[go: up one dir, main page]

JP2009222366A - Refrigerant distributor - Google Patents

Refrigerant distributor Download PDF

Info

Publication number
JP2009222366A
JP2009222366A JP2008070559A JP2008070559A JP2009222366A JP 2009222366 A JP2009222366 A JP 2009222366A JP 2008070559 A JP2008070559 A JP 2008070559A JP 2008070559 A JP2008070559 A JP 2008070559A JP 2009222366 A JP2009222366 A JP 2009222366A
Authority
JP
Japan
Prior art keywords
refrigerant
heat transfer
branch pipe
transfer tubes
header
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008070559A
Other languages
Japanese (ja)
Inventor
Atsuhiko Yokozeki
敦彦 横関
Kensaku Kokuni
研作 小国
Kenji Matsumura
賢治 松村
Yukio Innami
幸夫 印南
Naoji Ajiki
直二 安食
Kenichi Nakamura
憲一 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Global Life Solutions Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2008070559A priority Critical patent/JP2009222366A/en
Publication of JP2009222366A publication Critical patent/JP2009222366A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a refrigerant distributor capable of suitably distributing an arbitrary flow rate of a refrigerant to each refrigerant passage while maintaining low cost and saving on space, and hardly generating jamming of foreign objects. <P>SOLUTION: The refrigerant distributor, comprising a large number of heat transfer tubes 31 for flowing the refrigerant in parallel, is connected to a heat exchanger 3 which operates as an evaporator and distributes the refrigerant to the large number of heat transfer tubes for flowing the refrigerant through them. The refrigerant distributor is equipped with a header 57 arranged to be elongated along an inlet side of the many transfer tubes, and a large number of liquid branching pipes 58a-58e branched from the header and respectively extending in a linear fashion. The liquid branching pipes are connected to the inlet side of the many heat transfer tubes, and a spiral groove is formed on an inner face of the liquid branching pipe. The necessary flow rate of the refrigerant can be flowed to the refrigerant passages by choosing suitable dimensions of the spiral groove such as an inner diameter or length. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は冷媒分配器に係り、主として空気調和機等で蒸発器として動作する熱交換器に冷媒を分配する冷媒分配器として好適なものである。   The present invention relates to a refrigerant distributor, and is suitable as a refrigerant distributor that distributes refrigerant to a heat exchanger that mainly operates as an evaporator in an air conditioner or the like.

空気調和機に用いられる蒸発器として動作する熱交換器の冷媒入口側には、冷媒通路を複数に分流するための冷媒分配器が使用される。   On the refrigerant inlet side of a heat exchanger that operates as an evaporator used in an air conditioner, a refrigerant distributor for diverting a plurality of refrigerant passages is used.

従来の冷媒分配器として、特開平2−17368号公報(特許文献1)に記載されたものがある。この冷媒分配器は、蒸発器に入る前の気液二相状態の冷媒をオリフィスを介して縮流させた冷媒を気液混合室に導いて混合し、その混合冷媒を複数の分岐管により導出させ、蒸発器を構成する複数の伝熱管に導入するようにした分配器(ディストリビュータ)を備えることが開示されている。これによれば、気液二相冷媒を予め気液混合室において混合することができるため、気液二相冷媒を各分岐管に均等に分配することができる。   A conventional refrigerant distributor is described in Japanese Patent Laid-Open No. 2-17368 (Patent Document 1). In this refrigerant distributor, the refrigerant in which the refrigerant in the gas-liquid two-phase state before entering the evaporator is compressed through the orifice is introduced and mixed into the gas-liquid mixing chamber, and the mixed refrigerant is derived by a plurality of branch pipes. It is disclosed that a distributor is provided which is introduced into a plurality of heat transfer tubes constituting the evaporator. According to this, since the gas-liquid two-phase refrigerant can be mixed in the gas-liquid mixing chamber in advance, the gas-liquid two-phase refrigerant can be evenly distributed to each branch pipe.

