[go: up one dir, main page]

JP2009271895A - Image set and method for independent rectification - Google Patents

Image set and method for independent rectification Download PDF

Info

Publication number
JP2009271895A
JP2009271895A JP2008140125A JP2008140125A JP2009271895A JP 2009271895 A JP2009271895 A JP 2009271895A JP 2008140125 A JP2008140125 A JP 2008140125A JP 2008140125 A JP2008140125 A JP 2008140125A JP 2009271895 A JP2009271895 A JP 2009271895A
Authority
JP
Japan
Prior art keywords
image
independent
reference plane
plane
corrected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008140125A
Other languages
Japanese (ja)
Other versions
JP5088627B2 (en
Inventor
Hiroshi Takeda
浩志 武田
Yukio Akamatsu
幸生 赤松
Yoshihiko Minami
義彦 南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Airport Facilities Co Ltd
Original Assignee
Kokusai Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kokusai Kogyo Co Ltd filed Critical Kokusai Kogyo Co Ltd
Priority to JP2008140125A priority Critical patent/JP5088627B2/en
Publication of JP2009271895A publication Critical patent/JP2009271895A/en
Application granted granted Critical
Publication of JP5088627B2 publication Critical patent/JP5088627B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Instructional Devices (AREA)
  • Processing Or Creating Images (AREA)
  • Image Processing (AREA)
  • Image Analysis (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve problems wherein a device for utilizing information to the maximum has been strongly desired because much information can be acquired from duplicate photographed aerial photographs (digital photographs) and there is a demand for meeting new needs corresponding to recent rapid environmental changes such as shortening of time for acquiring target information, simplification of processes, cost reduction and diversification of kinds of information. <P>SOLUTION: An image set for independent rectification includes a plurality of images for independent rectification including the same observation point, which are images for independent rectification obtained on a parallel face of a reference face by carrying out projective transformation of duplicate-photographed aerial photographic images in a perpendicular direction to the reference face. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、地理空間情報に関する偏位修正画像およびその活用法に関するものである。特に、新しい偏位修正画像に関し、その活用範囲が広く、種々の応用が期待できるものである。    The present invention relates to a deviation corrected image relating to geospatial information and a method for utilizing the same. In particular, the new displacement corrected image has a wide range of use and can be expected to be applied in various ways.

最近、デジタル化が進行し、例えば、航空写真もデジタルカメラで撮影され、アナログ写真では、不可能であった新しい活用が提案され、急速な発展が始っている。先ず、アナログでは必要であった現像処理その後のスキャニング等は、デジタルでは不要となり、撮影後の現像処理に必要な時間が大幅に短縮され、迅速に処理できるようになった。    Recently, digitalization has progressed. For example, aerial photographs are also taken with a digital camera, and new uses that were impossible with analog photographs have been proposed, and rapid development has begun. First, scanning and the like after development processing that was necessary in analog is unnecessary in digital, and the time required for development processing after photographing has been greatly reduced, and processing can be performed quickly.

更に、撮影移動方向に重複撮影(オーバーラップ撮影)することが行われ、水平面内で該撮影移動方向に直角な方向にも重複撮影(サイドラップ撮影)を行うようになり、多くの画像が得られるようになった。最初は、安全撮影のために重複撮影を意図していたが、今は、多数重複撮影された画像の活用を図る工夫がされ始めている。    Furthermore, overlapping shooting (overlap shooting) is performed in the shooting movement direction, and overlapping shooting (side-wrap shooting) is also performed in a direction perpendicular to the shooting movement direction in the horizontal plane, so that many images can be obtained. It came to be able to. At first, it was intended to take multiple shots for safe shooting, but now it is being devised to make use of images that have been shot multiple times.

また、例えば、画素レベルで、画像を修正できるので、色々な活用ができるようになった。例えば、特開2003−323603(特許文献1)、特開2003−316256、(特許文献2)および特開2002−092658(特許文献3)などに記載されているように、ステレオマッチング方法、オルソフォト生成方法、3次元デジタル地図作成等に使われるようになってきているが、まだ、撮影で得られた情報に関して、十分な活用がされていなくて、重複撮影で得られる情報の更なる有効な活用が望まれている。
特開2003−323603 特開2003−316256 特開2002−092658
In addition, for example, since the image can be corrected at the pixel level, various applications can be made. For example, as described in Japanese Patent Application Laid-Open No. 2003-323603 (Patent Document 1), Japanese Patent Application Laid-Open No. 2003-316256, (Patent Document 2), Japanese Patent Application Laid-Open No. 2002-092658 (Patent Document 3), etc. Although it has come to be used for generation methods, 3D digital map creation, etc., the information obtained by shooting has not been fully utilized yet, and the information obtained by duplicate shooting is more effective. Utilization is desired.
JP 2003-323603 A JP2003-316256 JP 2002-092658 A

従来、重複撮影航空写真(デジタル写真)は、重複度が多くなると、情報が多く取得される。従って、該重複撮影航空写真の情報を最大限活用する工夫が望まれている。そのための方法と、前記工夫の提案が強く望まれている。また、更に、目的とする情報を得るための時間の短縮、工程の簡素化、コスト低減、情報の種類の多様化等々、近来の急速な環境変化に対応した新しいニーズに答えることが要求されている。    Conventionally, duplicated aerial photographs (digital photographs) acquire a lot of information when the degree of overlap increases. Therefore, a device for making maximum use of the information of the overlapping photographed aerial photograph is desired. A method for that purpose and the proposal of the above-mentioned device are strongly desired. Furthermore, there is a need to answer new needs in response to recent rapid changes in the environment, such as shortening the time to obtain target information, simplifying processes, reducing costs, and diversifying the types of information. Yes.

本発明は、オーバーラップして撮影された空中写真画像を、基準面に対して鉛直方向に射影変換を実施して前記基準面の平行面上に得られた独立偏位修正画像であって、同一の注視点を含む複数の前記独立偏位修正画像を含む独立偏位修正画像セットが有用であって、請求項1として提案している。前記基準面は、一般的には、水平面であるが、調査などの目的で例えば斜面が基準面になることもあり、その場合は、前記斜面が基準面となる。    The present invention is an independent deviation correction image obtained on the parallel plane of the reference plane by performing projective transformation in the vertical direction with respect to the reference plane, aerial photograph images taken in an overlapping manner, An independent displacement correction image set including a plurality of independent displacement correction images including the same gazing point is useful and is proposed as claim 1. The reference plane is generally a horizontal plane, but for the purpose of investigation or the like, for example, a slope may be the reference plane, and in that case, the slope is the reference plane.

