重量部以上、好ましくは0.3重量部以上である。また、通常20重量部以下、好ましくは10重量部以下、更に好ましくは5重量部以下である。チキソトロープ剤の配合量が少なすぎると、期待する蛍光体の沈降抑制効果が十分でなく、多すぎると分散が困難となる。
本発明の被覆蛍光体粒子を含む蛍光体の配合量は通常、液状媒体100重量部に対して通常0.01重量部以上、好ましくは0.1重量部以上、さらに好ましくは1重量部以上である。また、通常100重量部以下、好ましくは80重量部以下、さらに好ましくは60重量部以下である。
[5-3] Method for producing phosphor-containing composition
The method for producing the phosphor-containing composition of the present invention is not particularly limited as long as it is a method in which the coated phosphor particles of the present invention and other components added as necessary are uniformly dispersed in a liquid medium.
For example, the blending amount of the thixotropic agent is usually 0.1 parts by weight or more, preferably 0.3 parts by weight or more with respect to 100 parts by weight of the liquid medium. Moreover, it is 20 parts weight or less normally, Preferably it is 10 parts weight or less, More preferably, it is 5 parts weight or less. If the amount of the thixotropic agent is too small, the expected effect of suppressing the precipitation of the phosphor is not sufficient, and if it is too large, dispersion becomes difficult.
The amount of the phosphor containing the coated phosphor particles of the present invention is usually 0.01 parts by weight or more, preferably 0.1 parts by weight or more, more preferably 1 part by weight or more with respect to 100 parts by weight of the liquid medium. is there. Moreover, it is 100 parts weight or less normally, Preferably it is 80 parts weight or less, More preferably, it is 60 parts weight or less.
液状媒体としてシリコーン樹脂を使用する場合には、例えばシリコーン樹脂、本発明の被覆蛍光体粒子を含む蛍光体、チキソトロープ剤、ならびに架橋剤、硬化触媒、増量材、およびその他の添加剤を配合し、ミキサー、高速ディスパー、ホモジナイザー、3本ロール、ニーダー等で混合する等、従来公知の方法で製造することができる。この場合、前記成分を全て混合して、1液の形態として液状シリコーン樹脂組成物を製造しても良いが、
(i)シリコーン樹脂と蛍光体及び増量材を主成分とするシリコーン樹脂液と、(ii)架橋剤と硬化触媒を主成分とする架橋剤液の2液を調製しておき、使用直前にシリコーン樹脂液と架橋剤液を混合して液状シリコーン樹脂組成物を製造しても良い。
When a silicone resin is used as the liquid medium, for example, a silicone resin, a phosphor containing the coated phosphor particles of the present invention, a thixotropic agent, and a crosslinking agent, a curing catalyst, an extender, and other additives are blended. It can be produced by a conventionally known method such as mixing with a mixer, a high-speed disper, a homogenizer, a three-roller, a kneader or the like. In this case, all of the above components may be mixed to produce a liquid silicone resin composition in the form of one liquid,
Two liquids, (i) a silicone resin liquid mainly composed of a silicone resin, a phosphor and an extender, and (ii) a crosslinker liquid mainly composed of a crosslinking agent and a curing catalyst are prepared. A liquid silicone resin composition may be produced by mixing a resin solution and a crosslinking agent solution.
[5−4]蛍光体含有組成物の物性
[5−4−1]粘度
本発明の蛍光体含有組成物の粘度は、通常500mPa・s以上、好ましくは1000mPa・s以上、さらに好ましくは2000mPa・s以上であり、通常15000mPa・s以下、10000mPa・s以下、好ましくは8000mPa・s以下である。粘度が高すぎると注入時に配管の閉塞などトラブルの原因となりやすく、また気泡が抜けにくい、更には半導体素子のリードワイヤーの断線が起こりやすいなどの悪影響をもたらす。一方、粘度が低すぎると蛍光体粒子の沈降が起こるので好ましくない。
[5-4] Physical properties of phosphor-containing composition [5-4-1] Viscosity
The viscosity of the phosphor-containing composition of the present invention is usually 500 mPa · s or more, preferably 1000 mPa · s or more, more preferably 2000 mPa · s or more, and usually 15000 mPa · s or less, 10000 mPa · s or less, preferably 8000 mPa · s. s or less. If the viscosity is too high, it may cause trouble such as blockage of pipes at the time of injection, and bubbles may be difficult to escape, and further, lead wires of semiconductor elements are likely to be disconnected. On the other hand, if the viscosity is too low, the phosphor particles settle, which is not preferable.
なお本発明の蛍光体含有組成物は、発光装置内へ十分に充填(注入)させ得ること、また充填後液状媒体が硬化する前に蛍光体が沈降しないために、チキソトロープ性を示すものが好ましい。チキソトロープ性を示すことは、ローター回転数を1rpmおよび5rpmとした場合のB型粘度計における粘度が1rpmの粘度が5rpmの粘度より大きいことで確認することができる。 The phosphor-containing composition of the present invention preferably has thixotropic properties so that the phosphor-containing composition can be sufficiently filled (injected) into the light emitting device, and the phosphor does not settle before the liquid medium is cured after filling. . The thixotropic property can be confirmed by the fact that the viscosity at 1 rpm is larger than the viscosity at 5 rpm in the B-type viscometer when the rotor rotational speed is 1 rpm and 5 rpm.
[6]発光装置
本発明の発光装置は、通常[5]に記載の蛍光体含有組成物を用いて、公知の方法により形成される。以下、本発明の発光装置について説明する。なお、以下、本発明の被覆蛍光体粒子、およびそれ以外の蛍光体を、単に「蛍光体」と総称して説明する。
[6−1]光源
本発明の発光装置における光源は、前記蛍光体を励起する光を発光するものである。光源の発光波長は、蛍光体の吸収波長と重複するものであれば、特に制限されず、幅広い発光波長領域の蛍光体を使用することができる。通常は、近紫外領域から青色領域までの発光波長を有する蛍光体が使用され、具体的数値としては、通常300nm以上、好ましくは330nm以上、また、通常500nm以下、好ましくは480nm以下のピーク発光波長を有する発光体が使用される。この光源としては、一般的には半導体発光素子が用いられ、具体的には発光ダイオード(LED)や半導体レーザーダイオード(LD)等が使用できる。
[6] Light-emitting device The light-emitting device of the present invention is usually formed by a known method using the phosphor-containing composition described in [5]. Hereinafter, the light emitting device of the present invention will be described. Hereinafter, the coated phosphor particles of the present invention and the other phosphors will be simply referred to as “phosphors”.
[6-1] Light Source The light source in the light emitting device of the present invention emits light that excites the phosphor. The emission wavelength of the light source is not particularly limited as long as it overlaps with the absorption wavelength of the phosphor, and a phosphor having a wide emission wavelength region can be used. Usually, a phosphor having an emission wavelength from the near-ultraviolet region to the blue region is used, and specific numerical values are usually 300 nm or more, preferably 330 nm or more, and usually 500 nm or less, preferably 480 nm or less. A light emitter having the following is used. As this light source, a semiconductor light emitting element is generally used, and specifically, a light emitting diode (LED), a semiconductor laser diode (LD), or the like can be used.
中でも、光源としては、GaN系化合物半導体を使用したGaN系LEDやLDが好ましい。なぜなら、GaN系LEDやLDは、この領域の光を発するSiC系LED等に比し、発光出力や外部量子効率が格段に大きく、前記蛍光体と組み合わせることによって、非常に低電力で非常に明るい発光が得られるからである。例えば、同じ電流負荷に対し、通常GaN系LEDやLDはSiC系の100倍以上の発光強度を有する。GaN系LEDやLDにおいては、AlxGayN発光層、GaN発光層、又はInxGayN発光層を有しているものが好ましい。GaN系LEDにおいては、それらの中でInxGayN発光層を有するものが発光強度が非常に強いので、特に好ましく、GaN系LDにおいては、InxGayN層とGaN層の多重量子井戸構造のものが発光強度が非常に強いので、特に好ましい。 Among these, as the light source, a GaN LED or LD using a GaN compound semiconductor is preferable. This is because GaN-based LEDs and LDs have significantly higher light emission output and external quantum efficiency than SiC-based LEDs that emit light in this region, and are extremely bright with very low power when combined with the phosphor. This is because light emission can be obtained. For example, for the same current load, a GaN-based LED or LD usually has a light emission intensity 100 times or more that of a SiC-based. A GaN-based LED or LD preferably has an Al x Gay N light emitting layer, a GaN light emitting layer, or an In x Gay N light emitting layer. Among GaN-based LEDs, those having an InxGayN light-emitting layer are particularly preferred because the emission intensity is very strong, and in GaN-based LDs, those having a multiple quantum well structure of an InxGayN layer and a GaN layer have an emission intensity. It is particularly preferred because it is very strong.