一方、従来の他の冷媒分配器としては、特開2002−22313号公報(特許文献2)に記載されたものがある。この冷媒分配器は、長手方向に多数の冷媒管接続口を有した容器と、この容器の一端から反対側近傍まで挿入された流入管から構成し、容器と流入管との間に冷媒を流通させることにより、冷媒の流速を増加させて気相と液相の混合状態を保ち、下部の冷媒管と上部の冷媒管での冷媒を均等に分流することができるようにしたものである。   On the other hand, as another conventional refrigerant distributor, there is one described in Japanese Patent Laid-Open No. 2002-22313 (Patent Document 2). This refrigerant distributor is composed of a container having a large number of refrigerant pipe connection ports in the longitudinal direction and an inflow pipe inserted from one end of the container to the vicinity of the opposite side, and the refrigerant flows between the container and the inflow pipe. Thus, the flow rate of the refrigerant is increased to maintain the mixed state of the gas phase and the liquid phase, and the refrigerant in the lower refrigerant pipe and the upper refrigerant pipe can be evenly divided.

更に他の従来の冷媒分配器としては、特開2001−133078号公報(特許文献3)に記載されたものもある。この従来技術のものでは、分岐管の上流側にオリフィス状の流通制御板を内蔵し、各分岐管のオリフィス内径に違いを持たせて流量制御を行うようにしたものである。   Still another conventional refrigerant distributor is described in Japanese Patent Application Laid-Open No. 2001-133308 (Patent Document 3). In this prior art, an orifice-shaped flow control plate is incorporated on the upstream side of the branch pipe, and the flow rate is controlled by making a difference in the orifice inner diameter of each branch pipe.

特開平2−17368号公報Japanese Patent Laid-Open No. 2-17368 特開2002−22313号公報JP 2002-22313 A 特開2001−133078号公報Japanese Patent Laid-Open No. 2001-133078

特許文献1の冷媒分配器を蒸発器入口に配置すると、ディストリビュータ及び分岐管の構造上、大きなスペースを必要とするため室内機及び室外機のユニットサイズが大きくなるという課題がある。また、ディストリビュータと伝熱管接続部との距離が離れている場合には、分岐管が長くなることから材料費が高くなるという課題があった。   When the refrigerant distributor of Patent Document 1 is arranged at the evaporator inlet, a large space is required due to the structure of the distributor and the branch pipe, and there is a problem that the unit sizes of the indoor unit and the outdoor unit become large. In addition, when the distance between the distributor and the heat transfer tube connecting portion is long, there is a problem that the material cost becomes high because the branch tube becomes long.

一方、特許文献2の冷媒分配器では、容器の一端から反対側近傍まで挿入する流入管が必要であるためコストアップを招くと共に、冷媒の流速を増加させることで冷媒を均等に分流させる構造であるため、冷媒循環量が低下した場合には均等に分配できないという課題があった。   On the other hand, the refrigerant distributor of Patent Document 2 requires an inflow pipe that is inserted from one end of the container to the vicinity of the opposite side, thereby increasing the cost and increasing the flow rate of the refrigerant to equally distribute the refrigerant. For this reason, there has been a problem that even when the refrigerant circulation rate is reduced, the refrigerant cannot be evenly distributed.

更に、熱交換器を通過する空気の上下の速度分布が大きいものでは、各分岐管に流れる冷媒流量に差をつけることが望ましいが、特許文献2の分配器ではこれが考慮されておらず、仮に分岐管の内径に差をつけて調整した場合、ヘッダから伝熱管までの距離が小さいため分岐管が短くなる場合には、分岐管の内径を極端に小さくする必要が生じ、金属紛等の異物(コンタミ)がつまりやすくなり信頼性の確保ができないという問題があった。   Furthermore, when the vertical velocity distribution of the air passing through the heat exchanger is large, it is desirable to make a difference in the refrigerant flow rate flowing through each branch pipe, but this is not taken into consideration in the distributor of Patent Document 2, When adjusting the inner diameter of the branch pipe with a difference, if the branch pipe is shortened because the distance from the header to the heat transfer pipe is small, the inner diameter of the branch pipe needs to be extremely small, and foreign matter such as metal powder There is a problem that (contamination) is easily clogged and reliability cannot be secured.

しかしこの従来技術では、分岐管に流れる流量を大幅に少なくするときには、内径を極端に小さくする必要がある。この場合には、サイクル中の異物が流路に閉塞されやすくなるという問題がある。   However, in this prior art, when the flow rate flowing through the branch pipe is greatly reduced, the inner diameter needs to be extremely reduced. In this case, there is a problem that foreign matters in the cycle are easily blocked by the flow path.

