[go: up one dir, main page]

JP2009285732A - Bonding material, manufacturing method of bonding material and semiconductor device - Google Patents

Bonding material, manufacturing method of bonding material and semiconductor device Download PDF

Info

Publication number
JP2009285732A
JP2009285732A JP2009186960A JP2009186960A JP2009285732A JP 2009285732 A JP2009285732 A JP 2009285732A JP 2009186960 A JP2009186960 A JP 2009186960A JP 2009186960 A JP2009186960 A JP 2009186960A JP 2009285732 A JP2009285732 A JP 2009285732A
Authority
JP
Japan
Prior art keywords
based alloy
alloy layer
connection
semiconductor element
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009186960A
Other languages
Japanese (ja)
Other versions
JP5152125B2 (en
Inventor
Yasushi Ikeda
靖 池田
Masahide Okamoto
正英 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2009186960A priority Critical patent/JP5152125B2/en
Publication of JP2009285732A publication Critical patent/JP2009285732A/en
Application granted granted Critical
Publication of JP5152125B2 publication Critical patent/JP5152125B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/27Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/831Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus
    • H01L2224/83101Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus as prepeg comprising a layer connector, e.g. provided in an insulating plate member
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01322Eutectic Alloys, i.e. obtained by a liquid transforming into two solid phases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
  • Wire Bonding (AREA)
  • Die Bonding (AREA)

Abstract

【課題】260℃以上の融点を有するZn−Al系合金を接続に適用すること、接続時の濡れを改善すること、材料製造時のプロセスを低減すること、熱応力に対する接続信頼性を向上することを可能とする接続材料を提供する。
【解決手段】接続材料として、Al系合金層102の最表面にZn系合金層101を設けたものである。特に、前記Al系合金層102のAl含有率が99〜100wt.%、または、前記Zn系合金層101のZn含有率が90〜100wt.%である接続材料とする。この接続材料を用いることで、接続時に接続材料の表面のAl酸化膜の形成が抑制され、Zn−Al合金では得られない良好な濡れを得ることができる。また、接続後にAl系合金層を残存させた場合、軟らかいAlが応力緩衝材として機能するため、高い接続信頼性を得ることができる。
【選択図】 図5
Kind Code: A1 To apply a Zn-Al alloy having a melting point of 260 ° C. or higher for connection, to improve wettability at the time of connection, to reduce the process at the time of material production, and to improve connection reliability against thermal stress. Provided is a connecting material that makes it possible.
As a connection material, a Zn-based alloy layer 101 is provided on the outermost surface of an Al-based alloy layer 102. In particular, the Al-based alloy layer 102 has an Al content of 99 to 100 wt. %, Or the Zn-based alloy layer 101 has a Zn content of 90 to 100 wt. % Connection material. By using this connection material, formation of an Al oxide film on the surface of the connection material is suppressed at the time of connection, and good wetting that cannot be obtained with a Zn—Al alloy can be obtained. Further, when the Al-based alloy layer is left after the connection, since the soft Al functions as a stress buffer material, high connection reliability can be obtained.
[Selection] Figure 5

Description

本発明は、接続材料の技術に関し、特に、この接続材料の構造および製造方法、さらにこの接続材料を用いた半導体装置、パワー半導体装置、パワーモジュールなどに適用して有効な技術に関する。   The present invention relates to a connection material technique, and more particularly to a structure and manufacturing method of the connection material, and a technique effective when applied to a semiconductor device, a power semiconductor device, a power module, and the like using the connection material.

本発明者が検討した技術として、接続材料を用いた半導体装置について、図1及び図2を用いて説明する。図1は、従来の半導体装置の構造を示す図である。図2は、再溶融したはんだによるフラッシュを説明する図である。   As a technique studied by the present inventors, a semiconductor device using a connection material will be described with reference to FIGS. FIG. 1 is a diagram showing the structure of a conventional semiconductor device. FIG. 2 is a diagram illustrating flashing by remelted solder.

図1に示すように、半導体装置7は、半導体素子1がフレーム2上にはんだ3により接続され、ワイヤ4によりリード5のインナーリードと半導体素子1の電極がワイヤボンディングされた後、封止用レジン6あるいは不活性ガスにより封止されて製造される。   As shown in FIG. 1, the semiconductor device 7 is used for sealing after the semiconductor element 1 is connected to the frame 2 by the solder 3, and the inner lead of the lead 5 and the electrode of the semiconductor element 1 are wire-bonded by the wire 4. It is manufactured by being sealed with resin 6 or an inert gas.

この半導体装置7は、Sn−Ag−Cu系の中温の鉛フリーはんだによりプリント基板にリフローはんだ付けされる。Sn−Ag−Cu系鉛フリーはんだの融点は約220℃と高く、リフロー接続の際に接続部が最高260℃まで加熱されることが想定される。そのため、温度階層を目的として半導体装置内部の半導体素子のダイボンディングには、290℃以上の融点を有する高鉛はんだが使用される。高鉛はんだは、構成成分として85wt.%以上の鉛を含有しており、2006年7月より施行されているRoHS指令で禁止されているSn−Pb共晶はんだに比べて環境への負荷が大きい。よって、高鉛はんだに替わる代替接続材の開発が切望されている。   This semiconductor device 7 is reflow soldered to the printed circuit board with Sn-Ag-Cu-based medium temperature lead-free solder. The melting point of Sn—Ag—Cu-based lead-free solder is as high as about 220 ° C., and it is assumed that the connection portion is heated up to 260 ° C. during reflow connection. Therefore, high lead solder having a melting point of 290 ° C. or higher is used for die bonding of the semiconductor element inside the semiconductor device for the purpose of the temperature hierarchy. High lead solder has 85 wt. Compared to Sn-Pb eutectic solder prohibited by the RoHS Directive that has been in force since July 2006, the environmental load is large. Therefore, development of an alternative connection material that replaces high-lead solder is eagerly desired.

現在、既に開発されているSn−Ag−Cu系等のはんだは融点が260℃以下であるため、半導体素子のダイボンディングに使用した場合、2次実装時(最高温度260℃)にはんだが溶融してしまう。接続部周りがレジンでモールドされている場合、内部のはんだが溶融すると、溶融時の体積膨張により、図2に示すように、フラッシュと言って封止用レジン6とフレーム2の界面からはんだ3が漏れ出すことがある。あるいは、漏れ出さないまでも、漏れ出そうと作用し、その結果、凝固後にはんだの中に大きなボイド8が形成され不良品となる。代替材料の候補としては、融点の面からAu−Sn、Au−Si、Au−Ge等のAu系はんだ、Zn、Zn−Al系のはんだおよびBi、Bi−Cu、Bi−Ag等のはんだが報告されており、世界中で検討が進められている。   Currently developed Sn-Ag-Cu solders have a melting point of 260 ° C or lower, so when used for die bonding of semiconductor elements, the solder melts during secondary mounting (maximum temperature 260 ° C). Resulting in. When the periphery of the connecting portion is molded with a resin, when the internal solder is melted, the solder expands from the interface between the sealing resin 6 and the frame 2 as shown in FIG. May leak. Or even if it does not leak, it acts to leak, and as a result, a large void 8 is formed in the solder after solidification, resulting in a defective product. Candidates for alternative materials include Au-Sn, Au-Si, Au-Ge, and other Au-based solders, Zn, Zn-Al-based solders, and Bi, Bi-Cu, Bi-Ag, and other solders in terms of melting point. It has been reported and is being studied around the world.