また、オーバーラップして撮影された空中写真画像を、絶対座標系における鉛直方向に射影変換を実施して水平面上に得られた独立偏位修正画像であって、前記独立偏位修正画像の奥行き距離に応じた倍率変換をし、同一の注視点を含む複数の前記独立偏位修正画像を含む独立偏位修正画像セットを請求項2としている。    An aerial photograph image captured in an overlapping manner is an independent displacement correction image obtained by performing projective transformation in the vertical direction in the absolute coordinate system and obtained on a horizontal plane, and the depth of the independent displacement correction image An independent displacement correction image set including a plurality of the independent displacement correction images including the same gazing point by performing magnification conversion according to the distance is defined as claim 2.

本発明において、前記独立偏位修正画像とは、絶対座標系における鉛直方向に対して、或る標定画像(航空写真画像)の射影変換を水平な仮想撮像面に実施して得られる画像をいう。また、同一の注視点を含む複数の前記独立偏位修正画像の組み合わせをセットとしている。このセットは、同時に存在することもあるが、時差をもって、用いられることもあり、その両方を意図している。また、前記セットは、記憶させて、用いることもあり活用の途中で一時的に存在することもある。    In the present invention, the independent displacement corrected image refers to an image obtained by performing projective transformation of a certain orientation image (aerial photograph image) on a horizontal virtual imaging plane in the vertical direction in the absolute coordinate system. . In addition, a combination of a plurality of the independent displacement correction images including the same gazing point is set. This set may exist at the same time, but may be used with a time difference, and both are intended. In addition, the set may be stored and used, or may temporarily exist during use.

また本発明は、オーバーラップして撮影された空中写真画像を、基準面に対して鉛直方向に射影変換を実施して前記基準面の平行面上に得られた独立偏位修正画像であって、前記独立偏位修正画像の奥行き距離に応じた倍率変換をし、同一の注視点を含む複数の前記独立偏位修正画像に関し、特徴点に対してマルチマッチングを行うことを特徴とするマルチマッチング方法を請求項3として提案している。    Further, the present invention is an independent displacement correction image obtained by performing projective transformation on an aerial photograph image taken in an overlapping manner in a direction perpendicular to a reference plane and obtained on a parallel plane of the reference plane. Multi-matching characterized by performing a magnification conversion according to a depth distance of the independent displacement corrected image and performing multi-matching on a feature point with respect to the plurality of independent displacement corrected images including the same gazing point A method is proposed as claim 3.

更に、前記独立偏位修正画像の倍率変換画像群を3次元空間におけるボクセル画像と捉え、3次元の写像空間配列として作成し、前記空中写真画像の画素値を記録した前記写像空間配列を利用する請求項3のマルチマッチング方法を請求項4としている。    Further, the magnification conversion image group of the independent displacement corrected image is regarded as a voxel image in a three-dimensional space, is created as a three-dimensional mapping space array, and the mapping space array in which the pixel values of the aerial photo image are recorded is used. The multi-matching method according to claim 3 is defined as claim 4.

また、更に、前記画素値が、単一レイヤーのモノクロ画像、3層レイヤーのカラー画像、もしくは、複数レイヤーのマルチスペクトラム画像およびハイパースペーススペクトラム画像、の階調情報を格納することができる前記写像空間配列である請求項4のマルチマッチング方法を請求項5としている。    Further, the mapping space in which the pixel value can store gradation information of a monochrome image of a single layer, a color image of a three-layer layer, or a multi-spectrum image and a hyperspace spectrum image of a plurality of layers. The multi-matching method according to claim 4, which is an array, is defined as claim 5.

前記基準面が水平面であり、前記鉛直方向が絶対座標系における方向であって、前記写像空間配列が前記空中写真画像の東西南北方向に平行な格子状である請求項4または5のいずれかに記載のマルチマッチング方法として、請求項6の提案をしている。いずれにしろ、請求項3から請求項6は、基本的に前記独立偏位修正画像セットをマルチマッチングに使っているものである。前記マルチマッチングを行うにあたり、前記特徴点に対して画素マッチングを行う請求項3乃至6のいずれかに記載のマルチマッチング方法を請求項7としている。    6. The reference plane according to claim 4 or 5, wherein the reference plane is a horizontal plane, the vertical direction is a direction in an absolute coordinate system, and the mapping space arrangement is a lattice shape parallel to the east, west, north, and south directions of the aerial image. Claim 6 is proposed as the multi-matching method described. In any case, claims 3 to 6 basically use the independent displacement corrected image set for multi-matching. 7. The multi-matching method according to claim 3, wherein pixel matching is performed on the feature points when performing the multi-matching.

本発明は、オーバーラップして撮影された空中写真画像を、基準面に対して鉛直方向に射影変換を実施して前記基準面の平行面上に得られた独立偏位修正画像であって、前記独立偏位修正画像の奥行き距離に応じた倍率変換をし、同一の注視点を含む複数の前記独立偏位修正画像に関して、3次元の写像空間配列の中における3次元ポリゴンについてポリゴンマッチングを行うことを特徴とするポリゴンマッチング方法を請求項8としている。そして、前記独立偏位修正画像の倍率変換画像群を3次元空間におけるボクセル画像と捉え、3次元の写像空間配列として作成し、前記空中写真画像の画素値を記録した前記写像空間配列を利用する請求項8のポリゴンマッチング方法を請求項9としている。    The present invention is an independent deviation correction image obtained on the parallel plane of the reference plane by performing projective transformation in the vertical direction with respect to the reference plane, aerial photograph images taken in an overlapping manner, The magnification conversion is performed according to the depth distance of the independent deviation corrected image, and polygon matching is performed on a three-dimensional polygon in a three-dimensional mapping space array with respect to the plurality of independent deviation corrected images including the same gazing point. A polygon matching method characterized by the above is defined as claim 8. Then, the magnification conversion image group of the independent displacement correction image is regarded as a voxel image in a three-dimensional space, is created as a three-dimensional mapping space array, and the mapping space array in which the pixel values of the aerial photo image are recorded is used. The polygon matching method according to claim 8 is defined as claim 9.