また、特許文献3記載のものでは、オリフィス内径の違いのみで流量を調整するため、その寸法精度に対する要求が高くなり、加工コストが増加する。更に、オリフィスによる流路の急激な変化により冷媒の流れが乱され、不快な流動音が発生し易い。   Moreover, in the thing of patent document 3, since the flow volume is adjusted only by the difference in orifice internal diameter, the request | requirement with respect to the dimensional accuracy becomes high, and processing cost increases. Furthermore, the flow of the refrigerant is disturbed by a sudden change of the flow path by the orifice, and an unpleasant flow noise is likely to be generated.

本発明の目的は、低コスト及び省スペースを維持しつつ、不快な流動音の発生も防止して冷媒通路毎に任意の冷媒流量を適正に分配することができる冷媒分配器を得ることにある。   An object of the present invention is to obtain a refrigerant distributor capable of appropriately distributing an arbitrary refrigerant flow rate for each refrigerant passage while maintaining low cost and space saving and preventing generation of unpleasant flow noise. .

上記目的を達成するため、本発明の特徴は、冷媒を並列に流す多数の伝熱管を有し且つ蒸発器として動作する熱交換器に接続され、前記多数の伝熱管に冷媒を分配して流す冷媒分配器において、分配部と、この分配部から多数に分岐されて直線状或いは曲線状に延びる多数の分岐管とを備え、この分岐管は前記多数の伝熱管の入口側に接続されると共に、該分岐管の内面には分岐管内面を流れる冷媒の流通抵抗を調節するための螺旋状の抵抗部が設けられていることにある。   In order to achieve the above object, a feature of the present invention is that it has a large number of heat transfer tubes that flow refrigerant in parallel and is connected to a heat exchanger that operates as an evaporator, and distributes and flows the refrigerant to the plurality of heat transfer tubes. The refrigerant distributor includes a distribution section and a plurality of branch pipes branched from the distribution section and extending linearly or curvedly, and the branch pipes are connected to the inlet sides of the plurality of heat transfer tubes. The inner surface of the branch pipe is provided with a spiral resistance portion for adjusting the flow resistance of the refrigerant flowing through the inner surface of the branch pipe.

本発明の他の特徴は、冷媒を並列に流す多数の伝熱管を有し且つ蒸発器として動作する熱交換器に接続され、前記多数の伝熱管に冷媒を分配して流す冷媒分配器において、前記多数の伝熱管の入口側に沿って長く配設されたヘッダと、このヘッダから多数に分岐されてそれぞれが直線状或いは曲線状に延びる多数の分岐管とを備え、この分岐管は前記多数の伝熱管の入口側に接続されると共に、該分岐管の内面には螺旋溝が形成されていることにある。   Another feature of the present invention is a refrigerant distributor that has a large number of heat transfer tubes that flow refrigerant in parallel and is connected to a heat exchanger that operates as an evaporator, and distributes and distributes the refrigerant to the multiple heat transfer tubes. A header provided long along the inlet side of the plurality of heat transfer tubes; and a plurality of branch tubes branched from the header and extending in a straight line or a curved shape. In addition to being connected to the inlet side of the heat transfer tube, a spiral groove is formed on the inner surface of the branch tube.

ここで、前記分岐管の内面に形成された螺旋溝の寸法(長さ又は内径等)は、分岐管毎に違いを持たせることにより、冷媒通路毎に任意の冷媒流量を適正に分配することができる。また、前記分岐管内面に形成した螺旋溝は、その長さが20〜160mm、内径が1.6〜3.0mmであると良い。   Here, the dimensions (length, inner diameter, etc.) of the spiral groove formed on the inner surface of the branch pipe are appropriately distributed to each refrigerant passage by giving a difference to each branch pipe. Can do. The spiral groove formed on the inner surface of the branch pipe may have a length of 20 to 160 mm and an inner diameter of 1.6 to 3.0 mm.

