[go: up one dir, main page]

JP2009172468A - Regeneration apparatus of cleaning solvent, and distilling regeneration method of cleaning solvent - Google Patents

Regeneration apparatus of cleaning solvent, and distilling regeneration method of cleaning solvent Download PDF

Info

Publication number
JP2009172468A
JP2009172468A JP2008011457A JP2008011457A JP2009172468A JP 2009172468 A JP2009172468 A JP 2009172468A JP 2008011457 A JP2008011457 A JP 2008011457A JP 2008011457 A JP2008011457 A JP 2008011457A JP 2009172468 A JP2009172468 A JP 2009172468A
Authority
JP
Japan
Prior art keywords
gas
gas cooler
cooling
cleaning solvent
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008011457A
Other languages
Japanese (ja)
Inventor
Toshitaka Fukase
利隆 深瀬
Takayuki Suzuki
孝之 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOSEI ELECTRIC CORP
Original Assignee
TOSEI ELECTRIC CORP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOSEI ELECTRIC CORP filed Critical TOSEI ELECTRIC CORP
Priority to JP2008011457A priority Critical patent/JP2009172468A/en
Publication of JP2009172468A publication Critical patent/JP2009172468A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a regeneration apparatus of a cleaning solvent capable of taking out the regenerated cleaning solvent containing little moisture without reheating only by heating once in a still for gasification, and a distilling regeneration method of the cleaning solvent. <P>SOLUTION: The regeneration apparatus of cleaning a solvent includes the still 2, a first gas cooler 21, a second gas cooler 23, an ejector 52, and a sludge tank 35. A cooling tube 24 is provided in the first gas cooler as a first cooling means, a cooling tube 39 is provided in the second gas cooler as a second cooling means. The first cooling means is set to cool the inside of the cooler to the temperature higher than the boiling point of water and allowing liquefaction of the cleaning solvent, and the second cooling means is set to cool the inside of the cooler to the temperature allowing condensation of steam. Gas fed from the still is passed through from the first gas cooler to the second gas cooler to liquefy the cleaning solvent gas in the gas in the first gas cooler, and the remaining gas is fed to the second gas cooler to liquefy remaining component like steam. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、電子部品や精密機械部品等の洗浄によって油脂、フラックス、ワックス等の汚れを含む洗浄溶剤を減圧蒸留により再生する洗浄溶剤、特に、水溶性の汚れと油性の汚れの両方を洗浄することのできる溶剤に好適な洗浄溶剤の再生装置、および蒸留再生方法に関する。   The present invention is a cleaning solvent that regenerates a cleaning solvent containing dirt such as fats, fluxes and waxes by vacuum distillation by washing electronic parts, precision machine parts, etc., and in particular, both water-soluble dirt and oily dirt are washed. The present invention relates to a cleaning solvent regenerating apparatus suitable for a solvent that can be used, and a distillation regenerating method.

周知のように、環境汚染防止の見地からフロンなどの溶剤の使用が規制されており、この代替溶剤として石油系溶剤が使用されている。
これらの石油系溶剤を使用して電子部品等を洗浄すると、部品等の被洗浄物に付着していた切削油等の油系加工油、フラックス、塵芥等の汚れが洗浄液に混入し、洗浄装置に設けてあるフィルターを通しただけでは除去しきれない。また、石油系溶剤は高価な溶剤であり、さらには省資源の見地からも再生使用できるようにすることが望ましい。
As is well known, the use of solvents such as chlorofluorocarbons is restricted from the standpoint of preventing environmental pollution, and petroleum solvents are used as this alternative solvent.
When electronic parts are cleaned using these petroleum-based solvents, oil-based processing oil such as cutting oil, flux, dust, etc. adhering to the parts to be cleaned are mixed into the cleaning liquid, and the cleaning device It cannot be removed simply by passing through the filter provided in. In addition, petroleum-based solvents are expensive solvents, and it is desirable that they can be reused from the viewpoint of resource saving.

このため、石油系溶剤の再生装置により使用済みの洗浄溶剤を再生する装置が開発されている。
この再生装置は、使用済み溶剤を減圧状態で蒸発させる蒸留釜と、この蒸留釜の上部に連通接続した冷却器と、蒸留釜に連通接続した真空発生装置とを備え、蒸留釜内で洗浄溶剤を溶剤ガスに気化させ、この溶剤ガスを冷却器で冷却して凝集液化して再生溶剤として回収する一方、蒸留釜内に油脂などの汚れからなる廃液を残留させ、廃液は一旦冷却した後に排出するように構成したものである。そして、溶剤ガスを冷却する冷却器や、廃液を冷却する冷却器には、それぞれ冷却水パイプが連通接続されており、冷却水パイプから供給される冷却水により洗浄溶剤ガスや廃液を冷却している(特許文献1)。
特開平8−215501号公報
For this reason, an apparatus for regenerating used cleaning solvent with a petroleum solvent regenerator has been developed.
This regenerator comprises a distillation kettle that evaporates used solvent under reduced pressure, a cooler connected in communication with the upper part of the distillation kettle, and a vacuum generator connected in communication with the distillation kettle. The solvent gas is cooled with a cooler and liquefied to recover it as a regenerated solvent. On the other hand, the waste liquid consisting of dirt such as oil and fat remains in the distillation pot, and the waste liquid is once cooled and discharged. It is comprised so that it may do. A cooling water pipe is connected to each of the cooler for cooling the solvent gas and the cooler for cooling the waste liquid, and the cleaning solvent gas and the waste liquid are cooled by the cooling water supplied from the cooling water pipe. (Patent Document 1).
JP-A-8-215501

ところが、前記した従来の再生装置では、再生溶剤として取り出した凝固液に水分が混入しており、この水分を水分除去装置に通して除去しようとしても充分な除去率を達成し難い。特に、水溶性の汚れと油性の汚れの両方を洗浄することのできる溶剤を再生した場合に顕著であった。そして、水分除去の確実性を高めるためには水分吸着剤を使用するか、蒸留釜内において減圧度または加熱温度を調整することで水分のみを蒸発させ、残った溶剤を再生溶剤として再利用するほかに手立てがなかった。
しかしながら、水分吸着剤を使用するのではランニングコストが高くて実用に供すことができず、また、蒸留で分離する方法は、少量の水分を除去するために凝固液全部を加熱しなければならないので、再生溶剤を連続して取り出すことができないし、また、コストがかかりすぎて実用的ではない。
さらには、洗浄溶剤よりも高い沸点の汚れがある場合に、その物質を除去するためには再度の蒸留が必要となり、到底実用に供し得ない。
However, in the conventional regeneration apparatus described above, moisture is mixed in the coagulation liquid taken out as the regeneration solvent, and even if it is attempted to remove this moisture through the moisture removal apparatus, it is difficult to achieve a sufficient removal rate. This was particularly noticeable when a solvent capable of washing both water-soluble soil and oil-based soil was regenerated. In order to increase the certainty of moisture removal, a moisture adsorbent is used, or only the moisture is evaporated by adjusting the degree of vacuum or heating temperature in the distillation kettle, and the remaining solvent is reused as a regenerating solvent. There was no other way.
However, using a moisture adsorbent is not practical because of high running costs, and the method of separating by distillation requires heating the entire coagulation liquid in order to remove a small amount of moisture. Further, the regenerated solvent cannot be taken out continuously, and is too costly to be practical.
Furthermore, when there is dirt having a boiling point higher than that of the cleaning solvent, re-distillation is necessary to remove the substance, and it cannot be practically used at all.

