[go: up one dir, main page]

JP2009288228A - Method and device for automatic analysis quantitative observation - Google Patents

Method and device for automatic analysis quantitative observation Download PDF

Info

Publication number
JP2009288228A
JP2009288228A JP2008145560A JP2008145560A JP2009288228A JP 2009288228 A JP2009288228 A JP 2009288228A JP 2008145560 A JP2008145560 A JP 2008145560A JP 2008145560 A JP2008145560 A JP 2008145560A JP 2009288228 A JP2009288228 A JP 2009288228A
Authority
JP
Japan
Prior art keywords
sample
reaction manifold
mixture
automatic analysis
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008145560A
Other languages
Japanese (ja)
Inventor
Kazunobu Kawamoto
和信 川本
Kazuo Masaki
一央 政木
Hyun Keun Park
パク、ヒュングン
Jung Bin Ahn
アン、ジョンビン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BL Tec KK
Original Assignee
BL Tec KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BL Tec KK filed Critical BL Tec KK
Publication of JP2009288228A publication Critical patent/JP2009288228A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/18Water
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N31/00Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods
    • G01N31/22Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods using chemical indicators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N2035/00346Heating or cooling arrangements

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a device for automatic analysis quantitative observation for automatically observing water quality for a long period at every prescribed time safely and accurately without manpower. <P>SOLUTION: In a continuous flow analysis method, a sampled specimen S is continuously injected into a pipe 10 with reagents B and C and is quantitatively mixed with them while being segmented by air A, the mixture is decomposed by a reaction manifold 4 and then analyzed in a usual method by a detector 5. This device 1 for automatic analysis quantitative observation of all nitrogen and all phosphorus samples the specimen S every certain time and supplies it to the pipe 10, decomposes the mixture in the reaction manifold 4 by stopping it for 10 to 30 minutes and heating it while performing UV irradiation at a temperature of 80°C to 90°C, sequentially analyzes the mixtures repeatedly prepared for every certain time, and quantitatively observes all nitrogen and all phosphorus at a specimen sampling point. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、連続流れ分析法(Continuous Flow Analysis, 略してCFA)を用いて、検査対象中の超微量濃度成分の濃度測定を長期間にわたって自動観測する自動分析定量観測装置に関するものである。   The present invention relates to an automatic analysis / quantitative observation apparatus that automatically observes the concentration measurement of ultra-trace concentration components in a test object over a long period of time using a continuous flow analysis method (CFA).

従来より、海水や排水などの検査対象中に含まれる全窒素および全リンの濃度測定を行うための分析装置としては、連続流れ分析法と呼ばれる原理を用いた分析装置が使用されている。   Conventionally, as an analyzer for measuring the concentration of total nitrogen and total phosphorus contained in inspection objects such as seawater and wastewater, an analyzer using a principle called a continuous flow analysis method has been used.

この分析装置では、管内に一定流量で連続的に試薬を導入し、それに空気または不活性ガス等の気体を規則正しく注入して液体を気泡分節し、次に試料および必要とする試薬を順次注入し、混合コイルや反応コイル等を用いて反応を行わせ、生じた反応生成物をフローセル装着の分光光度計等の検出器で測定する方法を採用している(たとえば、特許文献1〜3参照)。
特開平8−285835号公報 特開2006−234601号公報 特開2006−208344号公報
In this analyzer, a reagent is continuously introduced into a tube at a constant flow rate, and a gas such as air or an inert gas is regularly injected therein to segment bubbles of the liquid, and then a sample and a necessary reagent are sequentially injected. In addition, a method is employed in which a reaction is performed using a mixing coil, a reaction coil, or the like, and the resulting reaction product is measured with a detector such as a spectrophotometer equipped with a flow cell (see, for example, Patent Documents 1 to 3). .
JP-A-8-285835 JP 2006-234601 A JP 2006-208344 A

ところで、このような分析装置は、海水や排水などの水質を管理する場合に用いられている。この場合、水質管理の観点からすると、人手を介すること無く、一定時間毎に長期間にわたって自動的に水質を観測することが好ましい。   By the way, such an analyzer is used when managing water quality such as seawater and wastewater. In this case, from the viewpoint of water quality management, it is preferable to automatically observe the water quality over a long period of time at regular intervals without human intervention.

しかし、上記従来の分析装置の場合、反応コイルを用いて反応を行わせる際、高温、高圧でコイルを加熱するため、万が一のことがあった場合に備えて人を配置しておかなければならず、無人での自動観測を実現できない。   However, in the case of the above-described conventional analyzer, when a reaction is performed using a reaction coil, the coil is heated at a high temperature and a high pressure, and therefore a person must be arranged in case of an emergency. Therefore, unattended automatic observation cannot be realized.

そのため、長い反応コイルを用いて長時間にわたって反応させるとともに、無人での自動観測が可能な程度の加熱、加圧条件に緩和することが考えられるが、この場合、反応コイルの長さが非現実的な長さになってしまう。   For this reason, it is conceivable that a long reaction coil is used for reaction over a long period of time, and that the heating and pressurization conditions are relaxed to such an extent that unattended automatic observation is possible. It will be a reasonable length.

本発明は係る実情に鑑みてなされたものであって、人手を介すること無く、安全かつ正確に、一定時間毎に長期間にわたって自動的に水質を観測することができる自動分析定量観測装置を提供することを目的としている。   The present invention has been made in view of such circumstances, and provides an automatic analysis and quantitative observation apparatus capable of observing water quality automatically over a long period of time at a constant time, safely and accurately without human intervention. The purpose is to do.

