[go: up one dir, main page]

JP2009285550A - Exhaust gas treating method - Google Patents

Exhaust gas treating method Download PDF

Info

Publication number
JP2009285550A
JP2009285550A JP2008139413A JP2008139413A JP2009285550A JP 2009285550 A JP2009285550 A JP 2009285550A JP 2008139413 A JP2008139413 A JP 2008139413A JP 2008139413 A JP2008139413 A JP 2008139413A JP 2009285550 A JP2009285550 A JP 2009285550A
Authority
JP
Japan
Prior art keywords
reaction tank
liquid
exhaust gas
biological reaction
absorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008139413A
Other languages
Japanese (ja)
Inventor
Sakae Fukunaga
栄 福永
Kenji Sato
健治 佐藤
Tomomi Hatsutani
智美 初谷
Makoto Kitano
誠 北野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2008139413A priority Critical patent/JP2009285550A/en
Publication of JP2009285550A publication Critical patent/JP2009285550A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Treating Waste Gases (AREA)
  • Activated Sludge Processes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an exhaust gas treating method highly efficiently removing hydrogen sulfide in a bioreactor, causing no volatilization of hydrogen sulfide into exhaust air from the bioreactor. <P>SOLUTION: In the exhaust gas treating method, exhaust gas containing malodor components is introduced into an absorbing tower 13; the exhaust gas is brought into contact with absorption liquid in an absorbing layer 34 of the absorbing tower 13 to absorb the malodor components into the absorbing liquid; the exhaust gas after cleaning is discharged from the absorbing tower 13; the absorbing liquid having absorbed the malodor components in the absorbing tower 13 is introduced into the bioreactor 12; gas containing oxygen is injected into the bioreactor 12 to oxidizing and decomposing the malodor components in the liquid by microorganisms; and the gas after the reaction is discharged from the bioreactor 12 and the liquid 1 in the bioreactor 12 is circulated to the absorbing tower 13 as the absorbing liquid. The inside of the bioreactor 12 is agitated with an agitation device 17 other than aeration, and the gas containing oxygen is injected to make the dissolved oxygen concentration in the liquid of the bioreactor 12 to be 0.1-1.0 mg/L. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、メタン発酵槽からのバイオガス等、硫化水素等の臭気成分を含む排ガスの浄化方法に係り、特に排ガス中の臭気成分を微生物にて高効率で除去できる排ガス処理方法に関するものである。   The present invention relates to a method for purifying exhaust gas containing odor components such as biosulfide such as biogas from a methane fermentation tank, and more particularly to an exhaust gas treatment method capable of removing odor components in exhaust gas with microorganisms with high efficiency. .

メタン発酵槽からのバイオガスや硫化水素等の臭気成分等を含む排ガスの浄化方法には、アルカリなど薬液に吸収させる方法、活性炭などに吸着させる方法のほか、近年、微生物により浄化する方法が用いられている。例えば、硫化水素は人体に有毒であり、強い臭気があり、腐食性もある。そこで、排ガスを大気放散したり、バイオガスをボイラなどで有効利用する場合には、事前に除去する必要がある。硫化水素を微生物で除去しようとする技術として、生物脱臭(非特許文献1)、生物脱硫(非特許文献2)などが用いられている。   As a purification method of exhaust gas containing odorous components such as biogas and hydrogen sulfide from methane fermentation tanks, a method of absorbing by chemicals such as alkali, a method of adsorbing to activated carbon, etc., and a method of purifying by microorganisms in recent years have been used. It has been. For example, hydrogen sulfide is toxic to the human body, has a strong odor, and is corrosive. Therefore, when exhaust gas is diffused into the atmosphere or when biogas is effectively used in a boiler or the like, it must be removed in advance. Biological deodorization (Non-Patent Document 1), biological desulfurization (Non-Patent Document 2), and the like are used as techniques for removing hydrogen sulfide with microorganisms.

また、一般に微生物は水中で効率よく働くので、硫化水素除去の主要な機構は、(1)硫化水素の水への溶解、(2)水に溶解した硫化水素または溶存硫化物の微生物による分解の二つのステップを経るものであり、そのため(1)と(2)の工程を分けて各々の効率化を図る方法(非特許文献3、特許文献1)も提唱されている。   In general, since microorganisms work efficiently in water, the main mechanisms of hydrogen sulfide removal are (1) dissolution of hydrogen sulfide in water, and (2) decomposition of hydrogen sulfide or dissolved sulfide dissolved in water by microorganisms. There are two steps. For this reason, a method (Non-patent Document 3, Patent Document 1) for improving efficiency by dividing the processes (1) and (2) has been proposed.

特許第3890804号公報Japanese Patent No. 3890804 特表平8−506271号公報Japanese National Patent Publication No. 8-506271 建設省都市局下水道部監修「下水道施設計画・設計指針と解説(後編)」、1994年版、社団法人日本下水道協会、平成6年11月25日発行、P718Supervision of Sewerage Department, City Bureau, Ministry of Construction, “Sewerage Facility Planning and Design Guidelines and Explanation (Part 2)”, 1994 edition, Japan Sewerage Association, November 25, 1994, P718 環境浄化技術、Vol5,No.11、みんなで止めよう温暖化、増田利志久 外1名、「生物脱硫装置」2007,11、p52−53Environmental purification technology, Vol. 11. Let's stop together, global warming, Toshihisa Masuda and one other, "Biodesulfurization equipment" 2007, 11, p52-53 Cameron Cline et al. ‘BIOLOGICAL PROCESS FOR H2S REMOVAL FROM GAS STREAMS THE SHELL-PAQUES/THIOPAQ GAS DESULFURIZATION PROCESS' Paper for the LRGCC,23-26,February 2003,USA,p1-6Cameron Cline et al.

これらの従来技術は、確かに維持管理費の低減が期待されるものであったが、非特許文献2では硫化水素の除去率が90%前後に留まっている。これは脱硫塔で微生物による硫化水素の酸化を行わせるためになるべく多くの酸素を供給しなければならないのに浄化ガスに残留する酸素はできるだけ少なくしたいという相反する条件が求められるためであろう(非特許文献の第1図参照)。   Although these conventional techniques are certainly expected to reduce the maintenance cost, in Non-Patent Document 2, the removal rate of hydrogen sulfide remains around 90%. This is due to the conflicting requirement that as much oxygen as possible be supplied in order to reduce the amount of oxygen remaining in the purified gas as much as possible in order to cause the oxidation of hydrogen sulfide by microorganisms in the desulfurization tower. (See FIG. 1 of non-patent literature).