なお、上記においてx+yの値は通常0.8〜1.2の範囲の値である。GaN系LEDにおいて、これら発光層にZnやSiをドープしたものやドーパント無しのものが発光特性を調節する上で好ましいものである。
GaN系LEDはこれら発光層、p層、n層、電極、及び基板を基本構成要素としたものであり、発光層をn型とp型のAlxGayN層、GaN層、又はInxGayN層などでサンドイッチにしたヘテロ構造を有しているものが、発光効率が高く、好ましく、さらにヘテロ構造を量子井戸構造にしたものが、発光効率がさらに高く、より好ましい。
In the above, the value of x + y is usually in the range of 0.8 to 1.2. In the GaN-based LED, those in which the light emitting layer is doped with Zn or Si or those without a dopant are preferable for adjusting the light emission characteristics.
A GaN-based LED has these light-emitting layer, p-layer, n-layer, electrode, and substrate as basic components. The light-emitting layer is sandwiched between n-type and p-type AlxGayN layers, GaN layers, or InxGayN layers. Those having the heterostructure are preferably high in luminous efficiency, and those having a heterostructure in the quantum well structure are further preferable because of higher luminous efficiency.
[6−2]蛍光体の選択
本発明の発光装置において、本発明の被覆蛍光体粒子以外の蛍光体の使用の有無及びその種類は、発光装置の用途に応じて適宜選択すればよい。
本発明の発光装置を白色発光の発光装置として構成する場合には、所望の白色光が得られるように、1種以上の蛍光体を適切に組み合わせればよい。光源として青色発光素子を使用する場合は蛍光体として青色の補色関係にある黄色蛍光体を、より演色性の高い白色を得るには赤、及び緑色蛍光体を使用することが好ましい。近紫外光を発する半導体発光素子を用いる場合は赤、緑、青の3色の蛍光体を使用するのが好ましい。
[6-2] Selection of phosphor In the light emitting device of the present invention, the presence / absence and the type of phosphor other than the coated phosphor particles of the present invention may be appropriately selected according to the use of the light emitting device.
When the light emitting device of the present invention is configured as a white light emitting device, one or more phosphors may be appropriately combined so as to obtain desired white light. When a blue light emitting element is used as a light source, it is preferable to use a yellow phosphor having a complementary color relationship of blue as a phosphor, and red and green phosphors to obtain white with higher color rendering properties. When using a semiconductor light emitting device that emits near-ultraviolet light, phosphors of three colors of red, green, and blue are preferably used.
具体的に、本発明の発光装置を白色発光の発光装置として構成する場合における、光源と、蛍光体との好ましい組み合わせの例としては、以下の(i)〜(iii)の組み合わせ
が挙げられる。
(i)光源として青色発光体(青色LED等)を使用し、蛍光体として赤色蛍光体および緑色蛍光体を使用する。
(ii)光源として近紫外発光体(近紫外LED等)を使用し、蛍光体として赤色蛍光体、緑色蛍光体及び青色蛍光体を併用する。
(iii)光源として青色発光体(青色LED等)を使用し、橙色蛍光体および緑色蛍光体
を使用する。
Specifically, when the light-emitting device of the present invention is configured as a white light-emitting device, examples of preferable combinations of a light source and a phosphor include the following combinations (i) to (iii).
(I) A blue light emitter (blue LED or the like) is used as a light source, and a red phosphor and a green phosphor are used as phosphors.
(Ii) A near ultraviolet light emitter (near ultraviolet LED or the like) is used as a light source, and a red phosphor, a green phosphor and a blue phosphor are used in combination as phosphors.
(Iii) A blue light emitter (blue LED or the like) is used as a light source, and an orange phosphor and a green phosphor are used.
[6−3]発光装置の構成
本発明の発光装置は、上述の光源および本発明の蛍光体含有組成物を備えていればよく、そのほかの構成は特に制限されないが、通常は、適当なフレーム上に上述の光源および蛍光体含有組成物を配置してなる。この際、光源の発光によって蛍光体が励起されて発光を生じ、且つ、この光源の発光および/または蛍光体の発光が、外部に取り出されるように配置されることになる。この場合、赤色蛍光体は、緑色蛍光体、青色蛍光体とは必ずしも同一の層中に混合されなくてもよく、例えば、赤色蛍光体を含有する層の上に青色蛍光体と緑色蛍光体を含有する層が積層されていてもよい。
[6-3] Configuration of Light-Emitting Device The light-emitting device of the present invention is only required to include the above-described light source and the phosphor-containing composition of the present invention, and other configurations are not particularly limited. The above-mentioned light source and phosphor-containing composition are arranged on the top. At this time, the phosphor is excited by the light emission of the light source to generate light, and the light emission of the light source and / or the light emission of the phosphor is arranged to be taken out to the outside. In this case, the red phosphor does not necessarily have to be mixed in the same layer as the green phosphor and the blue phosphor. For example, the blue phosphor and the green phosphor are placed on the layer containing the red phosphor. The layer to contain may be laminated | stacked.
[6−4]発光装置の実施形態
以下、本発明の発光装置について、具体的な実施の形態を挙げて、より詳細に説明するが、本発明は以下の実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において任意に変形して実施することができる。
[6-4] Embodiments of Light-Emitting Device Hereinafter, the light-emitting device of the present invention will be described in more detail with reference to specific embodiments, but the present invention is not limited to the following embodiments. Any modifications can be made without departing from the scope of the present invention.
図1は、本発明の一実施形態に係る発光装置の構成を模式的に示す図である。本実施形態の発光装置1は、フレーム2と、光源である青色LED3と、青色LED3から発せられる光の一部を吸収し、それとは異なる波長を有する光を発する蛍光体含有部4からなる。
フレーム2は、青色LED3、蛍光体含有部4を保持するための金属または樹脂製の基部である。フレーム2の上面には、図1中上側に開口した断面台形状の凹部(窪み)2Aが形成されている。これにより、フレーム2はカップ形状となっているため、発光装置1から放出される光に指向性をもたせることができ、放出する光を有効に利用できるようになっている。更に、フレーム2の凹部2A内面は、銀などの金属メッキにより、可視光域全般の光の反射率を高められており、これにより、フレーム2の凹部2A内面に当たった光も、発光装置1から所定方向に向けて放出できるようになっている。
FIG. 1 is a diagram schematically showing a configuration of a light emitting device according to an embodiment of the present invention. The
The frame 2 is a metal or resin base for holding the
フレーム2の凹部2Aの底部には、光源として青色LED3が設置されている。青色LED3は、電力を供給されることにより青色の光を発するLEDである。この青色LED3から発せられた青色光の一部は、蛍光体含有部4内の発光物質(蛍光体)に励起光として吸収され、また別の一部は、発光装置1から所定方向に向けて放出されるようになっている。
A
また、青色LED3は前記のようにフレーム2の凹部2Aの底部に設置されているが、ここではフレーム2と青色LED3との間は接着剤5によって接着され、これにより、青色LED3はフレーム2に設置されている。
更に、フレーム2には、青色LED3に電力を供給するための金製のワイヤ6が取り付けられている。つまり、青色LED3の上面に設けられた電極(図示省略)とは、ワイヤ6を用いてワイヤボンディングによって結線されていて、このワイヤ6を通電することによって青色LED3に電力が供給され、青色LED3が青色光を発するようになっている。なお、ワイヤ6は青色LED3の構造にあわせて1本又は複数本が取り付けられる。
In addition, the
Further, a gold wire 6 for supplying power to the
更に、フレーム2の凹部2Aには、青色LED3から発せられる光の一部を吸収し異なる波長を有する光を発する蛍光体含有部4が設けられている。蛍光体含有部4は、蛍光体と透明樹脂とで形成されている。蛍光体は、青色LED3が発する青色光により励起されて、青色光よりも長波長の光である光を発する物質である。蛍光体含有部4を構成する蛍光体は一種類であっても良いし、複数からなる混合物であってもよく、青色LED3の発する光と蛍光体発光部4の発する光の総和が所望の色になるように選べばよい。色は白色だけでなく、黄色、オレンジ、ピンク、紫、青緑等であっても良い。また、これらの色と白色との間の中間的な色であっても良い。また、透明樹脂は蛍光体含有部4の封止材料であり、ここでは、上述の封止材料を用いている。
Further, the
モールド部7は、青色LED3、蛍光体含有部4、ワイヤ6などを外部から保護するとともに、配光特性を制御するためのレンズとしての機能を持つ。モールド部7には主にエポキシ樹脂を用いることができる。
図2は、図1に示す発光装置1を組み込んだ面発光照明装置の一実施例を示す模式的断面図である。図2において、8は面発光照明装置、9は拡散板、10は保持ケースである。
The mold part 7 functions as a lens for controlling the light distribution characteristics while protecting the
FIG. 2 is a schematic cross-sectional view showing an embodiment of a surface emitting illumination device incorporating the
この面発光照明装置8は、内面を白色の平滑面等の光不透過性とした方形の保持ケース10の底面に、多数の発光装置1を、その外側に発光装置1の駆動のための電源及び回路等(図示せず。)を設けて配置したものである。発光の均一化のために、保持ケース10の蓋部に相当する箇所に、乳白色としたアクリル板等の拡散板9を固定している。
そして、面発光照明装置8を駆動して、発光装置1の青色LED3に電圧を印加することにより青色光等を発光させる。その発光の一部を、蛍光体含有部4において波長変換材料である本発明の蛍光体と必要に応じて添加した別の蛍光体が吸収し、より長波長の光に変換し、蛍光体に吸収されなかった青色光等との混色により、高輝度の発光が得られる。この光が拡散板9を透過して、図面上方に出射され、保持ケース10の拡散板9面内において均一な明るさの照明光が得られることとなる。
This surface-emitting illuminating device 8 includes a plurality of light-emitting
Then, the surface-emitting illumination device 8 is driven to apply a voltage to the
また、本発明の発光装置において、特に励起光源として面発光型のものを使用する場合、蛍光体含有部を膜状とするのが好ましい。即ち、面発光型の発光体からの光は断面積が十分大きいので、蛍光体含有部をその断面の方向に膜状とすると、第1の発光体からの蛍光体への照射断面積が蛍光体単位量あたり大きくなるので、蛍光体からの発光の強度をより大きくすることができる。 In the light-emitting device of the present invention, in particular, when a surface-emitting type is used as the excitation light source, it is preferable that the phosphor-containing portion is formed into a film. That is, since the cross-sectional area of the light from the surface-emitting type phosphor is sufficiently large, when the phosphor-containing portion is formed into a film shape in the direction of the cross-section, the irradiation cross-section area of the phosphor from the first phosphor is fluorescent. Since it becomes large per body unit quantity, the intensity | strength of light emission from fluorescent substance can be enlarged more.