上記課題を解決するための本発明の自動分析定量観測方法は、サンプリングした試料を、気体で分節しながら試薬とともに管の中に連続的に注入して定量、混合し、この混合液を反応マニホールドで分解した後、検出器で常法により分析するようになされた連続流れ分析方法において、一定時間毎に試料をサンプリングして管に供給し、反応マニホールドでは、10〜30分間混合液を停止させ、80〜90℃の温度でUV照射を行いながら加熱することによって混合液を分解し、一定時間毎に反復して調製されるこられ混合液を順次分析して試料サンプリング地点の全窒素および全リンを経時的に定量観測するようになされたものである。   In order to solve the above-described problems, the automatic analysis and quantitative observation method of the present invention is a method in which a sampled sample is continuously injected into a tube together with a reagent while being segmented by a gas, and quantitatively mixed. In the continuous flow analysis method in which analysis is performed by a conventional method using a detector, the sample is sampled at regular intervals and supplied to the tube, and the reaction manifold is stopped for 10 to 30 minutes. The mixture is decomposed by heating with UV irradiation at a temperature of 80 to 90 ° C., and the prepared mixture is repeatedly analyzed at regular intervals to sequentially analyze the total nitrogen and total at the sample sampling point. Phosphorus is quantitatively observed over time.

また、上記課題を解決するための本発明の自動分析定量観測装置は、オートサンプラーでサンプリングした試料を、秤量ポンプによって、気体で分節しながら試薬とともに管の中に連続的に注入して定量、混合し、この混合液を反応マニホールドで分解した後、検出器で常法により分析するようになされた分析装置であって、反応マニホールドは、10〜30分間混合液を停止させ、80〜90℃の温度でUV照射を行いながら加熱するように構成され、オートサンプラーは、この反応マニホールドでの加熱時間よりも長い間隔で、反復して試料をサンプリングするようになされ、試料注入時以外は管内に水を供給するようになされたものである。   In addition, the automatic analysis and quantitative observation device of the present invention for solving the above-mentioned problem is a method in which a sample sampled by an autosampler is continuously injected into a tube together with a reagent while being segmented by a gas by a weighing pump, The analyzer is mixed and decomposed by the reaction manifold, and then analyzed by a conventional method using a detector. The reaction manifold stops the mixture for 10 to 30 minutes, and is 80 to 90 ° C. The autosampler is configured to repeatedly sample the sample at intervals longer than the heating time in the reaction manifold, and is placed in the tube except during sample injection. It is designed to supply water.

以上述べたように、本発明によると、反応マニホールドで混合液を停止させて80〜90℃の温度で加熱しながらUV照射することにより、混合液を高温高圧にすることなく分解することができる。したがって、試料中の極微量の成分であっても、精度良く全窒素および全リンを測定することが可能となる。また、混合液を高温高圧にすることなく分解するため、無人運転が可能となり、一定時間毎に反復して調製されるこられ混合液を順次分析して試料サンプリング地点の全窒素および全リンを経時的に、かつ安全に定量観測することができる。   As described above, according to the present invention, the mixed solution can be decomposed without increasing the temperature and pressure by stopping the mixed solution at the reaction manifold and performing UV irradiation while heating at a temperature of 80 to 90 ° C. . Therefore, even if it is a trace amount component in a sample, it becomes possible to measure total nitrogen and total phosphorus accurately. In addition, since the mixed solution is decomposed without increasing the temperature and pressure, unattended operation is possible, and the mixed solution prepared repeatedly at regular intervals is analyzed sequentially to determine the total nitrogen and total phosphorus at the sample sampling point. Quantitative observation can be performed safely over time.

また、本発明の自動分析定量観測装置は、反応マニホールドは、10〜30分間の分解液の停止と、80〜90℃の温度での分解液の加熱に加え、UV照射を行いながら分解するように構成しているので、混合液の分解性能に優れた効果を発揮することとなる。   Further, in the automatic analysis and quantitative observation apparatus of the present invention, the reaction manifold is decomposed while performing UV irradiation in addition to stopping the decomposition solution for 10 to 30 minutes and heating the decomposition solution at a temperature of 80 to 90 ° C. Therefore, an effect excellent in the decomposition performance of the mixed solution is exhibited.

以下、本発明の実施の形態を図面を参照して説明する。
図1は自動分析定量観測装置1の全体構成の概略を示し、図2は同自動分析定量観測装置1の反応マニホールド4を示している。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows an outline of the overall configuration of the automatic analysis / quantitative observation apparatus 1, and FIG. 2 shows a reaction manifold 4 of the automatic analysis / quantitative observation apparatus 1.

すなわち、この自動分析定量観測装置1は、オートサンプラー2でサンプリングした試料Sを、秤量ポンプ3によって、空気Aで分節しながら試薬B,Cとともに管10の中に連続的に注入して定量、混合し、この混合液を反応マニホールド4で分解した後、検出器5で常法により分析するようになされた分析装置であって、反応マニホールド4は、10〜30分間にわたって混合液を停止させ、80〜90℃の温度でUV照射を行いながら加熱するように構成され、オートサンプラー2は、この反応マニホールド4での加熱時間よりも長い間隔で、反復して試料Sをサンプリングするようになされ、試料注入時以外は管10内に純水Wを供給するようになされたものである。   That is, the automatic analysis and quantification observation apparatus 1 quantifies the sample S sampled by the autosampler 2 by continuously injecting it into the tube 10 together with the reagents B and C while being segmented by the air A by the weighing pump 3. After mixing and decomposing the mixed solution in the reaction manifold 4, the analyzer is configured to analyze the detector 5 by a conventional method. The reaction manifold 4 stops the mixed solution for 10 to 30 minutes, The sampler 2 is configured to be heated while being irradiated with UV at a temperature of 80 to 90 ° C., and the autosampler 2 is configured to repeatedly sample the sample S at intervals longer than the heating time in the reaction manifold 4. Except for the time of sample injection, pure water W is supplied into the tube 10.

オートサンプラー2は、サンプル吸引ポンプがONとなり、同時にサンプル電磁弁が開いて、常時オーバーフローしているサンプル採取部からサンプルを吸引するように構成されている。サンプリングは、約5〜10分間行われ、その後電磁弁が閉じられて純水Wを吸引するように切り替えられる。   The autosampler 2 is configured such that the sample suction pump is turned on and the sample solenoid valve is opened at the same time, and the sample is sucked from the sample collecting part that is constantly overflowing. Sampling is performed for about 5 to 10 minutes, and then the solenoid valve is closed and switched to suck pure water W.

秤量ポンプ3では、定量型ポンプチューブを装着できるペリスタ型ポンプが用いれられ、サンプリングした試料Sや、試薬B,Cを一定流量で連続的に管10内に供給することができるようになされている。この秤量ポンプ3には、ポンプの脈動と同期して規則正しく空気Aを注入することができる注入気体制御ライン11が設けられ、管10内に導入されたこれら試料Sと試薬B,Cとの混合液を、気泡分節することができるようになされている。試料Sと試薬B,Cとの混合液は、空気Aによって分節された各分節単位での渦流によって混合される。また、管10を螺旋状に巻回し、この螺旋内部を通過する際の転倒混和により混合するようにしてもよい。   The weighing pump 3 uses a peristaltic pump to which a quantitative pump tube can be attached so that the sampled sample S and the reagents B and C can be continuously supplied into the tube 10 at a constant flow rate. . The weighing pump 3 is provided with an injection gas control line 11 capable of regularly injecting the air A in synchronism with the pulsation of the pump, and mixing the sample S introduced into the pipe 10 with the reagents B and C. The liquid can be segmented into bubbles. The mixed solution of the sample S and the reagents B and C is mixed by the vortex in each segment unit segmented by the air A. Alternatively, the tube 10 may be spirally wound and mixed by inversion mixing when passing through the inside of the spiral.

この秤量ポンプ3により、管10に導入された試料Sは、まず、空気Aによって規則正しく分節され、これら分節された各分節単位毎に、試薬Bであるアルカリペルオキソ二硫酸カリウムが注入され、アルカリ分解用の混合液となる。また、反応マニホールド4の中間位置では、別の試薬Cである硫酸が注入されて、酸性ペルオキソ二硫酸カリウムによる酸性分解用の混合液となる。なお、分節する空気Aとしては、不活性ガスを用いるものであってもよい。   The sample S introduced into the pipe 10 by the weighing pump 3 is first regularly segmented by air A, and alkali peroxodisulfate, which is the reagent B, is injected into each segmented unit, and the alkali decomposition is performed. It becomes the liquid mixture for. Further, in the middle position of the reaction manifold 4, sulfuric acid as another reagent C is injected to become a mixed solution for acidic decomposition with acidic potassium peroxodisulfate. In addition, as the air A to be segmented, an inert gas may be used.

反応マニホールド4は、図2に示すように、螺旋状に巻回された石英管41の中心にUV照射ランプ42を設けるとともに、外周からヒータ43を被覆して構成されている。また、石英管41の中間部には、上記した別の試薬Cである硫酸を注入するための分岐管44が設けられている。この反応マニホールド4は、UV照射を行いながら、80〜90℃の温度で石英管41を10〜30分間にわたり加熱することができるように構成されている。そして、加熱する10〜30分間にわたり、石英管41内の混合液が動かないように制御される。この停止時間が10分未満の場合、十分に混合液を分解することができない。また、30分を越えて停止した場合、既に充分に分解するのであまり意味が無くなる。また、加熱温度については、80℃未満の場合、十分に分解することができない。また、加熱温度の上限については、特に高ければ良く分解するが、高く設定すると安全性などの面で無人運転ができなくなるので、90℃以下の範囲に抑えることが好ましい。また、この液の停止と加熱とに加え、反応マニホールド4は、石英管41内の混合液をUV照射ランプ42によって照射するようにしているので、分解が促進される。したがって、80〜90℃の低温で10〜30分間の加熱によって、石英管41内の混合液は、後の分析に有効な分解液として調製することができることとなる。この際、分岐管44より下流側は酸分解用の混合液となされ、上流側はアルカリ分解用の混合液となされているので、それぞれ、この反応マニホールド4での分解により、分岐管44を境にして酸分解液、アルカリ分解液として調製される。   As shown in FIG. 2, the reaction manifold 4 is configured by providing a UV irradiation lamp 42 at the center of a spirally wound quartz tube 41 and covering a heater 43 from the outer periphery. Further, a branch pipe 44 for injecting sulfuric acid, which is another reagent C described above, is provided in the middle part of the quartz tube 41. The reaction manifold 4 is configured so that the quartz tube 41 can be heated at a temperature of 80 to 90 ° C. for 10 to 30 minutes while performing UV irradiation. And it controls so that the liquid mixture in the quartz tube 41 does not move over 10-30 minutes to heat. When this stop time is less than 10 minutes, the mixed solution cannot be sufficiently decomposed. Also, if it stops for more than 30 minutes, it will not be very meaningful because it is already fully decomposed. Moreover, about heating temperature, when it is less than 80 degreeC, it cannot fully decompose | disassemble. In addition, the upper limit of the heating temperature decomposes as long as it is particularly high, but if it is set high, unmanned operation is not possible in terms of safety and the like, so it is preferable to keep it within a range of 90 ° C. In addition to stopping and heating the liquid, the reaction manifold 4 irradiates the mixed liquid in the quartz tube 41 with the UV irradiation lamp 42, so that decomposition is promoted. Therefore, the mixed solution in the quartz tube 41 can be prepared as a decomposition solution effective for later analysis by heating at a low temperature of 80 to 90 ° C. for 10 to 30 minutes. At this time, the downstream side of the branch pipe 44 is a mixed solution for acid decomposition, and the upstream side is a mixed solution for alkaline decomposition. And prepared as an acid decomposition solution and an alkali decomposition solution.

この反応マニホールド4に用いる石英管41としては、 内径1mm〜5mm、より好ましくは2mm〜3mmのものが用いられる。1mm未満の場合は石英管41内を通過する試料Sや試薬B,Cなどの液が詰まり易くなり、5mmを越えると試薬B,Cの使用量が増加して無駄になってしまう。また、石英管41の長さとしては、50cm〜10m、より好ましくは1m〜3mのものが用いられる。50cm未満の場合、分析に必要な充分な量の分解液を調製することができなくなる。また、10mを越えると分析に必要な量以上の分解液が調製されるので無駄が多くなってしまう。   As the quartz tube 41 used for the reaction manifold 4, one having an inner diameter of 1 mm to 5 mm, more preferably 2 mm to 3 mm is used. If it is less than 1 mm, liquids such as sample S and reagents B and C passing through the quartz tube 41 are likely to be clogged, and if it exceeds 5 mm, the amount of reagents B and C used is increased and wasted. The length of the quartz tube 41 is 50 cm to 10 m, more preferably 1 m to 3 m. If it is less than 50 cm, it is impossible to prepare a sufficient amount of decomposition solution necessary for analysis. On the other hand, if the length exceeds 10 m, the amount of the decomposition solution required for the analysis will be prepared, resulting in increased waste.

検出器5では、まず、上記反応マニホールド4で分解された硝酸性窒素に酸化された分解液と、正リン酸に酸化された分解液とが、スプリッターによって二つに分けられて別個にリサンプルされ、それぞれ全窒素分析系6、全リン分析系7に導入される。   In the detector 5, first, the decomposition solution oxidized to nitrate nitrogen decomposed in the reaction manifold 4 and the decomposition solution oxidized to normal phosphoric acid are divided into two by a splitter and separately resampled. And introduced into the total nitrogen analysis system 6 and the total phosphorus analysis system 7, respectively.

全窒素分析系6では、管10に注入されたイミダゾールDを空気Aで分節し、そこに分解液R1を注入し、カドミウム−銅還元コイル61を通過させ、硝酸性窒素を亜硝酸性窒素に還元させる。ついで、ナフチルエチレンジアミンEを注入し、発色した赤色色素を分光光度計50のフローセル51に導入し、550nm付近の分光光度で比色定量する。   In the total nitrogen analysis system 6, the imidazole D injected into the tube 10 is segmented by air A, the decomposition solution R1 is injected there, and the cadmium-copper reduction coil 61 is passed through to convert nitrate nitrogen into nitrite nitrogen. Reduce. Next, naphthylethylenediamine E is injected, and the colored red pigment is introduced into the flow cell 51 of the spectrophotometer 50, and colorimetrically determined with a spectrophotometer near 550 nm.

なお、上記全窒素分析系6では、カドミウム−銅間隙コイルを使用したエチレンジアミン吸光光度法による分析例を示しているが、これに限定されるものではなく管10に注入された純水または硫酸液を空気Aで分節し、そこに分解液R1を注入した後、フローセル51に導入し、220nm付近の分光光度で比色定量するものであってもよい。   The total nitrogen analysis system 6 shows an example of analysis by ethylenediamine absorption photometry using a cadmium-copper gap coil, but is not limited thereto, and pure water or sulfuric acid solution injected into the tube 10 May be segmented with air A, and the decomposition solution R1 may be injected into the air cell A, then introduced into the flow cell 51 and colorimetrically determined with a spectrophotometer near 220 nm.

全リン分析系7では、管10に注入されたモリブデン酸塩の発色試薬Fを気体Aで分節し、そこにアスコルビン酸試薬G、分解液R2を注入し、発色したモリブデン青の青色色素を分光光度計50のフローセル52に導入し、880nm付近の分光光度で比色定量する。   In total phosphorus analysis system 7, molybdate coloring reagent F injected into tube 10 is segmented with gas A, and ascorbic acid reagent G and decomposition solution R2 are injected into it, and the colored blue dye of molybdenum blue is spectroscopically analyzed. The sample is introduced into the flow cell 52 of the photometer 50 and colorimetrically determined with a spectrophotometer near 880 nm.

なお、検出器5に用いる検出装置としては、分光光度計50を用いているが、特に分光光度計50に限定されるものではなく、試料Sによっては、紫外線吸光光度計、蛍光光度計、炎光光度計などであってもよい。   The spectrophotometer 50 is used as the detection device used for the detector 5, but is not particularly limited to the spectrophotometer 50, and depending on the sample S, an ultraviolet absorptiometer, a fluorometer, a flame A photometer may be used.

各試料Sの濃度は、検出器5からの信号を、コンピュータで自動処理することにより算出される。   The concentration of each sample S is calculated by automatically processing the signal from the detector 5 with a computer.

この自動分析定量観測装置1による試料Sの濃度の測定は、あらかじめコンピュータに設定しておくことで、その後は自動的に反復して長期にわたって経時的に測定することができる。連続測定期間としては、1週間以上、一年を通じて連続運転をすることが可能である。   The measurement of the concentration of the sample S by the automatic analysis / quantitative observation apparatus 1 is set in advance in a computer, and thereafter, it can be automatically repeated and measured over time over a long period of time. As the continuous measurement period, it is possible to perform continuous operation for one week or more throughout the year.

なお、試料Sのサンプリングを行うインターバルタイムについては、反応マニホールド4での停止時間(10〜30分)よりも長ければ特に限定されるものではなく、例えば30分毎、1時間毎、またはそれ以上の所望の間隔で設定することができる。ただし、反応マニホールド4で液を停止させることによって、装置経路の液の流れが停止するので、インターバルタイムを短く設定する場合には、先の試料Sが検出器5で検出された後に次の試料Sが反応マニホールドSで停止するように、インターバルタイムを調整するか、経路の管10の長さを調整しておく必要がある。また、インターバルタイムが長い場合、装置経路に試料S以外の水が無駄に多く流れている時間が多くなるので、この場合は、先の試料Sが検出器5で検出された後から次のインターバルタイムまでの間にわたって、装置経路の流れ全体を停止させておくことが好ましい。   The interval time for sampling the sample S is not particularly limited as long as it is longer than the stop time (10 to 30 minutes) in the reaction manifold 4. For example, every 30 minutes, every hour, or more The desired interval can be set. However, since the liquid flow in the apparatus path is stopped by stopping the liquid in the reaction manifold 4, when the interval time is set to be short, the next sample is detected after the previous sample S is detected by the detector 5. It is necessary to adjust the interval time or adjust the length of the pipe 10 in the path so that S stops at the reaction manifold S. In addition, when the interval time is long, the time during which a lot of water other than the sample S flows unnecessarily in the apparatus path increases. In this case, the next interval is detected after the previous sample S is detected by the detector 5. It is preferable to stop the entire flow of the apparatus path until the time.

また、試料Sの濃度を算出する際のデータとしてあらかじめ設定した一定期間毎に、純水Wを試薬Rのみで調製した場合のベースの測定、標準液による検量線の測定が行われる。これらベースの測定や検量線の測定は、装置のメンテナンス時に行うものであっても良いし、長期間にわたって無人運転を行う場合は、試料Sのサンプリングの間に自動的にベースの測定や標準液による検量線の測定を行うようにプログラミングしておいてもよい。   In addition, the base measurement when the pure water W is prepared only with the reagent R and the measurement of the calibration curve with the standard solution are performed every predetermined period set as data for calculating the concentration of the sample S. These base measurement and calibration curve measurement may be performed at the time of maintenance of the apparatus. When unattended operation is performed for a long period of time, the base measurement or standard solution is automatically performed during sampling of the sample S. It may be programmed to perform the calibration curve measurement.

さらに、サンプリングした試料Sは、反応マニホールド4の位置で停止して分解処理を行うため、少なくともこの反応マニホールド4の内部に試料Sが充填されるように送られる。これは、反応マニホールド4の容量や反応マニホールド4までの管10の長さから割り出した容量などを基に秤量ポンプ3で試料Sの送り具合を調整することで可能となる。また、反応マニホールド4で分解処理を行う試料S以外は、この自動分析定量観測装置1の経路に余分な試料Sが流れないように、純水Wに切り替えられる。この純水Wを流すことによって、毎回測定毎の経路の洗浄が行われることとなる。   Further, since the sampled sample S is stopped at the position of the reaction manifold 4 to perform the decomposition process, the sample S is sent so that at least the inside of the reaction manifold 4 is filled with the sample S. This can be achieved by adjusting the feed rate of the sample S by the weighing pump 3 based on the capacity of the reaction manifold 4 and the capacity calculated from the length of the tube 10 to the reaction manifold 4. In addition, the sample water other than the sample S to be decomposed by the reaction manifold 4 is switched to the pure water W so that the excess sample S does not flow in the path of the automatic analysis and quantitative observation apparatus 1. By flowing the pure water W, the path for each measurement is cleaned each time.

実施例1
内径2mm、長さ4mの石英管をコイル状に巻回し、その中央を貫通するようにUVランプを配置し、石英コイルの周囲にバンドヒーターを巻き付けて40〜100℃まで加熱できるように構成した反応マニホールドを有する自動分析定量観測装置を用意した。
Example 1
A quartz tube having an inner diameter of 2 mm and a length of 4 m is wound in a coil shape, a UV lamp is disposed so as to penetrate the center, and a band heater is wound around the quartz coil so that it can be heated to 40 to 100 ° C. An automatic analysis and quantitative observation apparatus having a reaction manifold was prepared.

試薬として、ペルオキソ二硫酸カリウム40g、水酸化ナトリウム4gを純水1000ミリリットルに溶解したものを用意し、他の試薬として、硫酸100ミリリットルを純水1000ミリリットルに溶解したものを用意した。   A reagent prepared by dissolving 40 g of potassium peroxodisulfate and 4 g of sodium hydroxide in 1000 ml of pure water was prepared as a reagent, and another reagent prepared by dissolving 100 ml of sulfuric acid in 1000 ml of pure water was prepared.

試料としてトリポリリン酸0.5gを純水に溶解して1000ミリリットルとしたものを用意した。   A sample prepared by dissolving 0.5 g of tripolyphosphoric acid in pure water to 1000 ml was prepared.

表1に示すように、反応マニホールドで加熱なし、70℃加熱、80℃加熱のそれぞれの条件で液を停止しない場合、5〜30分の停止時間で停止した場合のそれぞれについて、試料であるトリポリリン酸水溶液の濃度を測定した。結果を表1に示す。   As shown in Table 1, when the liquid was not stopped under the conditions of no heating at the reaction manifold, heating at 70 ° C., and heating at 80 ° C., and when stopped at a stopping time of 5 to 30 minutes, The concentration of the acid aqueous solution was measured. The results are shown in Table 1.

Figure 2009288228
Figure 2009288228

表1から、加熱温度が高く停止時間が長い程、回収率に優れ、特に、加熱温度80℃で10分以上停止した場合には86%を超える優れた回収率が得られることが確認できた。   From Table 1, it was confirmed that the higher the heating temperature and the longer the stop time, the better the recovery rate, and in particular, when the heating temperature was stopped at 80 ° C. for 10 minutes or more, an excellent recovery rate exceeding 86% was obtained. .

実施例2
試料として表2に示す各化合物を用意し、上記実施例1と同様の試薬および反応マニホールドを用いて分析を行った。反応マニホールドは、20分停止、80℃で加熱の条件で実験を行った。結果を表2に示す。
Example 2
Each compound shown in Table 2 was prepared as a sample and analyzed using the same reagents and reaction manifold as in Example 1 above. The reaction manifold was stopped for 20 minutes and the experiment was conducted under the condition of heating at 80 ° C. The results are shown in Table 2.

Figure 2009288228
Figure 2009288228

表2から、何れの化合物においても、優れた回収率が得られることが確認できた。   From Table 2, it was confirmed that an excellent recovery rate was obtained with any compound.

本発明は、上下水道、海水、河川、湖沼、等における水質管理に使用される。   The present invention is used for water quality management in water and sewage systems, seawater, rivers, lakes, and the like.

本発明に係る自動分析定量観測装置の全体構成の概略を示す回路図である。It is a circuit diagram which shows the outline of the whole structure of the automatic analysis quantitative observation apparatus based on this invention. 図1の反応マニホールド部分の拡大図である。It is an enlarged view of the reaction manifold part of FIG.

符号の説明Explanation of symbols

1 自動分析定量観測装置
10 管
2 オートサンプラー
3 秤量ポンプ
4 反応マニホールド
5 検出器
S 試料
A 空気(気体)
B 試薬
C 試薬
D 試薬
E 試薬
F 試薬
G 試薬
DESCRIPTION OF SYMBOLS 1 Automatic analysis quantitative observation apparatus 10 Tube 2 Autosampler 3 Weighing pump 4 Reaction manifold 5 Detector S Sample A Air (gas)
B Reagent C Reagent D Reagent E Reagent F Reagent G Reagent

Claims (2)

サンプリングした試料を、気体で分節しながら試薬とともに管の中に連続的に注入して定量、混合し、この混合液を反応マニホールドで分解した後、検出器で常法により分析するようになされた連続流れ分析方法において、
一定時間毎に試料をサンプリングして管に供給し、
反応マニホールドでは、10〜30分間混合液を停止させ、80〜90℃の温度でUV照射を行いながら加熱することによって混合液を分解し、
一定時間毎に反復して調製されるこられ混合液を順次分析して試料サンプリング地点の全窒素および全リンを経時的に定量観測するようになされたことを特徴とする全窒素および全リンの自動分析定量観測方法。
The sampled sample was continuously injected into the tube together with the reagent while being segmented by gas, and quantified and mixed. After this mixture was decomposed by the reaction manifold, it was analyzed by a conventional method with a detector. In the continuous flow analysis method,
Samples are sampled at regular intervals and supplied to the tube.
In the reaction manifold, the mixed solution is stopped for 10 to 30 minutes, and the mixed solution is decomposed by heating while performing UV irradiation at a temperature of 80 to 90 ° C.
The total mixture of nitrogen and total phosphorus is characterized in that it is designed to sequentially measure the total nitrogen and total phosphorus at the sample sampling point over time by sequentially analyzing the mixture prepared repeatedly at regular intervals. Automatic analysis and quantitative observation method.
オートサンプラーでサンプリングした試料を、秤量ポンプによって、気体で分節しながら試薬とともに管の中に連続的に注入して定量、混合し、この混合液を反応マニホールドで分解した後、検出器で常法により分析するようになされた分析装置であって、
反応マニホールドは、10〜30分間混合液を停止させ、80〜90℃の温度でUV照射を行いながら加熱するように構成され、
オートサンプラーは、この反応マニホールドでの加熱時間よりも長い間隔で、反復して試料をサンプリングするようになされ、
試料注入時以外は管内に水を供給するようになされたことを特徴とする全窒素および全リンの自動分析定量観測装置。
The sample sampled by the autosampler is continuously injected into the tube together with the reagent while being segmented by a gas with a weighing pump, and the sample is quantified and mixed. An analysis device adapted to analyze according to
The reaction manifold is configured to stop the mixture for 10 to 30 minutes and heat while performing UV irradiation at a temperature of 80 to 90 ° C.
The autosampler is designed to repeatedly sample the sample at intervals longer than the heating time in this reaction manifold,
An automatic analysis and quantitative observation device for total nitrogen and total phosphorus, characterized in that water is supplied into the tube except during sample injection.
JP2008145560A 2008-05-29 2008-06-03 Method and device for automatic analysis quantitative observation Pending JP2009288228A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080050164A KR100875629B1 (en) 2008-05-29 2008-05-29 Automatic analysis quantitative measurement method and automatic analysis quantitative measurement device

Publications (1)

Publication Number Publication Date
JP2009288228A true JP2009288228A (en) 2009-12-10

Family

ID=40373087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008145560A Pending JP2009288228A (en) 2008-05-29 2008-06-03 Method and device for automatic analysis quantitative observation

Country Status (3)

Country Link
JP (1) JP2009288228A (en)
KR (1) KR100875629B1 (en)
CN (1) CN101592670B (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102253232A (en) * 2010-05-21 2011-11-23 北京吉天仪器有限公司 Automatic analyzer and analysis method for water soluble total phosphorus
CN103217394A (en) * 2013-04-10 2013-07-24 中国科学院合肥物质科学研究院 Online detection device of water dissolved-out nitrogen nutrients of chemical fertilizer
CN104360090A (en) * 2014-11-13 2015-02-18 北京吉天仪器有限公司 Automatic soil analyzer and method for measuring trace elements in soil by using automatic soil analyzer
CN107179417A (en) * 2017-06-29 2017-09-19 中烟施伟策(云南)再造烟叶有限公司 Alliance Continuous Flow Analysis instrument Microflow module is used for the method for measuring of nitrate content in reconstituted tobacco
CN107179416A (en) * 2017-03-29 2017-09-19 云南省烟草质量监督检测站 A kind of miniflow formula method for determining total nitrogen content in tobacco
CN107192683A (en) * 2017-07-25 2017-09-22 福建海峡环保集团股份有限公司 A kind of method of total phosphorus in measure sludge
JP2020091128A (en) * 2018-12-03 2020-06-11 三井金属鉱業株式会社 Method and apparatus for separating or analyzing target components in solution
JP2020134519A (en) * 2019-02-14 2020-08-31 ビーエルテック株式会社 Flow analysis method, flow analyzer
JP2021522470A (en) * 2018-04-17 2021-08-30 アリファックス ソチエタ レスポンサビリタ リミタータAlifax S.R.L. Devices and methods for determining erythrocyte sedimentation rate and other related parameters
JP6947463B1 (en) * 2020-04-08 2021-10-13 ビーエルテック株式会社 Flow analyzer and flow analysis method
WO2021205953A1 (en) * 2020-04-08 2021-10-14 ビーエルテック株式会社 Flow analysis device and flow analysis method

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101655501B (en) * 2009-09-30 2012-02-01 河北科技大学 On-line automatic monitoring system and monitoring method of total nitrogen and total phosphorus in seawater
CN102636446B (en) * 2012-05-09 2013-11-20 江南大学 On-line detection device for detecting total nitrogen and total phosphorus through ozone ultraviolet collaborative oxidative digestion
CN104914064A (en) * 2014-03-14 2015-09-16 株式会社岛津制作所 Analytical device
CN104142323A (en) * 2014-07-04 2014-11-12 中国热带农业科学院橡胶研究所 A method for simultaneous determination of plant nitrogen and phosphorus
KR102077136B1 (en) * 2018-06-19 2020-02-13 주식회사 위코테크 Apparatus for measuring total phosphorus and total nitrogen
CN111366547A (en) * 2018-12-26 2020-07-03 贵州中烟工业有限责任公司 Detection method for determining α -amino nitrogen in tobacco or tobacco products by using continuous flow method
CN110646561B (en) * 2019-10-10 2022-03-08 杭州浅海科技有限责任公司 Flow injection method for injecting reagent at fixed time
CN111089777A (en) * 2020-01-20 2020-05-01 云南省烟草质量监督检测站 Method for rapidly determining potassium content in organic fertilizer for tobacco
CN114981664B (en) * 2020-01-27 2023-02-03 必艾路泰克株式会社 Flow analysis method, flow analysis device
CN111721757A (en) * 2020-03-06 2020-09-29 中国农业科学院农业资源与农业区划研究所 A kind of water body phosphate continuous flow analyzer and detection method
KR102794559B1 (en) * 2024-06-27 2025-04-15 (주)휴마스 UV oxidation reactor for water quality analysis, and the device and method for analyzing water quality using the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08285835A (en) * 1995-04-17 1996-11-01 Buran Le-Be Kk Method and apparatus for automatic analysis of total nitrogen and total phosphorus
JPH09218204A (en) * 1996-02-09 1997-08-19 Hitachi Ltd Trace component analyzer
JP2005345315A (en) * 2004-06-04 2005-12-15 Shimadzu Corp Automatic water quality measuring instrument

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4431231B2 (en) 1999-11-12 2010-03-10 日新製鋼株式会社 Nitrogen concentration automatic analyzer and method
CN1506672A (en) * 2002-12-10 2004-06-23 天津大学 Intermittent on-line total phosphorus and total nitrogen rapid digestion method and device by ultraviolet photooxidation
CN1632525A (en) * 2004-12-19 2005-06-29 中国海洋大学 Online Photocatalytic Total Phosphorus and Total Nitrogen Digestion Analyzer
JP2006234601A (en) * 2005-02-25 2006-09-07 Bl Tec Kk Automatic quantitative analyzer of absorption photometry
CN100541171C (en) * 2007-08-01 2009-09-16 山东省科学院海洋仪器仪表研究所 Method for Measuring Total Nitrogen and Total Phosphorus in Water Body by Ultraviolet Light Combined with Ozone Digestion Spectrophotometry

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08285835A (en) * 1995-04-17 1996-11-01 Buran Le-Be Kk Method and apparatus for automatic analysis of total nitrogen and total phosphorus
JPH09218204A (en) * 1996-02-09 1997-08-19 Hitachi Ltd Trace component analyzer
JP2005345315A (en) * 2004-06-04 2005-12-15 Shimadzu Corp Automatic water quality measuring instrument

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102253232A (en) * 2010-05-21 2011-11-23 北京吉天仪器有限公司 Automatic analyzer and analysis method for water soluble total phosphorus
CN103217394A (en) * 2013-04-10 2013-07-24 中国科学院合肥物质科学研究院 Online detection device of water dissolved-out nitrogen nutrients of chemical fertilizer
CN103217394B (en) * 2013-04-10 2014-11-26 中国科学院合肥物质科学研究院 Online detection device of water dissolved-out nitrogen nutrients of chemical fertilizer
CN104360090A (en) * 2014-11-13 2015-02-18 北京吉天仪器有限公司 Automatic soil analyzer and method for measuring trace elements in soil by using automatic soil analyzer
CN107179416A (en) * 2017-03-29 2017-09-19 云南省烟草质量监督检测站 A kind of miniflow formula method for determining total nitrogen content in tobacco
CN107179417A (en) * 2017-06-29 2017-09-19 中烟施伟策(云南)再造烟叶有限公司 Alliance Continuous Flow Analysis instrument Microflow module is used for the method for measuring of nitrate content in reconstituted tobacco
CN107192683A (en) * 2017-07-25 2017-09-22 福建海峡环保集团股份有限公司 A kind of method of total phosphorus in measure sludge
JP2021522470A (en) * 2018-04-17 2021-08-30 アリファックス ソチエタ レスポンサビリタ リミタータAlifax S.R.L. Devices and methods for determining erythrocyte sedimentation rate and other related parameters
JP7382341B2 (en) 2018-04-17 2023-11-16 アリファックス ソチエタ レスポンサビリタ リミタータ Apparatus and method for determining erythrocyte sedimentation rate and other related parameters
WO2020116274A1 (en) 2018-12-03 2020-06-11 三井金属鉱業株式会社 Method and device for isolating and analyzing target substance in solution
KR20210031757A (en) 2018-12-03 2021-03-22 미쓰이금속광업주식회사 Method and apparatus for separating or analyzing a desired component in a solution
US11215592B2 (en) 2018-12-03 2022-01-04 Mitsui Mining & Smelting Co., Ltd. Method and device for isolating and analyzing target substance in solution
JP2020091128A (en) * 2018-12-03 2020-06-11 三井金属鉱業株式会社 Method and apparatus for separating or analyzing target components in solution
JP2020134519A (en) * 2019-02-14 2020-08-31 ビーエルテック株式会社 Flow analysis method, flow analyzer
JP6947463B1 (en) * 2020-04-08 2021-10-13 ビーエルテック株式会社 Flow analyzer and flow analysis method
WO2021205953A1 (en) * 2020-04-08 2021-10-14 ビーエルテック株式会社 Flow analysis device and flow analysis method
KR20220108185A (en) * 2020-04-08 2022-08-02 비엘 텍 케이.케이. Flow analysis device and flow analysis method
KR102561527B1 (en) 2020-04-08 2023-07-28 비엘 텍 케이.케이. Flow analysis device and flow analysis method
US11906407B2 (en) 2020-04-08 2024-02-20 Bl Tec K.K. Flow analysis device and flow analysis method

Also Published As

Publication number Publication date
CN101592670A (en) 2009-12-02
CN101592670B (en) 2012-09-19
KR100875629B1 (en) 2008-12-26

Similar Documents

Publication Publication Date Title
JP2009288228A (en) Method and device for automatic analysis quantitative observation
DE102009028165B4 (en) Method and apparatus for the automated determination of the chemical oxygen demand of a liquid sample
DE102011088959B4 (en) Device for degassing a liquid and use of this device in an analysis device
CN104730267B (en) TOC, TN, TP concentration and total amount continuous synchronous online monitoring method and instrument
KR101723883B1 (en) Apparatus and method for measuring total organic carbon with integrated oxidation reactor
CN101907558A (en) Total organic carbon online analyzer and method for analyzing total organic carbon
US3659100A (en) System and method of air pollution monitoring utilizing chemiluminescence reactions
WO2019218530A1 (en) Instrument and method for simultaneously testing molecular weight distribution and organic nitrogen level of water sample
CN101793902A (en) Device for fluidly injecting and rapidly analyzing residual chlorine of water quality and analysis method thereof
CN102650590A (en) Method for determining content of nitrogen in nitrate and/or nitrite of water sample and device thereof
Frizzarin et al. A portable multi-syringe flow system for spectrofluorimetric determination of iodide in seawater
WO2018186104A1 (en) Method for quantifying urea and analyzing device
CN110658139A (en) A permanganate index analysis system
JP2022009290A (en) Sampling device for high temperature chemical solutions
CN101187637B (en) Automatic Analysis Method of Phenolic Compounds in Seawater
US8420013B1 (en) Total organic carbon measurement apparatus
CN104792704B (en) Tri- index continuous synchronization real-time online determining instrument of TOC, TN, TP
CN205506674U (en) Aquatic benzene aminated compounds&#39;s continuous flow detection device
JP2000338099A (en) Method for monitoring urea concentration and method and apparatus for making pure water using the method
Zagatto et al. Detecting and circumventing sources of inaccuracy in flow analysis
JP2017223583A (en) Water Quality Analyzer
JP2010044034A (en) Fluorine analysis method and fluorine analysis system
CN105486651A (en) Chemical analysis method of lanthanum in lead-base alloy
US20230314332A1 (en) Analysis system and management system, analysis method, and analysis program
CN205246529U (en) Hexavalent chromium survey device in water sample based on little reaction system flows

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120409

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120411

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120807