また、この技術は、排ガス(原料バイオガス)に空気を吹き込む(非特許文献の第1図参照)ので、なんらかのトラブルによって排ガスの供給が停止した条件で空気が吹き込まれると、排ガス中のメタンと空気中の酸素のバランスによって爆発の危険が生じるというリスクが生じる。   In addition, this technology blows air into the exhaust gas (raw material biogas) (see FIG. 1 of the non-patent document), so if air is blown in under the condition that the supply of exhaust gas has stopped due to some trouble, The risk of explosion hazards arises due to the balance of oxygen in the air.

一方、非特許文献3では、吸収塔と生物反応槽が分かれているため、上記の相反する条件を求める必要がなく、硫化水素除去率は99%以上が報告されている。   On the other hand, in Non-Patent Document 3, since the absorption tower and the biological reaction tank are separated, it is not necessary to obtain the above-mentioned conflicting conditions, and the hydrogen sulfide removal rate is reported to be 99% or more.

しかし、生物反応槽から排出されるエアーの後処理(biopolisher)が必要である。これは生物反応槽で微生物反応を効率よく行わせるため曝気により撹拌する方式が採用されており(特許文献2)、撹拌を維持するため必要以上の酸素を供給しなければならない場合があるためである。必要以上の酸素を供給することによって、吸収塔からの液に溶存している硫化水素が微生物に酸化されるのでなく、空気中に揮散する量が増える。それが生物反応槽からの排エアーとして排出され、後処理が必要となるわけである。   However, a post-treatment of the air discharged from the bioreactor is necessary. This is because a method of stirring by aeration is adopted in order to efficiently perform a microbial reaction in a biological reaction tank (Patent Document 2), and it may be necessary to supply more oxygen than necessary to maintain stirring. is there. By supplying more oxygen than necessary, hydrogen sulfide dissolved in the liquid from the absorption tower is not oxidized by microorganisms, but the amount volatilized in the air increases. It is discharged as exhaust air from the biological reaction tank and requires post-treatment.

そこで、本発明の目的は、上記課題を解決し、生物反応槽での硫化水素除去が高効率で行え、しかも生物反応槽からの排エアーに硫化水素が揮散することがない排ガス処理方法を提供することにある。   Accordingly, an object of the present invention is to provide an exhaust gas treatment method that solves the above-described problems, can perform hydrogen sulfide removal in a biological reaction tank with high efficiency, and does not volatilize hydrogen sulfide in exhaust air from the biological reaction tank. There is to do.

上記目的を達成するために請求項1の発明は、臭気成分を含む排ガスを吸収塔に導入し、吸収塔の吸収層で排ガスと吸収液を接触させて臭気成分を吸収液に吸収させた後、その浄化後の排ガスを吸収塔から排気し、吸収塔で臭気成分を吸収した吸収液を生物反応槽に導入し、その生物反応槽で、酸素を含む気体を吹き込んで、液中の臭気成分等を微生物によって酸化分解し、その反応後の気体を生物反応槽から排気すると共に生物反応槽の液を吸収液として吸収塔に循環する排ガス処理方法において、生物反応槽内を曝気以外の撹拌手段で撹拌し、生物反応槽内の液の溶存酸素濃度が0.1〜1.0mg/Lとなるように酸素を含む気体を吹き込むことを特徴とする排ガス処理方法である。   In order to achieve the above object, the invention of claim 1 introduces exhaust gas containing an odor component into an absorption tower, and makes the absorption liquid absorb the odor component by bringing the exhaust gas into contact with the absorption liquid in the absorption layer of the absorption tower. The exhaust gas after the purification is exhausted from the absorption tower, the absorption liquid in which the odor component is absorbed by the absorption tower is introduced into the biological reaction tank, and a gas containing oxygen is blown into the biological reaction tank, so that the odor component in the liquid In the exhaust gas treatment method in which the gas after the reaction is oxidatively decomposed by microorganisms, the gas after the reaction is exhausted from the biological reaction tank, and the liquid in the biological reaction tank is circulated to the absorption tower as an absorption liquid, stirring means other than aeration in the biological reaction tank And a gas containing oxygen is blown so that the dissolved oxygen concentration of the liquid in the biological reaction tank is 0.1 to 1.0 mg / L.

請求項2の発明は、臭気成分を含む排ガスを吸収塔に導入し、吸収塔の吸収層で排ガスと吸収液を接触させて臭気成分を吸収液に吸収させた後、その浄化後の排ガスを吸収塔から排気し、吸収塔で臭気成分を吸収した吸収液を生物反応槽に導入し、その生物反応槽で、酸素を含む気体を吹き込んで、液中の臭気成分を微生物によって酸化分解し、その反応後の気体を生物反応槽から排気すると共に生物反応槽の液を吸収液として吸収塔に循環する排ガス処理方法において、生物反応槽内を曝気以外の撹拌手段で撹拌し、生物反応槽から排気される排エアーの酸素濃度が0.5%〜18%となるように酸素を含む気体を吹き込むことを特徴とする排ガス処理方法である。   The invention of claim 2 introduces exhaust gas containing an odor component into an absorption tower, contacts the exhaust gas with an absorption liquid in an absorption layer of the absorption tower to absorb the odor component into the absorption liquid, and then converts the purified exhaust gas into The absorption liquid exhausted from the absorption tower and absorbing the odor component in the absorption tower is introduced into the biological reaction tank, and a gas containing oxygen is blown in the biological reaction tank, and the odor component in the liquid is oxidatively decomposed by microorganisms, In the exhaust gas treatment method in which the gas after the reaction is exhausted from the biological reaction tank and the liquid in the biological reaction tank is circulated to the absorption tower as an absorption liquid, the inside of the biological reaction tank is stirred by a stirring means other than aeration, The exhaust gas treatment method is characterized in that a gas containing oxygen is blown so that the oxygen concentration of exhausted exhaust air is 0.5% to 18%.