また、光源として面発光型のものを使用し、蛍光体含有部として膜状のものを用いる場合、光源の発光面に、直接膜状の蛍光体含有部を接触させた形状とするのが好ましい。ここでいう接触とは、光源と蛍光体含有部とが空気や気体を介さないでぴたりと接している状態をつくることを言う。その結果、光源からの光が蛍光体含有部の膜面で反射されて外にしみ出るという光量損失を避けることができるので、装置全体の発光効率を良くすることができる。 In addition, when a surface-emitting type light source is used as the light source and a film-like one is used as the phosphor-containing portion, it is preferable that the light-emitting surface of the light source is directly in contact with the film-like phosphor-containing portion. . Contact here means creating a state where the light source and the phosphor-containing portion are in perfect contact with each other without air or gas. As a result, it is possible to avoid a light amount loss in which light from the light source is reflected by the film surface of the phosphor-containing portion and oozes out, so that the light emission efficiency of the entire apparatus can be improved.
図3は、このように、光源として面発光型のものを用い、蛍光体含有部として膜状のものを適用した発光装置の一例を示す模式的斜視図である。図3中、11は、前記蛍光体を有する膜状の蛍光体含有部、12は光源としての面発光型GaN系LD、13は基板を表す。相互に接触した状態をつくるために、光源12のLDと蛍光体含有部11とそれぞれ別個につくっておいてそれらの面同士を接着剤やその他の手段によって接触させても良いし、光源12の発光面上に蛍光体含有部11を製膜(成型)させても良い。これらの結果、光源12と第2の蛍光体含有部11とを接触した状態とすることができる。
FIG. 3 is a schematic perspective view showing an example of a light-emitting device using a surface-emitting type light source as a light source and applying a film-like one as a phosphor-containing portion. In FIG. 3, 11 is a film-like phosphor-containing portion having the phosphor, 12 is a surface-emitting GaN-based LD as a light source, and 13 is a substrate. In order to create a state where they are in contact with each other, the LD of the
[7]発光装置の用途
本発明の発光装置は使用する蛍光体の種類、量により各色の発光が可能であるが照明用途などは、白色光を発するもの発光装置が有用である。本発明の発光装置は、発光効率が通常20lm/W以上、好ましくは22lm/W以上、より好ましくは25lm/W以上であり、特に好ましくは28lm/W以上であり、平均演色評価指数Raが80以上、好ましくは85以上、より好ましくは88以上である。
[7] Use of light-emitting device The light-emitting device of the present invention can emit light of various colors depending on the type and amount of the phosphor used, but for lighting use, a light-emitting device that emits white light is useful. The light emitting device of the present invention has a luminous efficiency of usually 20 lm / W or higher, preferably 22 lm / W or higher, more preferably 25 lm / W or higher, particularly preferably 28 lm / W or higher, and an average color rendering index Ra of 80. Above, preferably 85 or more, more preferably 88 or more.
なお、上記平均演色評価指数Raは、JIS Z 8726により算出される。
また、発光効率は、量子吸収効率αqと内部量子効率ηiの積により以下のように算出する。
まず、測定対象となる蛍光体サンプル(例えば、粉末状など)を、測定精度が保たれるように、十分に表面を平滑にしてセルに詰め、積分球などがついた分光光度計に取り付ける。この分光光度計としては、例えば大塚電子株式会社製「MCPD2000」等が挙げられる。積分球などを用いるのは、サンプルで反射したフォトンおよびサンプルからフォトルミネッセンスで放出されたフォトンを全て計上できるようにする、すなわち、計上されずに測定系外へ飛び去るフォトンをなくすためである。
The average color rendering index Ra is calculated according to JIS Z 8726.
The light emission efficiency is calculated as follows by the product of the quantum absorption efficiency αq and the internal quantum efficiency ηi.
First, a phosphor sample to be measured (for example, powder) is packed in a cell with a sufficiently smooth surface so that measurement accuracy is maintained, and is attached to a spectrophotometer with an integrating sphere. Examples of the spectrophotometer include “MCPD2000” manufactured by Otsuka Electronics Co., Ltd. An integrating sphere or the like is used so that all the photons reflected from the sample and the photons emitted from the sample by photoluminescence can be counted, that is, photons that are not counted and fly out of the measurement system are eliminated.
この分光光度計に蛍光体を励起する発光源を取り付ける。この発光源は、例えばXeランプ等であり、発光ピーク波長が400nmとなるようにフィルター等を用いて調整がなされる。この400nmの波長ピークを持つように調整された発光源からの光を、測定しようとしているサンプルに照射し、その発光スペクトルを測定する。この測定スペクトルには、実際には、励起発光光源からの光(以下、単に「励起光」と記す。)でフォトルミネッセンスによりサンプルから放出されたフォトンの他に、サンプルで反射された励起光の分のフォトンの寄与が重なっている。 A light source for exciting the phosphor is attached to the spectrophotometer. This light emission source is, for example, an Xe lamp or the like, and is adjusted using a filter or the like so that the emission peak wavelength is 400 nm. The sample to be measured is irradiated with light from a light source adjusted to have a wavelength peak of 400 nm, and its emission spectrum is measured. In actuality, this measurement spectrum includes light from an excitation light source (hereinafter simply referred to as “excitation light”), photons emitted from the sample by photoluminescence, and excitation light reflected from the sample. Minutes of photon contributions overlap.
量子吸収効率αqは、サンプルによって吸収された励起光のフォトン数Nabsを励起光の全フォトン数Nで割った値である。
まず、後者の励起光の全フォトン数Nを、次のようにして求める。すなわち、励起光に対してほぼ100%の反射率Rを持つ物質、例えばLabsphere社製「Spectralon」(400nmの励起光に対して98%の反射率を持つ。)等の反射板を、測定対象として該分光光度計に取り付け、反射スペクトルIref(λ)を測定する。ここで
この反射スペクトルIref(λ)から下記(式1)で求められた数値は、Nに比例する。
The quantum absorption efficiency αq is a value obtained by dividing the number of photons Nabs of the excitation light absorbed by the sample by the total number of photons N of the excitation light.
First, the total photon number N of the latter excitation light is obtained as follows. That is, a reflection plate such as a substance having a reflectance R of almost 100% with respect to excitation light, for example, “Spectralon” manufactured by Labsphere (having a reflectance of 98% with respect to excitation light of 400 nm) is measured. Is attached to the spectrophotometer and the reflection spectrum Iref (λ) is measured. Here, the numerical value obtained from the reflection spectrum Iref (λ) by the following (formula 1) is proportional to N.
ここで、積分区間は実質的にIref(λ)が有意な値を持つ区間のみで行ったものでよ
い。 前者のサンプルによって吸収された励起光のフォトン数Nabsは下記(式2)で求
めら れる量に比例する。
Here, the integration interval may be substantially performed only in the interval where Iref (λ) has a significant value. The number of photons Nabs of the excitation light absorbed by the former sample is proportional to the amount obtained by the following (Equation 2).
ここで、I(λ)は,吸収効率αqを求めようとしている対象サンプルを取り付けたと
きの、反射スペクトルである。(式2)の積分範囲は(式1)で定めた積分範囲と同じにする。このように積分範囲を限定することで、(式2)の第二項は,対象サンプルが励起光を反射することによって生じたフォトン数に対応したもの、すなわち、対象サンプルから生ずる全フォトンのうち励起光によるフォトルミネッセンスで生じたフォトンを除いたものに対応したものになる。実際のスペクトル測定値は、一般にはλに関するある有限のバンド幅で区切ったデジタルデータとして得られるため、(式1)および(式2)の積分は、そのバンド幅に基づいた和分によって求まる。
Here, I (λ) is a reflection spectrum when a target sample for which the absorption efficiency αq is to be obtained is attached. The integration range of (Expression 2) is the same as the integration range defined in (Expression 1). By limiting the integration range in this way, the second term in (Equation 2) corresponds to the number of photons generated by the target sample reflecting the excitation light, that is, out of all photons generated from the target sample. This corresponds to the one excluding the photons generated by the photoluminescence by the excitation light. Since the actual spectrum measurement value is generally obtained as digital data divided by a certain finite bandwidth with respect to λ, the integrals of (Equation 1) and (Equation 2) are obtained by the sum based on the bandwidth.