更に、前記画素値が、単一レイヤーのモノクロ画像、3層レイヤーのカラー画像、もしくは、複数レイヤーのマルチスペクトラム画像およびハイパースペーススペクトラム画像、の階調情報を格納することができる前記写像空間配列である請求項9のポリゴンマッチング方法を請求項10として提案している。    Further, in the mapping space arrangement, the pixel values can store gradation information of a single layer monochrome image, a three layer color image, or a multi-layer image and a hyperspace spectrum image of a plurality of layers. A polygon matching method according to claim 9 is proposed as claim 10.

また、前記基準面が水平面であり、前記鉛直方向が絶対座標系における方向であって、前記写像空間配列が前記空中写真画像の東西南北方向に平行な格子状である請求項9または10のいずれかに記載のポリゴンマッチング方法を請求項11としている。従って、請求項8乃至11は、前記独立偏位修正画像セットをポリゴンマッチングに活用できるもので、非常に有用であり、また、このように利用したポリゴンマッチング方法は非常に使いやすい効果を有する。    The reference plane is a horizontal plane, the vertical direction is a direction in an absolute coordinate system, and the mapping space arrangement is a lattice shape parallel to the east, west, north, and south directions of the aerial photo image. The polygon matching method according to claim 11 is defined as claim 11. Accordingly, the eighth to eleventh aspects are very useful since the independent displacement corrected image set can be used for polygon matching, and the polygon matching method used in this way has an effect that is very easy to use.

本発明は、更に、オーバーラップして撮影された空中写真画像を、基準面に対して鉛直方向に射影変換を実施して前記基準面の平行面上に得られた独立偏位修正画像であって、前記独立偏位修正画像の奥行き距離に応じた倍率変換をし、同一の注視点を含む複数の前記独立偏位修正画像に関して、特定領域の倍率変換によるトゥルーオルソ画像を得るトゥルーオルソ画像作成方法を請求項12とし、前記独立偏位修正画像の倍率変換画像群を3次元空間におけるボクセル画像と捉え、3次元の写像空間配列として作成し、前記空中写真画像の画素値を記録した前記写像空間配列を利用する請求項12のトゥルーオルソ画像作成方法を請求項13としている。    The present invention is further an independent deviation correction image obtained by performing projective transformation on an aerial photograph image taken in an overlapping manner in a direction perpendicular to the reference plane and obtained on a parallel plane of the reference plane. And creating a true ortho image by converting the magnification according to the depth distance of the independent displacement corrected image and obtaining a true ortho image by multiplying the specific region with respect to the plurality of independent displacement corrected images including the same gazing point. The method according to claim 12, wherein the magnification-converted image group of the independent displacement correction image is regarded as a voxel image in a three-dimensional space, is created as a three-dimensional mapping space array, and the mapping in which pixel values of the aerial photo image are recorded The true ortho image creation method according to claim 12 using a spatial arrangement is defined as claim 13.

また、前記画素値が、単一レイヤーのモノクロ画像、3層レイヤーのカラー画像、もしくは、複数レイヤーのマルチスペクトラム画像およびハイパースペーススペクトラム画像、の階調情報を格納することができる前記写像空間配列である請求項13のトゥルーオルソ画像作成方法を請求項14として提案し、前記基準面が水平面であり、前記鉛直方向が絶対座標系における方向であって、前記写像空間配列が前記空中写真画像の東西南北方向に平行な格子状である請求項13または14のいずれかに記載のトゥルーオルソ画像作成方法を請求項15としている。従って、請求項12乃至15は、例えば、前記独立偏位修正画像セットをトゥルーオルソ画像作成方法に使用する例を含んでいる。    In the mapping space array, the pixel values can store gradation information of a single layer monochrome image, a three layer color image, or a multi-layer image and a hyperspace spectrum image of a plurality of layers. A true ortho image creation method according to claim 13 is proposed as claim 14, wherein the reference plane is a horizontal plane, the vertical direction is a direction in an absolute coordinate system, and the mapping space arrangement is east-west of the aerial image. The true ortho image creation method according to claim 13 or 14, which has a lattice shape parallel to the north-south direction. Accordingly, claims 12 to 15 include, for example, an example in which the independent displacement correction image set is used in a true ortho image generation method.

本発明によれば、前記したように、簡単な射影で、種々の応用が可能で、重複撮影した画像をもれなく利用することも可能で、撮影された情報を無駄なく有効活用ができる。また、簡単な方法で応用が可能となり、望まれていた工夫、効果を得ることができる。加えて、大きくは、前記独立偏位修正画像においては、全ての水平線分が方向性が一致する利点があり、これを元に種々の応用が可能になる。前記水平線分は、同一の標高値を有する頂点で構成される線分であって、水平な基準面内の点で構成される。水平線分のみで構成される水平輪郭ポリゴンの場合は、必ず相似の関係が成り立っている。    According to the present invention, as described above, various applications are possible with a simple projection, and it is possible to use all the images that have been captured twice without fail, and the captured information can be effectively used without waste. In addition, application can be performed by a simple method, and desired devices and effects can be obtained. In addition, there is an advantage that all the horizontal line segments have the same directionality in the independent displacement corrected image, and various applications are possible based on this. The horizontal line segment is a line segment composed of vertices having the same elevation value, and is composed of points in a horizontal reference plane. In the case of a horizontal outline polygon composed only of horizontal line segments, a similar relationship is always established.

更に、前記独立偏位修正画像は、全画像の同時参照によるオクルージョンの回避ができる効果がある。オブジェクト空間において独立偏位修正画像の倍率変換による特徴点の重ね合わせが可能であることから、任意の探索位置に対応する全画像の同時参照が可能である。従って、正しい対応点を決定することができる利点がある。    Furthermore, the independent displacement corrected image has an effect of avoiding occlusion by simultaneous reference of all images. Since it is possible to superimpose feature points by magnification conversion of independent displacement corrected images in the object space, it is possible to simultaneously refer to all images corresponding to arbitrary search positions. Therefore, there is an advantage that a correct corresponding point can be determined.