請求項3の発明は、排ガス中の臭気成分が、硫化水素などの硫黄化合物であり、生物反応槽内で働く微生物が硫黄酸化細菌である請求項1又は2に記載の排ガス処理方法である。   The invention of claim 3 is the exhaust gas treatment method according to claim 1 or 2, wherein the odor component in the exhaust gas is a sulfur compound such as hydrogen sulfide, and the microorganism working in the biological reaction tank is a sulfur-oxidizing bacterium.

請求項4の発明は、撹拌手段が、機械式撹拌装置からなる請求項1又は2に記載の排ガス処理方法である。   The invention of claim 4 is the exhaust gas treatment method according to claim 1 or 2, wherein the stirring means comprises a mechanical stirring device.

請求項5の発明は、撹拌手段が、吸収塔で臭気成分を吸収した吸収液を生物反応槽に導入する際の水流で撹拌するように構成した請求項1又は2に記載の排ガス処理方法である。   The invention according to claim 5 is the exhaust gas treatment method according to claim 1 or 2, wherein the stirring means is configured to stir with an aqueous flow when the absorbing solution having absorbed the odor component in the absorption tower is introduced into the biological reaction tank. is there.

本発明によれば、生物反応槽に曝気以外の撹拌装置を設けたため、撹拌不良を気にせず曝気量を抑制でき、その結果、曝気によって生物反応槽から揮散する硫化水素等の量を最小にコントロールすることができる。また生物反応槽内の溶存酸素か、生物反応槽からの排エアーの酸素を、モニタすることによって最適な曝気量を決めることができる。   According to the present invention, since a stirrer other than aeration is provided in the biological reaction tank, the amount of aeration can be suppressed without worrying about poor stirring, and as a result, the amount of hydrogen sulfide and the like volatilized from the biological reaction tank by aeration is minimized. Can be controlled. Moreover, the optimal aeration amount can be determined by monitoring dissolved oxygen in the biological reaction tank or oxygen in the exhaust air from the biological reaction tank.

以下、本発明の好適な一実施の形態を添付図面に基づいて詳述する。   A preferred embodiment of the present invention will be described below in detail with reference to the accompanying drawings.

図1は、本発明の排ガス処理方法を実施する装置を示したものである。   FIG. 1 shows an apparatus for carrying out the exhaust gas treatment method of the present invention.

図1において、断面円形乃至四角形の縦型筒状の本体10の中央部が仕切り板11にて仕切られて、下部に生物反応槽12が形成され、上部に吸収塔13が形成される。   In FIG. 1, a central portion of a vertical cylindrical main body 10 having a circular or quadrangular cross section is partitioned by a partition plate 11, a biological reaction tank 12 is formed at the lower portion, and an absorption tower 13 is formed at the upper portion.

生物反応槽12は密閉槽で、内側に微生物(硫黄酸化細菌等)が入った液lが貯留されるようになっている。生物反応槽12の底部付近には散気装置14が設置され、散気装置14には本体10外のブロワ15から送気管16を経て空気(酸素含有ガス)が供給される。   The biological reaction tank 12 is a sealed tank in which a liquid l containing microorganisms (such as sulfur-oxidizing bacteria) is stored. An air diffuser 14 is installed near the bottom of the biological reaction tank 12, and air (oxygen-containing gas) is supplied to the air diffuser 14 from a blower 15 outside the main body 10 through an air supply pipe 16.

生物反応槽12には、撹拌装置17が設けられる。撹拌装置17は、生物反応槽12に形成した傾斜筒19の外側にモータ18aが設けられ、撹拌軸18bが傾斜筒19に形成した孔19aを貫通して挿入され、その撹拌軸18bの先端に羽根18cが設けられて構成される。   The biological reaction tank 12 is provided with a stirring device 17. The stirring device 17 is provided with a motor 18a on the outside of the inclined cylinder 19 formed in the biological reaction tank 12, and a stirring shaft 18b is inserted through a hole 19a formed in the inclined cylinder 19, and at the tip of the stirring shaft 18b. A blade 18c is provided and configured.

生物反応槽12には、液lのpHを検出するpH電極20と、液lの溶存酸素濃度を検出するDO電極23とが、生物反応槽12に形成した傾斜筒21を通して、液lに浸るように設けられる。pH電極20とDO電極23とは、傾斜筒21の孔を経由して設置されている。pH電極20は、pH計22に、DO電極23は酸素濃度計25に接続されている。   In the biological reaction tank 12, a pH electrode 20 for detecting the pH of the liquid l and a DO electrode 23 for detecting the dissolved oxygen concentration of the liquid l are immersed in the liquid l through an inclined cylinder 21 formed in the biological reaction tank 12. It is provided as follows. The pH electrode 20 and the DO electrode 23 are installed via a hole in the inclined cylinder 21. The pH electrode 20 is connected to a pH meter 22, and the DO electrode 23 is connected to an oxygen concentration meter 25.

生物反応槽12の傾斜筒21には、中和剤の注入口26が形成され、中和剤槽27から薬注ポンプ28によって中和剤配管29が注入口26を経由して生物反応槽12内に臨み、その中和剤配管29から生物反応槽12内の液lに、苛性ソーダ等の強アルカリからなる中和剤が注入される。   A neutralizing agent inlet 26 is formed in the inclined cylinder 21 of the biological reaction tank 12, and a neutralizing agent pipe 29 is routed from the neutralizing agent tank 27 by a chemical injection pump 28 via the inlet 26. A neutralizer made of strong alkali such as caustic soda is injected into the liquid 1 in the biological reaction tank 12 from the neutralizer pipe 29.

生物反応槽12の上部の水面上には、排エアーライン30が接続され、その排エアーライン30に排気ファン42が接続される。   An exhaust air line 30 is connected to the upper water surface of the biological reaction tank 12, and an exhaust fan 42 is connected to the exhaust air line 30.

生物反応槽12には、循環ライン31が接続され、その循環ライン31に循環ポンプ32が接続され、生物反応槽12の液が吸収塔13に送られ循環される。   A circulation line 31 is connected to the biological reaction tank 12, a circulation pump 32 is connected to the circulation line 31, and the liquid in the biological reaction tank 12 is sent to the absorption tower 13 and circulated.