本発明は、上記に鑑み提案されたもので、その目的は、蒸留釜で一度だけ加熱してガス化するだけで再度の加熱を行うことなく、水分の少ない再生洗浄溶剤を取り出すことができる洗浄溶剤の再生装置、および洗浄溶剤の蒸留再生方法を提供しようとするものである。   The present invention has been proposed in view of the above, and its purpose is to clean the regenerated cleaning solvent with a low moisture content by heating it once in a still and gasifying it without reheating. It is an object of the present invention to provide a solvent regeneration apparatus and a cleaning solvent distillation regeneration method.

請求項1に記載のものは、使用済み洗浄溶剤を加熱する蒸留釜と、蒸留釜に連通接続した第1ガス冷却器と、該第1ガス冷却器に連通接続した第2ガス冷却器と、前記蒸留釜に連通接続した減圧装置と、蒸留釜の下方に設けた廃液タンクと、を備え、
前記した第1ガス冷却器には内部を冷却する第1冷却手段を設け、第2ガス冷却器には内部を冷却する第2冷却手段を設け、
前記第1冷却手段は、水の沸点よりも高い温度であって洗浄溶剤が液化可能な温度に当該冷却器内を冷却し、第2冷却手段は、水蒸気が液化可能な温度に当該冷却器内を冷却するように設定され、
蒸留釜から送られてくるガスを第1ガス冷却器から第2ガス冷却器の順で通して当該ガス中の洗浄溶剤ガスを第1ガス冷却器で液化し、残ったガスを第2ガス冷却器に送って水蒸気等の残り成分を液化することを特徴とする洗浄溶剤の再生装置である。
What is described in claim 1 is a distillation kettle for heating the used cleaning solvent, a first gas cooler connected in communication with the distillation kettle, a second gas cooler connected in communication with the first gas cooler, A pressure reducing device connected to the distillation kettle, and a waste liquid tank provided below the distillation kettle,
The first gas cooler is provided with a first cooling means for cooling the inside, and the second gas cooler is provided with a second cooling means for cooling the inside,
The first cooling means cools the inside of the cooler to a temperature higher than the boiling point of water and capable of liquefying the cleaning solvent, and the second cooling means is cooled to a temperature capable of liquefying water vapor. Is set to cool,
The gas sent from the still is passed in the order of the first gas cooler to the second gas cooler, the cleaning solvent gas in the gas is liquefied by the first gas cooler, and the remaining gas is cooled by the second gas This is a cleaning solvent reclaiming device that is sent to a vessel to liquefy the remaining components such as water vapor.

請求項2に記載のものは、第1ガス冷却器が、冷却本体の内部に配置した第1冷却手段として冷却管を備え、該冷却管に冷媒を供給する配管の途中に、冷媒の温度を管理する冷媒温度調節器を備えたことを特徴とする請求項1に記載の洗浄溶剤の再生装置である。   According to a second aspect of the present invention, the first gas cooler includes a cooling pipe as the first cooling means disposed inside the cooling body, and the temperature of the refrigerant is set in the middle of the pipe that supplies the refrigerant to the cooling pipe. 2. The cleaning solvent regeneration device according to claim 1, further comprising a refrigerant temperature controller for management.

請求項3に記載のものは、第1ガス冷却器が、冷却本体の外壁にジャケットを備え、第1冷却手段に通す冷媒を前記ジャケットに通すことを特徴とする請求項1または2に記載の洗浄溶剤の再生装置である。   According to a third aspect of the present invention, the first gas cooler includes a jacket on the outer wall of the cooling body, and the refrigerant passing through the first cooling means is passed through the jacket. This is a cleaning solvent recycling apparatus.

請求項4に記載のものは、使用済み洗浄溶剤を蒸留釜内で大気圧よりも低い減圧状態で加熱してガス化し、このガスを、蒸留釜に連通接続した第1ガス冷却器内を通過させてから第2ガス冷却器内に順次導入し、
第1ガス冷却器では、水の沸点よりも高い温度であって洗浄溶剤が液化可能な温度に冷却することによりガス中の洗浄溶剤ガスを液化し、
第1ガス冷却器では液化されずに残ったガスを第2ガス冷却器に送って第2ガス冷却器内で水蒸気等の残り成分を液化し、
第1ガス冷却器で液化された凝縮液を再生洗浄溶剤として取り出すことを特徴とする洗浄溶剤の蒸留再生方法である。
According to the fourth aspect of the present invention, the used cleaning solvent is heated and gasified in the distillation kettle under a reduced pressure lower than the atmospheric pressure, and this gas passes through the first gas cooler connected to the distillation kettle. And then introduced sequentially into the second gas cooler,
In the first gas cooler, the cleaning solvent gas in the gas is liquefied by cooling to a temperature higher than the boiling point of water and a temperature at which the cleaning solvent can be liquefied,
In the first gas cooler, the gas remaining without being liquefied is sent to the second gas cooler to liquefy the remaining components such as water vapor in the second gas cooler,
A condensate liquefied by a first gas cooler is taken out as a regenerated cleaning solvent.

請求項1の発明によれば、第1ガス冷却器の第1冷却手段は、水の沸点よりも高い温度であって洗浄溶剤が液化可能な温度に当該冷却器内を冷却し、第2ガス冷却器の第2冷却手段は、水蒸気が液化可能な温度に当該冷却器内を冷却するように設定されるので、蒸留釜から送られてくるガスを第1ガス冷却器から第2ガス冷却器の順で通すと、当該ガス中の洗浄溶剤ガスを第1ガス冷却器で液化し、残ったガスを第2ガス冷却器に送って水蒸気等の残り成分を液化することでき、第1ガス冷却器で液化した凝縮液を再生溶剤として取り出すことができる。したがって、この再生溶剤は含水率が極めて低くなり、良質の洗浄溶剤として回収することができる。   According to the invention of claim 1, the first cooling means of the first gas cooler cools the interior of the cooler to a temperature higher than the boiling point of water and capable of liquefying the cleaning solvent, and the second gas The second cooling means of the cooler is set so as to cool the inside of the cooler to a temperature at which water vapor can be liquefied, so that the gas sent from the distillation kettle is sent from the first gas cooler to the second gas cooler. The cleaning solvent gas in the gas can be liquefied by the first gas cooler, and the remaining gas can be sent to the second gas cooler to liquefy the remaining components such as water vapor. The condensate liquefied in the vessel can be taken out as a regeneration solvent. Therefore, this recycled solvent has a very low moisture content and can be recovered as a good quality cleaning solvent.

請求項2の発明によれば、第1ガス冷却器が冷却本体の内部に配置した第1冷却手段として冷却管を備え、該冷却管に冷媒を供給する配管の途中に、冷媒の温度を管理する冷却媒体温度調節器を備えるので、第1ガス冷却器における温度管理を所定温度に管理することができ、これにより第1ガス冷却器で凝縮して液化すべき対象物を確実に液化することができる。したがって、再生溶剤の品質を高めることができる。   According to the invention of claim 2, the first gas cooler is provided with a cooling pipe as the first cooling means disposed inside the cooling body, and the temperature of the refrigerant is managed in the middle of the pipe supplying the refrigerant to the cooling pipe. The temperature control in the first gas cooler can be managed at a predetermined temperature, thereby reliably liquefy the object to be condensed and liquefied in the first gas cooler. Can do. Therefore, the quality of the recycled solvent can be improved.

請求項3の発明によれば、第1ガス冷却器が冷却本体の外壁にジャケットを備え、第1冷却手段に通す冷媒を前記ジャケットに通すので、第1ガス冷却器の全体に亘って温度分布を小さくでき、低温部分をなくすことができる。したがって、第2ガス冷却器に送るべき水蒸気が液化される不都合を解消することができる。このため、第1ガス冷却器で凝縮液化した再生溶剤の品質を確実に高めることができる。   According to the invention of claim 3, since the first gas cooler is provided with a jacket on the outer wall of the cooling body and the refrigerant passing through the first cooling means is passed through the jacket, the temperature distribution over the entire first gas cooler. Can be reduced, and the low temperature portion can be eliminated. Therefore, the disadvantage that the water vapor to be sent to the second gas cooler is liquefied can be solved. For this reason, the quality of the reproduction | regeneration solvent condensed and liquefied with the 1st gas cooler can be improved reliably.

