[go: up one dir, main page]

JP2009256218A - Copper precursor composition, and method of preparing copper film using the same - Google Patents

Copper precursor composition, and method of preparing copper film using the same Download PDF

Info

Publication number
JP2009256218A
JP2009256218A JP2008104650A JP2008104650A JP2009256218A JP 2009256218 A JP2009256218 A JP 2009256218A JP 2008104650 A JP2008104650 A JP 2008104650A JP 2008104650 A JP2008104650 A JP 2008104650A JP 2009256218 A JP2009256218 A JP 2009256218A
Authority
JP
Japan
Prior art keywords
copper
precursor composition
copper precursor
formula
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008104650A
Other languages
Japanese (ja)
Inventor
Onori Kanamori
大典 金森
Eiichiro Tamaki
栄一郎 玉木
Hiroki Oseto
浩樹 大背戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2008104650A priority Critical patent/JP2009256218A/en
Publication of JP2009256218A publication Critical patent/JP2009256218A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Chemically Coating (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a copper precursor composition that is useful in forming wiring for use in electronics or the like and thermally decomposes at a low temperature, and a method of preparing a copper film using the copper precursor composition. <P>SOLUTION: The copper precursor composition comprising a compound represented by formula (1) (in the formula, X represents formula (2); R<SP>1</SP>, R<SP>2</SP>each independently represent a 1-6C alkyl group that may contain a substituent; and R<SP>3</SP>represents a 4-10C divalent group) and copper formate, thermally decomposes at a low temperature. A copper film can be prepared at a low temperature by using the copper precursor composition. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、エレクトロニクス用配線の形成などに有用な、低温で熱分解する銅前駆体組成物と、該銅前駆体組成物を用いた銅膜の製造方法に関する。   The present invention relates to a copper precursor composition that is thermally decomposed at a low temperature, which is useful for the formation of wiring for electronics and the like, and a method for producing a copper film using the copper precursor composition.

銅はエレクトロニクス用配線形成材料として最も広く用いられている素材である。回路基板、アンテナ、電磁波遮蔽材等、基板へ銅配線を作製する方法としては、銅箔を貼付け、印刷やフォトリソグラフィーによりエッチングマスクを設けたのちにエッチングする方法が最も一般的に行われている。この方法には、銅箔を用いるため配線を薄膜化することが困難であること、工程が煩雑であること、エッチングにより溶解させるため、廃液の中の銅の処理が必要になる。これに対し銅箔のエッチングを用いない方法がいくつか提案されている。一例として、基板上にメッキレジストを印刷し、無電解メッキを行う方法が挙げられる。また、基板上に触媒を印刷し、無電解メッキを行う方法も知られている。これらの方法は、所望の部分のみに銅膜を析出できるため、効率がよく、薄膜化も容易であるが、大量のメッキ廃液の処理が必要になるという難点がある。   Copper is the most widely used material for wiring formation for electronics. As a method for producing a copper wiring on a substrate such as a circuit board, an antenna, an electromagnetic wave shielding material, etc., a method of etching after attaching a copper foil and providing an etching mask by printing or photolithography is most commonly performed. . In this method, since copper foil is used, it is difficult to make the wiring thin, the process is complicated, and the copper in the waste liquid is required to be dissolved by etching. In contrast, several methods that do not use copper foil etching have been proposed. As an example, there is a method of printing a plating resist on a substrate and performing electroless plating. A method of printing a catalyst on a substrate and performing electroless plating is also known. Since these methods can deposit a copper film only on a desired portion, they are efficient and easy to thin, but there is a problem that a large amount of plating waste liquid needs to be processed.

これに対し、銅前駆体組成物を基板上に印刷し、印刷した銅前駆体を熱分解して胴膜・銅配線を作製する方法が提案されている(特許文献1,2)。銅前駆体組成物としては、ギ酸銅とアミン化合物を配合した組成物などが用いられる。この方法は、工程が極めて単純で、かつ廃液処理も最小限ですむという優れた特長を有する。   On the other hand, a method has been proposed in which a copper precursor composition is printed on a substrate, and the printed copper precursor is thermally decomposed to produce a trunk film / copper wiring (Patent Documents 1 and 2). As the copper precursor composition, a composition containing copper formate and an amine compound is used. This method has an excellent feature that the process is extremely simple and the waste liquid treatment is minimized.

銅前駆体の熱分解を用いる方法は、上述のような特長があるものの、課題も残っている。一つは銅前駆体の分解温度であり、概して銅前駆体は分解温度が高い。たとえば特許文献3では、熱分解を180℃で行う事例が紹介されている。しかしながら、分解温度が高いと利用できる基板はガラス、セラミック、ポリイミドなど、一部の材料に限られ、ポリエチレンテレフタレート(PET)などの耐熱性の低い基板に適用することが困難である。また、高温での熱分解、具体的には150℃を上回る温度での熱分解を大気中で行うと、析出した銅が大気中の酸素により酸化しやすくなるため、多くの場合窒素、アルゴンなどの非酸化性雰囲気下で熱分解を行っている。低温での熱分解が可能になれば、大気中での熱分解も容易になる。このような観点から、大気中での銅前駆体の熱分解温度は低温であることが好ましく、具体的には150℃以下の温度であることが好ましい。   Although the method using the thermal decomposition of the copper precursor has the above-described features, problems still remain. One is the decomposition temperature of the copper precursor, and generally the copper precursor has a high decomposition temperature. For example, Patent Document 3 introduces an example in which thermal decomposition is performed at 180 ° C. However, substrates that can be used when the decomposition temperature is high are limited to some materials such as glass, ceramic, and polyimide, and are difficult to apply to substrates with low heat resistance such as polyethylene terephthalate (PET). In addition, if pyrolysis at high temperature, specifically, pyrolysis at a temperature exceeding 150 ° C. is performed in the air, the deposited copper is likely to be oxidized by oxygen in the air. Thermal decomposition is performed in a non-oxidizing atmosphere. If thermal decomposition at low temperature becomes possible, thermal decomposition in the air will be facilitated. From such a viewpoint, the thermal decomposition temperature of the copper precursor in the air is preferably low, and specifically, a temperature of 150 ° C. or lower is preferable.

また、レーザー照射に伴う発熱による銅前駆体の分解を利用する方法が特許文献4に開示されている。ここでは、銅前駆体としてのギ酸銅と還元剤としてのアミン化合物との混合組成物が用いられているが、これらを混合することによる銅前駆体の熱分解温度に対する影響については示されていない。   Further, Patent Document 4 discloses a method using decomposition of a copper precursor due to heat generated by laser irradiation. Here, a mixed composition of copper formate as a copper precursor and an amine compound as a reducing agent is used, but the effect of mixing these on the thermal decomposition temperature of the copper precursor is not shown. .

もう一つの課題として、銅前駆体の多くが溶媒に難溶であることが挙げられる。銅前駆体の溶解度が低い場合、銅前駆体を溶媒に完全に溶解した低濃度の溶液を印刷に用いようとすると、細線の印刷や、厚い銅膜の作製が困難になる。また、前駆体を溶解させずに液体に分散させて印刷する場合は、細線の印刷や薄い銅膜の作製が困難になり、いずれにせよプロセスの自由度が制限されてしまう。したがって、銅前駆体は、溶媒との溶解度が高く高濃度の溶液が得やすいことが好ましく、さらに銅前駆体自体が液状で溶媒と任意の比率で混合可能であれば、任意の濃度の銅前駆体溶液が調製可能なばかりではなく、銅前駆体自体を印刷することすら可能であり最も好ましい。   Another problem is that many of the copper precursors are hardly soluble in the solvent. When the solubility of the copper precursor is low, if a low-concentration solution in which the copper precursor is completely dissolved in a solvent is used for printing, it becomes difficult to print fine lines or produce a thick copper film. Further, when printing is performed by dispersing the precursor in a liquid without dissolving it, it becomes difficult to print fine lines and produce a thin copper film, and in any case, the degree of freedom of the process is limited. Therefore, it is preferable that the copper precursor has a high solubility with a solvent and it is easy to obtain a high-concentration solution. Furthermore, as long as the copper precursor itself is liquid and can be mixed with the solvent in an arbitrary ratio, the copper precursor with an arbitrary concentration is preferable. Most preferably, not only can the body solution be prepared, but it is even possible to print the copper precursor itself.