また、前記ヘッダへの入口側に接続され且つ前記ヘッダの流路断面積より大きい流路断面積を有する均質流下部を設け、この均質流下部の胴体内に微細な穴を有する多孔体を配置すると良い。ここで、前記均質流下部の胴体内に設けた前記多孔体の入口側及び出口側に網目状フィルタを設置すると更に良い。   Further, a homogeneous flow lower portion connected to the inlet side to the header and having a flow passage cross-sectional area larger than the flow passage cross-sectional area of the header is provided, and a porous body having fine holes is disposed in the body of the homogeneous flow lower portion. Good. Here, it is further preferable to install a mesh filter on the inlet side and the outlet side of the porous body provided in the body of the homogeneous flow lower part.

本発明の更に他の特徴は、冷媒を並列に流す多数の伝熱管を有し且つ蒸発器として動作する熱交換器に接続され、前記多数の伝熱管に冷媒を分配して流す冷媒分配器において、前記多数の伝熱管の入口側に沿って長く配設されたヘッダと、このヘッダから多数に分岐されてそれぞれが直線状或いは曲線状に延びる多数の分岐管とを備え、この分岐管は前記多数の伝熱管の入口側に接続されると共に、該分岐管の内面には螺旋溝形状を有するピース或いは螺旋状のバネ状部材が挿入設置されていることにある。   Still another feature of the present invention is a refrigerant distributor having a plurality of heat transfer tubes for flowing refrigerant in parallel and connected to a heat exchanger operating as an evaporator, and distributing and flowing the refrigerant to the plurality of heat transfer tubes. , A header long disposed along the inlet side of the plurality of heat transfer tubes, and a plurality of branch tubes branched in a large number from the header and extending in a straight line or a curve, respectively. In addition to being connected to the inlet side of a large number of heat transfer tubes, a piece having a spiral groove shape or a spiral spring-like member is inserted and installed on the inner surface of the branch tube.

本発明によれば、分配部(ヘッダ)から多数に分岐されて延びる多数の分岐管を備え、この分岐管の内面には、螺旋溝,螺旋溝形状を有するピース、或いは螺旋状のバネ状部材などの抵抗部を設けているので、冷媒分配器の設置スペースを小さくでき、機器の小型化が可能となる。また、熱交換器を通過する吸込空気の速度分布に合わせて冷媒分配を適正化できるので、熱交換器の性能を最大限に発揮させることができる。更に、構造を簡易化できることから製造コストも低減できる。また、螺旋形状を有する抵抗部を設けて、各々の分岐管に必要な流路抵抗を与えるため、極端に小さな流路断面積にしなくても必要な流路抵抗を発生させることができ、流路が冷凍サイクル中の異物(コンタミ)等で閉塞されるリスクを最小限に抑えて空気調和機などの信頼性を向上できる効果がある。更に、分岐管内面に設けた螺旋状の抵抗部により流量調整をする構成としたことにより、オリフィスを設けた場合のように、流路の急縮小や急拡大がなく、螺旋状抵抗部の長さも大きくできるため、冷媒の流れが乱され難い構造にでき、不快な流動音が発生するのも防止して冷媒通路毎に任意の冷媒流量を適正に分配することができる効果がある。更にまた、オリフィスを設けて流量調整する場合に比べ、螺旋状抵抗部の内径,長さ,溝高さ,捻り角度など種々の寸法を選択して自由度の高い流量調整が可能になると共に、高い寸法精度も必要としないため加工コストも低減できる。   According to the present invention, a large number of branch pipes are provided that extend in a branched manner from the distribution section (header). On the inner surface of the branch pipe, a spiral groove, a piece having a spiral groove shape, or a spiral spring-like member is provided. Therefore, the installation space for the refrigerant distributor can be reduced, and the device can be downsized. Further, since the refrigerant distribution can be optimized according to the velocity distribution of the intake air passing through the heat exchanger, the performance of the heat exchanger can be maximized. Further, since the structure can be simplified, the manufacturing cost can be reduced. In addition, since a resistance portion having a spiral shape is provided to provide the required flow path resistance to each branch pipe, the required flow path resistance can be generated without an extremely small flow path cross-sectional area. There is an effect that the reliability of the air conditioner and the like can be improved by minimizing the risk that the road is blocked by foreign matter (contamination) in the refrigeration cycle. Furthermore, since the flow rate is adjusted by the spiral resistance portion provided on the inner surface of the branch pipe, the length of the spiral resistance portion is reduced without the rapid contraction or expansion of the flow path as in the case where the orifice is provided. Further, since the flow of the refrigerant is not easily disturbed, an unpleasant flow noise can be prevented and any refrigerant flow rate can be appropriately distributed for each refrigerant passage. Furthermore, compared with the case of adjusting the flow rate by providing an orifice, it is possible to adjust the flow rate with a high degree of freedom by selecting various dimensions such as the inner diameter, length, groove height, and twist angle of the spiral resistance portion. Since high dimensional accuracy is not required, machining costs can be reduced.