以上より、αq=Nabs/N=(式2)/(式1)と求められる。
次に、内部量子効率ηiを求める方法を説明する。ηiは、フォトルミネッセンスによって生じたフォトンの数NPLをサンプルが吸収したフォトンの数Nabsで割った値である。 ここで、NPLは、下記(式3)で求められる量に比例する。
From the above, αq = Nabs / N = (Expression 2) / (Expression 1).
Next, a method for obtaining the internal quantum efficiency ηi will be described. ηi is a value obtained by dividing the number NPL of photons generated by photoluminescence by the number Nabs of photons absorbed by the sample. Here, NPL is proportional to the amount obtained by (Equation 3) below.
∫λ・I(λ)dλ (式3) ∫λ · I (λ) dλ (Formula 3)
この時、積分区間は、サンプルからフォトルミネッセンスによって生じたフォトンが持つ波長域に限定する。サンプルから反射されたフォトンの寄与をI(λ)から除くためで
ある。具体的に(式3)の積分の下限は、(式1)の積分の上端を取り、フォトルミネッセンス由来のスペクトルを含むのに好適な範囲を上端とする。
At this time, the integration interval is limited to the wavelength range of photons generated from the sample by photoluminescence. This is because the contribution of photons reflected from the sample is removed from I (λ). Specifically, the lower limit of the integration of (Expression 3) is the upper end of the integration of (Expression 1), and the upper limit is a range suitable for including a photoluminescence-derived spectrum.
以上により、ηi=(式3)/(式2)と求められる。
なお、デジタルデータとなったスペクトルから積分を行うことに関しては、αqを求めた場合と同様である。
そして、上記のようにして求めた量子吸収効率αqと内部量子効率ηiの積をとることで、本発明で定義される発光効率を求める。
Thus, ηi = (Expression 3) / (Expression 2) is obtained.
It should be noted that the integration from the spectrum that has become digital data is the same as when αq is obtained.
And the luminous efficiency defined by this invention is calculated | required by taking the product of quantum absorption efficiency (alpha) q calculated | required as mentioned above and internal quantum efficiency (eta) i.
本発明の発光装置の用途は特に制限されず、通常の発光装置が用いられる各種の分野に使用することが可能である。また、単独で、又は複数個を組み合わせて用いても良い。具体的には、例えば、照明ランプ、液晶パネル用等のバックライト、超薄型照明等の種々の照明装置、画像表示装置の光源として使用することができる。なお、本発明の発光装置を画像表示装置の光源として用いる場合には、カラーフィルターと併用してもよい。 The application of the light-emitting device of the present invention is not particularly limited, and can be used in various fields where a normal light-emitting device is used. Moreover, you may use individually or in combination. Specifically, for example, it can be used as a light source for illumination lamps, backlights for liquid crystal panels, various illumination devices such as ultra-thin illumination, and image display devices. In addition, when using the light-emitting device of this invention as a light source of an image display apparatus, you may use together with a color filter.
以下、実施例を挙げて本発明をより具体的に説明するが、それらは本発明の説明を目的とするものであって、本発明をこれらの態様に限定することを意図したものではない。
[1]赤色蛍光体Sr0.792Ca0.2AlSiN3:Eu0.008の評価
[1−1]実施例1
赤色蛍光体粒子{化学組成Sr0.792Ca0.2AlSiN3:Eu0.008(以下、「SCASN」と称することがある。)、D50=8μm}1重量部に対しガラス組成物(住田光学ガラス社製「PG325」、D50=8μm、組成P2O5:40重量%、Li2O:5重量%、LiF:2重量%、NaF:10重量%、K2O:3重量%、AlF3:10重量%、ZnO:15重量%、SrO:10重量%、CaO:5重量%、屈伏点325℃)、0.53重量部を秤量し、両者をガラス容器を使用して振動を加えて十分混合した。得られた混合物を石英容器に充填し、電気炉を使用して酸素濃度が0.1ppm以下、水分が0.1ppm以下である窒素雰囲気中で、400℃に予熱した電気炉に石英容器を入れ、10分間加熱し、使用したガラス組成物のガラス転移温度である288℃まで30分かけて冷却し、288℃で1時間保持した。その後、室温まで冷却して粉末状である被覆蛍光体粒子を得た。被覆蛍光体粒子について、[1−1−1]および[1−1−2]に記載の方法により、その発行スペクトルおよび輝度を測定した。また、得られた被覆蛍光体粒子を走査型電子顕微鏡で観察したところ、蛍光体粒子がガラス組成物層で連続被覆されていた。被覆層の膜厚は2μm程度であった。蛍光体粒子のないガラス組成物単独の粒子は殆ど観察されなかった。被覆蛍光体粒子の粒径分布を測定したところ、やはり粒子の凝集は確認されなかった。被覆の緻密さを評価するため、250℃で30分高純度窒素流通下で加熱した後、N2吸着法によるBET表面積測定を行った。また、ガスバリア性を試験するため、雰囲気温度85℃/相対湿度85%に保たれたチャンバーに蛍光体粉末を暴露した。結果を表1に示す。
[1−1−1]発光スペクトル
室温(25℃)において、励起光源として150Wキセノンランプを、すべく取る測定装置としてマルチチャンネルCCD検出器C7041(浜松フォトニクス社製)を備える蛍光測定装置(日本分光社製)を用いて測定した。
具体的には、励起光源からの光を焦点距離が10cmである回折格子分光器に通し、波長450nm以上475nm以下の励起光のみを光ファイバーを通じて蛍光体に照射した。励起光の照射により蛍光体から発生した光を焦点距離が25cmである回折格子分光器により分光し、300nm以上800nm以下の波長範囲においてスペクトル測定装置により各波長の発光強度を測定し、パーソナルコンピュータによる感度補正等の信号処理を経て発光スペクトルを得た。
[1−1−2]輝度
相対輝度は、JIS Z8724に準拠して算出したXYZ表色系における刺激値Yから、化成オプトニクス株式会社製の青色蛍光体(Ba,Eu)MgAl10017(製品番号:LP−B4)の刺激値Yの値を100%とした相対値(以下、単に「輝度」と称する場合がある。)として算出した。
なお、輝度は、励起青色光をカットして測定した。
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, they are for the purpose of explaining the present invention, and are not intended to limit the present invention to these embodiments.
[1] Evaluation of red phosphor Sr 0.792 Ca 0.2 AlSiN 3 : Eu 0.008 [1-1] Example 1
Red phosphor particles {chemical composition Sr 0.792 Ca 0.2 AlSiN 3 : Eu 0.008 (hereinafter sometimes referred to as “SCASN”), D 50 = 8 μm} “PG325” manufactured by Sumita Optical Glass Co., Ltd., D 50 = 8 μm, composition P 2 O 5 : 40 wt%, Li 2 O: 5 wt%, LiF: 2 wt%, NaF: 10 wt%, K 2 O: 3 wt% %, AlF3: 10% by weight, ZnO: 15% by weight, SrO: 10% by weight, CaO: 5% by weight, yield point 325 ° C.), 0.53 parts by weight, both are vibrated using a glass container. And mixed well. The obtained mixture is filled in a quartz container, and the quartz container is put into an electric furnace preheated to 400 ° C. in a nitrogen atmosphere having an oxygen concentration of 0.1 ppm or less and moisture of 0.1 ppm or less using an electric furnace. The mixture was heated for 10 minutes, cooled to 288 ° C., which was the glass transition temperature of the glass composition used, over 30 minutes, and held at 288 ° C. for 1 hour. Thereafter, it was cooled to room temperature to obtain powdered coated phosphor particles. About the covering fluorescent substance particle, the issue spectrum and the brightness | luminance were measured by the method as described in [1-1-1] and [1-1-2]. Further, when the obtained coated phosphor particles were observed with a scanning electron microscope, the phosphor particles were continuously coated with the glass composition layer. The film thickness of the coating layer was about 2 μm. Few particles of the glass composition alone without phosphor particles were observed. When the particle size distribution of the coated phosphor particles was measured, no aggregation of the particles was confirmed. In order to evaluate the denseness of the coating, the BET surface area was measured by the N 2 adsorption method after heating at 250 ° C. for 30 minutes under a high-purity nitrogen flow. In order to test the gas barrier property, the phosphor powder was exposed to a chamber maintained at an atmospheric temperature of 85 ° C./relative humidity of 85%. The results are shown in Table 1.
[1-1-1] Emission spectrum At room temperature (25 ° C.), a fluorescence measurement apparatus (JASCO) equipped with a 150 W xenon lamp as an excitation light source and a multichannel CCD detector C7041 (manufactured by Hamamatsu Photonics) as a measurement apparatus. The measurement was performed using
Specifically, the light from the excitation light source was passed through a diffraction grating spectrometer having a focal length of 10 cm, and only the excitation light having a wavelength of 450 nm or more and 475 nm or less was irradiated to the phosphor through the optical fiber. The light generated from the phosphor by the irradiation of excitation light is dispersed by a diffraction grating spectroscope having a focal length of 25 cm, the emission intensity of each wavelength is measured by a spectrum measuring device in a wavelength range of 300 nm to 800 nm, and a personal computer is used. An emission spectrum was obtained through signal processing such as sensitivity correction.