また、本発明によれば、このオクルージョン回避に伴い計算コストの低減ができる。それは、本発明に従うと、単一の注視点の計測の方法を用い、水平方向に対して、等間隔な計測点をグリッド状に配置し、鉛直方向の探索を実施することで、均等な計測密度が得られ、各計測点では、全画像の同時参照によるオクルージョンの回避が可能であり、対応点探索の繰り返し演算が不要となる。また、本発明は、その他多くの効果を有するものである。    Further, according to the present invention, the calculation cost can be reduced along with the occlusion avoidance. According to the present invention, a single gaze point measurement method is used, equidistant measurement points are arranged in a grid shape in the horizontal direction, and a search in the vertical direction is performed. Density is obtained, and at each measurement point, it is possible to avoid occlusion by simultaneous reference of all images, and it is not necessary to repeatedly perform corresponding point search. The present invention has many other effects.

以下、本発明を実施例と図を挙げながら、更に具体的に詳しく説明する。先ず、本発明にかかる独立偏位修正法および該方法により得られる独立修正画像について、説明する。図1は前記独立偏位修正法の概念図である。1は、撮影対象物であり、2は注視点である。撮影対象物1を撮影した多重撮影画像の中から標定画像3と標定画像4の2枚選択し、それぞれの撮影中心をそれぞれ5、6とする。標定画像3と4について、下記の式(1)を用いて、写真座標系から絶対座標系に変換し、共線条件に基づき、水平な仮想撮像面に対してそれぞれ投影変換をして、独立偏位修正画像7と8を得る。

Figure 2009271895
Hereinafter, the present invention will be described in more detail with reference to examples and drawings. First, the independent displacement correction method according to the present invention and the independent correction image obtained by the method will be described. FIG. 1 is a conceptual diagram of the independent displacement correction method. 1 is an object to be photographed, and 2 is a gaze point. Two images of the orientation image 3 and the orientation image 4 are selected from the multiple captured images obtained by capturing the imaging object 1, and the respective imaging centers are set to 5 and 6, respectively. The orientation images 3 and 4 are converted from the photographic coordinate system to the absolute coordinate system using the following formula (1), and are each projected and converted to the horizontal virtual imaging plane based on the collinear condition, independently. Displacement corrected images 7 and 8 are obtained.
Figure 2009271895

なお、ここで、各標定画像の標定要素から絶対座標系におけるカメラの投影中心位置をC(X,Y,Z)、その姿勢の回転角を(Ω,Φ,K)とし、標定画像の写真座標系における任意の点の座標値(x,y,−c)を絶対座標値(X,Y,Z)に変換できる。ただし、κ=1,2,・・・,n(n:マッチングに使用する画像の枚数)とし、cはカメラの焦点距離を意味する。Here, C k (X k , Y k , Z k ) is the projection center position of the camera in the absolute coordinate system from the orientation elements of each orientation image, and the rotation angle of the posture is (Ω k , Φ k , K k). ), The coordinate value (x, y, −c) of an arbitrary point in the photographic coordinate system of the orientation image can be converted into an absolute coordinate value (X, Y, Z). Here, κ = 1, 2,..., N (n: the number of images used for matching), and c means the focal length of the camera.

この標定画像上の任意の点の絶対座標値(X,Y,Z)を投影中心点Cと焦点距離cは変えずに、共線条件に基づき、姿勢の回転角を全て0とした水平かつ同一方向の仮想撮像面を定義し、射影変換することで、変換後の写真座標系における座標値(x‘,y’,−c)を得る。これを射影変換画像としてリサンプリングすることで、独立偏位修正画像を得ることができる。An absolute coordinate value (X, Y, Z) of an arbitrary point on the orientation image is a horizontal where the rotation angle of the posture is all 0 based on the collinear condition without changing the projection center point C k and the focal length c. In addition, by defining a virtual imaging plane in the same direction and performing projective transformation, coordinate values (x ′, y ′, −c) in the photographic coordinate system after transformation are obtained. By re-sampling this as a projective transformation image, an independent displacement corrected image can be obtained.

また、全ての独立偏位修正画像が水平かつ同一方向の仮想撮像面に対して射影変換されていることから、基準面の高さに応じた画像の倍率変換により対応点の重ね合わせが可能である。図2は、対応点の重ね合わせの例である。独立偏位修正画像11〜14の4枚を注視点Pの対応点P〜Pを注視点Pで重ねた合わせたもの15である。C〜Cは、それぞれの撮影中心である。注視点Pの独立偏位修正画像における座標値を(x,y)とし、同じく点Pの標高値(Z)に基準面を設定すると、下記の式(2)に示した倍率変換式により、点Pの水平位置(X,Y)を算出できる。

Figure 2009271895
In addition, since all of the independent deviation corrected images are projective transformed with respect to the horizontal and same virtual imaging plane, the corresponding points can be superimposed by converting the magnification of the image according to the height of the reference plane. is there. FIG. 2 is an example of overlapping of corresponding points. The four independent independent corrected images 11 to 14 are obtained by superimposing corresponding points P 1 to P 4 of the gazing point P on the gazing point P. C 1 to C 4 are the respective photographing centers. When the coordinate value in the independent displacement correction image of the gazing point P is (x, y) and the reference plane is set to the altitude value (Z p ) of the point P, the magnification conversion equation shown in the following equation (2) is used. The horizontal position (X p , Y p ) of the point P can be calculated.
Figure 2009271895

全ての独立偏位修正画像に対して、この倍率変換を適用すると共通の基準面上で対応点は重なりあう。オブジェクト空間内で重ね合わせた画像データを階層上に蓄積し、この層状に蓄積された画像データを鉛直方向に探索することで、多重撮影画像間でのマッチングが可能になる。    When this magnification conversion is applied to all independent displacement corrected images, corresponding points overlap on a common reference plane. By matching the image data superimposed in the object space on a hierarchy and searching the image data stored in this layer shape in the vertical direction, matching between multiple captured images becomes possible.