吸収塔13は密閉槽で、上部には、循環ライン31に接続したデストリビュータ33が設置され、循環ライン31からの液が散水され、吸収塔13の底部の仕切り板11上に少量の液を貯留する液溜め部36が形成される。液溜め部36の上方にはスクリーンなどの支持体35が設けられ、その支持体35上に適当な空隙率(50%以上の)を有する充填材が設けられて吸収層34が形成される。   The absorption tower 13 is a closed tank, and a distributor 33 connected to the circulation line 31 is installed in the upper part, the liquid from the circulation line 31 is sprinkled, and a small amount of liquid is put on the partition plate 11 at the bottom of the absorption tower 13. A reservoir 36 for storing is formed. A support 35 such as a screen is provided above the liquid reservoir 36, and a filler having an appropriate porosity (50% or more) is provided on the support 35 to form the absorption layer 34.

吸収層34と液溜め部36間の吸収塔13の側面には、排ガスライン37が接続され、吸収塔13の上部には、浄化ガスライン39が接続される。   An exhaust gas line 37 is connected to the side surface of the absorption tower 13 between the absorption layer 34 and the liquid reservoir 36, and a purified gas line 39 is connected to the upper part of the absorption tower 13.

吸収塔13の液溜め部36には、液溜め部36の液を生物反応槽12に戻す吸収液循環ライン40が接続される。この吸収液循環ライン40は、先端が液溜め部36の水面下に開口した水封部40aから吸収塔13の側壁を貫通する形で設置され、途中のサイフォンブレーカ40bを経て、生物反応槽12に至り、その側壁に開口している。また、生物反応槽12の下部にはドレンライン41が接続される。   An absorption liquid circulation line 40 for returning the liquid in the liquid storage section 36 to the biological reaction tank 12 is connected to the liquid storage section 36 of the absorption tower 13. The absorption liquid circulation line 40 is installed in such a manner that the tip penetrates the side wall of the absorption tower 13 from a water sealing part 40a opened below the water surface of the liquid storage part 36, passes through a siphon breaker 40b, and passes through the biological reaction tank 12. To the side wall. A drain line 41 is connected to the lower part of the biological reaction tank 12.

次に、図1の排ガス処理装置における排ガス処理方法を説明する。   Next, an exhaust gas treatment method in the exhaust gas treatment apparatus of FIG. 1 will be described.

処理対象の排ガスは、排ガスライン37から吸収塔13に入り、吸収層34を上昇流で流れて、浄化ガスライン39を経て排出される。この間、排ガス中に含有される硫化水素などの臭気成分等が、デストリビュータ33から散水され吸収層34を流下する液に吸収されて、浄化されたガスとなる。   The exhaust gas to be treated enters the absorption tower 13 from the exhaust gas line 37, flows in an upflow through the absorption layer 34, and is discharged through the purified gas line 39. During this time, odor components such as hydrogen sulfide contained in the exhaust gas are absorbed by the liquid sprayed from the distributor 33 and flowing down the absorption layer 34 to become a purified gas.

臭気成分等を吸収した液は、液溜め部36に溜まり、液溜め部36から吸収液循環ライン40にて生物反応槽12に流入する。吸収液は、吸収液循環ライン40の水封部40aから排ガスと混ざらないように導入され、サイフォンブレーカ40bにて、重力にて生物反応槽12に流入される。   The liquid that has absorbed the odor component or the like collects in the liquid reservoir 36 and flows from the liquid reservoir 36 into the biological reaction tank 12 through the absorbent circulation line 40. The absorption liquid is introduced from the water sealing portion 40a of the absorption liquid circulation line 40 so as not to be mixed with the exhaust gas, and flows into the biological reaction tank 12 by gravity by the siphon breaker 40b.

生物反応槽12では、下部から散気装置14によって空気(酸素含有ガス)が供給され、硫黄酸化細菌などの微生物(最初は活性汚泥などの植種があった方がよいが、あとは自然に増殖してくる)の作用で、硫化水素などが酸化分解される。微生物による処理を受けた液lは、硫化水素などが除かれて、循環ライン31を経由して、吸収塔13の散水用の液として再度循環される。   In the biological reaction tank 12, air (oxygen-containing gas) is supplied from the lower part by the diffuser 14, and it is better to have microorganisms such as sulfur-oxidizing bacteria (initially seeded with activated sludge, etc. Hydrogen sulfide and the like are oxidatively decomposed by the action of (proliferating). The liquid l that has been treated with microorganisms is recirculated as a watering liquid in the absorption tower 13 via the circulation line 31 after removing hydrogen sulfide and the like.

生物反応槽12にはpH電極20が設置され、pHが不適切な範囲まで変化した場合には、中和剤貯槽27から中和剤が注入される。供給された空気は、排エアーライン30から排気されるが、ここに揮散された硫化水素などが含まれていれば、排エアーライン30の後段に脱臭装置(図示せず)を設けてさらに浄化する。   A pH electrode 20 is installed in the biological reaction tank 12, and a neutralizing agent is injected from the neutralizing agent storage tank 27 when the pH changes to an inappropriate range. The supplied air is exhausted from the exhaust air line 30, but if it contains volatilized hydrogen sulfide or the like, a deodorizing device (not shown) is provided downstream of the exhaust air line 30 for further purification. To do.

次に、本発明の作用を説明する。   Next, the operation of the present invention will be described.

生物反応槽12には、撹拌装置17(撹拌軸18bおよび羽根18a)によって適度な撹拌が為されており、空気の供給量が低下しても充分な撹拌が維持されるようになっている。   The biological reaction tank 12 is appropriately stirred by the stirring device 17 (stirring shaft 18b and blade 18a) so that sufficient stirring can be maintained even if the supply amount of air decreases.