しかしながら、Au系のはんだは、構成成分としてAuを80wt.%以上含有しており、コストの面で汎用性に難がある。Bi系はんだは、熱伝導率が約9W/mKと現行の高鉛はんだより低く、高放熱性が要求されるパワー半導体装置およびパワーモジュール等への適用は難しいと推定できる。また、ZnおよびZn−Al系はんだは、約100W/mKと高い熱伝導率を有するが、濡れにくく(特にZn−Al系はんだ)、はんだが硬く、接続後の冷却時に熱応力によって半導体素子が破壊しやすい等の問題がある。   However, the Au-based solder has 80 wt. % Or more, and there is difficulty in versatility in terms of cost. Bi-based solder has a thermal conductivity of about 9 W / mK, which is lower than that of current high lead solder, and it can be estimated that application to power semiconductor devices and power modules that require high heat dissipation is difficult. Zn and Zn-Al solder have a high thermal conductivity of about 100 W / mK, but are difficult to wet (especially Zn-Al solder), the solder is hard, and the semiconductor element is affected by thermal stress during cooling after connection. There are problems such as easy destruction.

特許文献1や特許文献2では、Al:1〜7wt.%、Mg:0.5〜6wt.%、Ga:0.1〜20wt.%、P:0.001〜0.5wt.%、残部をZn、Ge:2〜9wt.%、Al:2〜9wt.%、P:0.001〜0.5wt.%、残部をZnあるいはGe:2〜9wt.%、Al:2〜9wt.%、Mg:0.01〜0.5wt.%、P:0.001〜0.5wt.%、残部をZnとすることにより、Zn系はんだ合金のCuやNiに対する濡れ性の向上および融点低下をさせている。しかしながら、AlやMgを成分とするため、接続時の加熱によりAl酸化物およびMg酸化物が溶融部表面に膜を生成する。これらの膜が濡れを阻害するため、スクラブ等により機械的に膜を破らない限り、十分に濡れが得られない恐れがある。また、はんだの硬さに関して、改善がなされていないため、接続後の冷却時あるいは温度サイクル時の熱応力による半導体素子の破壊に対する改善が期待できない。   In Patent Document 1 and Patent Document 2, Al: 1 to 7 wt. %, Mg: 0.5 to 6 wt. %, Ga: 0.1 to 20 wt. %, P: 0.001 to 0.5 wt. %, The balance is Zn, Ge: 2-9 wt. %, Al: 2 to 9 wt. %, P: 0.001 to 0.5 wt. %, The balance is Zn or Ge: 2 to 9 wt. %, Al: 2 to 9 wt. %, Mg: 0.01 to 0.5 wt. %, P: 0.001 to 0.5 wt. % And the balance being Zn, the wettability of the Zn-based solder alloy to Cu and Ni is improved and the melting point is lowered. However, since Al or Mg is used as a component, Al oxide and Mg oxide generate a film on the surface of the melted portion by heating during connection. Since these films inhibit wetting, there is a possibility that sufficient wetting may not be obtained unless the film is mechanically broken by scrubbing or the like. In addition, since no improvement has been made with respect to the hardness of the solder, it cannot be expected to improve the destruction of the semiconductor element due to the thermal stress during cooling after connection or during temperature cycling.

特許文献3では、Zn−Al系合金の最表面にIn、Ag、Au層を設けることにより、Zn−Al系合金表面の酸化を抑制し、濡れ性の向上を図っている。しかしながら、In、AgおよびAu層を設けるためには、Zn−Al表面にめっきおよび蒸着等の処理が不可欠であり、材料製造のプロセス増加に繋がる。また、上記と同様に、Inを添加した場合に硬さを低下させることが可能であるが、接続後の冷却時の熱応力による半導体素子の破壊を抑制するほどの効果は期待できない。   In Patent Document 3, an In, Ag, and Au layer is provided on the outermost surface of a Zn—Al alloy, thereby suppressing oxidation of the Zn—Al alloy surface and improving wettability. However, in order to provide the In, Ag, and Au layers, treatments such as plating and vapor deposition are indispensable on the Zn—Al surface, which leads to an increase in material manufacturing processes. Similarly to the above, when In is added, the hardness can be reduced, but an effect that suppresses the destruction of the semiconductor element due to the thermal stress during cooling after connection cannot be expected.

特開2002−358539号公報JP 2002-358539 A 特開2004−358540号公報JP 2004-358540 A 特開2002−261104号公報JP 2002-261104 A

本発明者は、Zn−Al系合金により高鉛はんだの代替が図れるのではないかと考えた。上記の従来技術においては、以下の点について配慮がなされていなかった。Zn−Al系合金にAlが含有されるために、十分な濡れを確保できない。Zn−Al系合金に表面処理を行うことにより、材料製造時のプロセスが増加する。接続後の冷却時あるいは温度サイクル時の熱応力による半導体素子の破壊を抑制できない。   The present inventor thought that a high lead solder could be replaced by a Zn-Al alloy. In the above prior art, the following points have not been considered. Sufficient wetting cannot be ensured because Al is contained in the Zn-Al alloy. By performing the surface treatment on the Zn—Al-based alloy, the number of processes at the time of material production increases. The destruction of the semiconductor element due to thermal stress during cooling after connection or during temperature cycling cannot be suppressed.

そこで、本発明の目的は、これらの点に配慮して、260℃以上の融点を有するZn−Al系合金を接続に適用すること、接続時の濡れを改善すること、材料製造時のプロセスを低減すること、熱応力に対する接続信頼性を向上することを可能とする接続材料を提供することにある。   Therefore, in view of these points, the object of the present invention is to apply a Zn-Al alloy having a melting point of 260 ° C. or higher to the connection, improve the wetting at the time of connection, and the process at the time of manufacturing the material. An object of the present invention is to provide a connection material that can reduce the connection reliability against thermal stress.

本発明の前記ならびにその他の目的と新規な特徴は、本明細書の記述および添付図面から明らかになるであろう。   The above and other objects and novel features of the present invention will be apparent from the description of this specification and the accompanying drawings.

本願において開示される発明のうち、代表的なものの概要を簡単に説明すれば、次のとおりである。   Of the inventions disclosed in the present application, the outline of typical ones will be briefly described as follows.

本発明は、Al系合金層の最表面にZn系合金層を設けた接続材料を提供するものである。特に、前記Al系合金層のAl含有率が99〜100wt.%である接続材料、または、前記Zn系合金層のZn含有率が90〜100wt.%である接続材料を提供するものである。   The present invention provides a connection material in which a Zn-based alloy layer is provided on the outermost surface of an Al-based alloy layer. In particular, the Al-based alloy layer has an Al content of 99 to 100 wt. %, Or the Zn content of the Zn-based alloy layer is 90 to 100 wt. % Of connecting material.