請求項4の発明によれば、減圧状態で加熱してガス化し、このガスを、蒸留釜に連通接続した第1ガス冷却器内を通過させてから第2ガス冷却器内に順次導入し、第1ガス冷却器では、水の沸点よりも高い温度であって洗浄溶剤が液化可能な温度に冷却することによりガス中の洗浄溶剤ガスを液化し、第1ガス冷却器では液化されずに残ったガスを第2ガス冷却器に送って第2ガス冷却器内で水蒸気等の残り成分を液化し、第1ガス冷却器で液化された凝縮液を再生洗浄溶剤として取り出すので、含水率の低い良質の再生溶剤を取り出すことができる。   According to invention of Claim 4, it heats and gasifies in a pressure-reduced state, this gas is sequentially introduced into the second gas cooler after passing through the first gas cooler connected to the distillation kettle, In the first gas cooler, the cleaning solvent gas in the gas is liquefied by cooling to a temperature higher than the boiling point of water and capable of liquefying the cleaning solvent, and remains in the first gas cooler without being liquefied. Since the remaining gas such as water vapor is liquefied in the second gas cooler and the condensate liquefied in the first gas cooler is taken out as a regenerated cleaning solvent in the second gas cooler, the moisture content is low. A high quality recycled solvent can be taken out.

以下、発明を実施するための最良の形態を図面に基づいて説明する。
図1は、本願発明に係る洗浄溶剤の再生装置1の概略構成図である。
The best mode for carrying out the invention will be described below with reference to the drawings.
FIG. 1 is a schematic configuration diagram of a cleaning solvent regenerator 1 according to the present invention.

図1において、2は耐圧性を有する略円筒形状の蒸留釜であり、この蒸留釜2の下部には蒸留釜2内に供給した石油系溶剤(被蒸留溶剤)を加熱するための加熱装置を設けてある。なお、洗浄溶剤としては、水溶性の汚れと油性の汚れの両方を洗浄することのできる溶剤、具体的にはアルコール性炭化水素を主成分とする非水系洗浄剤、炭化水をベースにアルコールを添加した非水系洗浄剤を挙げることができるが、これに限定されるものではない。
加熱装置は、蒸留釜2の釜本体の外側底部を覆うようにジャケット状の加熱タンク3を設けるとともに、該加熱タンク3内にオイル加熱ヒーター4を設け、釜本体2´の内部の下部に加熱コイル5を配置し、この加熱コイル5の下端入口側に、オイル循環ポンプ6の吐出側配管7を接続し、加熱コイル5の出口側には、加熱タンク3の下部に接続した戻り配管8を接続してある。なお、前記した加熱コイル5は、蒸留釜2内に供給した被蒸留溶剤(使用済み洗浄溶剤)に常に浸漬するように、洗浄溶剤の液面よりも下方となる位置に設けてある。また、加熱タンク3は、最上部が蒸留釜2内に供給した石油系溶剤の液面よりも下方に位置するように配置してある。
In FIG. 1, reference numeral 2 denotes a substantially cylindrical distillation kettle having pressure resistance, and a heating device for heating a petroleum solvent (solvent to be distilled) supplied into the distillation kettle 2 is provided at the lower part of the distillation kettle 2. It is provided. As the cleaning solvent, a solvent capable of cleaning both water-soluble dirt and oily dirt, specifically, a non-aqueous detergent mainly composed of alcoholic hydrocarbons, alcohol based on hydrocarbons. Non-aqueous detergents added may be mentioned, but the invention is not limited thereto.
The heating device is provided with a jacket-like heating tank 3 so as to cover the outer bottom of the kettle body of the distillation kettle 2, and an oil heater 4 is provided in the heating tank 3 to heat the lower part inside the kettle body 2 ′. A coil 5 is arranged, a discharge side pipe 7 of the oil circulation pump 6 is connected to the lower end inlet side of the heating coil 5, and a return pipe 8 connected to the lower part of the heating tank 3 is connected to the outlet side of the heating coil 5. Connected. The heating coil 5 described above is provided at a position below the level of the cleaning solvent so as to be always immersed in the solvent to be distilled (used cleaning solvent) supplied into the distillation still 2. The heating tank 3 is arranged so that the uppermost part is located below the liquid level of the petroleum solvent supplied into the distillation still 2.

上記した加熱コイル5及び加熱タンク3には、加熱媒体として難燃性の媒体オイルが供給される。この媒体オイルは、まず、加熱タンク3に設けたオイル加熱ヒーター4により加熱されて釜本体2´の下半部分を外側から加熱し、また、オイル循環ポンプ6の作動により底部から蒸留釜2内に導かれた加熱コイル5中を上昇し、加熱コイル5に接している被蒸留溶剤を加熱して、その後、一旦蒸留釜2外に導かれてから戻り配管8を介して加熱タンク3にその底部から戻される。また、加熱タンク3で加熱された媒体オイルは、オイル循環ポンプ6の作動により冷却媒体温度調節器10の加熱部11に供給され、冷却媒体を加熱してから冷却媒体温度調節器10を出て加熱タンク3に戻される。
なお、媒体オイルは、加熱タンク3に設けたオイル温度調節器12により所定の温度を維持する。具体的には、オイル温度調節器を温度調整用サーモスタットにより構成し、該温度調整用サーモスタットによりオイル加熱ヒーター4をオン−オフして温度管理を行うように構成してもよい。或いは、オイル温度調節器を温度センサにより構成し、該温度センサからの信号を制御装置(図示せず)が受信し、これに基づいて制御装置がオイル加熱ヒーター4を制御することにより温度管理を行うように構成してもよい。要するに、加熱タンク3内の加熱媒体オイルが所定の温度を維持できればよい。
The heating coil 5 and the heating tank 3 are supplied with flame retardant medium oil as a heating medium. This medium oil is first heated by an oil heater 4 provided in the heating tank 3 to heat the lower half portion of the pot body 2 'from the outside, and the operation of the oil circulation pump 6 causes the inside of the distillation pot 2 from the bottom. The solvent to be distilled in contact with the heating coil 5 is heated, and then guided to the outside of the distillation pot 2 and then returned to the heating tank 3 via the return pipe 8. Returned from the bottom. Further, the medium oil heated in the heating tank 3 is supplied to the heating unit 11 of the cooling medium temperature adjuster 10 by the operation of the oil circulation pump 6, and after heating the cooling medium, exits the cooling medium temperature adjuster 10. Returned to the heating tank 3.
The medium oil is maintained at a predetermined temperature by an oil temperature controller 12 provided in the heating tank 3. Specifically, the oil temperature controller may be configured by a temperature adjusting thermostat, and the oil heater 4 may be turned on and off by the temperature adjusting thermostat to perform temperature management. Alternatively, the oil temperature regulator is constituted by a temperature sensor, and a control device (not shown) receives a signal from the temperature sensor, and the control device controls the oil heater 4 based on this signal, thereby managing the temperature. It may be configured to do. In short, it is only necessary that the heating medium oil in the heating tank 3 can maintain a predetermined temperature.