このように、銅前駆体の熱分解による銅膜・銅配線の作製には、熱分解温度の低温化、銅前駆体の液状化という二つの課題があり、その達成が強く望まれている。熱分解温度の低い銅前駆体の提案としては、特許文献2や特許文献5に熱重量分析では約150℃以下の温度から熱分解がみられる銅前駆体が開示されているが、これらは固体であり、溶媒への溶解度は高くない。
特表2005−537386号公報 特開2005−35984号公報 特開2005−2471号公報 特開2004−277868号公報 特開2008−13466号公報
As described above, the production of the copper film and the copper wiring by the thermal decomposition of the copper precursor has two problems of lowering the thermal decomposition temperature and liquefaction of the copper precursor, and the achievement thereof is strongly desired. As a proposal of a copper precursor having a low thermal decomposition temperature, Patent Document 2 and Patent Document 5 disclose copper precursors that exhibit thermal decomposition from a temperature of about 150 ° C. or less in thermogravimetric analysis. And the solubility in the solvent is not high.
JP 2005-537386 A JP-A-2005-35984 Japanese Patent Laying-Open No. 2005-2471 JP 2004-277868 A JP 2008-13466 A

本発明が解決しようとする課題は、低温で熱分解可能で、かつ高濃度の溶液が調製可能な銅前駆体組成物およびこれを用いた銅膜の製造方法を提供することである。   The problem to be solved by the present invention is to provide a copper precursor composition that can be thermally decomposed at a low temperature and that can prepare a high-concentration solution, and a method for producing a copper film using the same.

発明者らは、上記の課題を解決すべく検討を重ねた結果、以下の式1で示される化合物およびギ酸銅を配合してなる銅前駆体組成物が有効であることを見出した。   As a result of repeated studies to solve the above-described problems, the inventors have found that a copper precursor composition formed by blending a compound represented by the following formula 1 and copper formate is effective.

すなわち、本発明は以下の式1で示される化合物およびギ酸銅を配合してなる銅前駆体組成物に関する。   That is, this invention relates to the copper precursor composition formed by mix | blending the compound shown by the following formula | equation 1, and copper formate.

Figure 2009256218
Figure 2009256218

(式中Xは (Where X is

Figure 2009256218
Figure 2009256218

であり、R,Rはそれぞれ独立に炭素数1〜6の置換基を有してもよいアルキル基を示す。また、Rは炭素数4〜10の2価基を示す。)。 And R 1 and R 2 each independently represents an alkyl group which may have a substituent having 1 to 6 carbon atoms. R 3 represents a divalent group having 4 to 10 carbon atoms. ).

また、本発明は該銅前駆体組成物を塗布し、加熱処理することによる銅膜の製造方法に関する。   Moreover, this invention relates to the manufacturing method of the copper film by apply | coating this copper precursor composition and heat-processing.

また、本発明は前記式1で示される化合物とギ酸銅とを混合して得られる錯体に関する。   The present invention also relates to a complex obtained by mixing the compound represented by Formula 1 and copper formate.

本発明の銅前駆体組成物の主成分は液状で溶媒と混和するため、高濃度の組成物を調製することが可能である。また、本発明の銅前駆体組成物は150℃以下の低温で熱分解し、銅が析出するので、使用可能な基板の制限が少なく、例えばポリエチレンテレフタレートなどの汎用のプラスチック基板上に銅膜を作製することが可能となる。さらに、このような低温で焼成を行うと、析出した銅が大気中の酸素によって酸化されにくくなるため、大気中での銅膜の作製も可能となる。   Since the main component of the copper precursor composition of the present invention is liquid and miscible with the solvent, it is possible to prepare a high concentration composition. Moreover, since the copper precursor composition of the present invention is thermally decomposed at a low temperature of 150 ° C. or lower and copper is deposited, there are few restrictions on usable substrates. For example, a copper film is formed on a general-purpose plastic substrate such as polyethylene terephthalate. It can be produced. Furthermore, when baking is performed at such a low temperature, the deposited copper is less likely to be oxidized by oxygen in the air, so that a copper film in the air can be produced.

本明細書中でいう銅前駆体組成物とは、熱分解により金属銅を生成する化合物である銅前駆体を含有する組成物のことを指し、本発明の銅前駆体組成物は、以下の式1で示される化合物とギ酸銅を配合することにより得られる。   The copper precursor composition referred to in the present specification refers to a composition containing a copper precursor which is a compound that generates metallic copper by thermal decomposition, and the copper precursor composition of the present invention includes the following: It is obtained by blending the compound represented by Formula 1 and copper formate.

Figure 2009256218
Figure 2009256218

(式中Xは (Where X is

Figure 2009256218
Figure 2009256218

であり、R,Rはそれぞれ独立に炭素数1〜6の置換基を有してもよいアルキル基を示す。また、Rは炭素数4〜10の2価基を示す。)。 And R 1 and R 2 each independently represents an alkyl group which may have a substituent having 1 to 6 carbon atoms. R 3 represents a divalent group having 4 to 10 carbon atoms. ).

式1中のR,Rはそれぞれ独立に炭素数1〜6の置換基を有してもよいアルキル基を示す。ここで、アルキル基は直鎖であっても分岐したものでもよく、炭素数は置換基の炭素数も含む。好ましい置換基としては、水酸基、アルコキシ基を挙げることができる。炭素数1〜6の置換基を有してもよいアルキル基の具体例には、メチル基、エチル基、プロピル基、ブチル基、イソブチル基、ペンチル基、ネオペンチル基、ヘキシル基、シクロヘキシル基、2−ヒドロキシエチル基、2−メトキシエチル基などを挙げることができる。 R 1 and R 2 in Formula 1 each independently represent an alkyl group that may have a substituent having 1 to 6 carbon atoms. Here, the alkyl group may be linear or branched, and the carbon number includes the carbon number of the substituent. Preferred examples of the substituent include a hydroxyl group and an alkoxy group. Specific examples of the alkyl group which may have a substituent having 1 to 6 carbon atoms include methyl group, ethyl group, propyl group, butyl group, isobutyl group, pentyl group, neopentyl group, hexyl group, cyclohexyl group, 2 -A hydroxyethyl group, 2-methoxyethyl group, etc. can be mentioned.

式1中のRは、炭素数4〜10の2価基を示す。炭素数4〜10の2価基としては直鎖または分岐のアルキレン基、アルキレン基の一部のメチレンが酸素で置換された2価基、あるいはこれらの基の水素が、水酸基やアルコキシ基で置換された2価基が挙げられ、具体例として、テトラメチレン基、ペンタメチレン基、1−メチルテトラメチレン基、1−メチルペンタメチレン基、2−メチルペンタメチレン基、3−メチルペンタメチレン基、2−ヒドロキシペンタメチレン基、3−ヒドロキシペンタメチレン基、3−メトキシペンタメチレン基、オキシジ(エチレン)基を例示することができる。式1で示される化合物の具体例を以下に示すが、本発明においてはこれらに限定されない。 R 3 in Formula 1 represents a divalent group having 4 to 10 carbon atoms. As the divalent group having 4 to 10 carbon atoms, a linear or branched alkylene group, a divalent group in which a part of methylene of the alkylene group is substituted with oxygen, or the hydrogen of these groups is substituted with a hydroxyl group or an alkoxy group Specific examples include tetramethylene group, pentamethylene group, 1-methyltetramethylene group, 1-methylpentamethylene group, 2-methylpentamethylene group, 3-methylpentamethylene group, 2 -Hydroxypentamethylene group, 3-hydroxypentamethylene group, 3-methoxypentamethylene group, oxydi (ethylene) group can be exemplified. Specific examples of the compound represented by Formula 1 are shown below, but the present invention is not limited thereto.