また、本発明は、Zn系合金層の上にAl系合金層、その上にZn系合金層となる接続材料をクラッド圧延、または、加圧成形により製造する接続材料の製造方法を提供するものである。   Moreover, this invention provides the manufacturing method of the connection material which manufactures the Al-type alloy layer on a Zn-type alloy layer, and the connection material used as a Zn-type alloy layer on it by clad rolling or pressure forming. It is.

また、本発明は、前記接続材料を用いて、半導体素子をフレームに接続する半導体装置(ダイボンディング構造)、金属キャップを基板に接続する半導体装置(気密封止構造)、バンプにより接続する半導体装置(フリップチップ実装構造)を提供するものである。   The present invention also provides a semiconductor device (die bonding structure) for connecting a semiconductor element to a frame, a semiconductor device for connecting a metal cap to a substrate (hermetic sealing structure), and a semiconductor device for connecting by a bump using the connection material. (Flip chip mounting structure) is provided.

本願において開示される発明のうち、代表的なものによって得られる効果を簡単に説明すれば以下のとおりである。   Among the inventions disclosed in the present application, effects obtained by typical ones will be briefly described as follows.

本発明によれば、Al系合金層の最表面にZn系合金層を設けた接続材料を用いるため、接続時に接続材料の表面のAl酸化膜の形成が抑制され、良好な濡れを得ることができる。また、接続後にAl系合金層が応力緩衝材として機能するため、高い接続信頼性を得ることができる。この結果、260℃以上の融点を有するZn−Al系合金を接続に適用すること、接続時の濡れを改善すること、材料製造時のプロセスを低減すること、熱応力に対する接続信頼性を向上することが可能となる。   According to the present invention, since the connection material having the Zn-based alloy layer provided on the outermost surface of the Al-based alloy layer is used, the formation of the Al oxide film on the surface of the connection material is suppressed during connection, and good wetting can be obtained. it can. Further, since the Al-based alloy layer functions as a stress buffer after connection, high connection reliability can be obtained. As a result, a Zn-Al alloy having a melting point of 260 ° C. or higher is applied to the connection, the wetting at the time of connection is improved, the process at the time of manufacturing the material is reduced, and the connection reliability against thermal stress is improved. It becomes possible.

従来の半導体装置の構造を示す図である。It is a figure which shows the structure of the conventional semiconductor device. 図1の半導体装置において、再溶融したはんだによるフラッシュを説明する図である。FIG. 2 is a diagram illustrating flashing by remelted solder in the semiconductor device of FIG. 1. 本発明の実施の形態において、クラッド圧延を説明する図である。It is a figure explaining clad rolling in an embodiment of the invention. 本発明の実施の形態において、加圧成形を説明する図である。In embodiment of this invention, it is a figure explaining pressure molding. 本発明の実施の形態における接続材料の断面を示す図である。It is a figure which shows the cross section of the connection material in embodiment of this invention. 図5の接続材料の構成を示す図である。It is a figure which shows the structure of the connection material of FIG. 本発明の実施の形態において、図6の接続材料(実施例1〜12)を用いた半導体装置の断面を示す図である。In embodiment of this invention, it is a figure which shows the cross section of the semiconductor device using the connection material (Examples 1-12) of FIG. 図7の半導体装置において、接続材料による接続部の断面写真を示す図である。FIG. 8 is a view showing a cross-sectional photograph of a connection portion made of a connection material in the semiconductor device of FIG. 7. 図7の半導体装置において、濡れ性およびリフロー試験の結果を比較例と共に示す図である。In the semiconductor device of FIG. 7, it is a figure which shows the wettability and the result of a reflow test with a comparative example. 本発明の実施の形態において、図6の接続材料(実施例13〜24)を用いた別の半導体装置の断面を示す図である。In embodiment of this invention, it is a figure which shows the cross section of another semiconductor device using the connection material (Examples 13-24) of FIG. 図7の半導体装置において、接続材料一体型の金属キャップを示す図である。FIG. 8 is a view showing a metal cap integrated with a connection material in the semiconductor device of FIG. 7. 図10の半導体装置において、濡れ性の結果を比較例と共に示す図である。In the semiconductor device of FIG. 10, it is a figure which shows the result of a wettability with a comparative example. 本発明の実施の形態において、図6の接続材料を用いたさらに別の半導体装置の断面および実装構造を示す図である。FIG. 7 is a diagram showing a cross section and a mounting structure of still another semiconductor device using the connection material of FIG. 6 in the embodiment of the present invention.

以下、本発明の実施の形態を図面に基づいて詳細に説明する。なお、実施の形態を説明するための全図において、同一の部材には原則として同一の符号を付し、その繰り返しの説明は省略する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. Note that components having the same function are denoted by the same reference symbols throughout the drawings for describing the embodiment, and the repetitive description thereof will be omitted.

(本発明の実施の形態の概要)
第1の発明は、Al系合金層の最表面にZn系合金層を設けた接続材料を提供することにある。Zn−Al合金の場合、Alが成分であるために、溶融した瞬間にAl酸化物膜が表面に形成されるため、機械的に酸化物膜を破らなければ、十分な濡れが得られない。本発明の場合、接続材料の表面が不純物程度にしかAlを含有しないZn系合金であるため、接続時にZn系合金とAl系合金が反応してAl酸化物膜が形成される前に十分な濡れを確保することができる。また、接続時に溶融部はZn−Al系合金となるので、融点は380℃近傍まで低下する。よって、Znの融点420℃より低下するため、純Znに比べて接続後の冷却時に発生する熱応力を低減でき、半導体素子の破壊を抑制できる。接続時にAl合金層を残存させることにより、軟らかいAlが応力緩衝材として機能するため、接続信頼性を向上することができる。接続時にZnの融点420℃まで温度を上げなくても380℃以上の温度であれば、接触したZn層とAl層の間で拡散が進み、融点380℃のZn−Al共晶が形成されるため、接続が可能となる。
(Outline of the embodiment of the present invention)
A first invention is to provide a connection material in which a Zn-based alloy layer is provided on the outermost surface of an Al-based alloy layer. In the case of a Zn—Al alloy, since Al is a component, an Al oxide film is formed on the surface at the moment of melting, so that sufficient wetting cannot be obtained unless the oxide film is mechanically broken. In the case of the present invention, since the surface of the connecting material is a Zn-based alloy containing Al only to the extent of impurities, it is sufficient before the Zn-based alloy reacts with the Al-based alloy to form an Al oxide film at the time of connection. Wetting can be ensured. Further, since the melted portion becomes a Zn—Al-based alloy at the time of connection, the melting point is lowered to around 380 ° C. Accordingly, since the melting point of Zn is lowered from 420 ° C., the thermal stress generated during cooling after connection can be reduced as compared with pure Zn, and the breakdown of the semiconductor element can be suppressed. By leaving the Al alloy layer at the time of connection, soft Al functions as a stress buffer material, so that connection reliability can be improved. If the temperature is 380 ° C. or higher even when the temperature does not increase to the melting point of Zn 420 ° C. at the time of connection, diffusion proceeds between the contacted Zn layer and Al layer, and a Zn—Al eutectic with a melting point 380 ° C. is formed. Therefore, connection is possible.