渋谷区全域を撮影した航空写真の中から、選んだ多重撮影画像を実施例に用いた。(本発明は、このように任意の撮影方法に適応可能である。7枚を選択し、中央の一枚を中心に左右隣接のそれぞれ1枚と、写真上で、該中央の左斜め前の隣接と右斜め前の隣接画像をそれぞれ1枚と、該中央の左斜め下と右斜め下の隣接画像をそれぞれ1枚の合計7枚で、該中央を囲む6枚の隣接画像は、6角形を構成している。)撮影記録からは、撮影に使用した機器、DMCとして、インターグラフ社の緒元等は、画素数13824×780画素、CCDサイズ165.9mm×92,2mm、画素サイズ12.0μm(正方格子)、焦点距離120mmであって、撮影緒元は、対地高度600m、ラップ率(OL/SL)66.7%×66.7%、プロジェクト数2であった。    A multiple photographic image selected from aerial photographs of the entire Shibuya Ward was used in the examples. (The present invention can be applied to any shooting method in this way. Select 7 images, one image on the left and right adjacent to each other in the center, A total of seven adjacent images, one adjacent image and one adjacent image on the right front side, and one adjacent image on the lower left and lower right side of the center, and six adjacent images surrounding the center are hexagonal From the shooting record, the equipment used for shooting, as the DMC, the origin of Intergraph, etc. has a pixel number of 13824 × 780 pixels, a CCD size of 165.9 mm × 92, 2 mm, a pixel size of 12 0.0 μm (square lattice), focal length 120 mm, and the origin of shooting was an altitude of 600 m, a lap ratio (OL / SL) of 66.7% × 66.7%, and the number of projects was 2.

前記実施例の概略の流れを図3にフローチャートで示した。先ず、選択された前記多重撮影画像31から独立偏位修正画像32を得た(得る方法を独立偏位修正法と呼ぶ)。第1に元になった多重撮影画像(標定画像31)とその独立偏位修正画像32とを比較し、水平線分の方向同一性について33で評価した。    A schematic flow of the embodiment is shown in a flowchart in FIG. First, an independent displacement correction image 32 was obtained from the selected multiple photographed image 31 (a method of obtaining it is called an independent displacement correction method). First, the original multiple captured image (orientation image 31) and its independent displacement corrected image 32 were compared, and the direction identity of the horizontal line segment was evaluated at 33.

第2に、図化により得られた建物モデルを使用した可視、不可視判定35に基づき、全画像の同時参照34に対するオクルージョン領域36の低減率について評価した。第3に、このオクルージョン領域が等価になるような条件で両者の計算コスト37を比較して評価した。    Secondly, the reduction rate of the occlusion area 36 with respect to the simultaneous reference 34 of all images was evaluated based on the visible / invisible determination 35 using the building model obtained by plotting. Third, the calculation costs 37 of both were compared and evaluated under such conditions that the occlusion areas were equivalent.

前記対応点の倍率変換による座標値の一致度を評価するために、独立偏位修正画像を用いた図化による輪郭頂点を面積重心点の取得を実施した。図4はその一部を例示するもので、図化による輪郭頂点を示している。これを各画像に関して実施したところ、全ての画像において、建物輪郭の位置が一致(実線で表示部分)している様子が確認できた。図中の点線は、それぞれ異なる高さの建物輪郭線を示している。しかし、該当する高さに関して、それを基準面として、倍率変換すると、全ての画像で輪郭線が合致した。    In order to evaluate the degree of coincidence of the coordinate values by the conversion of the corresponding points, acquisition of the area centroid points of the contour vertices by plotting using the independent deviation corrected image was performed. FIG. 4 exemplifies a part thereof, and shows contour vertices by plotting. When this was performed for each image, it was confirmed that the positions of the building outlines were consistent (displayed with solid lines) in all the images. The dotted lines in the figure indicate building outlines having different heights. However, when the corresponding height was used as a reference plane and the magnification was converted, the contour line matched in all images.

図化で得られた建物の輪郭頂点と面積重心法で得られた特徴点について、それぞれの基準面に対する倍率変換による水平座標値の一致度は、平均点で表示すると、図化輪郭頂点について、Xは6.45cm、Yは4.74cmであり、面積重心点は、Xは3.12cm、Yは3.02cmで、図化輪郭頂点では、1画素程度、面積重心点では0.5画素程度の一致度を示していることになる。また、方向の一致性は、最上段の水平な建物輪郭線にあわせてみたところ、マルチレイ法では、不一致が見られたが、独立偏位修正画像法では、一致している様子がみられた。    About the contour points of the building obtained by plotting and the feature points obtained by the area centroid method, the degree of coincidence of the horizontal coordinate values by magnification conversion with respect to each reference plane is displayed as an average point, X is 6.45 cm, Y is 4.74 cm, the area centroid is X is 3.12 cm, Y is 3.02 cm, about one pixel at the plotted contour vertex, and 0.5 pixels at the area centroid This shows a degree of coincidence. In addition, the consistency of the direction was matched to the horizontal building outline at the top, but inconsistency was seen in the multi-ray method, but in the independent displacement correction image method, it was seen that it was in agreement. .

第2のオクルージョンの低減の課題であるが、本発明にかかる独立偏位修正画像法で建物モデルを用いて、可視、不可視判定シミュレーションを行った。マルチレイ法の場合は、10.08%、独立偏位修正画像法の場合は、2.42%であった。本発明にかかる方が、全画像の同時参照が可能であるので、自由な組み合わせで可視状態の画像が2枚以上あればマッチングが可能である。これがオクルージョンの低減に寄与している。    Although it is a subject of the 2nd occlusion reduction | decrease, the visible / invisible determination simulation was performed using the building model by the independent displacement correction image method concerning this invention. In the case of the multi-ray method, it was 10.08%, and in the case of the independent displacement correction image method, it was 2.42%. According to the present invention, all images can be referred to at the same time. Therefore, matching is possible if there are two or more visible images in any combination. This contributes to the reduction of occlusion.