Figure 2009256218
Figure 2009256218

本発明における銅前駆体組成物に配合される前記式1で示される化合物は特に限定されないが、好ましくは式1中のXが、   The compound represented by Formula 1 blended in the copper precursor composition of the present invention is not particularly limited, but preferably X in Formula 1 is

Figure 2009256218
Figure 2009256218

であり、R,Rがそれぞれ独立に炭素数1〜6のアルキル基で示される化合物であり、より好ましくはR,Rがそれぞれ独立にメチル基またはエチル基で示される化合物、更に好ましくは前記式2または4で示される化合物である。 R 1 and R 2 are each independently a compound having an alkyl group having 1 to 6 carbon atoms, more preferably R 1 and R 2 are each independently a methyl group or an ethyl group, A compound represented by the formula 2 or 4 is preferred.

式1で示される化合物は公知の方法で合成することが可能である。典型的な合成法としては、ジャーナル・オブ・アメリカン・ケミカル・ソサエティ、52巻、1528頁(1930年)に記載されている2級アミン化合物をグリシドールに付加させる方法を示すことができる。また、式1で示される化合物は市販の試薬として入手可能である。   The compound represented by Formula 1 can be synthesized by a known method. As a typical synthesis method, a method of adding a secondary amine compound described in Journal of American Chemical Society, Vol. 52, p. 1528 (1930) to glycidol can be shown. Moreover, the compound shown by Formula 1 is available as a commercially available reagent.

式1で示される化合物とギ酸銅とを配合し、本発明の銅前駆体組成物を得るにあたって、ギ酸銅としては無水ギ酸銅(II)、ギ酸銅(II)・二水和物、ギ酸銅(II)・四水和物などを用いることができる。また、ギ酸銅はそのまま混合してもよく、水溶液、有機溶媒溶液、有機溶媒懸濁液として混合してもよい。   When the compound represented by Formula 1 and copper formate are blended to obtain the copper precursor composition of the present invention, anhydrous copper formate (II), copper formate (II) dihydrate, copper formate are used as copper formate. (II). Tetrahydrate can be used. Moreover, copper formate may be mixed as it is, and may be mixed as an aqueous solution, an organic solvent solution, or an organic solvent suspension.

式1で示される化合物とギ酸銅を配合して本発明の銅前駆体組成物を製造する場合、式1で示される化合物を、ギ酸銅1等量に対して2〜4等量程度加えることが好ましい。また、式1で示される化合物をそのまま混合してもよく、また、溶媒中で混合してもよい。式1で示される化合物とギ酸銅の配合は、0〜100℃程度の温度の下で適切な攪拌機や混合機を用いて混合すればよい。   When the compound represented by Formula 1 and copper formate are blended to produce the copper precursor composition of the present invention, the compound represented by Formula 1 is added in an amount of 2 to 4 equivalents to 1 equivalent of copper formate. Is preferred. Moreover, the compound shown by Formula 1 may be mixed as it is, and may be mixed in a solvent. What is necessary is just to mix the compound shown by Formula 1 and copper formate using the suitable stirrer and mixer under the temperature of about 0-100 degreeC.

式1で示される化合物とギ酸銅とを配合して得られた本発明の銅前駆体組成物中には、主成分として式1で示される化合物とギ酸アニオンを配位子として有する銅錯体が生成する。式1で示される化合物とギ酸アニオンを配位子として有する銅錯体の代表的な例としては[Cu(HCOO)(XCHCH(OH)CHOH)](ここで、Xは前記定義に同じ。)が挙げられる。 In the copper precursor composition of the present invention obtained by blending the compound represented by Formula 1 and copper formate, a copper complex having a compound represented by Formula 1 and a formate anion as a ligand as main components is present. Generate. A representative example of a copper complex having a compound represented by Formula 1 and a formate anion as a ligand is [Cu (HCOO) 2 (XCH 2 CH (OH) CH 2 OH) 2 ] (where X is the above-mentioned The same definition).

式1で示される化合物およびギ酸銅を配合してなる銅前駆体組成物中には、その条件に応じて前述の銅錯体の他に溶媒や未反応の式1の化合物が含まれうるが、式1の化合物とギ酸銅を無溶媒で2:1の等量比で混合した場合は、ほぼ前述の銅錯体からなる銅前駆体組成物が得られる。   In the copper precursor composition comprising the compound represented by Formula 1 and copper formate, a solvent or an unreacted compound of Formula 1 may be included in addition to the above-described copper complex, depending on the conditions. When the compound of Formula 1 and copper formate are mixed in an equivalent ratio of 2: 1 without solvent, a copper precursor composition consisting essentially of the aforementioned copper complex is obtained.

前記方法によって得られる本発明の銅前駆体組成物は150℃以下の低温で熱分解して金属銅を生成することを特徴としており、昇温速度10℃/min.で280℃まで昇温する条件下での銅前駆体組成物の熱重量分析(TGA)測定において、150℃で40%以上の重量減少が見られ、且つ200℃までに重量減少が完了した場合に、前記特徴を有していると判断することができる。なお、アミン化合物とギ酸アニオンを配位子として有する銅錯体を含む銅前駆体組成物は数多く知られているが、液状の銅前駆体組成物で、このような性質を兼ね備えるものは知られていなかった。   The copper precursor composition of the present invention obtained by the above method is characterized in that it is thermally decomposed at a low temperature of 150 ° C. or lower to produce metallic copper, and the temperature rising rate is 10 ° C./min. In the thermogravimetric analysis (TGA) measurement of the copper precursor composition under the condition where the temperature is raised to 280 ° C., a weight loss of 40% or more is observed at 150 ° C. and the weight reduction is completed by 200 ° C. In addition, it can be determined that it has the above characteristics. Many copper precursor compositions containing a copper complex having an amine compound and a formate anion as a ligand are known, but liquid copper precursor compositions having such properties are also known. There was no.

本発明の銅前駆体組成物は、液状であり、適切な溶媒を選ぶことで、式1で示される化合物およびギ酸銅以外の成分を任意の比率で混合することができ、そのような混合物についても本発明の銅前駆体組成物に含まれる。   The copper precursor composition of the present invention is in a liquid state, and by selecting an appropriate solvent, components other than the compound represented by Formula 1 and copper formate can be mixed in an arbitrary ratio. About such a mixture Is also included in the copper precursor composition of the present invention.

本発明の銅前駆体組成物に好ましく含まれうるその他の成分の第1は溶媒である。溶媒は、式1で示される化合物およびギ酸銅を配合した段階で溶媒が含まれていてもよく、その後に追加して加えても良い。溶媒は銅前駆体組成物の濃度、粘度等を調整するために有用である。   The first of the other components that can be preferably contained in the copper precursor composition of the present invention is a solvent. The solvent may contain a solvent when the compound represented by Formula 1 and copper formate are blended, and may be added after that. The solvent is useful for adjusting the concentration and viscosity of the copper precursor composition.

溶媒には公知のあらゆる溶媒が使用可能で、複数種混合して用いてもよい。好ましい溶媒の具体例を挙げると、水、2−プロパノール、ブタノール、オクタノール、テルピネオール、エチレングリコール、プロピレングリコール、ジエチレングリコール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノエチルエーテルアセテート、1,2−ジメトキシエタン、メチルエチルケトン、メチルイソブチルケトン、ジイソブチルケトン、シクロヘキサノン、イソホロン、酢酸エチル、酢酸ブチル、酢酸イソアミル、乳酸エチル、プロピレンカーボネート、1,4−ジオキサン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチルピロリドン、ジメチルスルホキシド、γ−ブチロラクトン、トルエン、キシレン、デカリン、テトラリンなどを挙げることができる。組成物中の溶媒の好ましい含有量は0〜95重量%である。   Any known solvent can be used as the solvent, and a plurality of solvents may be mixed and used. Specific examples of preferred solvents include water, 2-propanol, butanol, octanol, terpineol, ethylene glycol, propylene glycol, diethylene glycol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl. Ether acetate, diethylene glycol monoethyl ether, diethylene glycol monoethyl ether acetate, 1,2-dimethoxyethane, methyl ethyl ketone, methyl isobutyl ketone, diisobutyl ketone, cyclohexanone, isophorone, ethyl acetate, butyl acetate, isoamyl acetate, ethyl lactate, propylene carbonate, 1 , 4-Dioxane, N, N-dimethylformamide N, N- dimethylacetamide, N- methylpyrrolidone, dimethyl sulfoxide, .gamma.-butyrolactone, toluene, xylene, decalin, tetralin and the like. The preferable content of the solvent in the composition is 0 to 95% by weight.

本発明の銅前駆体組成物に好ましく含まれうるその他の成分の第2はポリマー成分である。ポリマー成分は、基板との接着性向上、銅膜の堅牢性向上に有効である。ポリマー成分は、組成物中に溶解させてもよく、微粒子として分散させてもよいが、組成物を熱分解する温度では分解しないものである必要がある。好ましいポリマーとしては、アクリル系ポリマー(すなわち(メタ)アクリル酸エステル、(メタ)アクリル酸、(メタ)アクリルアミド、(メタ)アクリロニトリルなどのアクリル系モノマーの重合体またはそれらの共重合体)、ポリビニルピロリドン、ポリビニルアセタール、ポリエステル、ポリアミド、ポリイミド、ポリウレタンなど公知のポリマーが使用可能である。ポリマー成分の好ましい含有量は、組成物中の不揮発分、すなわち組成物から溶媒を除いた成分、に対し0〜50重量%である。   The second of the other components that can be preferably contained in the copper precursor composition of the present invention is a polymer component. The polymer component is effective for improving adhesion to the substrate and improving the fastness of the copper film. The polymer component may be dissolved in the composition or may be dispersed as fine particles, but it must be one that does not decompose at the temperature at which the composition is thermally decomposed. Preferred polymers include acrylic polymers (that is, polymers of acrylic monomers such as (meth) acrylic acid esters, (meth) acrylic acid, (meth) acrylamide, (meth) acrylonitrile, or copolymers thereof), polyvinylpyrrolidone. Well-known polymers such as polyvinyl acetal, polyester, polyamide, polyimide, and polyurethane can be used. The preferable content of the polymer component is 0 to 50% by weight based on the nonvolatile content in the composition, that is, the component excluding the solvent from the composition.

本発明の銅前駆体組成物に好ましく含まれうるその他の成分の第3は導電性粒子である。導電性粒子としては、金属や炭素の粒子があげられ、金属粒子としては、金、銀、銅、ニッケルなどの粒子があげられる。熱分解により生じた銅と一体化できるという点で銅粒子が最も好ましい。銅粒子のような導電性粒子は、熱分解の前後で体積変化をもたらさないので、これを適宜配合することは銅膜の内部応力を低減させるために有用である。銅粒子としては球状、棒状、板状、樹状などのあらゆる形状のものを利用することができる。大きさとしては平均短径が10nm〜10μmのものが好ましく。大きさや形状の異なる銅粒子を混合して用いてもよい。好ましい銅粒子の形状は球状のものであり、好ましい大きさとしては平均粒径10〜100nmである。銅粒子の好ましい配合量は、銅前駆体組成物中の不揮発分に対し、0〜90重量%である。   The third of the other components that can be preferably contained in the copper precursor composition of the present invention is conductive particles. Examples of the conductive particles include metal and carbon particles, and examples of the metal particles include gold, silver, copper, and nickel particles. Copper particles are most preferred because they can be integrated with copper produced by thermal decomposition. Since conductive particles such as copper particles do not cause a volume change before and after thermal decomposition, it is useful to appropriately mix them in order to reduce the internal stress of the copper film. Copper particles having any shape such as a spherical shape, a rod shape, a plate shape, and a dendritic shape can be used. The average diameter is preferably 10 nm to 10 μm. You may mix and use the copper particle from which a magnitude | size and a shape differ. The preferable shape of the copper particles is spherical, and the preferable size is an average particle size of 10 to 100 nm. The preferable compounding quantity of a copper particle is 0 to 90 weight% with respect to the non volatile matter in a copper precursor composition.

なお、前記第1〜3のその他の成分以外で本発明の銅前駆体組成物に含まれうるその他の成分としては、レベリング剤、消泡剤、揺変剤など、塗布・印刷に用いる液状組成物に通常含まれる成分が挙げられるが、それらには限定されない。   In addition to the first to third other components, other components that can be included in the copper precursor composition of the present invention include leveling agents, antifoaming agents, thixotropic agents, and other liquid compositions used for coating and printing. Although the component normally contained in a thing is mentioned, it is not limited to them.

また本発明は、前記銅前駆体組成物を基板上に塗布し、加熱処理することによる銅膜の製造方法に関する。   Moreover, this invention relates to the manufacturing method of the copper film by apply | coating the said copper precursor composition on a board | substrate, and heat-processing.

ここで塗布とは、前記銅前駆体組成物を基板のほぼ全面に付着させること(全面塗布)も、基板の特定の部分にのみ付着させること(印刷)も含み、塗布の方法としてはあらゆる公知の方法を用いることができる。全面塗布する好ましい方法としては、アプリケーター、バーコーター、グラビアロールコーター、スリットダイコーター、ナイフコーター、リップコーター、コンマコーター、リバースロールコーター、スプレーコーター、ディップコーター、スピンコーターなどの装置を用いる方法を挙げることができる。印刷する好ましい方法としては、孔版印刷法、凸版印刷法、凹版印刷法(グラビア印刷法など)、平版印刷法、インクジェット法などを挙げることができる。なお、本発明の銅前駆体組成物が溶媒のような揮発分を含む場合は、塗布後にこれを揮発させる工程を設けてもよい。   Here, coating includes adhesion of the copper precursor composition to almost the entire surface of the substrate (full surface coating) and adhesion to only a specific part of the substrate (printing), and any known coating method can be used. This method can be used. Preferred methods for coating the entire surface include methods using apparatuses such as applicators, bar coaters, gravure roll coaters, slit die coaters, knife coaters, lip coaters, comma coaters, reverse roll coaters, spray coaters, dip coaters, and spin coaters. be able to. Preferable methods for printing include a stencil printing method, a relief printing method, an intaglio printing method (such as a gravure printing method), a lithographic printing method, and an inkjet method. In addition, when the copper precursor composition of this invention contains volatile matters like a solvent, you may provide the process of volatilizing this after application | coating.

本発明の銅膜の製造方法では、前記銅前駆体組成物を基板に塗布した後、加熱処理を行って、銅膜を形成する。加熱処理の温度は特に制限されず、好ましくは70〜350℃の範囲から選択されるが、本発明の銅前駆体組成物は低温でも銅膜を析出させることが可能であり、その特長を生かすためには、70〜200℃で加熱処理することがより好ましく、70〜150℃で加熱処理することがさらに好ましい。加熱処理の時間は特に制限はないが、好ましくは30秒から1時間の範囲で選択される。   In the manufacturing method of the copper film of this invention, after apply | coating the said copper precursor composition to a board | substrate, heat processing are performed and a copper film is formed. The temperature of the heat treatment is not particularly limited, and is preferably selected from the range of 70 to 350 ° C. The copper precursor composition of the present invention can deposit a copper film even at a low temperature, and takes advantage of its features. Therefore, it is more preferable to heat-process at 70-200 degreeC, and it is more preferable to heat-process at 70-150 degreeC. The time for the heat treatment is not particularly limited, but is preferably selected in the range of 30 seconds to 1 hour.

加熱処理の手段としては、熱風オーブン、ホットプレート、赤外線ヒーター、マイクロ波ヒーターなどを用いることができる。また、加熱処理は大気中で行っても非酸化性雰囲気中で行ってもよい。   As the heat treatment means, a hot air oven, a hot plate, an infrared heater, a microwave heater, or the like can be used. The heat treatment may be performed in the air or in a non-oxidizing atmosphere.

また加熱処理にレーザーを用いることもできる。レーザーを用いると局所的な加熱が可能になるため、本発明の銅前駆体組成物を全面に塗布した場合でも、レーザーを照射した箇所だけ銅膜を作製することができる。   A laser can also be used for the heat treatment. When a laser is used, local heating is possible. Therefore, even when the copper precursor composition of the present invention is applied to the entire surface, a copper film can be produced only at a location irradiated with the laser.

本発明の銅前駆体組成物を塗布する基板としては、例えば、ポリエステル(ポリエチレンテレフタレートやポリエチレンナフタレート)、ポリイミド、芳香族ポリアミド、ポリフェニレンスルフィド、ポリエーテルスルホン、ポリエーテルエーテルケトンなどのプラスチックからなるフィルム、ガラス繊維強化エポキシ樹脂、ガラス繊維強化シアネート樹脂、紙基材フェノール樹脂、紙基材エポキシ樹脂、ガラス、アルミナセラミックスなどを挙げることができるが、これらに限定されない。   Examples of the substrate to which the copper precursor composition of the present invention is applied include films made of plastics such as polyester (polyethylene terephthalate and polyethylene naphthalate), polyimide, aromatic polyamide, polyphenylene sulfide, polyethersulfone, and polyetheretherketone. , Glass fiber reinforced epoxy resin, glass fiber reinforced cyanate resin, paper base phenol resin, paper base epoxy resin, glass, alumina ceramics, and the like, but are not limited thereto.

以下、本発明を実施例により説明する。   Hereinafter, the present invention will be described with reference to examples.

銅前駆体組成物の合成
[実施例1]
ギ酸銅(II)・四水和物(1.13g;三津和化学製)をメタノール(100mL)に懸濁し、3−ジメチルアミノ−1,2−プロパンジオール(1.19g;東京化成製、式2の化合物)を加えた。室温で終夜撹拌後、微量の不溶物を濾去した。減圧濃縮により、2.3gの液状組成物を得た。組成物のメタノール溶液の吸収スペクトルを測定したところ、705、261nmに極大吸収が観測された。図1に熱重量分析(TGA、装置:エスアイアイ・ナノテクノロジー株式会社製TG/DTA7200)測定の結果を示す。TGA測定では、昇温速度10℃/min.で280℃まで昇温したところ、150℃で53%の重量減少が見られ、重量減少は170℃で終了した。測定終了後の熱分解生成物の粉末X線回折(装置:株式会社Rigaku製Ultima+2200)を測定したところ、銅の回折ピーク(2θ=43.3,50.4,74.1°)が観測された。
Synthesis of copper precursor composition [Example 1]
Copper (II) formate tetrahydrate (1.13 g; manufactured by Mitsuwa Chemical Co., Ltd.) was suspended in methanol (100 mL), and 3-dimethylamino-1,2-propanediol (1.19 g; manufactured by Tokyo Chemical Industry Co., Ltd., formula 2 compounds) was added. After stirring at room temperature overnight, a trace amount of insoluble material was removed by filtration. By concentration under reduced pressure, 2.3 g of a liquid composition was obtained. When the absorption spectrum of the methanol solution of the composition was measured, maximum absorption was observed at 705 and 261 nm. FIG. 1 shows the results of thermogravimetric analysis (TGA, apparatus: TG / DTA 7200 manufactured by SII Nano Technology Co., Ltd.). In the TGA measurement, the heating rate is 10 ° C./min. When the temperature was raised to 280 ° C., a weight loss of 53% was observed at 150 ° C., and the weight reduction ended at 170 ° C. When the powder X-ray diffraction (apparatus: Ultimate +2200 manufactured by Rigaku Corporation) of the pyrolysis product after the measurement was measured, a copper diffraction peak (2θ = 43.3, 50.4, 74.1 °) was observed. It was.

[実施例2]
実施例1の3−ジメチルアミノ−1,2−プロパンジオールを3−ジエチルアミノ−1,2−プロパンジオール(1.47g;東京化成、品番:D1721、式4の化合物)に変えた以外は実施例1と同様に行い、2.5gの液状組成物を得た。組成物のメタノール溶液の吸収スペクトルを測定したところ、686、266nmに極大吸収が観測された。実施例1と同様の熱重量分析(TGA)測定の結果、図2に見られる通り熱分解による重量減少が見られ、150℃で41%の重量減少がみられ、重量減少は175℃で終了した。また、熱分解生成物が銅であることを実施例1と同様に確認した。
[Example 2]
Example except that 3-dimethylamino-1,2-propanediol of Example 1 was changed to 3-diethylamino-1,2-propanediol (1.47 g; Tokyo Chemical Industry, product number: D1721, compound of formula 4) 1 and 2.5 g of a liquid composition was obtained. When the absorption spectrum of the methanol solution of the composition was measured, maximum absorption was observed at 686 and 266 nm. As a result of thermogravimetric analysis (TGA) measurement similar to that of Example 1, as shown in FIG. 2, a weight reduction due to thermal decomposition was observed, and a weight reduction of 41% was observed at 150 ° C., and the weight reduction ended at 175 ° C. did. Further, it was confirmed in the same manner as in Example 1 that the thermal decomposition product was copper.

[実施例3]
実施例1のギ酸銅(II)・四水和物を無水ギ酸銅(1.47g;比較例4参照)に変えた以外は同様に行い、2.5gの液状組成物を得た。組成物のメタノール溶液の吸収スペクトルを測定したところ、698、262nmに極大吸収が観測された。実施例1と同様の熱重量分析(TGA)測定の結果、図3に見られるような熱分解による重量減少が見られ、150℃で53%の重量減少が確認され、重量減少は170℃で終了した。また、熱分解生成物が銅であることを実施例1と同様に確認した。
[Example 3]
The same procedure was performed except that the copper (II) formate tetrahydrate of Example 1 was changed to anhydrous copper formate (1.47 g; see Comparative Example 4) to obtain 2.5 g of a liquid composition. When the absorption spectrum of the methanol solution of the composition was measured, maximum absorption was observed at 698 and 262 nm. As a result of the thermogravimetric analysis (TGA) measurement similar to that in Example 1, a weight reduction due to thermal decomposition as seen in FIG. 3 was observed, and a 53% weight reduction was confirmed at 150 ° C., and the weight reduction was 170 ° C. finished. Further, it was confirmed in the same manner as in Example 1 that the thermal decomposition product was copper.