第2の発明は、前記Al系合金層のAl含有率が99〜100wt.%である接続材料を提供することにある。Alの純度が100%に近づくほど軟らかくなり、応力緩衝機能を得ることが容易になる。一方、Al純度が99wt.%未満の場合、0.2%耐力および硬さが硬くなるため、応力緩衝機能を得ることが難しくなる。0.2%耐力は、30N/mm2以下になることが望ましい。Al層の厚さは、30〜200μmにすることが好ましい。厚さが30μm以下の場合、熱応力を十分に緩衝できないため、チップクラックが発生する場合がある。厚さが200μm以上の場合、Al,Mg,Ag,ZnはCuフレームより熱膨張率が大きいため、熱膨張率の効果が大きくなり、チップクラック発生等の信頼性の低下に繋がる場合がある。 In the second invention, the Al-based alloy layer has an Al content of 99 to 100 wt. It is to provide a connection material that is%. As the purity of Al approaches 100%, it becomes softer and it becomes easier to obtain a stress buffering function. On the other hand, the Al purity is 99 wt. If it is less than%, the 0.2% proof stress and hardness become hard, so it becomes difficult to obtain a stress buffering function. The 0.2% proof stress is desirably 30 N / mm 2 or less. The thickness of the Al layer is preferably 30 to 200 μm. If the thickness is 30 μm or less, the thermal stress cannot be sufficiently buffered, and chip cracks may occur. When the thickness is 200 μm or more, Al, Mg, Ag, and Zn have a larger coefficient of thermal expansion than that of the Cu frame, so that the effect of the coefficient of thermal expansion is increased, which may lead to a decrease in reliability such as generation of chip cracks.

第3の発明は、前記Zn系合金層のZn含有率が90〜100wt.%(主成分以外から見た場合はAl含有率が0.01wt.%未満)である接続材料を提供することにある。Zn系合金に含まれるAlが0.01wt.%以上になると、接続時に接続材料の表面にAl酸化物膜量の増加により、良好な濡れが得られない恐れがある。Zn系合金層の厚さは5〜100μmにすることが望ましい。5μm未満の場合、接続部全域の濡れを確保することが難しくなる。   In a third aspect of the invention, the Zn-based alloy layer has a Zn content of 90 to 100 wt. It is to provide a connecting material having an Al content of less than 0.01 wt. Al contained in the Zn-based alloy is 0.01 wt. If it is at least%, there is a risk that good wetting may not be obtained due to an increase in the amount of Al oxide film on the surface of the connection material during connection. The thickness of the Zn-based alloy layer is desirably 5 to 100 μm. When the thickness is less than 5 μm, it becomes difficult to ensure the wetness of the entire connection portion.

第4の発明は、Zn系合金層の上にAl系合金層、その上にZn系合金層となる接続材料をクラッド圧延により製造する製造方法を提供することにある。図3に示すように、ローラー103を用いてクラッド圧延を行うと、Zn系合金層101aとAl系合金層102aが接触すると同時に圧力によって大きな変形が生じるため、Zn系合金層101aおよびAl系合金層102aの表面に形成されていた酸化物膜が破れ、新生面により金属接合される。クラッド圧延では、ZnとAlの拡散が顕著になる温度まで熱負荷がかからない。よって、Alが表面のZn層を拡散し最表層まで達することはなく、接続時に良好な濡れを得ることが可能となる。   A fourth invention is to provide a manufacturing method for manufacturing a connection material to be an Al-based alloy layer on a Zn-based alloy layer and a Zn-based alloy layer thereon by clad rolling. As shown in FIG. 3, when the clad rolling is performed using the roller 103, the Zn-based alloy layer 101a and the Al-based alloy layer 102a come into contact with each other, and at the same time, large deformation occurs due to pressure. The oxide film formed on the surface of the layer 102a is broken and is metal-bonded by the new surface. In the clad rolling, no thermal load is applied up to a temperature at which the diffusion of Zn and Al becomes remarkable. Therefore, Al does not diffuse to the surface Zn layer and reach the outermost layer, and good wetting can be obtained at the time of connection.

第5の発明は、Zn系合金層の上にAl系合金層、その上にZn系合金層となる接続材料を加圧成形により製造する製造方法を提供することにある。図4に示すように、加圧成形機104を用いて加圧成形を行うと、Zn系合金層101bとAl系合金層102bが接触すると同時に圧力によって大きな変形が生じるため、Zn系合金層101bおよびAl系合金層102bの表面に形成されていた酸化物膜が破れ、新生面により金属接合される。加圧成形において、ZnとAlの拡散が顕著になる温度まで熱負荷がかからないようにすれば、Alが表面のZn層を拡散し最表層まで達することはなく、接続時に良好な濡れを得ることが可能となる。   A fifth invention is to provide a manufacturing method for manufacturing a connection material to be an Al-based alloy layer on a Zn-based alloy layer and a Zn-based alloy layer thereon by pressure molding. As shown in FIG. 4, when the pressure forming is performed using the pressure forming machine 104, the Zn-based alloy layer 101b and the Al-based alloy layer 102b come into contact with each other, and at the same time, a large deformation occurs due to the pressure. In addition, the oxide film formed on the surface of the Al-based alloy layer 102b is broken and is metal-bonded by the new surface. In pressure molding, if the thermal load is not applied to a temperature at which the diffusion of Zn and Al becomes significant, Al will not diffuse to the surface Zn layer and reach the outermost layer, and good wetting will be obtained at the time of connection. Is possible.

以下において、前述した第1〜第5の発明に基づいた実施の形態および実施例を具体的に説明する。ここでは、主に半導体装置、パワー半導体装置、パワーモジュール等のダイボンディングに用いるクラッド圧延により製造した接続材料を例に説明する。   Hereinafter, embodiments and examples based on the first to fifth inventions described above will be specifically described. Here, a connection material manufactured by clad rolling used mainly for die bonding of semiconductor devices, power semiconductor devices, power modules and the like will be described as an example.

(実施の形態)
本発明の実施の形態における接続材料の断面を図5に示す。本実施の形態における接続材料は、下からZn系合金層(単にZn層、Znとも記す)101、中間がAl系合金層(単にAl層、Alとも記す)102、一番上がZn系合金層(単にZn層、Znとも記す)101となる。この接続材料は、前述した図3に示すように、Zn系合金層101a、Al系合金層102a、Zn系合金層101aを重ねて圧延加工する、すなわちクラッド圧延を行うことで製造した。
(Embodiment)
FIG. 5 shows a cross section of the connection material in the embodiment of the present invention. The connection material in this embodiment is a Zn-based alloy layer (simply referred to as Zn layer, Zn) 101 from the bottom, an Al-based alloy layer (also simply referred to as Al layer, Al) 102 in the middle, and a Zn-based alloy at the top. The layer (simply referred to as Zn layer, Zn) 101 is formed. As shown in FIG. 3 described above, this connecting material was manufactured by laminating a Zn-based alloy layer 101a, an Al-based alloy layer 102a, and a Zn-based alloy layer 101a, that is, performing clad rolling.