第3の低減コストについて、計算を行ったところ、前記7枚の位置の中心の画像と右隣と左斜め上と左斜め下のそれぞれの位置にあるものの組み合わせに関して、マルチレイ法によるマルチマッチング処理を実施し、4回分の計算時間を合算して比較した。その結果、マルチレイ法(A)で、画像読込0分12秒、画像切出し61分00秒、対応点検索30分24秒、これに対して、本発明にかかる方法では、画像読込0分5秒、画像切出し16分8秒、対応点検索8分12秒であって、マルチレイ法は、本発明にかかる方法に比較して3.75倍の所要時間が必要であった。従って、本発明は、コスト低減が大きいことがわかる。    As a result of calculation for the third reduction cost, multi-matching processing by the multi-ray method is performed on the combination of the image at the center of the seven positions and the one at the right side, the upper left side, and the lower left side. The calculation time for 4 times was added and compared. As a result, in the multi-ray method (A), image reading 0 minutes 12 seconds, image extraction 6 minutes 00 seconds, corresponding point search 30 minutes 24 seconds, whereas, in the method according to the present invention, image reading 0 minutes 5 seconds. Image extraction 16 minutes 8 seconds, corresponding point search 8 minutes 12 seconds, and the multi-lay method required 3.75 times the time required for the method according to the present invention. Therefore, it can be seen that the present invention greatly reduces the cost.

本発明にかかる独立偏位修正法の概念図である。It is a conceptual diagram of the independent deviation correction method concerning this invention. 本発明にかかり、倍率変換画像による対応点の重畳の様子の概念図である。It is a conceptual diagram concerning the present invention, the state of superimposition of corresponding points by a magnification conversion image. 本発明の実施例のフローチャートである。It is a flowchart of the Example of this invention. 本発明にかかり、図化による輪郭頂点を示す図である。It is a figure concerning this invention and showing the contour vertex by plotting.

符号の説明Explanation of symbols

1 被写体(撮影対象物)
2 注視点
3 多重撮影画像
4 多重撮影画像
5 撮影中心
6 撮影中心
7 独立偏位修正画像
8 独立偏位修正画像
1 Subject (object to be photographed)
2 Gaze point 3 Multiple shot image 4 Multiple shot image 5 Shooting center 6 Shooting center 7 Independent displacement corrected image 8 Independent displacement corrected image

Claims (15)