なお、蒸留釜2の内部には、再生装置1の外部から被蒸留溶剤入口9に供給された被蒸留溶剤が、溶剤ストレーナ13、被蒸留溶剤供給配管14、液位調整器15、溶剤投入弁16等からなる被蒸留溶剤供給系を介して、制御装置の制御の下で過不足なく供給される。   In addition, in the distillation pot 2, the solvent to be distilled supplied from the outside of the regenerator 1 to the solvent inlet 9 is a solvent strainer 13, a solvent supply pipe 14, a liquid level adjuster 15, a solvent injection valve. It is supplied without excess or deficiency under the control of the control device via the solvent to be distilled supply system composed of 16 or the like.

上記した蒸留釜2の上部には、減圧蒸留したガスを排出するための排気口が設けてあり、ガスは溶剤排気口からガスパイプ20を通って第1ガス冷却器21に送られて凝縮液化されて、この第1ガス冷却器21で凝縮されなかった水蒸気等のガスは第1ガス冷却器21の上部(本実施形態では天井に設けたガス出口)からガス配管22を介して下流側に接続された第2ガス冷却器23に送られて凝縮液化される。   An exhaust port for discharging the gas distilled under reduced pressure is provided in the upper portion of the distillation kettle 2 described above, and the gas is sent from the solvent exhaust port through the gas pipe 20 to the first gas cooler 21 to be condensed and liquefied. Thus, the gas such as water vapor not condensed by the first gas cooler 21 is connected to the downstream side through the gas pipe 22 from the upper part of the first gas cooler 21 (in this embodiment, the gas outlet provided on the ceiling). It is sent to the second gas cooler 23 and is condensed and liquefied.

上記した第1ガス冷却器21は、円筒状の冷却容器の内部に第1冷却手段としてコイル状の冷却管24が設けられており、この冷却管24の入口側は冷却媒体温度調節器10側の冷媒供給側に接続され、出口側は冷却媒体温度調節器10側の冷媒回収側に接続されている。また、この第1ガス冷却器21は冷却容器の外壁にジャケット25を備え、該ジャケット25の下部に設けた冷却水入口25aには前記冷却媒体温度調節器10の冷媒供給側に接続され、ジャケット25の上部に設けた冷却水出口25bに向かって冷却水が流れて冷却容器の周囲を温度管理可能としてある。すなわち、外気の温度に拘わらず冷却容器の外壁温度が冷媒の温度に維持され、これにより冷却容器の内部の温度が溶剤ガスの凝縮液化に適した温度を保って凝縮効果を高めると共に、冷却容器の下部の温度が低くなり過ぎて水蒸気が液化するなどの不都合を防止するように構成されている。なお、冷却水出口25bには冷却水回収パイプ26が接続され、この冷却水回収パイプ26を介して、ジャケット25を通過した冷媒を冷却媒体温度調節器10に戻している。   The first gas cooler 21 is provided with a coiled cooling pipe 24 as a first cooling means inside a cylindrical cooling vessel. The inlet side of the cooling pipe 24 is on the cooling medium temperature controller 10 side. The outlet side is connected to the refrigerant recovery side on the coolant temperature controller 10 side. The first gas cooler 21 is provided with a jacket 25 on the outer wall of the cooling container, and a cooling water inlet 25a provided at the lower portion of the jacket 25 is connected to the refrigerant supply side of the cooling medium temperature controller 10, and the jacket The cooling water flows toward the cooling water outlet 25b provided in the upper part of 25, so that the temperature around the cooling container can be controlled. That is, the outer wall temperature of the cooling container is maintained at the temperature of the refrigerant regardless of the temperature of the outside air, so that the temperature inside the cooling container is maintained at a temperature suitable for condensing and liquefying the solvent gas, and the condensation effect is enhanced. The temperature of the lower part of the liquid crystal is too low to prevent inconvenience such as liquefaction of water vapor. A cooling water recovery pipe 26 is connected to the cooling water outlet 25 b, and the refrigerant that has passed through the jacket 25 is returned to the cooling medium temperature controller 10 via the cooling water recovery pipe 26.

冷却媒体温度調節器10は、冷媒タンク30と、該冷媒タンク30内に設けられた加熱部11及び冷却部31と、冷媒タンク30内の冷媒を吸引して圧送する冷媒ポンプ32とから概略構成されている。本実施形態における加熱部11は、蒸留釜2の加熱タンク3から加熱オイルを導入してきて冷媒タンク30内の冷媒を昇温可能なコイル状の加熱管により構成されている。一方、冷却部31は、水分分離器33を介して第2ガス冷却器23に送られる冷却水を分岐管34で分岐導入してきて通すことにより、冷媒タンク30内の冷媒を降温可能なコイル状の冷却管から構成されている。なお、本実施形態においては、冷媒として水を使用しているので、分岐管34を通過した冷却水を廃液タンクとしてのスラッジタンク35側に戻す管36の途中に、冷媒補給バルブ37を設け、該冷媒補給バルブ37を開くと水を冷媒タンク30内に補給することができる。   The cooling medium temperature controller 10 includes a refrigerant tank 30, a heating unit 11 and a cooling unit 31 provided in the refrigerant tank 30, and a refrigerant pump 32 that sucks and pumps the refrigerant in the refrigerant tank 30. Has been. The heating unit 11 in the present embodiment is configured by a coiled heating tube that can introduce heating oil from the heating tank 3 of the distillation pot 2 and raise the temperature of the refrigerant in the refrigerant tank 30. On the other hand, the cooling unit 31 has a coil shape capable of lowering the temperature of the refrigerant in the refrigerant tank 30 by introducing the cooling water sent to the second gas cooler 23 through the water separator 33 through the branch pipe 34 and passing it through. It consists of a cooling pipe. In this embodiment, since water is used as the refrigerant, a refrigerant replenishing valve 37 is provided in the middle of the pipe 36 for returning the cooling water that has passed through the branch pipe 34 to the sludge tank 35 side as a waste liquid tank, When the refrigerant replenishing valve 37 is opened, water can be replenished into the refrigerant tank 30.

次に、第2ガス冷却器23について説明する。この第2ガス冷却器23は、第1ガス冷却器21の下流側に直列に接続された第2段目のガス冷却器であり、円筒状の冷却容器の内部に第2冷却手段としてコイル状の冷却管39が設けられており、この冷却管39の入口側は冷却水供給管40を介して再生装置1の冷却水入口41側に接続され、出口側は冷却水送出管42を介してスラッジタンク35側に接続されている。また、この第2ガス冷却器23の冷却容器の上部(本実施形態では天井に設けたガス出口)から配管43を介して、後述する減圧装置に接続し、この減圧装置によって冷却容器の内部が大気圧以下に減圧され、この減圧により、第1ガス冷却器21の内部を大気圧以下に減圧し、この減圧により、蒸留釜2内を大気圧以下に減圧するように構成されている。そして、冷却容器の底部に設けたドレンバルブ44にはドレン回収管45を接続し、このドレン回収管45を介して、第2ガス冷却器23で凝縮液化した水等をスラッジタンク35に回収できるように構成してある。   Next, the second gas cooler 23 will be described. The second gas cooler 23 is a second-stage gas cooler connected in series downstream of the first gas cooler 21 and is coiled as a second cooling means inside a cylindrical cooling vessel. A cooling pipe 39 is provided, the inlet side of the cooling pipe 39 is connected to the cooling water inlet 41 side of the regenerator 1 via a cooling water supply pipe 40, and the outlet side is connected via a cooling water delivery pipe 42. It is connected to the sludge tank 35 side. Further, an upper portion of the cooling container of the second gas cooler 23 (in this embodiment, a gas outlet provided on the ceiling) is connected to a decompression device to be described later via a pipe 43, and the interior of the cooling container is connected by this decompression device. The internal pressure of the first gas cooler 21 is reduced to below atmospheric pressure by this pressure reduction, and the inside of the distillation still 2 is reduced to below atmospheric pressure by this pressure reduction. A drain recovery pipe 45 is connected to the drain valve 44 provided at the bottom of the cooling container, and water or the like condensed and liquefied by the second gas cooler 23 can be recovered in the sludge tank 35 via the drain recovery pipe 45. It is constituted as follows.

上記した減圧装置は、いわゆる真空発生装置とも称されるもので、第1ガス冷却器21で再生した再生溶剤を水分分離器33を通して循環させる循環経路50と、該循環経路50の途中に設けた溶剤循環ポンプ51と、エゼクター52とからなる。すなわち、水分分離器33の下部から導かれた再生溶剤は溶剤循環ポンプ51により溶剤循環経路50を経て再び水分分離器33の上部に循環させられるが、この溶剤循環経路50にエゼクター52を設け、第2ガス冷却器23の上部に連通接続した管43をエゼクター52の負圧発生部に接続し、これにより、エゼクター52内に生じた負圧によって第2ガス冷却器23の内部、第1ガス冷却器21の内部、及び蒸留釜2の内部を順次減圧状態とする。また、エゼクター52に接続した前記管43の途中には、一端を第1ガス冷却器21の底部に接続した凝縮液回収管54の他端を接続してある。したがって、第1ガス冷却器21で凝縮液化された再生溶剤を前記凝縮液回収管54を介して減圧装置の溶剤循環経路50に吸引することができる。なお、第1ガス冷却器21の底部と減圧装置の溶剤循環路経路50を結ぶ凝縮液回収管54の途中にはチャッキバルブ55と開閉バルブ56を設け、該開閉バルブ56を開くと第1ガス冷却器21で凝縮液化した再生溶剤が溶剤循環経路50に連続的に吸引される。
なお、本発明における第1ガス冷却器21で凝縮液化した再生溶剤は、水分が含まれる率は従来に比較して遥かに低いが、減圧装置の一部を構成している水分分離器33を通すと一層水分の少ない再生溶剤とすることができる。
The above-described decompression device is also referred to as a so-called vacuum generation device, and is provided in a circulation path 50 for circulating the regenerated solvent regenerated by the first gas cooler 21 through the water separator 33 and in the middle of the circulation path 50. It consists of a solvent circulation pump 51 and an ejector 52. That is, the regenerated solvent introduced from the lower part of the water separator 33 is circulated again to the upper part of the water separator 33 through the solvent circulation path 50 by the solvent circulation pump 51. The ejector 52 is provided in the solvent circulation path 50, A pipe 43 communicated with the upper part of the second gas cooler 23 is connected to the negative pressure generating portion of the ejector 52, whereby the negative pressure generated in the ejector 52 causes the inside of the second gas cooler 23, the first gas. The inside of the cooler 21 and the inside of the distillation pot 2 are sequentially brought into a reduced pressure state. Further, in the middle of the pipe 43 connected to the ejector 52, the other end of a condensate recovery pipe 54 having one end connected to the bottom of the first gas cooler 21 is connected. Accordingly, the regenerated solvent condensed and liquefied by the first gas cooler 21 can be sucked into the solvent circulation path 50 of the decompression device via the condensate recovery pipe 54. A check valve 55 and an opening / closing valve 56 are provided in the middle of the condensate recovery pipe 54 connecting the bottom of the first gas cooler 21 and the solvent circulation path 50 of the decompression device. The regenerated solvent condensed and liquefied by the cooler 21 is continuously sucked into the solvent circulation path 50.
Note that the regenerated solvent condensed and liquefied by the first gas cooler 21 in the present invention has a much lower moisture content than the conventional solvent, but the moisture separator 33 constituting a part of the decompression device is used. If it passes, it can be set as a regenerated solvent with less moisture.

上記した水分分離器33は、再生溶剤と水との比重の差を利用して水分を沈殿させる一方で上澄みとなって純度を高めた再生溶剤を取り出し可能としたもので、例えば、内部を上室と下室とに区画し、上室から再生溶剤出口57に連通させて再生溶剤を必要に応じて再生溶剤出口57から取り出し可能とし、下室の循環出口58から循環用の再生溶剤を取り出し可能としてある。また、この水分分離器33の下室内には、再生装置1の冷却水入口41から取り入れた外部からの冷却水を通す冷却管59を設けて、再生溶剤を冷却するように構成されている。   The above-described water separator 33 is capable of taking out the regenerated solvent which has become a supernatant and having increased purity while precipitating water by utilizing the difference in specific gravity between the regenerated solvent and water. It is divided into a chamber and a lower chamber, communicated from the upper chamber to the regeneration solvent outlet 57, so that the regeneration solvent can be taken out from the regeneration solvent outlet 57 as necessary, and the recycling solvent for circulation is taken out from the circulation outlet 58 in the lower chamber It is possible. Further, in the lower chamber of the water separator 33, a cooling pipe 59 through which cooling water from the outside taken in from the cooling water inlet 41 of the regenerator 1 is provided is configured to cool the regenerated solvent.

次に、上記した構成からなる洗浄溶剤の再生装置1を稼働して使用済み洗浄溶剤を再生する手順乃至再生方法について説明する。
まず、使用済み洗浄溶剤(被再生溶剤)を再生装置1の被蒸留溶剤入口9から蒸留釜2内に投入できる状態に準備して、準備ができてから制御装置の運転開始スイッチをオンにする。すると、溶剤循環ポンプ51が始動し、エゼクター52の作用により蒸留釜2内の空気を吸引し始める。また、加熱タンク3内のオイル加熱ヒーター4が作動しオイルを加熱し始める。
Next, a procedure or a regeneration method for regenerating the used cleaning solvent by operating the cleaning solvent regenerating apparatus 1 having the above-described configuration will be described.
First, a used cleaning solvent (a solvent to be recycled) is prepared so that it can be introduced into the distillation pot 2 from the distillation solvent inlet 9 of the regeneration apparatus 1, and the operation start switch of the control device is turned on after the preparation is completed. . Then, the solvent circulation pump 51 is started, and the air in the distillation still 2 is started to be sucked by the action of the ejector 52. Further, the oil heater 4 in the heating tank 3 is activated to start heating the oil.

そして、真空計(図示せず)により蒸留釜2内が所定の真空度に達したことを検知するとともに、オイル温度調節器(例えば、温度調整用サーモスタット)により加熱オイルが所定の温度に達したことを検知すると、制御装置の制御により溶剤投入弁16が開き、被蒸留溶剤入口9から水分や油脂等の汚れを含んだ再生前の洗浄溶剤が蒸留釜2内に導かれる。蒸留釜2内に導かれる洗浄溶剤の分量は液位調整器15により調整されるが、溶剤の液面が加熱タンク3の上部よりも上方に位置するとともに、加熱コイル5が常に溶剤中に浸漬する位置にまで注入される。
なお、蒸留釜2に導かれる再生前の使用済み溶剤は、溶剤ストレーナ13により塵芥等が予め除去される。
And while detecting that the inside of the distillation pot 2 reached a predetermined degree of vacuum with a vacuum gauge (not shown), heated oil reached a predetermined temperature with an oil temperature controller (for example, a thermostat for temperature adjustment). When this is detected, the solvent introduction valve 16 is opened under the control of the control device, and the cleaning solvent before regeneration containing dirt such as moisture and oil is introduced into the distillation kettle 2 from the inlet 9 of the solvent to be distilled. The amount of the cleaning solvent introduced into the still 2 is adjusted by the liquid level adjuster 15, but the liquid level of the solvent is located above the upper part of the heating tank 3 and the heating coil 5 is always immersed in the solvent. It is injected to the position to do.
In addition, the used solvent before the reproduction | regeneration guide | induced to the distillation pot 2 removes a dust etc. previously by the solvent strainer 13. FIG.

前記したように、蒸留釜2の加熱装置に備えられたオイル加熱ヒーター4がオンになると、加熱タンク3内のオイルが加熱されると共に、オイル循環ポンプ6が作動して、加熱タンク3内のオイルを蒸留釜2内の加熱コイル5に圧送し、これにより蒸留釜2内の被再生溶剤が加熱タンク3のオイルにより外側から加熱されるとともに、加熱コイル5に直接接触して加熱される。また、運転開始スイッチをオンにすると、溶剤循環ポンプ51が作動して水分分離器33内に溜まっていた再生溶剤の循環を開始し、これによりエゼクター52で負圧が発生して第2ガス冷却器23、第1ガス冷却器21、蒸留釜2の内部がそれぞれ大気圧以下に減圧される。   As described above, when the oil heater 4 provided in the heating device of the distillation pot 2 is turned on, the oil in the heating tank 3 is heated and the oil circulation pump 6 is operated to The oil is pumped to the heating coil 5 in the distillation kettle 2, whereby the reclaimed solvent in the distillation kettle 2 is heated from the outside by the oil in the heating tank 3, and is also brought into direct contact with the heating coil 5 and heated. When the operation start switch is turned on, the solvent circulation pump 51 is activated to start the circulation of the regenerated solvent accumulated in the water separator 33, thereby generating a negative pressure in the ejector 52 and the second gas cooling. The inside of the vessel 23, the first gas cooler 21, and the distillation pot 2 is depressurized to atmospheric pressure or less.

この減圧下で蒸留釜2内の再生溶剤の温度が上昇すると、溶剤、水などが蒸発し始め、オイルが所定の温度まで上昇すると、蒸留釜2内では再生溶剤が減圧状態の下で蒸発して過熱水蒸気を含む過熱ガスとなる。そして、この過熱ガスは、エゼクター52の吸引によりガスパイプ20を通って第1ガス冷却器21に送られる。   When the temperature of the regenerated solvent in the distillation pot 2 rises under this reduced pressure, the solvent, water and the like start to evaporate, and when the oil rises to a predetermined temperature, the regenerated solvent evaporates in the distillation pot 2 under the reduced pressure state. It becomes superheated gas containing superheated steam. Then, the superheated gas is sent to the first gas cooler 21 through the gas pipe 20 by suction of the ejector 52.

ガスが第1ガス冷却器21の内部に送られると、冷却容器の周囲がジャケット25に囲まれて冷却媒体温度調節器10から供給された温度調整済み冷媒により、予め設定された温度に保たれており、また、温度調整された冷媒が冷却管24に送られて冷却容器の内部を所定の温度に保っている。この所定温度は、水の沸点よりも高い温度であって洗浄溶剤が液化可能な温度であり、本実施形態では第1ガス冷却器21の内部が−10kPaに減圧されるので、この減圧下では洗浄溶剤(前記した非水系洗浄剤)の沸点が約85℃である。したがって、制御装置にはこの85℃が所定温度として設定される。また、この温度設定に伴って冷却媒体温度調節器10における温度管理が制御装置の制御の下で実行され、冷媒温度センサからの信号に基づいて制御装置が加熱オイルの経路の開閉弁61や冷却水の経路の開閉弁62を適宜開閉して第1ガス冷却器21に送る冷媒の温度を調整して第1ガス冷却器21の内部温度を前記所定温度に管理する。   When the gas is sent to the inside of the first gas cooler 21, the periphery of the cooling container is surrounded by the jacket 25, and the temperature adjusted refrigerant supplied from the coolant temperature controller 10 is maintained at a preset temperature. In addition, the temperature-adjusted refrigerant is sent to the cooling pipe 24 to keep the inside of the cooling container at a predetermined temperature. The predetermined temperature is higher than the boiling point of water and is a temperature at which the cleaning solvent can be liquefied. In this embodiment, the inside of the first gas cooler 21 is depressurized to −10 kPa. The boiling point of the cleaning solvent (the aforementioned non-aqueous cleaning agent) is about 85 ° C. Therefore, this 85 ° C. is set as a predetermined temperature in the control device. Further, in accordance with this temperature setting, the temperature management in the cooling medium temperature controller 10 is executed under the control of the control device, and the control device performs the heating oil path on-off valve 61 and cooling based on the signal from the refrigerant temperature sensor. The temperature of the refrigerant sent to the first gas cooler 21 is adjusted by appropriately opening and closing the on-off valve 62 of the water path to manage the internal temperature of the first gas cooler 21 at the predetermined temperature.

なお、洗浄溶剤の沸点が約85℃であるのに対して、同じ圧力下での水の沸点は45℃であり、本発明は、この沸点の温度差を利用して、第1ガス冷却器21では洗浄溶剤を凝縮液化し、ここで液化しなかったガスを下流の第2ガス冷却器23で凝縮液化し、第1ガス冷却器21で凝縮液化した洗浄溶剤を再生溶剤として取り出し、再利用するものである。したがって、再生溶剤として取り出した液は、水分が殆ど含まれていない良質のものが入手できる。   The boiling point of the cleaning solvent is about 85 ° C., whereas the boiling point of water under the same pressure is 45 ° C. The present invention uses the temperature difference between the boiling points to make the first gas cooler In 21, the cleaning solvent is condensed and liquefied, and the gas that has not been liquefied here is condensed and liquefied by the second gas cooler 23 downstream, and the cleaning solvent condensed and liquefied by the first gas cooler 21 is taken out as a recycled solvent and reused. To do. Accordingly, the liquid taken out as the regenerating solvent can be obtained in good quality with almost no moisture.

具体的に説明すると、第1ガス冷却器21内にガスが導入されると、このガスは、冷却管24の表面や冷却容器の内壁に接したりして冷却される。この時、溶剤成分は、ガス状態で前記した所定温度まで温度が低下すると凝縮して液化され、次第に冷却容器の底部に流下して溜まる。一方、蒸留釜2から送られた前記ガスのうちで水分の様に溶剤の沸点よりも低い物質は、前記所定温度まで降下しても液化されないでガスの状態を維持しているので、天井に開口した出口から吸引されてガス配管22を介して第2ガス冷却器23に搬送される。   More specifically, when a gas is introduced into the first gas cooler 21, the gas is cooled by contacting the surface of the cooling pipe 24 or the inner wall of the cooling container. At this time, the solvent component is condensed and liquefied when the temperature is lowered to the above-described predetermined temperature in a gas state, and gradually flows down and accumulates at the bottom of the cooling container. On the other hand, a substance lower than the boiling point of the solvent, such as moisture, in the gas sent from the distillation kettle 2 is not liquefied even when the temperature drops to the predetermined temperature, and maintains the gas state. The air is sucked from the opened outlet and transferred to the second gas cooler 23 through the gas pipe 22.

第1ガス冷却器21内で液化した溶剤は、開閉バルブ56が開くとエゼクター52の吸引により循環経路50内に取り込まれて水分分離器33に送られる。水分分離器33は、水分が含まれていた場合には分離して含水率を一層低下させる。したがって、水分分離器33の再生溶剤出口57から取り出した液は、水分を殆ど含まない良質の再生溶剤となり、従来の再生装置で再生したものと比較しても優れた洗浄特性が期待し得る。   When the opening / closing valve 56 is opened, the solvent liquefied in the first gas cooler 21 is taken into the circulation path 50 by the suction of the ejector 52 and sent to the moisture separator 33. The water separator 33 separates and separates the water content when water is contained. Therefore, the liquid taken out from the regeneration solvent outlet 57 of the moisture separator 33 becomes a high-quality regeneration solvent containing almost no moisture, and excellent cleaning characteristics can be expected even when compared with those regenerated with a conventional regeneration apparatus.