以下、本発明の具体的実施例を図面を用いて説明する。   Hereinafter, specific embodiments of the present invention will be described with reference to the drawings.

図1は本発明の冷媒分配器を用いた冷凍サイクルの例を示すものである。図1において、実線矢印は冷房運転時の冷媒の流れを示し、破線矢印は暖房運転時の冷媒の流れを示す。   FIG. 1 shows an example of a refrigeration cycle using the refrigerant distributor of the present invention. In FIG. 1, the solid line arrows indicate the refrigerant flow during the cooling operation, and the broken line arrows indicate the refrigerant flow during the heating operation.

破線矢印で示す暖房運転時の冷凍サイクルを説明する。圧縮機1で圧縮されて高温高圧となったガス冷媒は、四方弁2を通過し、ガス阻止弁10及びガス側接続配管9を通って、室内機200へと導かれる。室内機200へ導かれた冷媒は、室内熱交換器8において室内送風機33で送風された室内空気により冷却されて凝縮し、液冷媒となる。室内熱交換器8は暖房運転時に凝縮器として作用する。この液冷媒は、開状態(通常全開)の室内膨張弁7を通過し、液側接続配管6及び液阻止弁5を通って、室外機100側へ戻される。   A refrigeration cycle during heating operation indicated by a broken line arrow will be described. The gas refrigerant compressed by the compressor 1 and having a high temperature and high pressure passes through the four-way valve 2, passes through the gas blocking valve 10 and the gas side connection pipe 9, and is guided to the indoor unit 200. The refrigerant guided to the indoor unit 200 is cooled and condensed by the indoor air blown by the indoor blower 33 in the indoor heat exchanger 8, and becomes a liquid refrigerant. The indoor heat exchanger 8 acts as a condenser during heating operation. This liquid refrigerant passes through the indoor expansion valve 7 in the open state (normally fully open), returns to the outdoor unit 100 side through the liquid side connection pipe 6 and the liquid blocking valve 5.

室外機100へ戻された液冷媒は、室外膨張弁4により減圧・沸騰され、気液二相状態になる。この気液二相状態の冷媒は、図2で示すように、均質流下部50に流入し、二相流の気相と液相が微細化されて均一化される。その後、液ヘッダ57で上方に流れながら、途中で複数の液分岐管(分岐管)58に分岐される。各液分岐管58に分岐された冷媒は、室外熱交換器3の各伝熱管31に流入し、室外送風機30により送風される室外空気で加熱されて蒸発し、ガス冷媒となる。室外熱交換器3は、暖房運転時には蒸発器として作用する。この室外熱交換器3からのガス冷媒は、四方弁2を通過し、アキュムレータ11を通って圧縮機1に再び戻る。これによって、冷媒が循環する一連の冷凍サイクルが構成される。   The liquid refrigerant returned to the outdoor unit 100 is depressurized and boiled by the outdoor expansion valve 4 and enters a gas-liquid two-phase state. As shown in FIG. 2, the gas-liquid two-phase refrigerant flows into the homogeneous flow lower part 50, and the gas phase and liquid phase of the two-phase flow are refined and uniformized. After that, the liquid header 57 branches upward to a plurality of liquid branch pipes (branch pipes) 58 while flowing upward. The refrigerant branched into each liquid branch pipe 58 flows into each heat transfer pipe 31 of the outdoor heat exchanger 3 and is heated and evaporated by the outdoor air blown by the outdoor blower 30 to become a gas refrigerant. The outdoor heat exchanger 3 acts as an evaporator during heating operation. The gas refrigerant from the outdoor heat exchanger 3 passes through the four-way valve 2 and returns to the compressor 1 through the accumulator 11. This constitutes a series of refrigeration cycles through which the refrigerant circulates.