生物反応槽12にDO電極23を設置して溶存酸素をモニタする。溶存酸素が設定値以上になればブロワ15のインバータ制御あるいは送気管16の途中に設けた電磁弁あるいは電動弁(図示せず)の制御によって空気の供給を抑制し、溶存酸素が設定値以下になれば空気の供給を増やす。制御は手動制御でも自動制御でもよい。設定値は、0.1mg/L〜1.0mg/Lの範囲で決める。
また生物反応槽12の液lをpH電極20で検出し、その液lのpHが7〜9となるように薬注ポンプ28を駆動して苛性ソーダ(20〜70%NaOH液)を中和剤配管29から生物反応槽12に供給し、微生物による臭気成分の酸化分解反応が阻害されないようにする。
A DO electrode 23 is installed in the biological reaction tank 12 to monitor dissolved oxygen. If the dissolved oxygen exceeds the set value, the supply of air is suppressed by the inverter control of the blower 15 or the control of an electromagnetic valve or motorized valve (not shown) provided in the middle of the air supply pipe 16, and the dissolved oxygen becomes below the set value. Increase the air supply. The control may be manual control or automatic control. The set value is determined in the range of 0.1 mg / L to 1.0 mg / L.
Further, the liquid l in the biological reaction tank 12 is detected by the pH electrode 20, and the chemical injection pump 28 is driven so that the pH of the liquid l becomes 7-9, thereby neutralizing the caustic soda (20-70% NaOH solution). It is supplied to the biological reaction tank 12 from the pipe 29 so that the oxidative decomposition reaction of the odor component by the microorganism is not inhibited.

なお生物反応槽12に機器類を設置することによって、撹拌装置用の孔19a、pH電極20の孔21a、DO電極23の孔21bなどにおいて、生物反応槽12の気相部が外気と接触する可能性が出てくる。その際、生物反応槽12の気相部に揮散した硫化水素などが外部に拡散する可能性が生じる。そこで、排エアーライン30の後段に脱臭装置(図示せず)を設け、排気ファン42で、空気供給量以上の吸引を行うことによって、気相部を負圧とし、硫化水素などはすべて脱臭処理できるようにする。   By installing equipment in the biological reaction tank 12, the gas phase part of the biological reaction tank 12 comes into contact with the outside air in the hole 19a for the stirring device, the hole 21a of the pH electrode 20, the hole 21b of the DO electrode 23, and the like. The possibility comes out. At that time, hydrogen sulfide volatilized in the gas phase portion of the biological reaction tank 12 may be diffused to the outside. Therefore, a deodorizing device (not shown) is provided at the rear stage of the exhaust air line 30, and the exhaust fan 42 performs suction more than the air supply amount to make the gas phase part negative pressure, and all hydrogen sulfide and the like are deodorized. It can be so.

このように本発明は、生物反応槽12に曝気以外の撹拌装置17を設けることで、撹拌不良を気にせず曝気量を抑制できる。すなわち、従来の曝気による撹拌では、気泡の流れと水の流れが同方向であるが、撹拌装置17による撹拌方式にすることにより、気泡の流れと水の流れの方向が異なるため、より乱流となりやすく、微生物と対象物質との接触効率がよくなることが期待できる。この結果、曝気によって生物反応槽12から揮散する硫化水素等の量を最小にコントロールすることができる。この際、溶存酸素(或いは後述する排エアーの酸素)を、モニタすることによって最適な曝気量を決めることができる。   As described above, the present invention can suppress the aeration amount without worrying about poor stirring by providing the biological reaction tank 12 with the stirring device 17 other than aeration. That is, in the conventional stirring by aeration, the flow of bubbles and the flow of water are in the same direction, but by using the stirring method by the stirring device 17, the direction of the flow of bubbles and the flow of water is different, so It can be expected that the contact efficiency between the microorganism and the target substance is improved. As a result, the amount of hydrogen sulfide and the like volatilized from the biological reaction tank 12 by aeration can be controlled to a minimum. At this time, the optimum aeration amount can be determined by monitoring dissolved oxygen (or oxygen of exhaust air described later).

この効果を確認するため、生物反応槽を模擬した実験装置を用いて試験を行った。即ち、容量600mLの撹拌装置(マグネティックスターラ)を設けた反応槽に少量の空気を供給しつつ、硫化水素を供給していった。そして、反応槽内の溶存硫化物と反応槽から排出される排エアー中の硫化水素濃度をモニタした結果を表1に示す。   In order to confirm this effect, a test was performed using an experimental apparatus simulating a biological reaction tank. That is, hydrogen sulfide was supplied while supplying a small amount of air to a reaction vessel provided with a stirring device (magnetic stirrer) having a capacity of 600 mL. Table 1 shows the results of monitoring the dissolved sulfide in the reaction tank and the hydrogen sulfide concentration in the exhaust air discharged from the reaction tank.

Figure 2009285550
Figure 2009285550

表1の結果、適切な撹拌さえ維持されていれば、空気供給量を抑制し溶存酸素を低下させることは硫化水素除去に悪影響がないばかりか、排エアー中への微量の硫化水素の揮散を防止する効果があることがわかった。   As a result of Table 1, as long as proper agitation is maintained, suppressing the air supply amount and lowering dissolved oxygen not only has an adverse effect on hydrogen sulfide removal, but also causes a slight amount of hydrogen sulfide to be volatilized into the exhaust air. It turns out that there is an effect to prevent.

すなわち、硫化水素負荷を10.1mgS/hとし、空気供給量を1.1L/hから12.6L/hまで増加させ、その間の溶存酸素濃度(mg/L)を測定した結果、撹拌が十分に行われていれば、空気供給量(1.1L/h)が少なく、溶存酸素が0.1mg/Lでも反応槽内の溶存硫化物はゼロであり、空気供給量を多くする(12.6L/h)と排エアー中に硫化水素が揮散する。よって溶存酸素は、0.1mg/L〜1.0mg/Lの範囲であれば排エアー中に硫化水素が揮散しないことが判った。   That is, the hydrogen sulfide load was set to 10.1 mg S / h, the air supply amount was increased from 1.1 L / h to 12.6 L / h, and the dissolved oxygen concentration (mg / L) during that time was measured. , The amount of air supply (1.1 L / h) is small, and even if the dissolved oxygen is 0.1 mg / L, the dissolved sulfide in the reaction tank is zero, and the amount of air supply is increased (12. 6 L / h) and hydrogen sulfide is volatilized in the exhaust air. Therefore, it was found that hydrogen sulfide does not volatilize in the exhaust air if the dissolved oxygen is in the range of 0.1 mg / L to 1.0 mg / L.