第2ガス冷却器23に送られたガスは、冷却容器内で冷却管39に接するなどして冷却されて凝縮液化される。そして、第2ガス冷却器23内で液化した液は、ドレンバルブ44が開くとスラッジタンク35に送られ、スラッジとして処理される。すなわち、廃棄される。   The gas sent to the second gas cooler 23 is cooled to be condensed and liquefied by contacting the cooling pipe 39 in the cooling container. The liquid liquefied in the second gas cooler 23 is sent to the sludge tank 35 when the drain valve 44 is opened, and is processed as sludge. That is, it is discarded.

また、スラッジタンク35は、大気開放弁70を開いて蒸留釜2内を大気圧に戻してから排出弁63を開くと蒸留釜2内の底部に残った汚れを受け入れて貯留し、排液弁64を開くと、第2ガス冷却器23からの凝縮液と共に排液出口65から排出されて廃棄される。   In addition, when the sludge tank 35 opens the atmosphere release valve 70 to return the inside of the still 2 to atmospheric pressure and then opens the discharge valve 63, the sludge tank 35 receives and stores the dirt remaining at the bottom of the still 2. When 64 is opened, it is discharged from the drain outlet 65 together with the condensate from the second gas cooler 23 and discarded.

なお、前記した実施形態では第1ガス冷却器21の内部の温度を約85℃に保つようにしたが、この温度は、洗浄溶剤の特性や汚れ具体などにより変化する。また、蒸留釜でガス化したガスの温度によっても影響されるので、ガス温度検出器を設けておき、この検出器でガスの温度を検出して制御装置に信号を送り、検出ガス温度に適した冷媒温度に自動的に調整するように構成してもよい。例えば、ガス温度が85℃の場合には冷媒の温度を60℃に設定するが、ガス温度が90℃に変動した場合には制御装置が冷媒温度を自動的に65℃に設定するように構成しても良い。斯かるガス温度と冷媒温度のマップを予め制御装置に記憶させておき、ガス温度検出器からのガス温度信号に基づいて最適な冷媒温度のテーブルを読み出して、これにより制御装置が冷却媒体温度調節器10を介して第1ガス冷却器21の内部温度をコントロールできるように構成しても良い。   In the above-described embodiment, the internal temperature of the first gas cooler 21 is maintained at about 85 ° C., but this temperature varies depending on the characteristics of the cleaning solvent, the contamination, and the like. It is also affected by the temperature of the gas gasified in the still, so a gas temperature detector is provided, the gas temperature is detected by this detector, a signal is sent to the control device, and it is suitable for the detected gas temperature. It may be configured to automatically adjust to the refrigerant temperature. For example, when the gas temperature is 85 ° C., the refrigerant temperature is set to 60 ° C., but when the gas temperature fluctuates to 90 ° C., the control device automatically sets the refrigerant temperature to 65 ° C. You may do it. Such a map of the gas temperature and the refrigerant temperature is stored in the control device in advance, and an optimum refrigerant temperature table is read based on the gas temperature signal from the gas temperature detector, so that the control device adjusts the coolant temperature. The internal temperature of the first gas cooler 21 may be controlled via the vessel 10.

溶剤再生装置の概略構成図である。It is a schematic block diagram of a solvent reproduction | regeneration apparatus.

符号の説明Explanation of symbols

1 再生装置
2 蒸留釜
3 加熱タンク
4 オイル加熱ヒーター
5 加熱コイル
6 オイル循環ポンプ
9 被蒸留溶剤入口
10 冷却媒体温度調節器
11 加熱部
12 オイル温度調節器
13 溶剤ストレーナ
14 被蒸留溶剤供給配管
15 液位調整器
16 溶剤投入弁
21 第1ガス冷却器
23 第2ガス冷却器
24 第1冷却手段としての冷却管
25 ジャケット
30 冷媒タンク
31 冷却部
32 冷媒ポンプ
33 水分分離器
35 スラッジタンク
39 第2冷却手段としての冷却管
44 ドレンバルブ
50 循環経路
51 溶剤循環ポンプ
52 エゼクター
57 再生溶剤出口
59 冷却管
65 排液出口
DESCRIPTION OF SYMBOLS 1 Regenerating apparatus 2 Distilling pot 3 Heating tank 4 Oil heater 5 Heating coil 6 Oil circulation pump 9 Distilled solvent inlet 10 Cooling medium temperature controller 11 Heating part 12 Oil temperature controller 13 Solvent strainer 14 Distilled solvent supply piping 15 Liquid Level adjuster 16 Solvent charging valve 21 First gas cooler 23 Second gas cooler 24 Cooling pipe 25 as first cooling means Jacket 30 Refrigerant tank 31 Cooling unit 32 Refrigerant pump 33 Moisture separator 35 Sludge tank 39 Second cooling Cooling pipe 44 as means Drain valve 50 Circulation path 51 Solvent circulation pump 52 Ejector 57 Recycled solvent outlet 59 Cooling pipe 65 Drain outlet

Claims (4)

使用済み洗浄溶剤を加熱する蒸留釜と、蒸留釜に連通接続した第1ガス冷却器と、該第1ガス冷却器に連通接続した第2ガス冷却器と、前記蒸留釜に連通接続した減圧装置と、蒸留釜の下方に設けた廃液タンクと、を備え、
前記した第1ガス冷却器には内部を冷却する第1冷却手段を設け、第2ガス冷却器には内部を冷却する第2冷却手段を設け、
前記第1冷却手段は、水の沸点よりも高い温度であって洗浄溶剤が液化可能な温度に当該冷却器内を冷却し、第2冷却手段は、水蒸気が液化可能な温度に当該冷却器内を冷却するように設定され、
蒸留釜から送られてくるガスを第1ガス冷却器から第2ガス冷却器の順に通して当該ガス中の洗浄溶剤ガスを第1ガス冷却器で液化し、残ったガスを第2ガス冷却器に送って水蒸気等の残り成分を液化することを特徴とする洗浄溶剤の再生装置。
A distillation kettle for heating the used cleaning solvent, a first gas cooler communicatively connected to the distillation kettle, a second gas cooler communicatively connected to the first gas cooler, and a pressure reducing device communicated to the distiller And a waste liquid tank provided below the distillation kettle,
The first gas cooler is provided with a first cooling means for cooling the inside, and the second gas cooler is provided with a second cooling means for cooling the inside,
The first cooling means cools the inside of the cooler to a temperature higher than the boiling point of water and capable of liquefying the cleaning solvent, and the second cooling means is cooled to a temperature capable of liquefying water vapor. Is set to cool,
The gas sent from the distillation kettle is passed in order from the first gas cooler to the second gas cooler, the cleaning solvent gas in the gas is liquefied by the first gas cooler, and the remaining gas is liquefied by the second gas cooler. A cleaning solvent reclaiming device characterized in that the remaining components such as water vapor are liquefied by being sent to.
第1ガス冷却器は、冷却本体の内部に配置した第1冷却手段として冷却管を備え、該冷却管に冷媒を供給する配管の途中に、冷媒の温度を管理する冷却媒体温度調節器を備えたことを特徴とする請求項1に記載の洗浄溶剤の再生装置。   The first gas cooler includes a cooling pipe as a first cooling means arranged inside the cooling main body, and a cooling medium temperature controller that manages the temperature of the refrigerant in the middle of the pipe that supplies the refrigerant to the cooling pipe. The apparatus for regenerating a cleaning solvent according to claim 1. 第1ガス冷却器は、冷却本体の外壁にジャケットを備え、第1冷却手段に通す冷媒を前記ジャケットに通すことを特徴とする請求項1または2に記載の洗浄溶剤の再生装置。   The cleaning apparatus for regenerating a cleaning solvent according to claim 1 or 2, wherein the first gas cooler includes a jacket on the outer wall of the cooling body, and allows the refrigerant to be passed through the first cooling means to pass through the jacket. 使用済み洗浄溶剤を蒸留釜内で大気圧よりも低い減圧状態で加熱してガス化し、このガスを、蒸留釜に連通接続した第1ガス冷却器内を通過させてから第2ガス冷却器内に順次導入し、
第1ガス冷却器では、水の沸点よりも高い温度であって洗浄溶剤が液化可能な温度に冷却することによりガス中の洗浄溶剤ガスを液化し、
第1ガス冷却器では液化されずに残ったガスを第2ガス冷却器に送って第2ガス冷却器内で水蒸気等の残り成分を液化し、
第1ガス冷却器で液化された凝縮液を再生洗浄溶剤として取り出すことを特徴とする洗浄溶剤の蒸留再生方法。
The used cleaning solvent is heated and gasified in the distillation kettle under a reduced pressure lower than atmospheric pressure, and the gas is passed through the first gas cooler connected to the distillation kettle and then in the second gas cooler. Introduced sequentially,
In the first gas cooler, the cleaning solvent gas in the gas is liquefied by cooling to a temperature higher than the boiling point of water and a temperature at which the cleaning solvent can be liquefied,
In the first gas cooler, the gas remaining without being liquefied is sent to the second gas cooler to liquefy the remaining components such as water vapor in the second gas cooler,
A method for distilling and regenerating a cleaning solvent, wherein the condensate liquefied by the first gas cooler is taken out as a regenerating cleaning solvent.
JP2008011457A 2008-01-22 2008-01-22 Regeneration apparatus of cleaning solvent, and distilling regeneration method of cleaning solvent Pending JP2009172468A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008011457A JP2009172468A (en) 2008-01-22 2008-01-22 Regeneration apparatus of cleaning solvent, and distilling regeneration method of cleaning solvent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008011457A JP2009172468A (en) 2008-01-22 2008-01-22 Regeneration apparatus of cleaning solvent, and distilling regeneration method of cleaning solvent