[比較例1]
実施例1の3−ジメチルアミノ−1,2−プロパンジオールを3−アミノ−1,2−プロパンジオール(式22、0.91g;東京化成製)に変えた以外は実施例1と同様に行い、1.88gの液状組成物を得た。実施例1と同様の熱重量分析(TGA)測定の結果、図4に見られる通り熱分解は比較的低温から開始したが、分解は速やかではなく、150℃での重量減少率は21%に留まり、280℃に至っても重量減少は終了しなかった。なお、熱分解生成物が銅であることを実施例1と同様に確認した。
[Comparative Example 1]
The same procedure as in Example 1 was conducted except that 3-dimethylamino-1,2-propanediol in Example 1 was changed to 3-amino-1,2-propanediol (Formula 22, 0.91 g; manufactured by Tokyo Chemical Industry Co., Ltd.). 1.88 g of a liquid composition was obtained. As a result of the thermogravimetric analysis (TGA) measurement similar to that in Example 1, as shown in FIG. 4, the thermal decomposition started from a relatively low temperature, but the decomposition was not rapid, and the weight loss rate at 150 ° C. was 21%. The weight reduction did not end even when the temperature reached 280 ° C. In addition, it confirmed similarly to Example 1 that a thermal decomposition product was copper.

Figure 2009256218
Figure 2009256218

[比較例2]
実施例1の3−ジメチルアミノ−1,2−プロパンジオールを3−メチルアミノ−1,2−プロパンジオール(式23、1.05g;東京化成製)に変えた以外は実施例1と同様に行い、2.0gの液状組成物を得た。実施例1と同様の熱重量分析(TGA)測定の結果、図5に見られるとおり熱分解は比較的低温から開始したが、分解は速やかではなく、150℃での重量減少率は26%に留まり、重量減少は260で終了した。なお、熱分解生成物が銅であることを実施例1と同様に確認した。
[Comparative Example 2]
The same as Example 1 except that 3-dimethylamino-1,2-propanediol of Example 1 was changed to 3-methylamino-1,2-propanediol (Formula 23, 1.05 g; manufactured by Tokyo Chemical Industry Co., Ltd.). 2.0 g of a liquid composition was obtained. As a result of the thermogravimetric analysis (TGA) measurement similar to that in Example 1, as shown in FIG. 5, the thermal decomposition started from a relatively low temperature, but the decomposition was not rapid, and the weight loss rate at 150 ° C. was 26%. The weight reduction ended at 260. In addition, it confirmed similarly to Example 1 that a thermal decomposition product was copper.

Figure 2009256218
Figure 2009256218

[比較例3]
実施例1の3−ジメチルアミノ−1,2−プロパンジオールを2−メトキシエチルアミン(式24、0.75g;東京化成製)に変えた以外は同様に行い、1.5gの組成物を得たが、組成物は次第に結晶化した。
[Comparative Example 3]
The same procedure was performed except that 3-dimethylamino-1,2-propanediol of Example 1 was changed to 2-methoxyethylamine (Formula 24, 0.75 g; manufactured by Tokyo Chemical Industry), and 1.5 g of a composition was obtained. However, the composition gradually crystallized.

Figure 2009256218
Figure 2009256218

[比較例4]
ギ酸銅(II)・四水和物を100℃のオーブンで2時間真空乾燥して無水ギ酸銅(II)を得た。無水ギ酸銅(II)の実施例1と同様の熱重量分析(TGA)測定の結果、図6に見られるとおり、200℃以上の高温でようやく熱分解が起こった。なお、熱分解生成物が銅であることを実施例1と同様に確認した。
[Comparative Example 4]
Copper (II) formate tetrahydrate was vacuum dried in an oven at 100 ° C. for 2 hours to obtain anhydrous copper (II) formate. As a result of thermogravimetric analysis (TGA) measurement of anhydrous copper formate (II) similar to that of Example 1, thermal decomposition finally occurred at a high temperature of 200 ° C. or higher as seen in FIG. In addition, it confirmed similarly to Example 1 that a thermal decomposition product was copper.

銅膜の作製
[実施例4]
実施例1で得た銅前駆体組成物をカプトンフィルム(東レ・デュポン株式会社製、カプトン500V)上に塗布した。カプトンフィルムへの塗布は、アプリケーターにて塗布幅3cm、膜厚が約20μmになるように行った。大気中、銅前駆体組成物を塗布したカプトンフィルムを150℃に加熱したホットプレート上にのせ、2分加熱処理した。処理後の膜が銅膜であることをX線回折にて確認した。テスターを用い、得られた銅膜が導電性を有することを確認した。
Preparation of copper film [Example 4]
The copper precursor composition obtained in Example 1 was applied onto a Kapton film (manufactured by Toray DuPont, Kapton 500V). Application to the Kapton film was performed with an applicator so that the application width was 3 cm and the film thickness was about 20 μm. In the air, the Kapton film coated with the copper precursor composition was placed on a hot plate heated to 150 ° C. and heat-treated for 2 minutes. It was confirmed by X-ray diffraction that the treated film was a copper film. Using a tester, it was confirmed that the obtained copper film had conductivity.

[実施例5]
実施例2で得た銅前駆体組成物を実施例4のカプトンフィルム上に実施例4と同様に塗布した。大気中、150℃で3分加熱処理した。処理後の膜が銅膜であることをX線回折にて確認した。テスターを用い、得られた銅膜が導電性を有することを確認した。
[Example 5]
The copper precursor composition obtained in Example 2 was applied on the Kapton film of Example 4 in the same manner as in Example 4. Heat treatment was performed at 150 ° C. for 3 minutes in the atmosphere. It was confirmed by X-ray diffraction that the treated film was a copper film. Using a tester, it was confirmed that the obtained copper film had conductivity.

[実施例6]
実施例1で得た銅前駆体組成物をポリエチレンテレフタレートフィルム(東レ株式会社製、ルミラーS10)上に実施例4と同様に塗布した。大気中、150℃で2分加熱処理した。処理後の膜が銅膜であることをX線回折にて確認した。テスターを用い、得られた銅膜が導電性を有することを確認した。
[Example 6]
The copper precursor composition obtained in Example 1 was applied in the same manner as in Example 4 on a polyethylene terephthalate film (manufactured by Toray Industries, Inc., Lumirror S10). Heat treatment was performed at 150 ° C. for 2 minutes in the atmosphere. It was confirmed by X-ray diffraction that the treated film was a copper film. Using a tester, it was confirmed that the obtained copper film had conductivity.

[実施例7]
実施例2で得た銅前駆体組成物を実施例6のポリエチレンテレフタレートフフィルム上に実施例4と同様に塗布した。大気中、150℃で5分加熱処理した。処理後の膜が銅膜であることをX線回折にて確認した。テスターを用い、得られた銅膜が導電性を有することを確認した。
[Example 7]
The copper precursor composition obtained in Example 2 was applied on the polyethylene terephthalate film of Example 6 in the same manner as in Example 4. Heat treatment was performed at 150 ° C. for 5 minutes in the atmosphere. It was confirmed by X-ray diffraction that the treated film was a copper film. Using a tester, it was confirmed that the obtained copper film had conductivity.

[比較例5]
比較例1で得た組成物を実施例4のカプトンフィルム上に実施例4と同様に塗布した。大気中、150℃で30分焼成したが銅膜は得られなかった。
[Comparative Example 5]
The composition obtained in Comparative Example 1 was applied on the Kapton film of Example 4 in the same manner as in Example 4. Although it baked at 150 degreeC for 30 minutes in air | atmosphere, a copper film was not obtained.