この製造した全ての接続材料(ここではクラッド材と呼ぶ)を図6に示す。クラッド材1は、Zn層、Al層、Zn層の厚さがそれぞれ10、50、10μmである。クラッド材2は20、50、20μm、クラッド材3は20、100、20μmである。   FIG. 6 shows all of the manufactured connection materials (referred to herein as clad materials). In the clad material 1, the thicknesses of the Zn layer, the Al layer, and the Zn layer are 10, 50, and 10 μm, respectively. The clad material 2 is 20, 50, and 20 μm, and the clad material 3 is 20, 100, and 20 μm.

(実施例1〜12)
実施例1〜12は、図7に示すように、半導体装置11のダイボンディングに接続材料10を用いたものである。この半導体装置11は、半導体素子1と、この半導体素子1を接続するフレーム2と、一端が外部端子となるリード5と、このリード5の他端と半導体素子1の電極とを接続するワイヤ4と、半導体素子1およびワイヤ4を樹脂封止する封止用レジン6とを有し、半導体素子1とフレーム2は接続材料10で接続されて構成される。
(Examples 1-12)
In Examples 1 to 12, as shown in FIG. 7, the connection material 10 is used for die bonding of the semiconductor device 11. The semiconductor device 11 includes a semiconductor element 1, a frame 2 connecting the semiconductor element 1, a lead 5 having one end serving as an external terminal, and a wire 4 connecting the other end of the lead 5 and the electrode of the semiconductor element 1. And a resin 6 for sealing the semiconductor element 1 and the wire 4 with resin, and the semiconductor element 1 and the frame 2 are connected by a connecting material 10.

この半導体装置11の製造においては、Cuむく、あるいはNi、Ni/Ag、Ni/Auめっきを施したフレーム2上に接続材料10を供給し、半導体素子1を積層した後、加圧しながらN2雰囲気中で400℃、1min.加熱してダイボンディングを行った。その際の接続部の断面を図8に示す。フレーム2と接続材料10のAl層の間は、接続時にZnとAlが反応することで形成されたZn−Al合金層になっている。半導体素子1と接続材料10のAl層の間も同様である。その後、半導体素子1とリード5間をワイヤ4でワイヤボンディングし、180℃で封止用レジン6で封止を行った。 In the manufacture of the semiconductor device 11, the connection material 10 is supplied onto the frame 2 plated with Cu or Ni, Ni / Ag, Ni / Au plating, the semiconductor element 1 is laminated, and then N 2 while pressing. 400 ° C. for 1 min. Die bonding was performed by heating. The cross section of the connection part in that case is shown in FIG. Between the frame 2 and the Al layer of the connection material 10 is a Zn—Al alloy layer formed by reaction of Zn and Al during connection. The same applies between the semiconductor element 1 and the Al layer of the connection material 10. Thereafter, the semiconductor element 1 and the lead 5 were wire-bonded with a wire 4 and sealed with a sealing resin 6 at 180 ° C.

実施例1〜12(図6のクラッド材1,2,3を使用)について、ダイボンディング時の濡れ性および半導体装置を最高温度260℃以上でリフロー試験を3回行った後の接続維持性について評価した結果を図9に示す。濡れ性については、半導体素子の面積に対して90%以上の濡れが得られた場合に○、90%未満75%以上の場合を△、75%未満の場合を×とした。260℃(最高温度)のリフロー試験については、リフロー試験前の接続面積に対し、リフロー試験後の接続面積が5%以上減少したものを×、5%未満の場合を○とした。   Regarding Examples 1 to 12 (using the clad materials 1, 2 and 3 in FIG. 6), wettability during die bonding and connection maintainability after three reflow tests of the semiconductor device at a maximum temperature of 260 ° C. or higher The evaluation results are shown in FIG. Regarding the wettability, the case where 90% or more wetness was obtained with respect to the area of the semiconductor element, the case where it was less than 90% and 75% or more, Δ, and the case where it was less than 75% were evaluated as x. For the reflow test at 260 ° C. (maximum temperature), the case where the connection area after the reflow test was reduced by 5% or more with respect to the connection area before the reflow test was evaluated as “B” when less than 5%.

この評価の結果、クラッド材1,2,3(Zn/Al/Zn)の接続材料を用いて接続した場合、Ni、Ni/Ag、Ni/Auめっきのフレームに対しては、90%以上の濡れを得られた。ただし、Cuむくのフレームに対しては、約80%の濡れとなり、△となった。260℃のリフロー試験については、実施例1〜12のいずれの場合も試験前後で接続面積は変化しなかった。   As a result of this evaluation, when connecting using connecting materials of clad materials 1, 2, 3 (Zn / Al / Zn), it is 90% or more for Ni, Ni / Ag, Ni / Au plated frames. I got wet. However, it was about 80% wet with respect to the Cu peeled frame, which was Δ. About the reflow test of 260 degreeC, the connection area did not change before and after a test in any case of Examples 1-12.

一方、従来の接続材料(Zn−6Al(wt.%)、Zn)を用いた比較例1〜4の場合は、溶融したZn−Al合金の表面に強固なAl酸化物膜が形成されているため、いずれもフレームに対して75%未満の濡れとなった。特に、Cuむく、Niめっきのフレームの場合には、ほとんど濡らすことが出来なかった。比較例5〜8の場合、Znの融点420℃以上の温度で接続を行うことで、90%以上の濡れが得られた。しかしながら、接続後の冷却時に半導体素子とCu製フレームの熱膨張率差によって生じる熱応力を緩和できず、半導体素子が破壊するものが生じた。破壊を免れたものについて半導体装置を製造してリフロー試験を行ったところ、半導体素子の破壊が生じた。   On the other hand, in the case of Comparative Examples 1 to 4 using a conventional connection material (Zn-6Al (wt.%), Zn), a strong Al oxide film is formed on the surface of the molten Zn-Al alloy. Therefore, in all cases, the wetness was less than 75% with respect to the frame. In particular, in the case of a Cu-plated or Ni-plated frame, it could hardly be wetted. In Comparative Examples 5 to 8, wetting of 90% or more was obtained by connecting at a temperature of Zn melting point of 420 ° C. or higher. However, the thermal stress caused by the difference in thermal expansion coefficient between the semiconductor element and the Cu frame during cooling after connection cannot be relaxed, and the semiconductor element is destroyed. When the semiconductor device was manufactured and the reflow test was performed for the material that was not damaged, the semiconductor element was broken.

以上により、実施例1〜12によれば、本実施の形態における接続材料10を、半導体装置11のダイボンディングに用いることにより、Alを0.01wt.%以上含まないZn系合金層をAl系合金層の最表面に設けるため、接続時に接続材料の表面のAl酸化膜の形成が抑制され、Zn−Al合金では得られない良好な濡れを得ることができる。また、接続後にAl系合金層を残存させた場合、軟らかいAlが応力緩衝材として機能するため、高い接続信頼性を得ることができる。   As described above, according to Examples 1 to 12, when the connection material 10 according to the present embodiment is used for die bonding of the semiconductor device 11, Al is 0.01 wt. Since a Zn-based alloy layer not containing more than 50% is provided on the outermost surface of the Al-based alloy layer, formation of an Al oxide film on the surface of the connection material is suppressed during connection, and good wetting that cannot be obtained with a Zn-Al alloy is obtained. Can do. Further, when the Al-based alloy layer is left after the connection, since the soft Al functions as a stress buffer material, high connection reliability can be obtained.