特に、硫化水素負荷33.2mg/hに上昇させた場合でも、溶存酸素濃度を1.0mg/L以下の0.1〜0.3mg/Lの溶存酸素となるように空気を供給することで、反応槽内の溶存硫化物はゼロであり、排エアー中への硫化水素の揮散もない。   In particular, even when the hydrogen sulfide load is increased to 33.2 mg / h, by supplying air so that the dissolved oxygen concentration becomes 0.1 to 0.3 mg / L of dissolved oxygen of 1.0 mg / L or less. The dissolved sulfide in the reaction tank is zero, and there is no volatilization of hydrogen sulfide into the exhaust air.

この結果は、
33.2×24/600=1.3kgS/m/d
の硫化水素負荷で、100%の除去率を達成したことを意味し、高性能の結果を示すものである。
The result is
33.2 × 24/600 = 1.3 kgS / m 3 / d
This means that the removal rate of 100% was achieved with the hydrogen sulfide load, and high performance results are shown.

図2は、本発明の他の実施の形態を示したものである。   FIG. 2 shows another embodiment of the present invention.

図1の実施の形態においては、生物反応槽12内の液lの溶存酸素濃度を、DO電極23で検出すべく、DO電極23を液面に位置するよう設けて測定する例で説明したが、本実施の形態では、酸素電極13aを排エアーライン30の途中に設置したものである。   In the embodiment of FIG. 1, the example has been described in which the dissolved oxygen concentration of the liquid 1 in the biological reaction tank 12 is measured by providing the DO electrode 23 positioned on the liquid surface so that the DO electrode 23 can detect the dissolved oxygen concentration. In the present embodiment, the oxygen electrode 13 a is installed in the middle of the exhaust air line 30.

この実施の形態においては、生物反応槽12からの排エアーライン30に排気される排エアー中の酸素を酸素電極23aでモニタすることで、酸素が設定値以上になれば空気の供給をブロワ15のインバータ制御あるいは送気管16の途中に設けた電磁弁あるいは電動弁(図示せず)の制御によって酸素供給を抑制し、酸素が設定値以下になれば空気の供給を増やす。制御は手動制御でも自動制御でもよい。   In this embodiment, the oxygen in the exhausted air exhausted from the biological reaction tank 12 to the exhausted air line 30 is monitored by the oxygen electrode 23a, so that if the oxygen exceeds a set value, the supply of air is performed by the blower 15 The oxygen supply is suppressed by the inverter control or the control of an electromagnetic valve or motor-operated valve (not shown) provided in the middle of the air supply pipe 16, and the supply of air is increased when the oxygen becomes a set value or less. The control may be manual control or automatic control.

この酸素濃度の設定値は、0.5%〜18%の範囲となるようにし、これにより、生物反応槽12内の液lの溶存酸素濃度を、0.1〜1.0mg/Lにすることができる。   The set value of the oxygen concentration is in a range of 0.5% to 18%, and thereby the dissolved oxygen concentration of the liquid 1 in the biological reaction tank 12 is set to 0.1 to 1.0 mg / L. be able to.

図3(a)、図3(b)は、本発明のさらに他の実施の形態を示したものである。   FIG. 3A and FIG. 3B show still another embodiment of the present invention.

本実施の形態においては、図1の実施の形態で説明した機械式撹拌装置17を用いずに吸収液循環ライン40から生物反応槽12に戻される液の水流で生物反応槽12内の液lを撹拌できるようにしたものである。   In the present embodiment, the liquid l in the biological reaction tank 12 is a liquid flow returned from the absorbent circulation line 40 to the biological reaction tank 12 without using the mechanical stirring device 17 described in the embodiment of FIG. Can be stirred.

すなわち、図3(b)に示すように生物反応槽12に接続する吸収液循環ライン40の接続部40cを、生物反応槽12に対して接線方向となるように接続し、液溜め部36の液を吸収液循環ライン40の接続部40cを介して生物反応槽12の内周壁に接線方向に流すことでサイクロンの原理で生物反応槽12内の液lを撹拌させるようにしたものである。   That is, as shown in FIG. 3 (b), the connecting portion 40 c of the absorption liquid circulation line 40 connected to the biological reaction tank 12 is connected so as to be tangential to the biological reaction tank 12, and the liquid reservoir 36 The liquid 1 in the biological reaction tank 12 is agitated by the principle of a cyclone by flowing the liquid in a tangential direction to the inner peripheral wall of the biological reaction tank 12 through the connecting portion 40c of the absorption liquid circulation line 40.

図4(a)、図4(b)は、本発明のさらに他の実施の形態を示したものである。   4 (a) and 4 (b) show still another embodiment of the present invention.

この例は、生物反応槽12の撹拌機構は図3と同様に吸収液循環ライン40からの水流で撹拌できるようになし、また生物反応槽12の液lのpHをpH電極20で検出してそのpHが7〜9となるように中和剤を注入する代わりに、生物反応槽12に形成した傾斜筒21に、重曹や炭酸カルシウムなどの弱アルカリのペレットを収納した中和剤容器43を設け、この中和剤容器43の弱アルカリ性にて生物反応槽12の液lのpHを8強程度にコントロールするようにしたものである。中和剤容器43は、網目状とし、重曹や炭酸カルシウムなどの弱アルカリが液lに適宜自然に溶解できるようにする。   In this example, the stirring mechanism of the biological reaction tank 12 can be stirred by the water flow from the absorption liquid circulation line 40 as in FIG. 3, and the pH of the liquid l in the biological reaction tank 12 is detected by the pH electrode 20. Instead of injecting a neutralizing agent so that the pH becomes 7 to 9, a neutralizing agent container 43 containing pellets of weak alkali such as sodium bicarbonate or calcium carbonate is placed in the inclined cylinder 21 formed in the biological reaction tank 12. The neutralization agent container 43 is weakly alkaline and the pH of the liquid 1 in the biological reaction tank 12 is controlled to about 8 strong. The neutralizer container 43 has a mesh shape so that weak alkalis such as baking soda and calcium carbonate can be naturally dissolved in the liquid l as appropriate.