[1-1-2] Luminance Relative luminance is a blue phosphor (Ba, Eu) MgAl10017 (product number: manufactured by Kasei Optonix Co., Ltd.) based on the stimulation value Y in the XYZ color system calculated according to JIS Z8724. LP-B4) was calculated as a relative value (hereinafter sometimes simply referred to as “luminance”) with the stimulation value Y being 100%.
The luminance was measured by cutting excitation blue light.
得られた被覆蛍光体粒子を用い、以下の手順により発光装置を作製した。
東洋電波社製SMD LEDパッケージ「TY−SMD1202B」にCREE社製LEDチップ「C460−EZ290」(発光波長461nm)をボンディングした。
信越化学工業社製シリコーン樹脂「SCR−1011」および硬化剤を100重量部:100重量部の割合で混合し、該混合物100重量部に赤色蛍光体0.8重量部を添加し、シンキー社製撹拌装置「あわとり練太郎AR−100」で3分間混練して蛍光体含有組成物とした。
Using the coated phosphor particles obtained, a light-emitting device was produced by the following procedure.
An LED chip “C460-EZ290” (emission wavelength: 461 nm) manufactured by CREE was bonded to an SMD LED package “TY-SMD1202B” manufactured by Toyo Denki.
Silicone resin “SCR-1011” manufactured by Shin-Etsu Chemical Co., Ltd. and a curing agent are mixed in a ratio of 100 parts by weight: 100 parts by weight, and 0.8 part by weight of a red phosphor is added to 100 parts by weight of the mixture. The phosphor-containing composition was kneaded for 3 minutes with a stirrer “Awatori Netaro AR-100”.
この組成物を上記LEDチップ付きパッケージの最上面まで充填し、雰囲気温度70℃で1時間、次いで雰囲気温度150℃で5時間加熱硬化させた。
得られた発光装置を、室温(約25℃)において、20mAで駆動し、CIE色度座標xを測定した。
次に、上記発光装置を雰囲気温度85℃、85%RHの高温高湿条件で20mA,100時間および250時間通電試験を行った後、同様にCIE色度座標xを測定した。
そして、上記発光装置の製造直後の色度座標xに対する高温高湿曝露100時間、および250時間経過後の色度座標xの比率(x維持率:%)を算出し、結果を表1に示した。
This composition was filled to the uppermost surface of the package with the LED chip, and heat-cured at an ambient temperature of 70 ° C. for 1 hour and then at an ambient temperature of 150 ° C. for 5 hours.
The obtained light-emitting device was driven at 20 mA at room temperature (about 25 ° C.), and CIE chromaticity coordinates x were measured.
Next, the light emitting device was subjected to a current test of 20 mA, 100 hours, and 250 hours under high temperature and high humidity conditions of an ambient temperature of 85 ° C. and 85% RH, and the CIE chromaticity coordinate x was measured in the same manner.
And the ratio (x maintenance factor:%) of the chromaticity coordinate x after high-temperature, high-humidity exposure 100 hours and 250-hour progress with respect to the chromaticity coordinate x immediately after manufacture of the said light-emitting device was calculated, and a result is shown in Table 1. It was.
[1−2]実施例2
ガラス組成物の配合量を1.06重量部とした以外は実施例1と同様にして、被覆蛍光体粒子を製造し、比表面積測定およびx維持率以外の各評価を行った。被覆層の膜厚は数μm程度であった。結果を表1に示す。
[1−3]比較例1
SCASNをそのまま用いた以外は実施例1と同様にして、被膜形状観察以外の各評価を行った。結果を表1に示す。
[1−4]比較例2
SCASN3gを50mlのフラスコに入れ、エタノール20mLを添加して、攪拌した。次に、キシダ化学社製、特級純度28%アンモニア水6.7gを添加し、マグネチックスターラーにて1分間攪拌した。次に、マグネチックスターラーで激しく撹拌しながらテトラエトキシシラン(以下、「TEOS」と表記する)20mLを2回に分けて徐々に添加し、引き続きマグネチックスターラーにて90分間攪拌した。得られた溶液を3分間静置した後、スポイト等により上澄みを除去した。
[1-2] Example 2
The coated phosphor particles were produced in the same manner as in Example 1 except that the amount of the glass composition was 1.06 parts by weight, and each evaluation other than the specific surface area measurement and the x maintenance factor was performed. The film thickness of the coating layer was about several μm. The results are shown in Table 1.
[1-3] Comparative Example 1
Each evaluation other than the film shape observation was performed in the same manner as in Example 1 except that SCASN was used as it was. The results are shown in Table 1.
[1-4] Comparative Example 2
3 g of SCASN was placed in a 50 ml flask, and 20 ml of ethanol was added and stirred. Next, 6.7 g of 28% ammonia water manufactured by Kishida Chemical Co., Ltd. was added and stirred with a magnetic stirrer for 1 minute. Next, 20 mL of tetraethoxysilane (hereinafter referred to as “TEOS”) was gradually added in two portions while stirring vigorously with a magnetic stirrer, and subsequently stirred with a magnetic stirrer for 90 minutes. The resulting solution was allowed to stand for 3 minutes, and then the supernatant was removed with a dropper or the like.
その後、エタノール30mL添加、1分間攪拌、3分間静置した。上澄み除去を、上澄み液が無色透明になるまで繰り返した。得られた沈降物を、真空乾燥器で150℃にて、2時間減圧乾燥し、表面処理蛍光体を得た。この表面処理蛍光体には、蛍光体の重量に対して12重量%の酸化珪素被膜が付着していた。その被膜厚さは100nm程度であった。
上記で得られた被覆蛍光体粒子について、x維持率以外は実施例1と同様の各評価を行った。結果を表1に示す。
Thereafter, 30 mL of ethanol was added, stirred for 1 minute, and allowed to stand for 3 minutes. Supernatant removal was repeated until the supernatant became colorless and transparent. The obtained sediment was dried under reduced pressure at 150 ° C. for 2 hours with a vacuum dryer to obtain a surface-treated phosphor. The surface-treated phosphor had a silicon oxide film of 12% by weight based on the weight of the phosphor. The film thickness was about 100 nm.
The coated phosphor particles obtained above were evaluated in the same manner as in Example 1 except for the x retention rate. The results are shown in Table 1.
[1−5]比較例3
ソーダライムガラス(SiO2 70重量%,Al2O3 2重量%、Na2O 13重
量%、CaO 10重量%、MgO 4重量%、並びに K2OおよびFe2O3、SO3
などの微量成分(<1重量%)を含む)をアルミナ乳鉢を用いて粉砕し、中央粒径D50
=約8μmとした。ガラス転移点は730℃付近、屈伏点は700℃から750℃の領域にある。このガラス粉末を用い、被覆温度を750℃とし、ガラス転移温度付近での保持を行わなかった以外は実施例1と同様にガラス被覆蛍光体を製造し、比表面積測定、重量増加率およびx維持率以外の各評価を行った。結果を表1に示す。
[1-5] Comparative Example 3
Soda lime glass (SiO 2 70 wt%, Al 2 O 3 2 wt%, Na 2 O 13 wt%,
Etc. (including <1% by weight), etc., using an alumina mortar, and the median particle size D 50
= About 8 μm. The glass transition point is in the vicinity of 730 ° C., and the yield point is in the region of 700 ° C. to 750 ° C. A glass-coated phosphor was produced in the same manner as in Example 1 except that this glass powder was used, the coating temperature was set to 750 ° C., and the glass transition temperature was not maintained, and specific surface area measurement, weight increase rate and x maintenance were performed. Each evaluation other than rate was performed. The results are shown in Table 1.
実施例1の比表面積は、被覆しない比較例1のSCASNの比表面積よりも小さかった。一方、テトラエチルオルト珪酸を用いて被覆した比較例2のSCASNの比表面積は、被覆しない比較例1のSCASNの比表面積よりも大きかった。これは、実施例1の被覆層が、SCASNの表面において緻密性が非常に高いことを示している。それに対して比較例2の被覆層は、微粒子が堆積された緻密性の比較的低い形状であることを示している。これは、走査型電子顕微鏡の観察結果によっても確認された。即ち、実施例1および2の被覆層は、ガラス組成物が十分に溶融された平滑な連続膜として観察されたのに対し、比較例2の従来法では、シリカ微粒子の集合体である被覆層構造が観察された。 The specific surface area of Example 1 was smaller than the specific surface area of SCASN of Comparative Example 1 which was not coated. On the other hand, the specific surface area of SCASN of Comparative Example 2 coated with tetraethylorthosilicate was larger than the specific surface area of SCASN of Comparative Example 1 which was not coated. This indicates that the coating layer of Example 1 has a very high density on the surface of SCASN. On the other hand, the coating layer of Comparative Example 2 shows a relatively low-density shape in which fine particles are deposited. This was confirmed also by the observation result of the scanning electron microscope. That is, the coating layers of Examples 1 and 2 were observed as a smooth continuous film in which the glass composition was sufficiently melted, whereas in the conventional method of Comparative Example 2, the coating layer was an aggregate of silica fine particles. The structure was observed.