(実施例13〜24)
実施例13〜24は、図10に示すように、気密封止を必要とする半導体装置21の封止材として本接続材料10aを用いたものである。この半導体装置21は、半導体素子1と、この半導体素子1を接続するモジュール基板23と、一端が外部端子となるリード5と、このリード5の他端と半導体素子1の電極とを接続するワイヤ4と、半導体素子1およびワイヤ4を気密封止し、モジュール基板23に接続する金属キャップ22とを有し、モジュール基板23と金属キャップ22は接続材料10aで接続されて構成される。なお、この半導体装置21においては、モジュール基板23上にチップ部品等も接続されている。
(Examples 13 to 24)
Examples 13-24 use this connection material 10a as a sealing material of the semiconductor device 21 which needs airtight sealing, as shown in FIG. The semiconductor device 21 includes a semiconductor element 1, a module substrate 23 that connects the semiconductor element 1, a lead 5 having one end serving as an external terminal, and a wire that connects the other end of the lead 5 and the electrode of the semiconductor element 1. 4 and a metal cap 22 that hermetically seals the semiconductor element 1 and the wire 4 and is connected to the module substrate 23. The module substrate 23 and the metal cap 22 are connected by a connection material 10a. In the semiconductor device 21, chip parts and the like are also connected on the module substrate 23.

この半導体装置21の製造においては、モジュール基板23に、半導体素子1およびチップ部品等をSn系の鉛フリーのはんだ3、もしくは導電性接着剤、Cu粉/Sn粉複合材等で接続した後、接続材料10aをモジュール基板23と金属キャップ22の間に置き、400℃で加圧しながら接続を行った。   In the manufacture of the semiconductor device 21, after connecting the semiconductor element 1 and the chip component to the module substrate 23 with Sn-based lead-free solder 3, or a conductive adhesive, Cu powder / Sn powder composite material, etc., The connection material 10a was placed between the module substrate 23 and the metal cap 22, and the connection was made while applying pressure at 400 ° C.

なお、金属キャップについては、気密封止を行うために、図11に示すように、コバール、インバー等の金属合金24とAl系合金層102およびZn系合金層101を一緒にクラッド圧延で加工して、接続材料一体型の金属キャップ22aとしても構わない。   As for the metal cap, as shown in FIG. 11, the metal alloy 24 such as Kovar and Invar, the Al-based alloy layer 102 and the Zn-based alloy layer 101 are processed together by clad rolling to perform hermetic sealing. Therefore, the metal cap 22a integrated with the connection material may be used.

実施例13〜24(図6のクラッド材1,2,3を使用)について、ダイボンディング時の濡れ性について評価した結果を図12に示す。濡れ性については、封止面積に対して気密が維持可能な濡れが得られた場合に○、ボイド、クラック等で気密を維持できない場合を×とした。   The results of evaluating the wettability during die bonding for Examples 13 to 24 (using the clad materials 1, 2 and 3 in FIG. 6) are shown in FIG. Regarding the wettability, when the wettability capable of maintaining the airtightness with respect to the sealed area was obtained, the case where the airtightness could not be maintained due to ◯, voids, cracks, etc. was evaluated as x.

この評価の結果、クラッド材1,2,3(Zn/Al/Zn)の接続材料を用いて接続した場合、Ni、Ni/Ag、Ni/Auめっきのフレームに対しては、十分に気密を維持できる濡れが得られた。ただし、Cuむくのフレームに対しては、未濡れおよびボイドにより、×となった。   As a result of this evaluation, when connecting using connecting materials of clad materials 1, 2, 3 (Zn / Al / Zn), the frame of Ni, Ni / Ag, Ni / Au plating is sufficiently airtight. Sustainable wetting was obtained. However, the Cu peeled frame was evaluated as x due to non-wetting and voids.

一方、従来の接続材料(Zn−6Al(wt.%))を用いた比較例9〜12の場合は、溶融したZn−Al合金の表面に強固なAl酸化物膜が形成されているため、未濡れ、ボイドにより気密封止ができなかった。   On the other hand, in the case of Comparative Examples 9 to 12 using the conventional connection material (Zn-6Al (wt.%)), A strong Al oxide film is formed on the surface of the molten Zn-Al alloy. It was not wet and could not be hermetically sealed due to voids.

以上により、実施例13〜24によれば、本実施の形態における接続材料10aを、半導体装置21の封止材として用いることにより、接続時に接続材料の表面のAl酸化膜の形成が抑制され、十分に気密を維持できる濡れを得ることができる。   As described above, according to Examples 13 to 24, by using the connection material 10a in the present embodiment as a sealing material for the semiconductor device 21, formation of an Al oxide film on the surface of the connection material during connection is suppressed. Wetting can be obtained to maintain sufficient airtightness.

図10に示すような半導体装置21においては、鉛フリーのはんだ3の代わりに、本接続材料10を用いて半導体素子1とモジュール基板23を接続することも可能であり、この場合には前記実施例1〜12と同様の効果を得ることができる。   In the semiconductor device 21 as shown in FIG. 10, it is also possible to connect the semiconductor element 1 and the module substrate 23 by using the present connection material 10 instead of the lead-free solder 3, in this case, The effect similar to Examples 1-12 can be acquired.

(他の実施例)
他の実施例は、図13に示すように、フリップチップ実装を必要とする半導体装置31のバンプとして本接続材料10bを用いたものである。この半導体装置31は、半導体素子1を有し、この半導体素子1とこれを実装する基板34は接続材料10bで接続されて構成される。
(Other examples)
In another embodiment, as shown in FIG. 13, the connection material 10b is used as a bump of a semiconductor device 31 that requires flip chip mounting. The semiconductor device 31 includes the semiconductor element 1, and the semiconductor element 1 and a substrate 34 on which the semiconductor element 1 is mounted are connected by a connection material 10b.

この半導体装置31の製造においては、接続材料10bを、基板34のCu配線35にNiまたはNi/Auめっき36を施したパッドと、半導体素子1のAl配線32にZnめっき33を施した電極の間に置き、380℃で加圧しながら接続を行った。   In the manufacture of the semiconductor device 31, the connection material 10 b is composed of a pad obtained by applying Ni or Ni / Au plating 36 to the Cu wiring 35 of the substrate 34, and an electrode obtained by applying Zn plating 33 to the Al wiring 32 of the semiconductor element 1. The connection was made with pressure at 380 ° C.

この他の実施例においても、本実施の形態における接続材料10bを、半導体装置31のバンプとして用いることにより、接続時に接続材料の表面のAl酸化膜の形成が抑制され、良好な濡れを得ることができる。   Also in other examples, by using the connection material 10b in the present embodiment as a bump of the semiconductor device 31, formation of an Al oxide film on the surface of the connection material is suppressed at the time of connection, and good wetting is obtained. Can do.

以上、本発明者によってなされた発明を実施の形態に基づき具体的に説明したが、本発明は前記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることはいうまでもない。   As mentioned above, the invention made by the present inventor has been specifically described based on the embodiment. However, the present invention is not limited to the embodiment, and various modifications can be made without departing from the scope of the invention. Needless to say.