本発明の銅膜の製造方法は、回路基板の配線、多層基板のビア配線、フレキシブルコネクタの配線、ICタグのアンテナ、平面コイル、太陽電池や平面ディスプレイの集電電極、印刷トランジスタの内部配線、電磁波遮蔽材の導体パターンなどの製造に用いることができる。また、銅膜の光沢や色調を利用してプラスチックや陶磁器の加飾にも用いることができる。また、本発明の銅前駆体組成物は、銅膜以外の形態の銅、例えば銅粒子の製造のための前駆体として用いることも可能である。   The copper film manufacturing method of the present invention includes circuit board wiring, multilayer board via wiring, flexible connector wiring, IC tag antenna, planar coil, collecting electrode for solar cell and flat display, internal wiring of printed transistor, It can be used for producing a conductor pattern of an electromagnetic wave shielding material. It can also be used to decorate plastics and ceramics using the luster and color of the copper film. Moreover, the copper precursor composition of this invention can also be used as a precursor for manufacture of copper other than a copper film, for example, copper particles.

実施例1で得た銅前駆体組成物の熱重量分析結果を示す図である。横軸は温度、縦軸は重量減少率(%)を表す。It is a figure which shows the thermogravimetric analysis result of the copper precursor composition obtained in Example 1. FIG. The horizontal axis represents temperature, and the vertical axis represents the weight loss rate (%). 実施例2で得た銅前駆体組成物の熱重量分析結果を示す図である。横軸は温度、縦軸は重量減少率(%)を表す。It is a figure which shows the thermogravimetric analysis result of the copper precursor composition obtained in Example 2. FIG. The horizontal axis represents temperature, and the vertical axis represents the weight loss rate (%). 実施例3で得た銅前駆体組成物の熱重量分析結果を示す図である。横軸は温度、縦軸は重量減少率(%)を表す。It is a figure which shows the thermogravimetric analysis result of the copper precursor composition obtained in Example 3. FIG. The horizontal axis represents temperature, and the vertical axis represents the weight loss rate (%). 比較例1で得た組成物の熱重量分析結果を示す図である。横軸は温度、縦軸は重量減少率(%)を表す。It is a figure which shows the thermogravimetric analysis result of the composition obtained in the comparative example 1. The horizontal axis represents temperature, and the vertical axis represents the weight loss rate (%). 比較例2で得た組成物の熱重量分析結果を示す図である。横軸は温度、縦軸は重量減少率(%)を表す。It is a figure which shows the thermogravimetric analysis result of the composition obtained in the comparative example 2. The horizontal axis represents temperature, and the vertical axis represents the weight loss rate (%). 比較例4で得た無水ギ酸銅(II)の熱重量分析結果を示す図である。横軸は温度、縦軸は重量減少率(%)を表す。It is a figure which shows the thermogravimetric analysis result of anhydrous copper formate (II) obtained in the comparative example 4. The horizontal axis represents temperature, and the vertical axis represents the weight loss rate (%).

Claims (7)

以下の式1で示される化合物およびギ酸銅を配合してなる銅前駆体組成物。
Figure 2009256218
(式中Xは、
Figure 2009256218
であり、R,Rはそれぞれ独立に炭素数1〜6の置換基を有してもよいアルキル基を示す。また、Rは炭素数4〜10の2価基を示す。)
A copper precursor composition comprising a compound represented by the following formula 1 and copper formate.
Figure 2009256218
(Where X is
Figure 2009256218
And R 1 and R 2 each independently represents an alkyl group which may have a substituent having 1 to 6 carbon atoms. R 3 represents a divalent group having 4 to 10 carbon atoms. )
前記式1で示される化合物のXが、
Figure 2009256218
であり、R,Rがそれぞれ独立に炭素数1〜6のアルキル基である請求項1に記載の銅前駆体組成物。
X of the compound represented by the formula 1 is
Figure 2009256218
The copper precursor composition according to claim 1 , wherein R 1 and R 2 are each independently an alkyl group having 1 to 6 carbon atoms.
さらに溶媒を含む請求項1または2に記載の銅前駆体組成物。   Furthermore, the copper precursor composition of Claim 1 or 2 containing a solvent. さらにポリマー成分を含む請求項1〜3のいずれかに記載の銅前駆体組成物。   Furthermore, the copper precursor composition in any one of Claims 1-3 containing a polymer component. さらに銅粒子を含む請求項1〜3のいずれかに記載の銅前駆体組成物。   Furthermore, the copper precursor composition in any one of Claims 1-3 containing a copper particle. 請求項1〜5のいずれかに記載の銅前駆体組成物を基板上に塗布し、加熱処理することによる銅膜の製造方法。   The manufacturing method of the copper film by apply | coating the copper precursor composition in any one of Claims 1-5 on a board | substrate, and heat-processing. 前記式1で示される化合物とギ酸銅とを混合して得られる銅錯体。   A copper complex obtained by mixing the compound represented by Formula 1 and copper formate.
JP2008104650A 2008-04-14 2008-04-14 Copper precursor composition, and method of preparing copper film using the same Pending JP2009256218A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008104650A JP2009256218A (en) 2008-04-14 2008-04-14 Copper precursor composition, and method of preparing copper film using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008104650A JP2009256218A (en) 2008-04-14 2008-04-14 Copper precursor composition, and method of preparing copper film using the same

Publications (1)

Publication Number Publication Date
JP2009256218A true JP2009256218A (en) 2009-11-05

Family

ID=41384126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008104650A Pending JP2009256218A (en) 2008-04-14 2008-04-14 Copper precursor composition, and method of preparing copper film using the same

Country Status (1)

Country Link
JP (1) JP2009256218A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011055804A1 (en) 2009-11-09 2011-05-12 Necインフロンティア株式会社 Handy terminal and payment method used for the handy terminal
JP2012112022A (en) * 2010-11-26 2012-06-14 Adeka Corp Composition for copper film forming, and method of manufacturing copper film using the composition
JP2013136577A (en) * 2011-12-27 2013-07-11 Samsung Electro-Mechanics Co Ltd Copper organic metal, method for preparing copper organic metal and copper paste
WO2013136937A1 (en) 2012-03-16 2013-09-19 株式会社Adeka Copper film-forming composition, and method for producing copper film by using the composition
WO2014010328A1 (en) 2012-07-09 2014-01-16 四国化成工業株式会社 Copper film-forming agent and method for forming copper film
WO2014148091A1 (en) * 2013-03-19 2014-09-25 富士フイルム株式会社 Composition for conductive film formation, and method for producing conductive film using same
WO2014157303A1 (en) * 2013-03-29 2014-10-02 富士フイルム株式会社 Composition for forming conductive films and method for producing conductive film using same
WO2014156326A1 (en) * 2013-03-29 2014-10-02 富士フイルム株式会社 Composition for forming conductive film, and conductive film manufacturing method using same
WO2015012209A1 (en) * 2013-07-25 2015-01-29 株式会社Adeka Composition for copper film formation and copper film production method using same
JP5673890B1 (en) * 2013-03-29 2015-02-18 東レ株式会社 Conductive paste and conductive pattern manufacturing method
WO2015137013A1 (en) * 2014-03-12 2015-09-17 株式会社Adeka Copper film forming composition and process for manufacturing copper film using same
JP2015187259A (en) * 2014-03-11 2015-10-29 三井金属鉱業株式会社 Conductive composition and method for producing conductor using the same
WO2016197234A1 (en) 2015-06-11 2016-12-15 National Research Council Of Canada Preparation of high conductivity copper films
JP2019006903A (en) * 2017-06-26 2019-01-17 東ソー株式会社 Conductive copper ink composition
JP2021070873A (en) * 2019-10-29 2021-05-06 学校法人 工学院大学 Manufacturing method of metal film, composition for metal film formation and metal film laminate
US11472980B2 (en) 2017-02-08 2022-10-18 National Research Council Of Canada Molecular ink with improved thermal stability
WO2023063206A1 (en) * 2021-10-15 2023-04-20 Jsr株式会社 Method for forming metal-containing film and composition for forming metal-containing film
US11746246B2 (en) 2017-02-08 2023-09-05 National Research Council Of Canada Silver molecular ink with low viscosity and low processing temperature
US11873409B2 (en) 2017-02-08 2024-01-16 National Research Council Of Canada Printable molecular ink

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011055804A1 (en) 2009-11-09 2011-05-12 Necインフロンティア株式会社 Handy terminal and payment method used for the handy terminal
JP2012112022A (en) * 2010-11-26 2012-06-14 Adeka Corp Composition for copper film forming, and method of manufacturing copper film using the composition
JP2013136577A (en) * 2011-12-27 2013-07-11 Samsung Electro-Mechanics Co Ltd Copper organic metal, method for preparing copper organic metal and copper paste
CN104169463A (en) * 2012-03-16 2014-11-26 株式会社艾迪科 Copper film-forming composition, and method for producing copper film by using the composition
JP2013194257A (en) * 2012-03-16 2013-09-30 Adeka Corp Copper film-forming composition, and method for producing copper film by using the composition
TWI570097B (en) * 2012-03-16 2017-02-11 Adeka Corp A copper film forming composition, and a method for producing a copper film using the same
WO2013136937A1 (en) 2012-03-16 2013-09-19 株式会社Adeka Copper film-forming composition, and method for producing copper film by using the composition
CN104169463B (en) * 2012-03-16 2016-08-31 株式会社艾迪科 Composition for forming copper film and method for producing copper film using same
US9028599B2 (en) 2012-03-16 2015-05-12 Adeka Corporation Copper film-forming composition, and method for producing copper film by using the composition
KR101605650B1 (en) 2012-03-16 2016-03-22 가부시키가이샤 아데카 Copper film-forming composition, and method for producing copper film by using the composition
WO2014010328A1 (en) 2012-07-09 2014-01-16 四国化成工業株式会社 Copper film-forming agent and method for forming copper film
US10405422B2 (en) 2012-07-09 2019-09-03 Shikoku Chemicals Corporation Copper film-forming agent and method for forming copper film
JPWO2014010328A1 (en) * 2012-07-09 2016-06-20 四国化成工業株式会社 Copper film forming agent and method for forming copper film
KR20150034168A (en) 2012-07-09 2015-04-02 시코쿠가세이고교가부시키가이샤 Copper film-forming agent and method for forming copper film
WO2014148091A1 (en) * 2013-03-19 2014-09-25 富士フイルム株式会社 Composition for conductive film formation, and method for producing conductive film using same
JP2014182913A (en) * 2013-03-19 2014-09-29 Fujifilm Corp Composition for conductive film formation, and method for producing conductive film using the same
TWI563425B (en) * 2013-03-29 2016-12-21 Toray Industries Conductive paste, method of fabricating conductive pattern, and electrostatic capacitance touch panel
JP2014196384A (en) * 2013-03-29 2014-10-16 富士フイルム株式会社 Conductive film-forming composition and method for producing conductive film using the same
WO2014157303A1 (en) * 2013-03-29 2014-10-02 富士フイルム株式会社 Composition for forming conductive films and method for producing conductive film using same
WO2014156326A1 (en) * 2013-03-29 2014-10-02 富士フイルム株式会社 Composition for forming conductive film, and conductive film manufacturing method using same
JP2014196427A (en) * 2013-03-29 2014-10-16 富士フイルム株式会社 Composition for forming an electroconductive film and method for manufacturing electroconductive film using the same
JP5673890B1 (en) * 2013-03-29 2015-02-18 東レ株式会社 Conductive paste and conductive pattern manufacturing method
WO2015012209A1 (en) * 2013-07-25 2015-01-29 株式会社Adeka Composition for copper film formation and copper film production method using same
KR20160027174A (en) 2013-07-25 2016-03-09 가부시키가이샤 아데카 Composition for copper film formation and copper film production method using same
JP2015187259A (en) * 2014-03-11 2015-10-29 三井金属鉱業株式会社 Conductive composition and method for producing conductor using the same
JP2015172226A (en) * 2014-03-12 2015-10-01 株式会社Adeka Composition for copper film formation and method of manufacturing copper film using the same
WO2015137013A1 (en) * 2014-03-12 2015-09-17 株式会社Adeka Copper film forming composition and process for manufacturing copper film using same
KR20160114175A (en) 2014-03-12 2016-10-04 가부시키가이샤 아데카 Copper film forming composition and process for manufacturing copper film using same
CN105980599A (en) * 2014-03-12 2016-09-28 株式会社Adeka Copper film forming composition and process for manufacturing copper film using same
CN105980599B (en) * 2014-03-12 2018-05-15 株式会社Adeka Composition for forming copper film and method for producing copper film using same
US10954406B2 (en) 2015-06-11 2021-03-23 National Research Council Of Canada Preparation of high conductivity copper films
WO2016197234A1 (en) 2015-06-11 2016-12-15 National Research Council Of Canada Preparation of high conductivity copper films
US11472980B2 (en) 2017-02-08 2022-10-18 National Research Council Of Canada Molecular ink with improved thermal stability
US11746246B2 (en) 2017-02-08 2023-09-05 National Research Council Of Canada Silver molecular ink with low viscosity and low processing temperature
US11873409B2 (en) 2017-02-08 2024-01-16 National Research Council Of Canada Printable molecular ink
JP2019006903A (en) * 2017-06-26 2019-01-17 東ソー株式会社 Conductive copper ink composition
JP2021070873A (en) * 2019-10-29 2021-05-06 学校法人 工学院大学 Manufacturing method of metal film, composition for metal film formation and metal film laminate
JP7506404B2 (en) 2019-10-29 2024-06-26 学校法人 工学院大学 METAL FILM PRODUCTION METHOD, METAL FILM FORMING COMPOSITION, AND METAL FILM LAMINATE
WO2023063206A1 (en) * 2021-10-15 2023-04-20 Jsr株式会社 Method for forming metal-containing film and composition for forming metal-containing film

Similar Documents

Publication Publication Date Title
JP2009256218A (en) Copper precursor composition, and method of preparing copper film using the same
KR100895192B1 (en) Organic silver complex compound used in paste for conductive pattern forming
KR100997297B1 (en) Low temperature heat conduction ink
EP2671655B1 (en) Method for manufacturing coated metal fine particles
CN104245192B (en) A method for making conductive metal thin film and conductive metal thin film and flexible printed circuit board prepared therefrom
US20100021704A1 (en) Organic silver complex compound used in paste for conductive pattern forming
JP2009170419A (en) Metal nanoparticle composition and method of forming conductive functional component on base board
CN104710878A (en) Metal Nanoparticle Synthesis and Conductive Ink Formulation
TW200813257A (en) Manufacturing methods for metal clad laminates
US20160168408A1 (en) Silver ink
WO2017170023A1 (en) Coated silver particle, production method therefor, conductive composition, and conductive body
TW201704373A (en) Conductive coating film composite and method of producing the same
JP6277751B2 (en) Copper particle dispersion paste and method for producing conductive substrate
EP4056365A1 (en) Structure with conductive pattern and method for manufacturing same
Tam et al. High copper loading metal organic decomposition paste for printed electronics
WO2013073331A1 (en) Method for forming copper film, copper film, circuit substrate, and copper-film-forming composition solution
US20100178420A1 (en) Method of preparing conductive ink composition for printed circuit board and method of producing printed circuit board
WO2014013557A1 (en) Silver-containing composition, and base for use in formation of silver element
CA2665219A1 (en) Conductive patterns and methods of using them
JP2016110691A (en) Method for manufacturing conductive substrate and conductive substrate
JP2010077520A (en) Method for producing fine copper particle, and fine copper particle
JP2010138426A (en) Method for producing metal film
JP2021098882A (en) Manufacturing method of structure with conductive pattern
JP2009228017A (en) Method for producing copper particulate, and copper particulate
JP2009149918A (en) Method for manufacturing copper fine particle, and copper fine particle