Publications (1)

Publication Number Publication Date
JP2009172468A true JP2009172468A (en) 2009-08-06

Family

ID=41028212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008011457A Pending JP2009172468A (en) 2008-01-22 2008-01-22 Regeneration apparatus of cleaning solvent, and distilling regeneration method of cleaning solvent

Country Status (1)

Country Link
JP (1) JP2009172468A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107501100A (en) * 2017-09-06 2017-12-22 浙江工业大学 A kind of evacuation process system of m-phenylene diamine (MPD) vacuum rectification tower
JP2018122298A (en) * 2018-03-05 2018-08-09 株式会社Tosei Cleaning fluid distillation and regeneration apparatus, component cleaning equipment, and distillation and regenerating method of cleaning fluid
JP2020515409A (en) * 2017-04-03 2020-05-28 エコディスト, インク.Ecodyst, Inc. Large standalone chiller, all-in-one rotary evaporator and related methods
JP2023000960A (en) * 2021-06-19 2023-01-04 株式会社不二越 Distillation regenerator and cleaning system
USD977530S1 (en) 2018-02-19 2023-02-07 Ecodyst, Inc. Large scale chiller

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62180298A (en) * 1986-02-05 1987-08-07 科学技術庁原子力局長 Method of processing waste solvent
JPH08119608A (en) * 1994-10-21 1996-05-14 Fujitsu Ltd Sulfuric acid distillation apparatus and sulfuric acid distillation method
JP2001131116A (en) * 1999-11-08 2001-05-15 Nippon Shokubai Co Ltd Method of distillation for liquid including material liable to polymerize

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62180298A (en) * 1986-02-05 1987-08-07 科学技術庁原子力局長 Method of processing waste solvent
JPH08119608A (en) * 1994-10-21 1996-05-14 Fujitsu Ltd Sulfuric acid distillation apparatus and sulfuric acid distillation method
JP2001131116A (en) * 1999-11-08 2001-05-15 Nippon Shokubai Co Ltd Method of distillation for liquid including material liable to polymerize

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020515409A (en) * 2017-04-03 2020-05-28 エコディスト, インク.Ecodyst, Inc. Large standalone chiller, all-in-one rotary evaporator and related methods
US11400388B2 (en) 2017-04-03 2022-08-02 Ecodyst, Inc. Large scale standalone chillers, all-in-one rotary evaporators and related methods
JP7208970B2 (en) 2017-04-03 2023-01-19 エコディスト,インク. Large scale stand-alone chiller, all-in-one rotary evaporator and related methods
CN107501100A (en) * 2017-09-06 2017-12-22 浙江工业大学 A kind of evacuation process system of m-phenylene diamine (MPD) vacuum rectification tower
CN107501100B (en) * 2017-09-06 2024-03-22 浙江工业大学 Vacuumizing process system of m-phenylenediamine vacuum rectification tower
USD977530S1 (en) 2018-02-19 2023-02-07 Ecodyst, Inc. Large scale chiller
JP2018122298A (en) * 2018-03-05 2018-08-09 株式会社Tosei Cleaning fluid distillation and regeneration apparatus, component cleaning equipment, and distillation and regenerating method of cleaning fluid
JP2023000960A (en) * 2021-06-19 2023-01-04 株式会社不二越 Distillation regenerator and cleaning system

Similar Documents

Publication Publication Date Title
JPH05184803A (en) Device and method for regenerating coolant
JP3394815B2 (en) Vacuum distillation method and vacuum distillation apparatus
JP2009172468A (en) Regeneration apparatus of cleaning solvent, and distilling regeneration method of cleaning solvent
CN101269273B (en) Vacuum distillation unit
JP2007190536A (en) Vacuum apparatus for garbage vacuum dryer
CN102596820A (en) Method and apparatus for distilling water
JP2014028362A (en) Device and method for recycling emulsified waste oil
CN111479625B (en) Ethylene glycol drying apparatus and ethylene glycol drying method
KR100729985B1 (en) Waste rolling oil regeneration device with degassing function
DK201570471A1 (en) System and method for cleaning contaminated liquid
KR20180121800A (en) Vacuum Degreaser
RU2011122780A (en) METHOD FOR CLEANING RESERVOIRS AND APPARATUS FOR REMOVING RESIDUES OF HAZARDOUS MATERIAL FROM THE RESERVOIR
JP7120592B2 (en) Vacuum steam cleaning method
EP1842602B1 (en) Multiple bath CO2 cleaning
JP6320969B2 (en) Cleaning liquid distillation regeneration device and parts cleaning device
JP3816066B2 (en) Recycled recovered CFCs
JP6526858B2 (en) Cleaning solution distillation regenerating apparatus, parts cleaning apparatus, and method for regenerating distillation of cleaning solution
JP2003126602A (en) Vacuum distillation and regeneration apparatus
KR101252156B1 (en) Reproducing apparatus of waste flame-retardant cleaning agent
JP2891660B2 (en) Distillation and regeneration equipment for dirty washing liquid
JPH04156917A (en) Method and device for recovering lower alcohol
JP3818876B2 (en) Drying equipment
JP7093112B2 (en) Cleaning liquid regeneration device, cleaning device and cleaning liquid regeneration method
JP2010082524A (en) Recycling method of cleaning liquid of vacuum washing apparatus
RU95550U1 (en) INSTALLING GLYCOL REGENERATION

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20090901

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20110128

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120828

A02 Decision of refusal

Effective date: 20130205

Free format text: JAPANESE INTERMEDIATE CODE: A02