オーバーラップして撮影された空中写真画像を、基準面に対して鉛直方向に射影変換を実施して前記基準面の平行面上に得られた独立偏位修正画像であって、同一の注視点を含む複数の前記独立偏位修正画像を含むことを特徴とする独立偏位修正画像セット。      An independent deviation correction image obtained by performing projective transformation on an aerial photograph image taken in the vertical direction with respect to a reference plane in a direction perpendicular to the reference plane and obtained on the parallel plane of the reference plane, and having the same gaze point A plurality of independent displacement corrected images including the independent displacement corrected image set. オーバーラップして撮影された空中写真画像を、絶対座標系における鉛直方向に射影変換を実施して水平面上に得られた独立偏位修正画像であって、前記独立偏位修正画像の奥行き距離に応じた倍率変換をし、同一の注視点を含む複数の前記独立偏位修正画像を含むことを特徴とする独立偏位修正画像セット。      An aerial photograph image captured in an overlapping manner is subjected to projective transformation in the vertical direction in the absolute coordinate system, and is an independent deviation corrected image obtained on a horizontal plane, and the depth distance of the independent deviation corrected image is obtained. An independent displacement correction image set comprising a plurality of the independent displacement correction images including the same gazing point after performing a corresponding magnification conversion. オーバーラップして撮影された空中写真画像を、基準面に対して鉛直方向に射影変換を実施して前記基準面の平行面上に得られた独立偏位修正画像であって、前記独立偏位修正画像の奥行き距離に応じた倍率変換をし、同一の注視点を含む複数の前記独立偏位修正画像に関し、特徴点に対してマルチマッチングを行うことを特徴とするマルチマッチング方法。      An independent deviation correction image obtained by performing projective transformation on an aerial photograph image taken in an overlapping manner in a direction perpendicular to a reference plane, and obtained on a parallel plane of the reference plane, the independent deviation A multi-matching method characterized by performing magnification conversion according to a depth distance of a corrected image and performing multi-matching on a feature point with respect to the plurality of independent displacement corrected images including the same gazing point. 前記独立偏位修正画像の倍率変換画像群を3次元空間におけるボクセル画像と捉え、3次元の写像空間配列として作成し、前記空中写真画像の画素値を記録した前記写像空間配列を利用することを特徴とする請求項3のマルチマッチング方法。      Taking the magnification conversion image group of the independent displacement corrected image as a voxel image in a three-dimensional space, creating a three-dimensional mapping space array, and using the mapping space array in which pixel values of the aerial photo image are recorded. 4. The multi-matching method according to claim 3, wherein 前記画素値が、単一レイヤーのモノクロ画像、3層レイヤーのカラー画像、もしくは、複数レイヤーのマルチスペクトラム画像およびハイパースペーススペクトラム画像、の階調情報を格納することができる前記写像空間配列であることを特徴とする請求項4のマルチマッチング方法。      The mapping value array is capable of storing gradation information of a monochrome image of a single layer, a color image of a three-layer layer, or a multi-spectrum image and a hyperspace spectrum image of a plurality of layers. The multi-matching method according to claim 4. 前記基準面が水平面であり、前記鉛直方向が絶対座標系における方向であって、前記写像空間配列が前記空中写真画像の東西南北方向に平行な格子状であることを特徴とする請求項4または5のいずれかに記載のマルチマッチング方法。      5. The reference plane according to claim 4, wherein the reference plane is a horizontal plane, the vertical direction is a direction in an absolute coordinate system, and the mapping space arrangement is a grid shape parallel to the east, west, north, and south directions of the aerial image. The multi-matching method according to any one of 5. 前記マルチマッチングを行うにあたり、前記特徴点に対して画素マッチングを行うことを特徴とする請求項3乃至6のいずれかに記載のマルチマッチング方法。      The multi-matching method according to claim 3, wherein pixel matching is performed on the feature points when performing the multi-matching. オーバーラップして撮影された空中写真画像を、基準面に対して鉛直方向に射影変換を実施して前記基準面の平行面上に得られた独立偏位修正画像であって、前記独立偏位修正画像の奥行き距離に応じた倍率変換をし、同一の注視点を含む複数の前記独立偏位修正画像に関して、3次元の写像空間配列の中における3次元ポリゴンについてポリゴンマッチングを行うことを特徴とするポリゴンマッチング方法。      An independent deviation correction image obtained by performing projective transformation on an aerial photograph image taken in an overlapping manner in a vertical direction with respect to a reference plane and obtained on a parallel plane of the reference plane, the independent deviation A magnification conversion is performed according to a depth distance of the corrected image, and polygon matching is performed on a three-dimensional polygon in a three-dimensional mapping space array with respect to the plurality of independent displacement corrected images including the same gazing point. Polygon matching method. 前記独立偏位修正画像の倍率変換画像群を3次元空間におけるボクセル画像と捉え、3次元の写像空間配列として作成し、前記空中写真画像の画素値を記録した前記写像空間配列を利用することを特徴とする請求項8のポリゴンマッチング方法。      Taking the magnification conversion image group of the independent displacement corrected image as a voxel image in a three-dimensional space, creating a three-dimensional mapping space array, and using the mapping space array in which pixel values of the aerial photo image are recorded. The polygon matching method according to claim 8, wherein the method is a polygon matching method. 前記画素値が、単一レイヤーのモノクロ画像、3層レイヤーのカラー画像、もしくは、複数レイヤーのマルチスペクトラム画像およびハイパースペーススペクトラム画像、の階調情報を格納することができる前記写像空間配列であることを特徴とする請求項9のポリゴンマッチング方法。      The mapping value array is capable of storing gradation information of a monochrome image of a single layer, a color image of a three-layer layer, or a multi-spectrum image and a hyperspace spectrum image of a plurality of layers. The polygon matching method according to claim 9. 前記基準面が水平面であり、前記鉛直方向が絶対座標系における方向であって、前記写像空間配列が前記空中写真画像の東西南北方向に平行な格子状であることを特徴とする請求項9または10のいずれかに記載のポリゴンマッチング方法。      The reference plane is a horizontal plane, the vertical direction is a direction in an absolute coordinate system, and the mapping space arrangement is a lattice shape parallel to the east, west, north, and south directions of the aerial photo image. The polygon matching method according to any one of 10. オーバーラップして撮影された空中写真画像を、基準面に対して鉛直方向に射影変換を実施して前記基準面の平行面上に得られた独立偏位修正画像であって、前記独立偏位修正画像の奥行き距離に応じた倍率変換をし、同一の注視点を含む複数の前記独立偏位修正画像に関して、特定領域の倍率変換によるトゥルーオルソ画像を得ることを特徴とするトゥルーオルソ画像作成方法。      An independent deviation correction image obtained by performing projective transformation on an aerial photograph image taken in an overlapping manner in a vertical direction with respect to a reference plane and obtained on a parallel plane of the reference plane, the independent deviation A true ortho image creation method characterized by performing a magnification conversion according to a depth distance of a corrected image and obtaining a true ortho image by a magnification conversion of a specific region for the plurality of independent displacement corrected images including the same gazing point . 前記独立偏位修正画像の倍率変換画像群を3次元空間におけるボクセル画像と捉え、3次元の写像空間配列として作成し、前記空中写真画像の画素値を記録した前記写像空間配列を利用することを特徴とする請求項12のトゥルーオルソ画像作成方法。      Taking the magnification conversion image group of the independent displacement corrected image as a voxel image in a three-dimensional space, creating a three-dimensional mapping space array, and using the mapping space array in which pixel values of the aerial photo image are recorded. The true ortho-image creating method according to claim 12, wherein the true ortho-image is created. 前記画素値が、単一レイヤーのモノクロ画像、3層レイヤーのカラー画像、もしくは、複数レイヤーのマルチスペクトラム画像およびハイパースペーススペクトラム画像、の階調情報を格納することができる前記写像空間配列であるこをを特徴とする請求項13のトゥルーオルソ画像作成方法。      The pixel value is the mapping space array capable of storing gradation information of a single layer monochrome image, a three layer color image, or a multi-layer image and a hyperspace spectrum image of a plurality of layers. The true ortho image creating method according to claim 13. 前記基準面が水平面であり、前記鉛直方向が絶対座標系における方向であって、前記写像空間配列が前記空中写真画像の東西南北方向に平行な格子状であることを特徴とする請求項13または14のいずれかに記載のトゥルーオルソ画像作成方法。      The reference plane is a horizontal plane, the vertical direction is a direction in an absolute coordinate system, and the mapping space arrangement is a lattice shape parallel to the east, west, north, and south directions of the aerial photograph image. 14. The true ortho image creation method according to any one of claims 14 to 14.
JP2008140125A 2008-04-30 2008-04-30 Multi-matching method Expired - Fee Related JP5088627B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008140125A JP5088627B2 (en) 2008-04-30 2008-04-30 Multi-matching method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008140125A JP5088627B2 (en) 2008-04-30 2008-04-30 Multi-matching method

Publications (2)

Publication Number Publication Date
JP2009271895A true JP2009271895A (en) 2009-11-19
JP5088627B2 JP5088627B2 (en) 2012-12-05

Family

ID=41438357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008140125A Expired - Fee Related JP5088627B2 (en) 2008-04-30 2008-04-30 Multi-matching method

Country Status (1)

Country Link
JP (1) JP5088627B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101005829B1 (en) 2010-09-07 2011-01-05 한진정보통신(주) Optimum Area Extraction System and Method for Ground Control Point Preemption
JP2011204121A (en) * 2010-03-26 2011-10-13 Pasuko:Kk Single image generation method
JP2014089078A (en) * 2012-10-29 2014-05-15 Kokusai Kogyo Co Ltd Orientation method, orientation program, and orientation device
CN110097796A (en) * 2019-04-29 2019-08-06 武汉鹿行科技有限公司 A kind of boat based on VR glasses takes the photograph Visual simulation method, equipment, terminal and system
CN113048980A (en) * 2021-03-11 2021-06-29 浙江商汤科技开发有限公司 Pose optimization method and device, electronic equipment and storage medium
RU2806667C1 (en) * 2023-04-04 2023-11-02 Федеральное государственное казенное военное образовательное учреждение высшего образования "Военный учебно-научный центр Военно-воздушных сил "Военно-воздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина" (г. Воронеж) Министерства обороны Российской Федерации Method for correcting geometric distortions of hyperspectral images