また、比較例2のSCASNは重量が増加しており、XRD測定の結果、炭酸ストロンチウムが確認された。これは、SCASNが高温高湿条件で加水分解し、大気中の二酸化炭素と反応して炭酸ストロンチウムが生成したものと推察される。それに対し、実施例1および2の被覆蛍光体粒子は少なくとも400時間まで重量増加が観察されず、本発明の被覆蛍光体のガラス被覆膜は水、二酸化炭素などに対して極めて高いガスバリア性を持つことが示された。さらに、前記発光装置にて高温高湿条件での信頼性評価を行ったところ、実施例1のSCASN被覆蛍光体粒子を用いた発光装置では、発光色の色ずれ(Cx値の変化)が少なくとも250時間までは全く観測されなかった。それに対し、被覆を行わない比較例1の場合は、250時間で2%のCx値の低下が観測された。
なお、比較例3では、十分な被覆層が形成されず、また、SCASNの輝度が低下した。輝度の低下は高温で被覆処理をしたことが原因と推測された。
Moreover, the weight of SCASN of Comparative Example 2 was increased, and as a result of XRD measurement, strontium carbonate was confirmed. This is presumed that SCASN was hydrolyzed under high temperature and high humidity conditions and reacted with carbon dioxide in the atmosphere to produce strontium carbonate. In contrast, the coated phosphor particles of Examples 1 and 2 did not increase in weight until at least 400 hours, and the glass-coated film of the coated phosphor of the present invention has extremely high gas barrier properties against water, carbon dioxide and the like. It was shown to have. Furthermore, when the reliability evaluation under the high temperature and high humidity conditions was performed with the light emitting device, in the light emitting device using the SCASN-coated phosphor particles of Example 1, the color shift of the emitted color (change in Cx value) was at least. It was not observed at all until 250 hours. On the other hand, in the case of Comparative Example 1 where no coating was performed, a 2% decrease in Cx value was observed in 250 hours.
In Comparative Example 3, a sufficient coating layer was not formed, and the luminance of SCASN was lowered. It was speculated that the decrease in luminance was caused by the coating treatment at a high temperature.
[2]緑色蛍光体Ba1.39Sr0.46Eu0.15SiO4の評価
[2−1]実施例3
緑色蛍光体粒子{Ba1.39Sr0.46Eu0.15SiO4(以下、「BSS」と称することがある。)、D50=21μm}1重量部に対しガラス組成物(住田光学ガラス社製「PG325」)0.75重量部を用いた以外は実施例1と同様の処理を行い、被覆蛍光体粒子を得た。被覆層の膜厚は数μm程度であった。実施例1と同様の各評価を行った。
また、室温にて被覆蛍光体粉末0.1gを純水50gに分散後、1時間放置した後の電気伝導度は26.7μS/cmであった。結果を表2に示す。
[2] Evaluation of green phosphor Ba 1.39 Sr 0.46 Eu 0.15 SiO 4 [2-1] Example 3
Green phosphor particles {Ba 1.39 Sr 0.46 Eu 0.15 SiO 4 (hereinafter sometimes referred to as “BSS”), D 50 = 21 μm} The glass composition (Sumida Optical Glass) relative to 1 part by weight Coated phosphor particles were obtained in the same manner as in Example 1 except that 0.75 part by weight of “PG325” manufactured by the company was used. The film thickness of the coating layer was about several μm. Each evaluation similar to Example 1 was performed.
In addition, after 0.1 g of the coated phosphor powder was dispersed in 50 g of pure water at room temperature, the electric conductivity after standing for 1 hour was 26.7 μS / cm. The results are shown in Table 2.
[2−2]実施例4
ガラス組成物(住田光学ガラス社製「K−PG325」)1重量部を用いた以外は実施例3と同様の処理を行い、各評価を行った。被覆層の膜厚は数μm程度であった。結果を表2に示す。
[2−3]比較例4
BSSをそのまま用いた以外は実施例3と同様にして、被膜形状観察以外の各評価を行った。結果を表2に示す。
[2-2] Example 4
Each evaluation was performed by performing the same treatment as in Example 3 except that 1 part by weight of the glass composition (“K-PG325” manufactured by Sumita Optical Glass Co., Ltd.) was used. The film thickness of the coating layer was about several μm. The results are shown in Table 2.
[2-3] Comparative Example 4
Each evaluation other than the film shape observation was performed in the same manner as in Example 3 except that BSS was used as it was. The results are shown in Table 2.
[2−3]比較例5
500mLフラスコに東京化成社製、純度95%以上のTEOS50g およびキシダ化学社製、特級純度99.5%エタノール224g を入れて均一に混合して金属アルコキシド溶液を調製した。
ジャケット付きの1Lセパラブルフラスコにエタノール 310g 、キシダ化学社製、特級純度28%アンモニア水 1 00g を入れて均一に混合した後、BSS粉末を50
g 投入して基体蛍光体含有溶液を調製した。
[2-3] Comparative Example 5
In a 500 mL flask, 50 g of TEOS with a purity of 95% or more and 224 g of ethanol with a purity of 99.5% with a purity of 99.5% were added and mixed uniformly to prepare a metal alkoxide solution.
In a 1 L separable flask with a jacket, 310 g of ethanol, 100 g of high-grade purity 28% ammonia water manufactured by Kishida Chemical Co., Ltd. were added and mixed uniformly.
g A substrate phosphor containing solution was prepared by charging.
セパラブルフラスコのジャケットには温度調節された冷却水を流して反応溶液の温度を5℃で一定に保ち、BSS粉末が沈降しないように、モーター付きの撹拌羽根で基体蛍光体含有溶液を激しく撹拌してBSS粉末を舞い上げながら、そこに金属アルコキシド溶液を定量ポンプで約4時間かけて滴下した。
金属アルコキシド溶液の滴下が終了した後、反応溶液を静置して緑色蛍光体が沈降してから、シリカ微粒子で白濁した液相をデカンテーションで除去した。その後500mLのエタノールを加え、軽く撹拌した後静置して、白濁の残る液層をデカンテーションで除去した。このエタノール洗浄を、液層が無色透明になるまで4回繰り返し、セパラブルフラスコごと50℃、30分間の減圧乾燥を行い、その後150℃、2時間の減圧乾燥を行い、シリカ付着率24.0重量%で表面シリカコートされたBSS蛍光体粉末を得た。被膜厚さは150〜200nm程度であった。
上記で得られた被覆蛍光体粒子について、実施例3と同様の各評価を行った。結果を表2に示す。
A temperature-controlled cooling water is allowed to flow through the jacket of the separable flask to keep the temperature of the reaction solution constant at 5 ° C., and the substrate phosphor-containing solution is vigorously stirred with a stirring blade equipped with a motor so that the BSS powder does not settle. Then, the metal alkoxide solution was dropped into the BSS powder with a metering pump over about 4 hours.
After the dropping of the metal alkoxide solution was completed, the reaction solution was allowed to stand to settle the green phosphor, and then the liquid phase clouded with silica fine particles was removed by decantation. Thereafter, 500 mL of ethanol was added, and the mixture was lightly stirred and allowed to stand, and the liquid layer with white turbidity was removed by decantation. This ethanol washing is repeated 4 times until the liquid layer becomes colorless and transparent, and the separable flask is dried under reduced pressure at 50 ° C. for 30 minutes, and then dried at 150 ° C. for 2 hours to obtain a silica adhesion rate of 24.0. A BSS phosphor powder coated with silica on the surface by weight was obtained. The film thickness was about 150 to 200 nm.
The coated phosphor particles obtained above were evaluated in the same manner as in Example 3. The results are shown in Table 2.
[2−4]比較例6
比較例3で得られたガラス粉末を用い、被覆温度を750℃とし、ガラス転移温度付近での保持を行わなかった以外は実施例3と同様にガラス被覆蛍光体を製造し、比表面積以外の各評価を行った。結果を表2に示す。
[2−5]比較例7
比較例3で得られたガラス粉末を用い、被覆温度を850℃とし、ガラス転移温度付近での保持を行わなかった以外は実施例3と同様にガラス被覆蛍光体を製造し、比表面積以外の各評価を行った。結果を表2に示す。
[2-4] Comparative Example 6
A glass-coated phosphor was produced in the same manner as in Example 3 except that the glass powder obtained in Comparative Example 3 was used, the coating temperature was set to 750 ° C., and the glass transition temperature was not maintained, and a glass-coated phosphor other than the specific surface area was produced. Each evaluation was performed. The results are shown in Table 2.
[2-5] Comparative Example 7
A glass-coated phosphor was produced in the same manner as in Example 3 except that the glass powder obtained in Comparative Example 3 was used, the coating temperature was set to 850 ° C., and the glass powder was not held near the glass transition temperature. Each evaluation was performed. The results are shown in Table 2.
緑色蛍光体BSSにおいても、総じて赤色蛍光体SCASNと同様の結果が得られた。また、実施例1、および2の電気伝導度が比較例4のそれよりも低いことから、BSS蛍光体由来のイオン溶出が抑制されていることが確認された。 In the green phosphor BSS, the same result as that of the red phosphor SCASN was obtained. Moreover, since the electrical conductivity of Example 1 and 2 is lower than that of the comparative example 4, it was confirmed that the ion elution derived from a BSS fluorescent substance is suppressed.
本発明の被覆蛍光体粒子、および蛍光体含有組成物は、蛍光体が凝集することなく、ガスバリヤ性が良好で、半導体発光装置の耐久性を向上させることが出来る。また、本発明の発光装置、並びに前記発光装置を用いた画像表示装置及び照明装置は、長期的に使用でき、耐久性に優れているため高性能である。
従って、本発明の被覆蛍光体粒子、被覆蛍光体粒子の製造方法、蛍光体含有組成物、発光装置、画像表示装置、および照明装置は、当該各分野における産業上の利用可能性が極めて高い。
The coated phosphor particles and the phosphor-containing composition of the present invention have good gas barrier properties without aggregation of the phosphor, and can improve the durability of the semiconductor light emitting device. In addition, the light-emitting device of the present invention, and the image display device and the lighting device using the light-emitting device can be used for a long time and have high durability because they have excellent durability.
Therefore, the coated phosphor particles, the method for producing the coated phosphor particles, the phosphor-containing composition, the light emitting device, the image display device, and the lighting device of the present invention have extremely high industrial applicability in each field.
1 発光装置
2 フレーム
2A フレームの凹部
3 青色LED(第1の発光体)
4 蛍光体含有部(第2の発光体)
5 接着剤
6 ワイヤ
7 モールド部
8 面発光照明装置
9 拡散板
10 保持ケース
11 蛍光体含有部
12 光源
13 基板
1 Light-emitting device
2 frames
2A Concave part of the frame
3 Blue LED (first light emitter)
4 Phosphor-containing part (second light emitter)
5 Adhesive 6 Wire
7 Mold part
8 Surface emitting lighting device
9 Diffusion plate
10 Holding case
11 Phosphor content part
12 Light source
13 Substrate
Claims (11)
(I)SiO2、B2O3、P2O5、GeO2、TeO2、Al2O3、Ga2O3、およびBi2O3から選択される1以上を含む、Zachariasenによるガラス形成酸化物
(II)アルカリ金属原子、アルカリ土類金属原子、およびZnから選択される1以上を含む網目修飾酸化物 The coated phosphor particle according to any one of claims 1 to 3, wherein the (B) glass composition contains the following (I) and (II).
(I) Glass formation with Zachariasen comprising one or more selected from SiO 2 , B 2 O 3 , P 2 O 5 , GeO 2 , TeO 2 , Al 2 O 3 , Ga 2 O 3 , and Bi 2 O 3 Oxide (II) Network-modified oxide containing one or more selected from alkali metal atoms, alkaline earth metal atoms, and Zn
に記載の被覆蛍光体粒子。 The coated phosphor particle according to any one of claims 1 to 5, wherein the coating layer formed by the (B) glass composition is a continuous film.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2007172930A JP2009013186A (en) | 2007-06-29 | 2007-06-29 | Coated phosphor particles, method for producing coated phosphor particles, phosphor-containing composition, light emitting device, image display device, and illumination device |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2007172930A JP2009013186A (en) | 2007-06-29 | 2007-06-29 | Coated phosphor particles, method for producing coated phosphor particles, phosphor-containing composition, light emitting device, image display device, and illumination device |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JP2009013186A true JP2009013186A (en) | 2009-01-22 |
| JP2009013186A5 JP2009013186A5 (en) | 2010-07-29 |
Family
ID=40354501
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2007172930A Pending JP2009013186A (en) | 2007-06-29 | 2007-06-29 | Coated phosphor particles, method for producing coated phosphor particles, phosphor-containing composition, light emitting device, image display device, and illumination device |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP2009013186A (en) |
Cited By (20)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2009102524A (en) * | 2007-10-24 | 2009-05-14 | Nichia Corp | Phosphor and fluorescent lamp using the same |
| WO2011126118A1 (en) * | 2010-04-09 | 2011-10-13 | 日立化成工業株式会社 | Spherical phosphor, sealing material for wavelength conversion solar battery, solar battery module and method for producing same |
| WO2012077656A1 (en) | 2010-12-09 | 2012-06-14 | 三井金属鉱業株式会社 | Sulfur-containing phosphor coated with zno compound |
| WO2012077485A1 (en) * | 2010-12-06 | 2012-06-14 | 日立化成工業株式会社 | Spherical phosphor, sealing material for wavelength-conversion-type solar batteries, solar battery module, and process for manufacture of those |
| JP2012136686A (en) * | 2010-12-07 | 2012-07-19 | Sharp Corp | Wavelength conversion member, light emitting device, illuminating device, vehicle headlamp, and production method |
| JP2013536283A (en) * | 2010-08-14 | 2013-09-19 | ソウル セミコンダクター カンパニー リミテッド | Surface-modified silicate phosphor |
| JP2013539598A (en) * | 2010-08-11 | 2013-10-24 | キユーデイー・ビジヨン・インコーポレーテツド | Quantum dot lighting |
| US9166119B2 (en) | 2011-04-05 | 2015-10-20 | Mitsui Mining & Smelting Co., Ltd. | Light-emitting device |
| US9196785B2 (en) | 2010-08-14 | 2015-11-24 | Seoul Semiconductor Co., Ltd. | Light emitting device having surface-modified quantum dot luminophores |
| JP2015224299A (en) * | 2014-05-28 | 2015-12-14 | シャープ株式会社 | Wavelength conversion member, light emitting device, and method of producing wavelength conversion member |
| US9234129B2 (en) | 2010-08-14 | 2016-01-12 | Seoul Semiconductor Co., Ltd. | Surface-modified quantum dot luminophores |
| KR20160114640A (en) | 2014-03-27 | 2016-10-05 | 미쓰이금속광업주식회사 | Phosphor and use thereof |
| US9614129B2 (en) | 2010-08-14 | 2017-04-04 | Seoul Semiconductor Co., Ltd. | Light emitting device having surface-modified luminophores |
| WO2020054351A1 (en) * | 2018-09-12 | 2020-03-19 | デンカ株式会社 | Fluorescent body and light-emitting device |
| JP2020059764A (en) * | 2018-10-04 | 2020-04-16 | デンカ株式会社 | Composite, light-emitting device and production method of composite |
| JP2020066677A (en) * | 2018-10-24 | 2020-04-30 | デンカ株式会社 | Surface coat phosphor particle, composite, light-emitting device, and production method of surface coat phosphor particle |
| CN111602256A (en) * | 2018-01-22 | 2020-08-28 | 亮锐控股有限公司 | Coated wavelength converting materials for light emitting devices |
| US10899965B2 (en) | 2015-03-30 | 2021-01-26 | Nichia Corporation | Fluorescent material particles, method for producing the same, and light emitting device |
| KR20210080427A (en) | 2018-10-24 | 2021-06-30 | 덴카 주식회사 | Surface-coated phosphor particles, composites and light emitting devices |
| JP2024179681A (en) * | 2023-06-15 | 2024-12-26 | エルティーアイ株式会社 | Luminous particles and method for producing same |
Citations (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH0420587A (en) * | 1990-05-14 | 1992-01-24 | Sumitomo Chem Co Ltd | Fluophor and el element |
| JPH04356584A (en) * | 1990-08-07 | 1992-12-10 | Sumitomo Chem Co Ltd | Stimulable phosphor for el lamp |
| JP2001031446A (en) * | 1999-07-22 | 2001-02-06 | Okuno Chem Ind Co Ltd | Low melting point glass composition |
| JP2001261369A (en) * | 2000-03-22 | 2001-09-26 | Central Glass Co Ltd | Low melting point glass composition |
| JP2002211935A (en) * | 2001-01-16 | 2002-07-31 | National Institute Of Advanced Industrial & Technology | Ultrafine particle dispersed glass and display device using the same |
| JP2003321226A (en) * | 2002-02-27 | 2003-11-11 | National Institute Of Advanced Industrial & Technology | Silica glass particle material containing semiconductor super fine particle and device |
| JP2005011933A (en) * | 2003-06-18 | 2005-01-13 | Asahi Glass Co Ltd | Light emitting diode element |
| JP2006052345A (en) * | 2004-08-13 | 2006-02-23 | Rohm Co Ltd | Luminescent color conversion member and semiconductor light emitting device |
| JP2006312568A (en) * | 2005-05-09 | 2006-11-16 | Okuno Chem Ind Co Ltd | Low melting point glass composition |
| JP2007123410A (en) * | 2005-10-26 | 2007-05-17 | Asahi Glass Co Ltd | Glass-coated light-emitting diode element |
-
2007
- 2007-06-29 JP JP2007172930A patent/JP2009013186A/en active Pending
Patent Citations (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH0420587A (en) * | 1990-05-14 | 1992-01-24 | Sumitomo Chem Co Ltd | Fluophor and el element |
| JPH04356584A (en) * | 1990-08-07 | 1992-12-10 | Sumitomo Chem Co Ltd | Stimulable phosphor for el lamp |
| JP2001031446A (en) * | 1999-07-22 | 2001-02-06 | Okuno Chem Ind Co Ltd | Low melting point glass composition |
| JP2001261369A (en) * | 2000-03-22 | 2001-09-26 | Central Glass Co Ltd | Low melting point glass composition |
| JP2002211935A (en) * | 2001-01-16 | 2002-07-31 | National Institute Of Advanced Industrial & Technology | Ultrafine particle dispersed glass and display device using the same |
| JP2003321226A (en) * | 2002-02-27 | 2003-11-11 | National Institute Of Advanced Industrial & Technology | Silica glass particle material containing semiconductor super fine particle and device |
| JP2005011933A (en) * | 2003-06-18 | 2005-01-13 | Asahi Glass Co Ltd | Light emitting diode element |
| JP2006052345A (en) * | 2004-08-13 | 2006-02-23 | Rohm Co Ltd | Luminescent color conversion member and semiconductor light emitting device |
| JP2006312568A (en) * | 2005-05-09 | 2006-11-16 | Okuno Chem Ind Co Ltd | Low melting point glass composition |
| JP2007123410A (en) * | 2005-10-26 | 2007-05-17 | Asahi Glass Co Ltd | Glass-coated light-emitting diode element |
Cited By (32)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2009102524A (en) * | 2007-10-24 | 2009-05-14 | Nichia Corp | Phosphor and fluorescent lamp using the same |
| WO2011126118A1 (en) * | 2010-04-09 | 2011-10-13 | 日立化成工業株式会社 | Spherical phosphor, sealing material for wavelength conversion solar battery, solar battery module and method for producing same |
| JP2013539598A (en) * | 2010-08-11 | 2013-10-24 | キユーデイー・ビジヨン・インコーポレーテツド | Quantum dot lighting |
| JP2013536283A (en) * | 2010-08-14 | 2013-09-19 | ソウル セミコンダクター カンパニー リミテッド | Surface-modified silicate phosphor |
| US9960324B2 (en) | 2010-08-14 | 2018-05-01 | Seoul Semiconductor Co., Ltd. | Light-emitting device having surface-modified luminophores |
| US9196785B2 (en) | 2010-08-14 | 2015-11-24 | Seoul Semiconductor Co., Ltd. | Light emitting device having surface-modified quantum dot luminophores |
| US9234129B2 (en) | 2010-08-14 | 2016-01-12 | Seoul Semiconductor Co., Ltd. | Surface-modified quantum dot luminophores |
| US10312420B2 (en) | 2010-08-14 | 2019-06-04 | Seoul Semiconducter Co., Ltd. | Light-emitting device having surface-modified luminophores |
| US9614129B2 (en) | 2010-08-14 | 2017-04-04 | Seoul Semiconductor Co., Ltd. | Light emitting device having surface-modified luminophores |
| WO2012077485A1 (en) * | 2010-12-06 | 2012-06-14 | 日立化成工業株式会社 | Spherical phosphor, sealing material for wavelength-conversion-type solar batteries, solar battery module, and process for manufacture of those |
| JP2012136686A (en) * | 2010-12-07 | 2012-07-19 | Sharp Corp | Wavelength conversion member, light emitting device, illuminating device, vehicle headlamp, and production method |
| WO2012077656A1 (en) | 2010-12-09 | 2012-06-14 | 三井金属鉱業株式会社 | Sulfur-containing phosphor coated with zno compound |
| US9312454B2 (en) | 2010-12-09 | 2016-04-12 | Mitsui Mining & Smelting Co., Ltd. | Sulfur-containing phosphor coated with ZnO compound |
| US9166119B2 (en) | 2011-04-05 | 2015-10-20 | Mitsui Mining & Smelting Co., Ltd. | Light-emitting device |
| US10550321B2 (en) | 2014-03-27 | 2020-02-04 | Mitsui Mining & Smelting Co., Ltd. | Phosphor and use thereof |
| KR20160114640A (en) | 2014-03-27 | 2016-10-05 | 미쓰이금속광업주식회사 | Phosphor and use thereof |
| JP2015224299A (en) * | 2014-05-28 | 2015-12-14 | シャープ株式会社 | Wavelength conversion member, light emitting device, and method of producing wavelength conversion member |
| US10899965B2 (en) | 2015-03-30 | 2021-01-26 | Nichia Corporation | Fluorescent material particles, method for producing the same, and light emitting device |
| CN111602256A (en) * | 2018-01-22 | 2020-08-28 | 亮锐控股有限公司 | Coated wavelength converting materials for light emitting devices |
| CN111602256B (en) * | 2018-01-22 | 2023-10-24 | 亮锐控股有限公司 | Coated wavelength converting material for light emitting devices |
| JP7312187B2 (en) | 2018-09-12 | 2023-07-20 | デンカ株式会社 | Phosphor and light emitting device |
| CN112739796A (en) * | 2018-09-12 | 2021-04-30 | 电化株式会社 | Phosphors and Light Emitting Devices |
| KR20210057099A (en) * | 2018-09-12 | 2021-05-20 | 덴카 주식회사 | Phosphor and light emitting device |
| JPWO2020054351A1 (en) * | 2018-09-12 | 2021-08-30 | デンカ株式会社 | Fluorescent material and light emitting device |
| US11434421B2 (en) | 2018-09-12 | 2022-09-06 | Denka Company Limited | Phosphor and light-emitting device |
| WO2020054351A1 (en) * | 2018-09-12 | 2020-03-19 | デンカ株式会社 | Fluorescent body and light-emitting device |
| CN112739796B (en) * | 2018-09-12 | 2024-01-09 | 电化株式会社 | Phosphor and light-emitting device |
| KR102686650B1 (en) | 2018-09-12 | 2024-07-22 | 덴카 주식회사 | Phosphors and light-emitting devices |
| JP2020059764A (en) * | 2018-10-04 | 2020-04-16 | デンカ株式会社 | Composite, light-emitting device and production method of composite |
| JP2020066677A (en) * | 2018-10-24 | 2020-04-30 | デンカ株式会社 | Surface coat phosphor particle, composite, light-emitting device, and production method of surface coat phosphor particle |
| KR20210080427A (en) | 2018-10-24 | 2021-06-30 | 덴카 주식회사 | Surface-coated phosphor particles, composites and light emitting devices |
| JP2024179681A (en) * | 2023-06-15 | 2024-12-26 | エルティーアイ株式会社 | Luminous particles and method for producing same |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP2009013186A (en) | Coated phosphor particles, method for producing coated phosphor particles, phosphor-containing composition, light emitting device, image display device, and illumination device | |
| CN102333844B (en) | Nitridosilicates co-doped with zirconium and hafnium | |
| JP5493258B2 (en) | Phosphor, method for manufacturing the same, and light emitting device | |
| JP5386800B2 (en) | Phosphor-containing composition, light emitting device, lighting device, and image display device | |
| CN101268120B (en) | Component for semiconductor light emitting device, manufacturing method thereof, and semiconductor light emitting device using same | |
| JP5315616B2 (en) | Light emitting device, white light emitter for backlight, and image display device | |
| TWI403570B (en) | Phosphor and manufacturing method thereof, containing phosphor composition, illuminating device and use thereof | |
| EP2141215A1 (en) | Phosphor and method for producing the same, phosphor-containing composition, light-emitting device, image display device, and illuminating device | |
| JP5245222B2 (en) | Phosphor and light emitting device using the same | |
| JP2008111080A (en) | Phosphor surface treatment method, phosphor, phosphor-containing composition, light emitting device, image display device, and illumination device | |
| EP2175007A1 (en) | Phosphor, method for producing phosphor, phosphor-containing composition, and light-emitting device | |
| JP5374857B2 (en) | Method for producing phosphor-containing composition and method for producing semiconductor light-emitting device | |
| JP2009173905A (en) | Phosphor, phosphor production method, phosphor-containing composition, and light emitting device | |
| EP2043165A1 (en) | Illuminating device | |
| JP2008285662A (en) | Method for producing inorganic compound, phosphor, phosphor-containing composition, light emitting device, lighting device, and image display device | |
| JP2009270091A (en) | Fluorescent glass, method of manufacturing fluorescent glass, semiconductor light-emitting device, and method of manufacturing semiconductor light-emitting device | |
| JP2010100743A (en) | Method for producing phosphor-containing composition | |
| KR101785798B1 (en) | Phosphor-dispersed glass | |
| CN102216419B (en) | Codoped 1-1-2 nitrides | |
| JP5374855B2 (en) | Method for producing phosphor-containing composition | |
| JP2011228673A (en) | Light emitting device | |
| JP2008260930A (en) | Phosphor-containing composition, light emitting device, lighting device, and image display device | |
| JP2009057554A (en) | Phosphor production method, phosphor obtained by the production method, and phosphor-containing composition, light-emitting device, illumination device, and image display device using the phosphor | |
| JP2009040918A (en) | Phosphor and production method therefor, phosphor-containing composition, light emitting device, image display device and lighting device | |
| JP2009030042A (en) | Phosphor, phosphor production method, phosphor-containing composition, and light emitting device |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| RD05 | Notification of revocation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7425 Effective date: 20090713 |
|
| A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100614 |
|
| A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100614 |
|
| A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120911 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20121009 |
|
| A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20121207 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20131001 |
|
| A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20140212 |