この実施の形態においては、撹拌機構は吸収液循環ライン40からの水流で撹拌し、また中和は中和剤容器44に収容した弱アルカリで中和するため、pH電極や薬注ポンプが不要となり、装置コストを下げることができる。   In this embodiment, the agitation mechanism is agitated by the water flow from the absorption liquid circulation line 40, and neutralization is neutralized by the weak alkali contained in the neutralizer container 44, so that no pH electrode or chemical injection pump is required. Thus, the device cost can be reduced.

このように本発明においては、生物反応槽12への酸素含有気体の吹き込みを極力少なくし、溶存酸素濃度が0.1〜1.0mg/Lの範囲にしながら適切な撹拌を行えば硫化水素除去に悪影響がないばかりか、排エアー中への硫化水素の揮散を防止できるものである。   As described above, in the present invention, hydrogen sulfide is removed if the oxygen-containing gas is blown into the biological reaction tank 12 as much as possible and the agitation is performed while the dissolved oxygen concentration is in the range of 0.1 to 1.0 mg / L. As well as not adversely affecting the air, it is possible to prevent volatilization of hydrogen sulfide into the exhaust air.

生物反応槽12の液lの撹拌としては、図1、図2に示した機械式撹拌装置17や図3、図4に示した吸収液循環ライン40からの水流で撹拌する例で説明したが、この他の曝気以外の撹拌機構として、例えば循環ライン31で生物反応槽12の液lを吸収塔13に循環する液の一部を生物反応槽12に戻すようにして、その水流で撹拌するように構成してもよい、すなわち循環ポンプ32の吐出側の循環ライン31に戻しラインを接続し、図3(b)で説明したように戻しラインを生物反応槽12に対して接線方向に接続することで、撹拌することもできる。   The agitation of the liquid 1 in the biological reaction tank 12 has been described in the example of agitation with the water flow from the mechanical agitation device 17 shown in FIGS. 1 and 2 and the absorption liquid circulation line 40 shown in FIGS. As another stirring mechanism other than aeration, for example, a part of the liquid circulating the liquid 1 in the biological reaction tank 12 to the absorption tower 13 is returned to the biological reaction tank 12 by the circulation line 31 and stirred with the water flow. That is, the return line is connected to the circulation line 31 on the discharge side of the circulation pump 32, and the return line is connected to the biological reaction tank 12 in the tangential direction as described in FIG. It can also be stirred.

本発明の一実施の形態を示す図である。It is a figure which shows one embodiment of this invention. 本発明の他の実施の形態を示す図である。It is a figure which shows other embodiment of this invention. 本発明のさらに他の実施の形態を示す図である。It is a figure which shows other embodiment of this invention. 本発明のさらに他の実施の形態を示す図である。It is a figure which shows other embodiment of this invention.

符号の説明Explanation of symbols

12 生物反応槽
13 吸収塔
17 撹拌装置
34 吸収層
l 液
12 Bioreaction tank 13 Absorption tower 17 Stirrer 34 Absorption layer l Liquid

Claims (5)

臭気成分を含む排ガスを吸収塔に導入し、吸収塔の吸収層で排ガスと吸収液を接触させて臭気成分を吸収液に吸収させた後、その浄化後の排ガスを吸収塔から排気し、吸収塔で臭気成分を吸収した吸収液を生物反応槽に導入し、その生物反応槽で、酸素を含む気体を吹き込んで、液中の臭気成分等を微生物によって酸化分解し、その反応後の気体を生物反応槽から排気すると共に生物反応槽の液を吸収液として吸収塔に循環する排ガス処理方法において、生物反応槽内を曝気以外の撹拌手段で撹拌し、生物反応槽内の液の溶存酸素濃度が、0.1〜1.0mg/Lとなるように酸素を含む気体を吹き込むことを特徴とする排ガス処理方法。   The exhaust gas containing odorous components is introduced into the absorption tower, and after the exhaust gas and the absorbing liquid are brought into contact with each other in the absorption layer of the absorption tower to absorb the odorous components into the absorbing liquid, the purified exhaust gas is exhausted from the absorption tower and absorbed. The absorption liquid that has absorbed odorous components in the tower is introduced into the biological reaction tank, and oxygen-containing gas is blown into the biological reaction tank, and the odorous components in the liquid are oxidatively decomposed by microorganisms. In the exhaust gas treatment method of exhausting from the biological reaction tank and circulating the liquid in the biological reaction tank to the absorption tower as an absorption liquid, the inside of the biological reaction tank is stirred with stirring means other than aeration, and the dissolved oxygen concentration in the liquid in the biological reaction tank However, an exhaust gas treatment method is characterized in that a gas containing oxygen is blown so as to be 0.1 to 1.0 mg / L. 臭気成分等を含む排ガスを吸収塔に導入し、吸収塔の吸収層で排ガスと吸収液を接触させて臭気成分を吸収液に吸収させた後、その浄化後の排ガスを吸収塔から排気し、吸収塔で臭気成分を吸収した吸収液を生物反応槽に導入し、その生物反応槽で、酸素を含む気体を吹き込んで、液中の臭気成分を微生物によって酸化分解し、その反応後の気体を生物反応槽から排気すると共に生物反応槽の液を吸収液として吸収塔に循環する排ガス処理方法において、生物反応槽に曝気以外の撹拌手段で撹拌し、生物反応槽から排気される排エアーの酸素濃度が、0.5%〜18%となるように酸素を含む気体を吹き込むことを特徴とする排ガス処理方法。   After introducing exhaust gas containing odor components into the absorption tower, contacting the exhaust gas with the absorption liquid in the absorption layer of the absorption tower to absorb the odor components into the absorption liquid, exhausting the exhaust gas after purification from the absorption tower, The absorption liquid that has absorbed the odor component in the absorption tower is introduced into the biological reaction tank, and a gas containing oxygen is blown into the biological reaction tank. The odor component in the liquid is oxidatively decomposed by microorganisms, and the gas after the reaction is removed. In the exhaust gas treatment method of exhausting from the biological reaction tank and circulating the liquid in the biological reaction tank as an absorption liquid to the absorption tower, oxygen in the exhaust air that is stirred in the biological reaction tank by a stirring means other than aeration and exhausted from the biological reaction tank An exhaust gas treatment method, wherein a gas containing oxygen is blown so as to have a concentration of 0.5% to 18%. 排ガス中の臭気成分が、硫化水素などの硫黄化合物であり、生物反応槽内で働く微生物が硫黄酸化細菌である請求項1又は2に記載の排ガス処理方法。   The exhaust gas treatment method according to claim 1 or 2, wherein the odor component in the exhaust gas is a sulfur compound such as hydrogen sulfide, and the microorganism working in the biological reaction tank is a sulfur-oxidizing bacterium. 撹拌手段が、機械式撹拌装置からなる請求項1又は2に記載の排ガス処理方法。   The exhaust gas treatment method according to claim 1 or 2, wherein the stirring means comprises a mechanical stirring device. 撹拌手段が、吸収塔で臭気成分を吸収した吸収液を生物反応槽に導入する際の水流で撹拌するように構成した請求項1又は2に記載の排ガス処理方法。   The exhaust gas treatment method according to claim 1 or 2, wherein the agitation means is configured to agitate with an aqueous flow when the absorption liquid having absorbed the odor component in the absorption tower is introduced into the biological reaction tank.
JP2008139413A 2008-05-28 2008-05-28 Exhaust gas treating method Pending JP2009285550A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008139413A JP2009285550A (en) 2008-05-28 2008-05-28 Exhaust gas treating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008139413A JP2009285550A (en) 2008-05-28 2008-05-28 Exhaust gas treating method

Publications (1)

Publication Number Publication Date
JP2009285550A true JP2009285550A (en) 2009-12-10

Family

ID=41455300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008139413A Pending JP2009285550A (en) 2008-05-28 2008-05-28 Exhaust gas treating method

Country Status (1)

Country Link
JP (1) JP2009285550A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103601293A (en) * 2013-10-10 2014-02-26 杭州师范大学 Tower-type bioreactor synchronously removing carbon, nitrogen and sulfur
US9639611B2 (en) 2010-06-11 2017-05-02 Doat Media Ltd. System and method for providing suitable web addresses to a user device
US9665647B2 (en) 2010-06-11 2017-05-30 Doat Media Ltd. System and method for indexing mobile applications
US9846699B2 (en) 2010-06-11 2017-12-19 Doat Media Ltd. System and methods thereof for dynamically updating the contents of a folder on a device
US9858342B2 (en) 2011-03-28 2018-01-02 Doat Media Ltd. Method and system for searching for applications respective of a connectivity mode of a user device
US9912778B2 (en) 2010-06-11 2018-03-06 Doat Media Ltd. Method for dynamically displaying a personalized home screen on a user device
CN108514813A (en) * 2018-06-29 2018-09-11 王帅涵 A kind of emission-control equipment
US10114534B2 (en) 2010-06-11 2018-10-30 Doat Media Ltd. System and method for dynamically displaying personalized home screens respective of user queries
US10713312B2 (en) 2010-06-11 2020-07-14 Doat Media Ltd. System and method for context-launching of applications

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9639611B2 (en) 2010-06-11 2017-05-02 Doat Media Ltd. System and method for providing suitable web addresses to a user device
US9665647B2 (en) 2010-06-11 2017-05-30 Doat Media Ltd. System and method for indexing mobile applications
US9846699B2 (en) 2010-06-11 2017-12-19 Doat Media Ltd. System and methods thereof for dynamically updating the contents of a folder on a device
US9912778B2 (en) 2010-06-11 2018-03-06 Doat Media Ltd. Method for dynamically displaying a personalized home screen on a user device
US10114534B2 (en) 2010-06-11 2018-10-30 Doat Media Ltd. System and method for dynamically displaying personalized home screens respective of user queries
US10713312B2 (en) 2010-06-11 2020-07-14 Doat Media Ltd. System and method for context-launching of applications
US9858342B2 (en) 2011-03-28 2018-01-02 Doat Media Ltd. Method and system for searching for applications respective of a connectivity mode of a user device
CN103601293A (en) * 2013-10-10 2014-02-26 杭州师范大学 Tower-type bioreactor synchronously removing carbon, nitrogen and sulfur
CN108514813A (en) * 2018-06-29 2018-09-11 王帅涵 A kind of emission-control equipment

Similar Documents

Publication Publication Date Title
JP2009285550A (en) Exhaust gas treating method
CN101622331B (en) Biological desulfurization equipment
JP5330436B2 (en) Biogas biodesulfurization apparatus and cleaning method thereof
KR100932517B1 (en) Atmospheric purification apparatus and method for maximizing treatment efficiency
JP5106982B2 (en) Odor treatment method, malodor treatment system and breeding system
JP4685676B2 (en) Wastewater treatment equipment
KR102162077B1 (en) Odor removal device for wastewater and sewage disposal plant
CN104923068A (en) Malodorous gas treatment method
JP4604014B2 (en) Biological deodorization system and biological deodorization apparatus used in this system
JP2009136748A (en) Deodorizing apparatus and deodorizing method
JP5166014B2 (en) Equipment for removing dissolved hydrogen sulfide in anaerobic treatment
JP2000263084A (en) Waste water treatment equipment and waste water treatment method
JP3723994B2 (en) Anaerobic biological reaction gas desulfurization equipment
JP2004148242A (en) Waste water treatment method and waste water treatment equipment
JP4490908B2 (en) Wastewater treatment equipment
JP2002079051A (en) Method for deodorizing hydrogen sulfide containing gas
KR102154849B1 (en) Equipment for treating sewage sludge
JP4862314B2 (en) Method and apparatus for desulfurization of gas containing hydrogen sulfide
JP3493735B2 (en) Anaerobic reaction gas desulfurization unit
KR100675869B1 (en) Deodorization Method and Removal Device from Anaerobic Digested Sludge
JP2009255015A (en) Water treatment apparatus and water treating method
JP2005205375A (en) Defoaming method, defoaming apparatus, and sludge treatment apparatus equipped with the same
JP3413856B2 (en) Method and apparatus for simultaneous treatment of digestive gas and odorous gas
JP4193239B2 (en) Air circulation type contact aeration bioreactor
JP2007038044A (en) Biological desulfurization method and biological desulfurization apparatus