すなわち、上記説明では、本発明の適用について、半導体装置のダイボンディングを例に挙げて説明したが、ダイボンディングさせる半導体装置であれば多様な半導体装置に適用できる。これらには、例えば、オルタネータ用ダイオード、IGBTモジュール、RFモジュール等のフロントエンドモジュール、自動車用パワーモジュール等が挙げられる。   That is, in the above description, the application of the present invention has been described by taking die bonding of a semiconductor device as an example, but the present invention can be applied to various semiconductor devices as long as the semiconductor device is die bonded. These include, for example, alternator diodes, IGBT modules, front-end modules such as RF modules, automobile power modules, and the like.

また、上記説明では、半導体装置をモジュール基板にリフロー実装する場合を例に挙げて説明したが、例えば、MCM(Multi Chip Module)構成に使用する場合にも当然に適用できるものである。   In the above description, the case where the semiconductor device is mounted on the module substrate by reflow is described as an example. However, for example, the present invention can be applied to a case where the semiconductor device is used in an MCM (Multi Chip Module) configuration.

1…半導体素子、2…フレーム、3…はんだ、4…ワイヤ、5…リード、6…封止用レジン、7…半導体装置、8…ボイド、 10,10a,10b…接続材料、 11…半導体装置、 21…半導体装置、22,22a…金属キャップ、23…モジュール基板、24…金属合金、 31…半導体装置、32…Al配線、33…Znめっき、34…基板、35…Cu配線、36…NiまたはNi/Auめっき、 101…Zn系合金層、102…Al系合金層、103…ローラー、104…加圧成形機。 DESCRIPTION OF SYMBOLS 1 ... Semiconductor element, 2 ... Frame, 3 ... Solder, 4 ... Wire, 5 ... Lead, 6 ... Resin for sealing, 7 ... Semiconductor device, 8 ... Void, 10, 10a, 10b ... Connection material, 11 ... Semiconductor device 21 ... Semiconductor device 22, 22a ... Metal cap, 23 ... Module substrate, 24 ... Metal alloy, 31 ... Semiconductor device, 32 ... Al wiring, 33 ... Zn plating, 34 ... Substrate, 35 ... Cu wiring, 36 ... Ni Or Ni / Au plating, 101... Zn-based alloy layer, 102... Al-based alloy layer, 103.

Claims (9)

Al系合金層と、前記Al系合金層の最表面に設けられたZn系合金層とからなり、
前記Zn系合金層のAl含有率が0.01wt.%未満であることを特徴とする接続材料。
An Al-based alloy layer and a Zn-based alloy layer provided on the outermost surface of the Al-based alloy layer,
The Zn-based alloy layer has an Al content of 0.01 wt. A connecting material characterized by being less than%.
請求項1記載の接続材料において、
前記Al系合金層のAl含有率が99〜100wt.%であることを特徴とする接続材料。
The connection material according to claim 1,
The Al content of the Al-based alloy layer is 99 to 100 wt. The connection material characterized by%.
請求項1記載の接続材料において、
前記Zn系合金層のZn含有率が90〜100wt.%であることを特徴とする接続材料。
The connection material according to claim 1,
The Zn-based alloy layer has a Zn content of 90 to 100 wt. The connection material characterized by%.
請求項1記載の接続材料において、
前記Zn系合金層は、前記Al系合金層の対向する2つの最表面にそれぞれ設けられていることを特徴とする接続材料。
The connection material according to claim 1,
The Zn-based alloy layer is provided on each of two opposing outermost surfaces of the Al-based alloy layer.
第1のZn系合金層の上にAl系合金層を重ね、前記Al系合金層の上に第2のZn系合金層を重ねて、クラッド圧延または加圧成形により製造し、
前記第1のZn系合金層および前記第2のZn系合金層は、Zn含有率が90〜100wt.%で、Al含有率が0.01wt.%未満であることを特徴とする接続材料の製造方法。
An Al-based alloy layer is stacked on the first Zn-based alloy layer, a second Zn-based alloy layer is stacked on the Al-based alloy layer, and manufactured by clad rolling or pressure forming,
The first Zn-based alloy layer and the second Zn-based alloy layer have a Zn content of 90 to 100 wt. %, And the Al content is 0.01 wt. The manufacturing method of the connection material characterized by being less than%.
半導体素子と、
前記半導体素子を接続するフレームと、
一端が外部端子となるリードと、
前記リードの他端と前記半導体素子の電極とを接続するワイヤと、
前記半導体素子および前記ワイヤを樹脂封止するレジンとを有し、
前記半導体素子と前記フレームとを接続する接続材料は、Al系合金層と、前記Al系合金層の最表面に設けられたZn系合金層とからなり、
前記Zn系合金層のZn含有率が90〜100wt.%で、前記Zn系合金層のAl含有率が0.01wt.%未満であることを特徴とする半導体装置。
A semiconductor element;
A frame for connecting the semiconductor elements;
A lead whose one end is an external terminal;
A wire connecting the other end of the lead and the electrode of the semiconductor element;
A resin for resin-sealing the semiconductor element and the wire;
The connection material for connecting the semiconductor element and the frame comprises an Al-based alloy layer and a Zn-based alloy layer provided on the outermost surface of the Al-based alloy layer,
The Zn-based alloy layer has a Zn content of 90 to 100 wt. %, And the Al content of the Zn-based alloy layer is 0.01 wt. A semiconductor device characterized by being less than%.
半導体素子と、
前記半導体素子を接続する基板と、
一端が外部端子となるリードと、
前記リードの他端と前記半導体素子の電極とを接続するワイヤと、
前記半導体素子および前記ワイヤを気密封止し、前記基板に接続する金属キャップとを有し、
前記基板と前記金属キャップとを接続する接続材料は、Al系合金層と、前記Al系合金層の最表面に設けられたZn系合金層とからなり、
前記Zn系合金層のZn含有率が90〜100wt.%で、前記Zn系合金層のAl含有率が0.01wt.%未満であることを特徴とする半導体装置。
A semiconductor element;
A substrate for connecting the semiconductor elements;
A lead whose one end is an external terminal;
A wire connecting the other end of the lead and the electrode of the semiconductor element;
A metal cap that hermetically seals the semiconductor element and the wire and connects to the substrate;
The connection material for connecting the substrate and the metal cap comprises an Al-based alloy layer and a Zn-based alloy layer provided on the outermost surface of the Al-based alloy layer,
The Zn-based alloy layer has a Zn content of 90 to 100 wt. %, The Zn-based alloy layer has an Al content of 0.01 wt. A semiconductor device characterized by being less than%.
請求項7記載の半導体装置において、
前記半導体素子と前記基板とを接続する接続材料は、Al系合金層と、前記Al系合金層の最表面に設けられたZn系合金層とからなり、前記Zn系合金層のZn含有率が90〜100wt.%で、前記Zn系合金層のAl含有率が0.01wt.%未満であることを特徴とする半導体装置。
The semiconductor device according to claim 7.
The connecting material for connecting the semiconductor element and the substrate is composed of an Al-based alloy layer and a Zn-based alloy layer provided on the outermost surface of the Al-based alloy layer, and the Zn content of the Zn-based alloy layer is 90-100 wt. %, The Zn-based alloy layer has an Al content of 0.01 wt. A semiconductor device characterized by being less than%.
半導体素子を有し、
前記半導体素子と該半導体素子を実装する基板とを接続する接続材料は、Al系合金層と、前記Al系合金層の最表面に設けられたZn系合金層とからなり、
前記Zn系合金層のZn含有率が90〜100wt.%で、前記Zn系合金層のAl含有率が0.01wt.%未満であることを特徴とする半導体装置。
Having a semiconductor element,
The connection material for connecting the semiconductor element and the substrate on which the semiconductor element is mounted includes an Al-based alloy layer and a Zn-based alloy layer provided on the outermost surface of the Al-based alloy layer,
The Zn-based alloy layer has a Zn content of 90 to 100 wt. %, The Zn-based alloy layer has an Al content of 0.01 wt. A semiconductor device characterized by being less than%.
JP2009186960A 2009-08-12 2009-08-12 Connection material, method for manufacturing connection material, and semiconductor device Active JP5152125B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009186960A JP5152125B2 (en) 2009-08-12 2009-08-12 Connection material, method for manufacturing connection material, and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009186960A JP5152125B2 (en) 2009-08-12 2009-08-12 Connection material, method for manufacturing connection material, and semiconductor device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2006314168A Division JP4390799B2 (en) 2006-11-21 2006-11-21 Connection material, method for manufacturing connection material, and semiconductor device