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000329552A (en) * 1999-05-20 2000-11-30 Gen Tec:Kk 3D map creation method
JP2002092658A (en) * 2000-09-19 2002-03-29 Asia Air Survey Co Ltd Three-dimensional digital map creation device and storage medium storing three-dimensional digital map creation program
JP2003316256A (en) * 2002-04-19 2003-11-07 Asia Air Survey Co Ltd Orthophoto generation method, orthophoto generation system and orthophoto generation program
JP2003323603A (en) * 2002-04-26 2003-11-14 Asia Air Survey Co Ltd Stereo matching method, three-dimensional measuring method, three-dimensional measuring device, stereo matching method program, and three-dimensional measuring program
JP2005156514A (en) * 2003-11-27 2005-06-16 Kokusai Kogyo Co Ltd Constitution method of aerial photographic image data set
JP2006018549A (en) * 2004-07-01 2006-01-19 Kokusai Kogyo Co Ltd Retrieval method, display method and management system for stereoscopic photograph image
JP2007193850A (en) * 2007-04-26 2007-08-02 Mitsubishi Electric Corp Change area recognition device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000329552A (en) * 1999-05-20 2000-11-30 Gen Tec:Kk 3D map creation method
JP2002092658A (en) * 2000-09-19 2002-03-29 Asia Air Survey Co Ltd Three-dimensional digital map creation device and storage medium storing three-dimensional digital map creation program
JP2003316256A (en) * 2002-04-19 2003-11-07 Asia Air Survey Co Ltd Orthophoto generation method, orthophoto generation system and orthophoto generation program
JP2003323603A (en) * 2002-04-26 2003-11-14 Asia Air Survey Co Ltd Stereo matching method, three-dimensional measuring method, three-dimensional measuring device, stereo matching method program, and three-dimensional measuring program
JP2005156514A (en) * 2003-11-27 2005-06-16 Kokusai Kogyo Co Ltd Constitution method of aerial photographic image data set
JP2006018549A (en) * 2004-07-01 2006-01-19 Kokusai Kogyo Co Ltd Retrieval method, display method and management system for stereoscopic photograph image
JP2007193850A (en) * 2007-04-26 2007-08-02 Mitsubishi Electric Corp Change area recognition device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011204121A (en) * 2010-03-26 2011-10-13 Pasuko:Kk Single image generation method
KR101005829B1 (en) 2010-09-07 2011-01-05 한진정보통신(주) Optimum Area Extraction System and Method for Ground Control Point Preemption
JP2014089078A (en) * 2012-10-29 2014-05-15 Kokusai Kogyo Co Ltd Orientation method, orientation program, and orientation device
CN110097796A (en) * 2019-04-29 2019-08-06 武汉鹿行科技有限公司 A kind of boat based on VR glasses takes the photograph Visual simulation method, equipment, terminal and system
CN113048980A (en) * 2021-03-11 2021-06-29 浙江商汤科技开发有限公司 Pose optimization method and device, electronic equipment and storage medium
CN113048980B (en) * 2021-03-11 2023-03-14 浙江商汤科技开发有限公司 Pose optimization method and device, electronic equipment and storage medium
RU2806667C1 (en) * 2023-04-04 2023-11-02 Федеральное государственное казенное военное образовательное учреждение высшего образования "Военный учебно-научный центр Военно-воздушных сил "Военно-воздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина" (г. Воронеж) Министерства обороны Российской Федерации Method for correcting geometric distortions of hyperspectral images

Also Published As

Publication number Publication date
JP5088627B2 (en) 2012-12-05

Similar Documents

Publication Publication Date Title
JP7162933B2 (en) Method, apparatus and system for establishing an internal spatial model of an object, and computer apparatus and computer readable storage medium
JP6722323B2 (en) System and method for imaging device modeling and calibration
JP4942221B2 (en) High resolution virtual focal plane image generation method
JP4508049B2 (en) 360 ° image capturing device
CN110462678B (en) Image processing apparatus and image processing method
CN112686877A (en) Binocular camera-based three-dimensional house damage model construction and measurement method and system
JP6823719B2 (en) Image composition method, image composition device, and recording medium
CN104966318B (en) Augmented reality method with imaging importing and image special effect function
CN109920004B (en) Image processing method, device, calibration object combination, terminal equipment and calibration system
JP6615545B2 (en) Image processing apparatus, image processing method, and image processing program
KR101759798B1 (en) Method, device and system for generating an indoor two dimensional plan view image
JP6425511B2 (en) Method of determining feature change and feature change determination apparatus and feature change determination program
JPH05303629A (en) Shape synthesis method
JP5088627B2 (en) Multi-matching method
CN110378967B (en) Virtual target calibration method combining grating projection and stereoscopic vision
CN112669355B (en) Method and system for focusing stack data splicing and fusion based on RGB-D superpixel segmentation
CN115082570A (en) A calibration method of lidar and panoramic camera
CN110940318A (en) Aerial remote sensing real-time imaging method, electronic equipment and storage medium
CN106131498A (en) Panoramic video joining method and device
JP4094303B2 (en) 3D information acquisition apparatus and 3D information acquisition method
CN102142141A (en) Mobile communication terminal having image conversion function and method
JP5885974B2 (en) Corresponding point setting method, corresponding point setting device, and corresponding point setting program for aerial photo image data
TWI564841B (en) A method, apparatus and computer program product for real-time images synthesizing
JP5882153B2 (en) Three-dimensional coordinate calculation device
CN105096251A (en) Method for improving splicing image resolution by using super-resolution reconstruction technology

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110426

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120515

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120711

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120712

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120801

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120830

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150921

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5088627

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees