[go: up one dir, main page]

JP2009200213A - Semiconductor device and method of manufacturing same - Google Patents

Semiconductor device and method of manufacturing same Download PDF

Info

Publication number
JP2009200213A
JP2009200213A JP2008039742A JP2008039742A JP2009200213A JP 2009200213 A JP2009200213 A JP 2009200213A JP 2008039742 A JP2008039742 A JP 2008039742A JP 2008039742 A JP2008039742 A JP 2008039742A JP 2009200213 A JP2009200213 A JP 2009200213A
Authority
JP
Japan
Prior art keywords
film
semiconductor device
titanium nitride
tino
nitride film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008039742A
Other languages
Japanese (ja)
Inventor
Takaaki Kawahara
孝昭 川原
Shinsuke Sakashita
真介 坂下
Jiro Yoshigami
二郎 由上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Technology Corp
Original Assignee
Renesas Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Technology Corp filed Critical Renesas Technology Corp
Priority to JP2008039742A priority Critical patent/JP2009200213A/en
Publication of JP2009200213A publication Critical patent/JP2009200213A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor device having a hybrid structure, a threshold voltage (Vth) of which is low and the semiconductor characteristics of which bring about no problem. <P>SOLUTION: The semiconductor device having a hybrid structure includes an n-type semiconductor element comprising a first gate insulating film 4, which is a high-k film, on a substrate 1 between a first source region 2 and a first drain region 3 provided on the substrate 1, and a first gate electrode, which is a polysilicon film, on the first gate insulating film 4, and a p-type semiconductor element comprising a second gate insulating film 4, which is a high-k film, on the substrate 1 between a second source region 2 and a second drain region 3 provided on the substrate 1, first metal films 7, 8 on a second insulating film, and a second gate electrode, which is a polysilicon film, on the first metal films 7, 8. Then, the first metal film 8 includes a titanium nitride film to which an additive material that increases the work function compared to titanium nitride alone includes been added. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、半導体装置及びその製造方法に係る発明であって、特に、ハイブリッド構造を有する半導体装置及びその製造方法に関するものである。   The present invention relates to a semiconductor device and a manufacturing method thereof, and more particularly to a semiconductor device having a hybrid structure and a manufacturing method thereof.

近年、半導体装置における微細化が進み、45nmノード以降SoC(System On a Chip)デバイスではpoly−Si/SiONに代わって、poly−Si/metal/high−kゲートスタック構造の適用が検討されている。具体的には、特許文献1や非特許文献1,2に詳しく述べられている。ここで、high−kとは、高誘電率の素材を用いたゲート絶縁膜であり、例えばHfSiON膜などがある。   In recent years, miniaturization of semiconductor devices has progressed, and application of a poly-Si / metal / high-k gate stack structure is being considered instead of poly-Si / SiON in SoC (System On a Chip) devices after 45 nm node. . Specifically, it is described in detail in Patent Document 1 and Non-Patent Documents 1 and 2. Here, high-k is a gate insulating film using a high dielectric constant material, such as an HfSiON film.

poly−Si/high−k構造では、特に、p型のMIS(Metal Insulator Semiconductor)において、ゲート空乏化やFermi Level Pinningという現象により閾値電圧(Vth)の上昇という課題があったが、Siプロセスに適用しやすいTiNを、p型のMISのみに用いることで課題を解決していた。具体的には、poly−SiとHfSiONとの間にTiNを挿入するpoly−Si/TiN/HfSiONのp型MISと、poly−Si/HfSiONのn型MISとを備えるハイブリッド構造のゲートトランジスタにより、特に顕著なpMIS側のゲート空乏化の課題を解決していた。   In the poly-Si / high-k structure, particularly in the p-type MIS (Metal Insulator Semiconductor), there is a problem that the threshold voltage (Vth) increases due to the phenomenon of gate depletion and Fermi Level Pinning. The problem has been solved by using TiN, which is easy to apply, only for p-type MIS. Specifically, a hybrid-structure gate transistor including a poly-Si / TiN / HfSiON p-type MIS in which TiN is inserted between poly-Si and HfSiON and a poly-Si / HfSiON n-type MIS, In particular, the problem of gate depletion on the pMIS side was solved.

一方、特許文献2に記載しているように、p型のMISの閾値電圧の低減策として、ゲート絶縁膜形成前の基板への電気陰性度の高いF(フッ素)イオンの注入する方法が有効であった。   On the other hand, as described in Patent Document 2, as a measure for reducing the threshold voltage of p-type MIS, a method of implanting F (fluorine) ions having high electronegativity into a substrate before forming a gate insulating film is effective. Met.

特開2007−19396号公報JP 2007-19396 A 特開2003−273350号公報JP 2003-273350 A T. Hayashi, Y. Nishida, S. Sakashita, M. Mizutani, S. Yamanari, M. Higashi, T. Kawahara, M. Inoue, J. Yugami, J. Tsuchimoto, K. Shiga, N. Murata, H. Sayama,T. Yamashita, H. Oda, T. Kuroi, T. Eimori, and Y. Inoue, "Cost Worthy and High Performance LSTP CMIS; poly-Si/HfSiON nMIS and poly-Si/TiN/HfSiON pMIS ", IEDM Tech.Dig., (2006) p.247.T. Hayashi, Y. Nishida, S. Sakashita, M. Mizutani, S. Yamanari, M. Higashi, T. Kawahara, M. Inoue, J. Yugami, J. Tsuchimoto, K. Shiga, N. Murata, H. Sayama, T. Yamashita, H. Oda, T. Kuroi, T. Eimori, and Y. Inoue, "Cost Worthy and High Performance LSTP CMIS; poly-Si / HfSiON nMIS and poly-Si / TiN / HfSiON pMIS", IEDM Tech.Dig., (2006) p.247. M.Inoue, S.Tsujikawa, M.Mizutani, K.Nomura, T.Hayashi, K.Shiga, J.Yugami,J.Tsuchimoto, Y.Ohno, and M.Yoneda, "Fluorine Incorporation into HfSiON Dielectric for Vth Control and Its Impact on Reliability for Poly-Si Gate pFET", IEDM Tech.Dig., (2005) p.425.M. Inoue, S. Tsujikawa, M. Mizutani, K. Nomura, T. Hayashi, K. Shiga, J. Yugami, J. Tsuchimoto, Y. Ohno, and M. Yoneda, "Fluorine Incorporation into HfSiON Dielectric for Vth Control and Its Impact on Reliability for Poly-Si Gate pFET ", IEDM Tech.Dig., (2005) p.425.

しかし、p型MISのpoly−SiとHfSiONとの間に挿入するTiNを、下層膜にダメージの少ないPVD(Physical Vapor Deposition:物理蒸着積層)を用いて形成した場合、poly−Si/TiN/high−k構造におけるTiNの仕事関数(WF)は4.8eV程度となり、ITRS2006 update版で要求されている仕事関数(WF)の4.9eVに届かない問題があった。そのため、従来の半導体装置では、閾値電圧(Vth)を充分低くできなかった。   However, when TiN inserted between poly-Si of p-type MIS and HfSiON is formed using PVD (Physical Vapor Deposition) with less damage to the lower layer film, poly-Si / TiN / high The work function (WF) of TiN in the -k structure is about 4.8 eV, and there is a problem that the work function (WF) required in the ITRS 2006 update version does not reach 4.9 eV. Therefore, the threshold voltage (Vth) cannot be sufficiently lowered in the conventional semiconductor device.

また、p型MISの閾値電圧(Vth)の低減策としては背景技術でも述べたように、ゲート絶縁膜作製前の基板へのF(フッ素)イオン注入が有効であるが、多量に注入すると注入ダメージによりS値(Subthreshold Swing)の劣化やIon値(オン電流値)の低下等の半導体特性に問題が生じる。   As described in the background art, as a measure for reducing the threshold voltage (Vth) of the p-type MIS, F (fluorine) ion implantation into the substrate before the gate insulating film is effective. Damage causes problems in semiconductor characteristics such as deterioration of S value (Subthreshold Swing) and decrease of Ion value (ON current value).

そこで、本発明は、閾値電圧(Vth)が低く、且つ半導体特性に問題が生じないハイブリッド構造の半導体装置を提供することを目的とする。   Accordingly, an object of the present invention is to provide a semiconductor device having a hybrid structure that has a low threshold voltage (Vth) and does not cause a problem in semiconductor characteristics.

本発明の1つの実施形態は、基板に設けた第1ソース領域と第1ドレイン領域との間の前記基板上に形成されるhigh−k膜からなる第1ゲート絶縁膜と、前記第1ゲート絶縁膜上に形成されるポリシリコン膜からなる第1ゲート電極とを備えたn型の半導体素子と、前記基板に設けた第2ソース領域と第2ドレイン領域との間の前記基板上に形成されるhigh−k膜からなる第2ゲート絶縁膜と、前記第2絶縁膜上に形成される第1金属膜と、前記第1金属膜上に形成されるポリシリコン膜からなる第2ゲート電極とを備えたp型の半導体素子とを備えるハイブリッド構造の半導体装置である。そして、本発明の1つの実施形態では、前記第1金属膜が、窒化チタン単体よりも仕事関数が高くなる添加物質を添加した窒化チタン膜を有している。   In one embodiment of the present invention, a first gate insulating film made of a high-k film formed on the substrate between a first source region and a first drain region provided on the substrate, and the first gate Formed on the substrate between an n-type semiconductor element having a first gate electrode made of a polysilicon film formed on an insulating film, and a second source region and a second drain region provided on the substrate. A second gate insulating film made of a high-k film, a first metal film formed on the second insulating film, and a second gate electrode made of a polysilicon film formed on the first metal film And a p-type semiconductor element having a hybrid structure. In one embodiment of the present invention, the first metal film has a titanium nitride film to which an additive substance having a work function higher than that of a single titanium nitride is added.

本発明に記載の半導体装置は、窒化チタン単体よりも仕事関数が高くなる添加物質を添加した窒化チタン膜を有している第1金属膜を第2絶縁膜上に形成しているので、閾値電圧(Vth)が低く、且つS値やIon値等の半導体特性に問題が生じない。   In the semiconductor device according to the present invention, the first metal film having the titanium nitride film to which the additive substance having a work function higher than that of the titanium nitride alone is added is formed on the second insulating film. The voltage (Vth) is low, and there is no problem in semiconductor characteristics such as S value and Ion value.

(実施の形態1)
図1に、本実施の形態に係る半導体装置の断面図を示す。図1に示す半導体装置は、poly−Si/high−k構造のn型MIS(Metal Insulator Semiconductor:金属絶縁膜半導体)とpoly−Si/TiN/high−k構造のp型MISとを備えるハイブリッド構造の半導体装置である。具体的に説明すると、図1の左側に示すn型MISは、半導体基板1に形成されたソース領域2とドレイン領域3との間の半導体基板1上に、high−kのHfSiON膜4をゲート絶縁膜として形成し、当該HfSiON膜4上にpoly−Si膜5をゲート電極として形成している。また、HfSiON膜4及びpoly−Si膜5の側面には絶縁膜でサイドウォール6を形成している。なお、図1に示すn型MISは、nFET(Field effect transistor)として機能している。
(Embodiment 1)
FIG. 1 shows a cross-sectional view of the semiconductor device according to the present embodiment. The semiconductor device shown in FIG. 1 has a hybrid structure including an n-type MIS (Metal Insulator Semiconductor) having a poly-Si / high-k structure and a p-type MIS having a poly-Si / TiN / high-k structure. This is a semiconductor device. More specifically, the n-type MIS shown on the left side of FIG. 1 gates a high-k HfSiON film 4 on the semiconductor substrate 1 between the source region 2 and the drain region 3 formed in the semiconductor substrate 1. An insulating film is formed, and a poly-Si film 5 is formed as a gate electrode on the HfSiON film 4. Further, sidewalls 6 are formed of insulating films on the side surfaces of the HfSiON film 4 and the poly-Si film 5. Note that the n-type MIS shown in FIG. 1 functions as an nFET (Field effect transistor).

一方、図1の右側に示すp型MISは、半導体基板1に形成されたソース領域2とドレイン領域3との間の半導体基板1上に、high−kのHfSiON膜4をゲート絶縁膜として形成し、当該HfSiON膜4上にTiN膜7を形成している。さらに、p型MISは、TiN膜7上にTiNO膜8を形成し、TiNO膜8上にpoly−Si膜5をゲート電極として形成している。また、HfSiON膜4、TiN膜7、TiNO膜8及びpoly−Si膜5の側面には絶縁膜でサイドウォール6を形成している。なお、図1に示すp型MISは、pFETとして機能している。また、n型MISとp型MISとの間には、図1に示すように素子分離膜9を設けて両半導体素子を分離している。   On the other hand, the p-type MIS shown on the right side of FIG. 1 has a high-k HfSiON film 4 formed as a gate insulating film on the semiconductor substrate 1 between the source region 2 and the drain region 3 formed on the semiconductor substrate 1. A TiN film 7 is formed on the HfSiON film 4. Further, in the p-type MIS, a TiNO film 8 is formed on the TiN film 7, and a poly-Si film 5 is formed on the TiNO film 8 as a gate electrode. Further, sidewalls 6 are formed of insulating films on the side surfaces of the HfSiON film 4, the TiN film 7, the TiNO film 8, and the poly-Si film 5. Note that the p-type MIS shown in FIG. 1 functions as a pFET. Further, as shown in FIG. 1, an element isolation film 9 is provided between the n-type MIS and the p-type MIS to separate the two semiconductor elements.

図1に示すp型MISでは、HfSiON膜4上にTiN膜7及びTiNO膜8を設けているので、1000℃程度の活性化アニール時、TiNO膜8中の酸素元素(O)がHfSiON膜4方向に拡散して、閾値電圧(Vth)を低減できる。また、酸素元素(O)は、窒化チタン単体よりも仕事関数が高くなる添加物質であるため、ITRS2006 update版で要求されている仕事関数(WF)の4.9eVを得ることができる。ここで、窒化チタン単体よりも仕事関数が高くなる添加物質としては、酸素元素(O)以外にフッ素(F)や塩素(Cl)がある。さらに、図1では、HfSiON膜4とpoly−Si膜5とに挟まれる金属膜として、TiN膜7及びTiNO膜8の2層積層構造としているが、本発明はこれに限られず、当該金属膜はTiNO膜8の1層構造でも良い。   In the p-type MIS shown in FIG. 1, since the TiN film 7 and the TiNO film 8 are provided on the HfSiON film 4, the oxygen element (O) in the TiNO film 8 is converted into the HfSiON film 4 during activation annealing at about 1000 ° C. The threshold voltage (Vth) can be reduced by diffusing in the direction. Further, since oxygen element (O) is an additive substance having a work function higher than that of titanium nitride alone, a work function (WF) of 4.9 eV required in the ITRS 2006 update version can be obtained. Here, as an additive substance having a work function higher than that of titanium nitride alone, there are fluorine (F) and chlorine (Cl) in addition to the oxygen element (O). Further, in FIG. 1, the metal film sandwiched between the HfSiON film 4 and the poly-Si film 5 has a two-layer laminated structure of a TiN film 7 and a TiNO film 8, but the present invention is not limited to this, and the metal film May be a single-layer structure of the TiNO film 8.

次に、図1に示す半導体装置の製造方法について説明する。図1に示す半導体装置の構成は基本的に従来の構成と類似しているため詳細な製造方法については省略し、特徴部分であるTiN膜7及びTiNO膜8の2層積層構造の製造方法についてのみ説明する。まず、HfSiON膜4上にTiN膜7をTiターゲットにアルゴン、窒素混合ガスを用いてスパッタで形成する。その後、アルゴン、窒素混合ガスに酸素ガスを添加して、リアクティブスパッタ法を用いて、TiN膜7上にTiNO膜8を形成する。つまり、TiN膜7及びTiNO膜8の2層を同じスパッタ装置で、添加する酸素ガスの有無により連続して形成することができる。   Next, a method for manufacturing the semiconductor device shown in FIG. 1 will be described. Since the configuration of the semiconductor device shown in FIG. 1 is basically similar to the conventional configuration, a detailed manufacturing method is omitted, and a manufacturing method of a two-layer structure of a TiN film 7 and a TiNO film 8 which is a characteristic part is omitted. Only explained. First, a TiN film 7 is formed on the HfSiON film 4 by sputtering using a mixed gas of argon and nitrogen as a Ti target. Thereafter, an oxygen gas is added to the mixed gas of argon and nitrogen, and a TiNO film 8 is formed on the TiN film 7 by using a reactive sputtering method. That is, two layers of the TiN film 7 and the TiNO film 8 can be continuously formed by the same sputtering apparatus depending on the presence or absence of the oxygen gas to be added.

n型MISを形成する領域のTiN膜7及びTiNO膜8は、ウェットエッチングで除去した後に、pドープしたpoly−Si膜5を形成することで図1に示す半導体装置を形成している。   The TiN film 7 and the TiNO film 8 in the region where the n-type MIS is to be formed are removed by wet etching, and then a p-doped poly-Si film 5 is formed to form the semiconductor device shown in FIG.

TiNO膜8を生成する方法として、リアクティブスパッタ法以外に酸素雰囲気中でTiN膜7をアニールする方法やTiN膜7へ酸素イオンを注入する方法を採用することが考えられる。しかし、酸素雰囲気中でTiN膜7をアニールする方法は、TiNO膜8の形成を精度良く制御できないデメリットがあり、所望の膜厚のTiNO膜8を形成することが難しいことが考えられる。また、TiN膜7へ酸素イオンを注入する方法では、high−kのHfSiON膜4への注入ダメージによるS値劣化などの半導体素子特性が低下する可能性が考えられる。なお、半導体基板1へのF(フッ素)イオン注入でも、同様にHfSiON膜4への注入ダメージによるS値劣化などの半導体素子特性が低下する可能性が考えられる。   As a method of generating the TiNO film 8, it is conceivable to employ a method of annealing the TiN film 7 in an oxygen atmosphere or a method of implanting oxygen ions into the TiN film 7 in addition to the reactive sputtering method. However, the method of annealing the TiN film 7 in an oxygen atmosphere has a demerit that the formation of the TiNO film 8 cannot be accurately controlled, and it is considered difficult to form the TiNO film 8 having a desired film thickness. Further, in the method of implanting oxygen ions into the TiN film 7, there is a possibility that semiconductor element characteristics such as S value deterioration due to implantation damage to the high-k HfSiON film 4 may be lowered. Note that even when F (fluorine) ion implantation into the semiconductor substrate 1 is performed, there is a possibility that the semiconductor element characteristics such as S value deterioration due to implantation damage to the HfSiON film 4 may be lowered.

一方、本実施の形態で説明したリアクティブスパッタ法を利用してTiNO膜8を形成する場合は、PVD(Physical Vapor Deposition:物理蒸着堆積)法であるのでHfSiON膜4へのダメージがイオン注入より低く、S値劣化などの半導体素子特性の低下が生じない。   On the other hand, when the TiNO film 8 is formed using the reactive sputtering method described in the present embodiment, since the PVD (Physical Vapor Deposition) method is used, damage to the HfSiON film 4 is caused by ion implantation. Low and does not cause deterioration of semiconductor element characteristics such as S value degradation.

なお、p型MISは、n型MISに比べてTiN膜7及びTiNO膜8の2層積層構造を追加しているため高くなる。そのため、p型MISとn型MISとをエッチングで加工する場合、両者で加工の差が生じてしまうことが考えられる。そこで、本実施の形態では、両者で加工の差が生じないようにするためにTiN膜7及びTiNO膜8の2層積層構造の膜厚をpoly−Si膜5の10分の1程度にすることが望ましい。   Note that the p-type MIS is higher than the n-type MIS because a two-layer stacked structure of the TiN film 7 and the TiNO film 8 is added. For this reason, when the p-type MIS and the n-type MIS are processed by etching, a difference in processing may occur between the two. Therefore, in the present embodiment, the thickness of the two-layer laminated structure of the TiN film 7 and the TiNO film 8 is set to about 1/10 of that of the poly-Si film 5 in order to prevent the processing difference between them. It is desirable.

また、本実施の形態に係る半導体装置で、TiN膜7及びTiNO膜8の2層積層構造の代わりにTiNO膜8のみの構成を採用する場合、ゲート絶縁膜の膜厚が増えることがないように制御してTiNO膜8を形成する必要がある。   Further, in the semiconductor device according to the present embodiment, when the configuration of only the TiNO film 8 is adopted instead of the two-layer laminated structure of the TiN film 7 and the TiNO film 8, the thickness of the gate insulating film does not increase. It is necessary to form the TiNO film 8 under the control.

(実施の形態2)
図2に、本実施の形態に係る半導体装置の断面図を示す。図2に示す半導体装置は、実施の形態1と異なりn型MISもpoly−Si/TiN/high−k構造を備えるハイブリッド構造の半導体装置である。具体的に説明すると、図2の左側に示すn型MISは、半導体基板1に形成されたソース領域2とドレイン領域3との間の半導体基板1上に、high−kのHfSiON膜4をゲート絶縁膜として形成し、当該HfSiON膜4上にTiN膜7を形成している。さらに、n型MISは、TiN膜7上にNリッチなTiN膜10を形成し、当該NリッチなTiN膜10上にpoly−Si膜5をゲート電極として形成している。また、HfSiON膜4及びpoly−Si膜5の側面には絶縁膜でサイドウォール6を形成している。
(Embodiment 2)
FIG. 2 is a cross-sectional view of the semiconductor device according to this embodiment. The semiconductor device shown in FIG. 2 is a semiconductor device having a hybrid structure in which the n-type MIS has a poly-Si / TiN / high-k structure unlike the first embodiment. More specifically, the n-type MIS shown on the left side of FIG. 2 gates a high-k HfSiON film 4 on the semiconductor substrate 1 between the source region 2 and the drain region 3 formed in the semiconductor substrate 1. A TiN film 7 is formed on the HfSiON film 4 as an insulating film. Further, in the n-type MIS, an N-rich TiN film 10 is formed on the TiN film 7, and a poly-Si film 5 is formed on the N-rich TiN film 10 as a gate electrode. Further, sidewalls 6 are formed of insulating films on the side surfaces of the HfSiON film 4 and the poly-Si film 5.

ここで、NリッチなTiN膜10とは、化学量論組成の窒化チタンよりも窒素リッチな窒化チタン膜である。なお、化学量論組成の窒化チタンとは、TiとNとが1対1で構成されている窒化チタンをいう。一方、p型MISについては、実施の形態1で示した構成と同じであるため、詳細な説明を省略する。   Here, the N-rich TiN film 10 is a titanium nitride film that is richer in nitrogen than titanium nitride having a stoichiometric composition. The stoichiometric titanium nitride refers to titanium nitride in which Ti and N are configured in a one-to-one relationship. On the other hand, the p-type MIS is the same as that shown in the first embodiment, and thus detailed description thereof is omitted.

次に、図2に示す半導体装置の製造方法について図3乃至図9を用いて説明する。まず、図3では、素子分離膜9で分けられたn型MISの領域及びp型MISの領域の半導体基板1上にHfSiON膜4を形成し、その上にTiN膜7をスパッタで形成する。さらに、図3では、TiN膜7上に酸素を供給したリアクティブスパッタ法でTiNO膜8を形成して、TiN膜7及びTiNO膜8の2層積層構造とする。   Next, a method for manufacturing the semiconductor device shown in FIG. 2 will be described with reference to FIGS. First, in FIG. 3, the HfSiON film 4 is formed on the semiconductor substrate 1 in the n-type MIS region and the p-type MIS region separated by the element isolation film 9, and the TiN film 7 is formed thereon by sputtering. Further, in FIG. 3, a TiNO film 8 is formed on the TiN film 7 by a reactive sputtering method in which oxygen is supplied to form a two-layer laminated structure of the TiN film 7 and the TiNO film 8.

次に、図4では、レジスト塗布とリソグラフィ処理を行ってp型MISの領域のみにレジスト膜11を形成し、エッチング処理を行うことでn型MISの領域のTiNO膜8を取り除く。次に、図5では、レジスト膜11を取り除いて、TiN膜7上に所定量以上の過剰な窒素を供給したリアクティブスパッタ法でNリッチなTiN膜10を形成する。なお、所定量の過剰な窒素とは、通常のスパッタ法でTiN膜を形成する際に供給される窒素量以上の量をいう。   Next, in FIG. 4, resist coating and lithography are performed to form a resist film 11 only in the p-type MIS region, and the TiNO film 8 in the n-type MIS region is removed by performing an etching process. Next, in FIG. 5, the resist film 11 is removed, and an N-rich TiN film 10 is formed on the TiN film 7 by a reactive sputtering method in which excess nitrogen of a predetermined amount or more is supplied. The predetermined amount of excess nitrogen means an amount equal to or more than the amount of nitrogen supplied when forming a TiN film by a normal sputtering method.

次に、図6では、レジスト塗布とリソグラフィ処理を行ってn型MISの領域のみにレジスト膜12を形成する。次に、図7では、エッチング処理を行うことでp型MISの領域のNリッチなTiN膜10を取り除き、その後レジスト膜12も除去する。   Next, in FIG. 6, resist coating and lithography are performed to form a resist film 12 only in the n-type MIS region. Next, in FIG. 7, the N-rich TiN film 10 in the p-type MIS region is removed by performing an etching process, and then the resist film 12 is also removed.

次に、図8では、図7に示したTiNO膜8とNリッチなTiN膜10との上にpoly−Si膜5を形成し、リソグラフィ処理を用いて所定のゲート電極及びゲート絶縁膜に加工する。その後、従来の半導体装置の形成方法と同様の活性化アニールやソース領域2、ドレイン領域3及びサイドウォール6の加工等の処理を行うことで、図9に示すような本実施の形態に係る半導体装置を形成することができる。なお、図9に示す半導体装置では、poly−Si膜5上にNiSi膜13を設けている。   Next, in FIG. 8, a poly-Si film 5 is formed on the TiNO film 8 and the N-rich TiN film 10 shown in FIG. 7, and is processed into a predetermined gate electrode and gate insulating film using lithography processing. To do. After that, the semiconductor according to the present embodiment as shown in FIG. 9 is obtained by performing activation annealing, processing of the source region 2, the drain region 3, and the sidewall 6 similar to the conventional method for forming a semiconductor device. A device can be formed. In the semiconductor device shown in FIG. 9, the NiSi film 13 is provided on the poly-Si film 5.

NリッチなTiN膜10を生成する方法として、リアクティブスパッタ法以外にTiN膜7へ窒素イオンを注入する方法を採用することが考えられる。しかし、TiN膜7へ窒素イオンを注入する方法では、high−kのHfSiON膜4への注入ダメージによるS値劣化などの半導体素子特性が低下する可能性が考えられる。   As a method for generating the N-rich TiN film 10, it is conceivable to employ a method of implanting nitrogen ions into the TiN film 7 in addition to the reactive sputtering method. However, in the method of implanting nitrogen ions into the TiN film 7, there is a possibility that semiconductor element characteristics such as S value deterioration due to implantation damage to the high-k HfSiON film 4 may be lowered.

一方、本実施の形態で説明したリアクティブスパッタ法を利用してNリッチなTiN膜10を形成する場合は、低ダメージのPVD法であるためHfSiON膜4へのダメージがイオン注入より低く、S値劣化などの半導体素子特性の低下がほとんど生じない。   On the other hand, when the N-rich TiN film 10 is formed by using the reactive sputtering method described in the present embodiment, the damage to the HfSiON film 4 is lower than that of the ion implantation because of the low damage PVD method. Degradation of semiconductor element characteristics such as value deterioration hardly occurs.

なお、p型MISのTiNO膜8のエッチングレートは、n型MISのNリッチなTiN膜10に比べて低い。そのため、p型MISとn型MISとをエッチングで加工する場合、両者で加工の差が生じてしまうことが考えられる。そこで、本実施の形態では、両者で加工の差が生じないようにするためにNリッチなTiN膜10の膜厚をTiNO膜8の膜厚の1.5倍から2倍程度にすることが望ましい。   The etching rate of the p-type MIS TiNO film 8 is lower than that of the n-type MIS N-rich TiN film 10. For this reason, when the p-type MIS and the n-type MIS are processed by etching, a difference in processing may occur between the two. Therefore, in the present embodiment, the thickness of the N-rich TiN film 10 is set to about 1.5 to 2 times the thickness of the TiNO film 8 in order to prevent a difference in processing between them. desirable.

また、本実施の形態に係る半導体装置のn型MISでは、TiN膜7及びNリッチなTiN膜10の2層積層構造であることを説明したが、本発明はこれに限られずNリッチなTiN膜10の1層構造であっても良い。但し、本実施の形態では、図4の工程でTiN膜7を一部残してTiNO膜8をウェット又はドライエッチングで除去するので、HfSiON膜4へのエッチングダメージを抑えることができるが、NリッチなTiN膜10の1層構造の場合には別の方法でHfSiON膜4へのエッチングダメージを抑える必要がある。   Further, in the n-type MIS of the semiconductor device according to the present embodiment, it has been described that the TiN film 7 and the N-rich TiN film 10 have a two-layer laminated structure. However, the present invention is not limited to this, and the N-rich TiN. A one-layer structure of the film 10 may be used. However, in this embodiment, the TiNO film 8 is removed by wet or dry etching while leaving a part of the TiN film 7 in the step of FIG. 4, so that etching damage to the HfSiON film 4 can be suppressed, but N-rich In the case of the single layer structure of the TiN film 10, it is necessary to suppress etching damage to the HfSiON film 4 by another method.

以上のように、本実施の形態に係る半導体装置では、1000℃程度の活性化アニール時、NリッチなTiN膜10中の窒素元素(N)がHfSiON膜4方向に拡散して、閾値電圧(Vth)を低減できる。また、本実施の形態では、リアクティブスパッタ法を利用してNリッチなTiN膜10を形成するので、HfSiON膜4への注入ダメージによるS値劣化などがほとんど起こらない。   As described above, in the semiconductor device according to the present embodiment, during activation annealing at about 1000 ° C., the nitrogen element (N) in the N-rich TiN film 10 diffuses in the direction of the HfSiON film 4 and the threshold voltage ( Vth) can be reduced. In this embodiment, since the N-rich TiN film 10 is formed by using the reactive sputtering method, S value deterioration due to implantation damage to the HfSiON film 4 hardly occurs.

本発明の実施の形態1に係る半導体装置の断面図である。It is sectional drawing of the semiconductor device which concerns on Embodiment 1 of this invention. 本発明の実施の形態2に係る半導体装置の断面図である。It is sectional drawing of the semiconductor device which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係る半導体装置の製造工程を説明するための図である。It is a figure for demonstrating the manufacturing process of the semiconductor device which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係る半導体装置の製造工程を説明するための図である。It is a figure for demonstrating the manufacturing process of the semiconductor device which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係る半導体装置の製造工程を説明するための図である。It is a figure for demonstrating the manufacturing process of the semiconductor device which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係る半導体装置の製造工程を説明するための図である。It is a figure for demonstrating the manufacturing process of the semiconductor device which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係る半導体装置の製造工程を説明するための図である。It is a figure for demonstrating the manufacturing process of the semiconductor device which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係る半導体装置の製造工程を説明するための図である。It is a figure for demonstrating the manufacturing process of the semiconductor device which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係る半導体装置の製造工程を説明するための図である。It is a figure for demonstrating the manufacturing process of the semiconductor device which concerns on Embodiment 2 of this invention.

符号の説明Explanation of symbols

1 半導体基板、2 ソース領域、3 ドレイン領域、4 HfSiON膜、5 poly−Si膜、6 サイドウォール、7 TiN膜、8 TiNO膜、9 素子分離膜、10 NリッチなTiN膜、11,12 レジスト膜、13 NiSi膜。   1 semiconductor substrate, 2 source region, 3 drain region, 4 HfSiON film, 5 poly-Si film, 6 sidewall, 7 TiN film, 8 TiNO film, 9 element isolation film, 10 N-rich TiN film, 11, 12 resist Film, 13 NiSi film.

Claims (8)

基板に設けた第1ソース領域と第1ドレイン領域との間の前記基板上に形成されるhigh−k膜からなる第1ゲート絶縁膜と、
前記第1ゲート絶縁膜上に形成されるポリシリコン膜からなる第1ゲート電極とを備えたn型の半導体素子と、
前記基板に設けた第2ソース領域と第2ドレイン領域との間の前記基板上に形成されるhigh−k膜からなる第2ゲート絶縁膜と、
前記第2絶縁膜上に形成される第1金属膜と、
前記第1金属膜上に形成されるポリシリコン膜からなる第2ゲート電極とを備えたp型の半導体素子とを備えるハイブリッド構造の半導体装置であって、
前記第1金属膜は、窒化チタン単体よりも仕事関数が高くなる添加物質を添加した窒化チタン膜を有することを特徴とする半導体装置。
A first gate insulating film made of a high-k film formed on the substrate between a first source region and a first drain region provided on the substrate;
An n-type semiconductor element comprising a first gate electrode made of a polysilicon film formed on the first gate insulating film;
A second gate insulating film made of a high-k film formed on the substrate between a second source region and a second drain region provided on the substrate;
A first metal film formed on the second insulating film;
A hybrid semiconductor device including a p-type semiconductor element including a second gate electrode made of a polysilicon film formed on the first metal film,
The semiconductor device according to claim 1, wherein the first metal film includes a titanium nitride film to which an additive material having a work function higher than that of titanium nitride alone is added.
請求項1に記載の半導体装置であって、
前記第1金属膜は、前記添加物質を添加していない窒化チタン膜と、前記添加物質を添加した窒化チタン膜との2層構造であることを特徴とする半導体装置。
The semiconductor device according to claim 1,
The semiconductor device according to claim 1, wherein the first metal film has a two-layer structure of a titanium nitride film to which the additive substance is not added and a titanium nitride film to which the additive substance is added.
請求項1又は請求項2に記載の半導体装置であって、
前記添加物質は酸素であり、前記添加物質を添加した窒化チタン膜はTiNO膜であることを特徴とする半導体装置。
The semiconductor device according to claim 1 or 2, wherein
The semiconductor device, wherein the additive material is oxygen, and the titanium nitride film to which the additive material is added is a TiNO film.
請求項3に記載の半導体装置を製造する方法であって、
前記TiNO膜は前記酸素を供給したリアクティブスパッタ法により形成することを特徴とする半導体装置の製造方法。
A method of manufacturing the semiconductor device according to claim 3,
The method of manufacturing a semiconductor device, wherein the TiNO film is formed by a reactive sputtering method to which the oxygen is supplied.
請求項1乃至請求項3のいずれか1つに記載の半導体装置であって、
前記第1ゲート絶縁膜と前記第1ゲート電極との間に、化学量論組成の窒化チタンよりも窒素リッチな窒化チタン膜を有する第2金属膜をさらに備えることを特徴とする半導体装置。
A semiconductor device according to any one of claims 1 to 3,
A semiconductor device, further comprising a second metal film having a titanium nitride film that is more nitrogen-rich than a stoichiometric titanium nitride film between the first gate insulating film and the first gate electrode.
請求項5に記載の半導体装置であって、
前記第2金属膜は、化学量論組成の窒化チタン膜と、化学量論組成の窒化チタンよりも窒素リッチな窒化チタン膜との2層構造であることを特徴とする半導体装置。
The semiconductor device according to claim 5,
The semiconductor device, wherein the second metal film has a two-layer structure of a titanium nitride film having a stoichiometric composition and a titanium nitride film that is richer in nitrogen than the stoichiometric titanium nitride.
請求項5又は請求項6に記載の半導体装置を製造する方法であって、
前記窒素リッチな窒化チタン膜は、所定量以上の前記窒素を供給したリアクティブスパッタ法により形成することを特徴とする半導体装置の製造方法。
A method of manufacturing the semiconductor device according to claim 5 or 6,
The method for manufacturing a semiconductor device, wherein the nitrogen-rich titanium nitride film is formed by a reactive sputtering method in which a predetermined amount or more of the nitrogen is supplied.
請求項5又は請求項6に記載の半導体装置を製造する方法であって、
(a)前記第1ゲート絶縁膜及び前記第2ゲート絶縁膜となる絶縁膜上に窒化チタン膜を生成する工程と、
(b)酸素を供給したリアクティブスパッタ法により、前記窒化チタン膜の表面にTiNO膜を形成する工程と、
(c)前記n型の半導体素子となる領域上に形成された前記TiNO膜を除去する工程と、
(d)前記工程(c)で前記TiNO膜を除去された前記窒化チタン膜上に、所定量以上の前記窒素を供給したリアクティブスパッタ法により窒素リッチな窒化チタン膜を形成する工程と、
(e)前記工程(d)で形成された前記TiNO膜上の前記窒素リッチな窒化チタン膜を除去する工程と、
(f)前記TiNO膜及び前記窒素リッチな窒化チタン膜上にポリシリコン膜を形成する工程と、
(g)所定のパターニング処理により、前記n型の半導体素子及び前記p型の半導体素子を形成する工程とを備えることを特徴とする半導体装置の製造方法。
A method of manufacturing the semiconductor device according to claim 5 or 6,
(A) forming a titanium nitride film on the first gate insulating film and the insulating film to be the second gate insulating film;
(B) forming a TiNO film on the surface of the titanium nitride film by a reactive sputtering method to which oxygen is supplied;
(C) removing the TiNO film formed on the region to be the n-type semiconductor element;
(D) forming a nitrogen-rich titanium nitride film on the titanium nitride film from which the TiNO film has been removed in the step (c) by a reactive sputtering method in which a predetermined amount or more of the nitrogen is supplied;
(E) removing the nitrogen-rich titanium nitride film on the TiNO film formed in the step (d);
(F) forming a polysilicon film on the TiNO film and the nitrogen-rich titanium nitride film;
(G) A method of manufacturing a semiconductor device comprising: forming the n-type semiconductor element and the p-type semiconductor element by a predetermined patterning process.
JP2008039742A 2008-02-21 2008-02-21 Semiconductor device and method of manufacturing same Pending JP2009200213A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008039742A JP2009200213A (en) 2008-02-21 2008-02-21 Semiconductor device and method of manufacturing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008039742A JP2009200213A (en) 2008-02-21 2008-02-21 Semiconductor device and method of manufacturing same

Publications (1)

Publication Number Publication Date
JP2009200213A true JP2009200213A (en) 2009-09-03

Family

ID=41143414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008039742A Pending JP2009200213A (en) 2008-02-21 2008-02-21 Semiconductor device and method of manufacturing same

Country Status (1)

Country Link
JP (1) JP2009200213A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012086102A1 (en) * 2010-12-24 2012-06-28 パナソニック株式会社 Semiconductor device and method for manufacturing same
JP2013232470A (en) * 2012-04-27 2013-11-14 Canon Anelva Corp Semiconductor device and method of manufacturing the same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001203276A (en) * 2000-01-21 2001-07-27 Nec Corp Semiconductor device and method of manufacturing the same
JP2002359295A (en) * 2001-04-11 2002-12-13 Samsung Electronics Co Ltd Method for forming CMOS type semiconductor device having dual gate
JP2005340844A (en) * 2005-06-13 2005-12-08 Matsushita Electric Ind Co Ltd Manufacturing method of semiconductor device
JP2007013182A (en) * 2005-06-30 2007-01-18 Samsung Electronics Co Ltd Semiconductor device provided with MOS transistor and manufacturing method thereof
JP2007019396A (en) * 2005-07-11 2007-01-25 Renesas Technology Corp Semiconductor device having MOS structure and manufacturing method thereof
JP2007036116A (en) * 2005-07-29 2007-02-08 Renesas Technology Corp Semiconductor device manufacturing method
JP2007173796A (en) * 2005-12-19 2007-07-05 Internatl Business Mach Corp <Ibm> Semiconductor structure using metal oxynitride as pFET material and manufacturing method thereof
WO2007087127A2 (en) * 2006-01-20 2007-08-02 International Business Machines Corporation Introduction of metal impurity to change workfunction of conductive electrodes

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001203276A (en) * 2000-01-21 2001-07-27 Nec Corp Semiconductor device and method of manufacturing the same
JP2002359295A (en) * 2001-04-11 2002-12-13 Samsung Electronics Co Ltd Method for forming CMOS type semiconductor device having dual gate
JP2005340844A (en) * 2005-06-13 2005-12-08 Matsushita Electric Ind Co Ltd Manufacturing method of semiconductor device
JP2007013182A (en) * 2005-06-30 2007-01-18 Samsung Electronics Co Ltd Semiconductor device provided with MOS transistor and manufacturing method thereof
JP2007019396A (en) * 2005-07-11 2007-01-25 Renesas Technology Corp Semiconductor device having MOS structure and manufacturing method thereof
JP2007036116A (en) * 2005-07-29 2007-02-08 Renesas Technology Corp Semiconductor device manufacturing method
JP2007173796A (en) * 2005-12-19 2007-07-05 Internatl Business Mach Corp <Ibm> Semiconductor structure using metal oxynitride as pFET material and manufacturing method thereof
WO2007087127A2 (en) * 2006-01-20 2007-08-02 International Business Machines Corporation Introduction of metal impurity to change workfunction of conductive electrodes

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012086102A1 (en) * 2010-12-24 2012-06-28 パナソニック株式会社 Semiconductor device and method for manufacturing same
JP2013232470A (en) * 2012-04-27 2013-11-14 Canon Anelva Corp Semiconductor device and method of manufacturing the same

Similar Documents

Publication Publication Date Title
US8710567B2 (en) Semiconductor device and manufacturing method thereof
KR102128450B1 (en) Method and gate ructure for threshold voltage modulation in transistors
JP5442332B2 (en) Semiconductor device and manufacturing method thereof
JP5349903B2 (en) Semiconductor device manufacturing method and semiconductor device
JP3790242B2 (en) Semiconductor device and manufacturing method thereof
US9196475B2 (en) Methods for fabricating integrated circuits including fluorine incorporation
US8198155B2 (en) Semiconductor device and method of manufacturing the same
JP4837011B2 (en) Semiconductor device and manufacturing method of semiconductor device
JP5627165B2 (en) Semiconductor device and manufacturing method of semiconductor device
JP4492589B2 (en) Manufacturing method of semiconductor device
US20130154022A1 (en) CMOS Devices with Metal Gates and Methods for Forming the Same
WO2010146641A1 (en) Semiconductor device and process for manufacture thereof
JP4723975B2 (en) Semiconductor device and manufacturing method thereof
US9984882B2 (en) Semiconductor structures and fabrication method thereof
JP2009200213A (en) Semiconductor device and method of manufacturing same
JP2008084970A (en) Semiconductor device and manufacturing method of semiconductor device
KR100814372B1 (en) Manufacturing Method of Semiconductor Device
JP2006059980A (en) Semiconductor device and manufacturing method therefor
JP2012054531A (en) Semiconductor device and manufacturing method of the same
JP2007036116A (en) Semiconductor device manufacturing method
JP2009277961A (en) Method of manufacturing cmis transistor
JP4828982B2 (en) Manufacturing method of semiconductor device
JP2010040710A (en) Semiconductor device and method of manufacturing the same
JP5177980B2 (en) Semiconductor device and manufacturing method thereof
JP4850458B2 (en) Semiconductor device and manufacturing method thereof

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100524

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121030

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130319