Publications (2)

Publication Number Publication Date
JP2009285732A true JP2009285732A (en) 2009-12-10
JP5152125B2 JP5152125B2 (en) 2013-02-27

Family

ID=41455469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009186960A Active JP5152125B2 (en) 2009-08-12 2009-08-12 Connection material, method for manufacturing connection material, and semiconductor device

Country Status (1)

Country Link
JP (1) JP5152125B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011159544A (en) * 2010-02-02 2011-08-18 Nec Corp Power feeding structure
JP2011238838A (en) * 2010-05-12 2011-11-24 Hitachi Cable Ltd Joint material, method of manufacturing same, semiconductor device, and method of manufacturing same
WO2011158449A1 (en) * 2010-06-16 2011-12-22 株式会社日立製作所 Connection material, semiconductor device, and method for manufacturing same
US9393645B2 (en) 2010-08-31 2016-07-19 Hitachi Metals, Ltd. Junction material, manufacturing method thereof, and manufacturing method of junction structure
JP2019009349A (en) * 2017-06-27 2019-01-17 日立金属株式会社 Electric connecting member, electric connecting structure, and manufacturing method of electric connecting member
CN111739851A (en) * 2019-03-25 2020-10-02 住友化学株式会社 High-purity aluminum sheet, method for manufacturing the same, and power semiconductor module using the same
US20210167034A1 (en) * 2011-06-07 2021-06-03 Infineon Technologies Ag Chip arrangements
US12176315B2 (en) 2018-11-30 2024-12-24 Hitachi Metals, Ltd. Electrical connection member, electrical connection structure, and method for manufacturing electrical connection member

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5877784A (en) * 1981-10-30 1983-05-11 Yamaha Motor Co Ltd Production of composite material
JPS62173095A (en) * 1986-01-24 1987-07-29 Showa Alum Corp Plate material for soldering
JP2002307188A (en) * 2001-04-11 2002-10-22 Hitachi Ltd Products using Zn-Al based solder

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5877784A (en) * 1981-10-30 1983-05-11 Yamaha Motor Co Ltd Production of composite material
JPS62173095A (en) * 1986-01-24 1987-07-29 Showa Alum Corp Plate material for soldering
JP2002307188A (en) * 2001-04-11 2002-10-22 Hitachi Ltd Products using Zn-Al based solder

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011159544A (en) * 2010-02-02 2011-08-18 Nec Corp Power feeding structure
JP2011238838A (en) * 2010-05-12 2011-11-24 Hitachi Cable Ltd Joint material, method of manufacturing same, semiconductor device, and method of manufacturing same
WO2011158449A1 (en) * 2010-06-16 2011-12-22 株式会社日立製作所 Connection material, semiconductor device, and method for manufacturing same
JP2012000629A (en) * 2010-06-16 2012-01-05 Hitachi Ltd Connection material, semiconductor device, and method for manufacturing same
US9393645B2 (en) 2010-08-31 2016-07-19 Hitachi Metals, Ltd. Junction material, manufacturing method thereof, and manufacturing method of junction structure
US20210167034A1 (en) * 2011-06-07 2021-06-03 Infineon Technologies Ag Chip arrangements
JP2019009349A (en) * 2017-06-27 2019-01-17 日立金属株式会社 Electric connecting member, electric connecting structure, and manufacturing method of electric connecting member
US12176315B2 (en) 2018-11-30 2024-12-24 Hitachi Metals, Ltd. Electrical connection member, electrical connection structure, and method for manufacturing electrical connection member
CN111739851A (en) * 2019-03-25 2020-10-02 住友化学株式会社 High-purity aluminum sheet, method for manufacturing the same, and power semiconductor module using the same

Also Published As

Publication number Publication date
JP5152125B2 (en) 2013-02-27

Similar Documents

Publication Publication Date Title
JP4390799B2 (en) Connection material, method for manufacturing connection material, and semiconductor device
JP4262672B2 (en) Semiconductor device and manufacturing method thereof
JP5152125B2 (en) Connection material, method for manufacturing connection material, and semiconductor device
TWI523724B (en) A bonding material, a method for producing the same, and a method of manufacturing the bonding structure
JP4145287B2 (en) Semiconductor device and manufacturing method of semiconductor device
JP5523680B2 (en) Bonded body, semiconductor device, and manufacturing method of bonded body
JP5578326B2 (en) Lead component, manufacturing method thereof, and semiconductor package
JP2007123395A (en) Semiconductor device and method of manufacturing the same
US8525330B2 (en) Connecting member for connecting a semiconductor element and a frame, formed of an Al-based layer and first and second Zn-based layers provided on surfaces of the Al-based layer
JP5723523B2 (en) Connecting material, manufacturing method of connecting material, semiconductor device, manufacturing method of semiconductor device, power module
JP5738523B2 (en) Connection material, connection method, and manufacturing method of semiconductor device
JP2011110601A (en) Joining material, method of manufacturing joining material and semiconductor device, method of manufacturing semiconductor device
JP6078577B2 (en) Connection material, connection method, semiconductor device, and semiconductor device manufacturing method
JP5533223B2 (en) Bonding material and manufacturing method thereof, semiconductor device and manufacturing method thereof
JP2012142320A (en) Semiconductor device manufacturing method
JP2007222939A (en) Brazing filler metal sheet, its production method, and package for electronic parts
JP2011189399A (en) Method for production of connecting material, connecting material, and semiconductor device using the same
JP4668729B2 (en) Manufacturing method of semiconductor device
JP2011167713A (en) Connection material, method for producing the same, and semiconductor device
JPS60143637A (en) electronic components

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120724

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121119

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151214

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5152125

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151214

Year of fee payment: 3