ここで、冷凍サイクル中の冷媒にはR410A,R404A,R407C,R134a等のHFC系冷媒が一般的に使用されるが、二酸化炭素やアンモニア,プロパンやイソブタン等の自然冷媒あるいは、R32,HFO−1234yf及びこれらの混合物等のGWP(Global Warming Potential:地球温暖化係数)が小さい冷媒を使用することで、空気調和機からの冷媒漏洩や回収時の冷媒漏洩により、もたらされる地球温暖化の直接影響を少なくすることができる。   Here, HFC refrigerants such as R410A, R404A, R407C, and R134a are generally used as refrigerants in the refrigeration cycle, but natural refrigerants such as carbon dioxide, ammonia, propane, and isobutane, or R32, HFO-1234yf. And by using refrigerants with low GWP (Global Warming Potential) such as mixtures of these, the direct impact of global warming caused by refrigerant leakage from air conditioners and refrigerant leakage during recovery Can be reduced.

また、四方弁2を図1の実線のように切替えることにより、冷媒の流路方向が切替えられ、冷房運転とすることができる。この場合には室外熱交換器3が凝縮器,室内熱交換器8が蒸発器として作用することとなる。   Further, by switching the four-way valve 2 as shown by the solid line in FIG. 1, the flow direction of the refrigerant is switched, and the cooling operation can be performed. In this case, the outdoor heat exchanger 3 functions as a condenser and the indoor heat exchanger 8 functions as an evaporator.

次に、図2から図5を参照しながら、暖房運転時において蒸発器として作用する室外熱交換器3、及び室外熱交換器側に設けられた冷媒分配器40の構成及び動作について説明する。   Next, the configuration and operation of the outdoor heat exchanger 3 that functions as an evaporator during the heating operation and the refrigerant distributor 40 provided on the outdoor heat exchanger side will be described with reference to FIGS.

図2に示すように、室外熱交換器3は、冷媒を並列に流す多数の伝熱管31とフィン32とで構成されるフィンチューブ型熱交換器で構成されている。伝熱管31はU字状管で構成され、各伝熱管31の入口側及び出口側は、熱交換器の一方の面に位置され、多数の伝熱管31が上下方向に配列されている。   As shown in FIG. 2, the outdoor heat exchanger 3 is configured by a finned tube heat exchanger including a large number of heat transfer tubes 31 and fins 32 that flow refrigerant in parallel. The heat transfer tube 31 is formed of a U-shaped tube, and the inlet side and the outlet side of each heat transfer tube 31 are positioned on one surface of the heat exchanger, and a large number of heat transfer tubes 31 are arranged in the vertical direction.

室外熱交換器側に設けられた冷媒分配器40は、室外熱交換器3の多数の伝熱管31に冷媒を分配して流すためのものであり、図2に示すように、液ヘッダ57,液分岐管58,均質流下部50,ガスヘッダ70及びガス分岐管71を備えている。   The refrigerant distributor 40 provided on the outdoor heat exchanger side is for distributing and flowing the refrigerant to the large number of heat transfer tubes 31 of the outdoor heat exchanger 3, and as shown in FIG. A liquid branch pipe 58, a homogeneous flow lower part 50, a gas header 70 and a gas branch pipe 71 are provided.

液ヘッダ57は、多数の伝熱管31の入口側に沿って、これに対向するように上下方向に長く延びるように配置されている。液ヘッダ57の流路断面積は、伝熱管31及び液分岐管58の流路断面積より大きく設定されている。液分岐管58は、液ヘッダ57から多数分岐されて直線状に延び、その先端部が各伝熱管31の入口側に接続されている。   The liquid header 57 is disposed so as to extend long in the vertical direction so as to face the inlets of the heat transfer tubes 31. The flow path cross-sectional area of the liquid header 57 is set larger than the flow path cross-sectional areas of the heat transfer pipe 31 and the liquid branch pipe 58. A number of liquid branch pipes 58 are branched from the liquid header 57 and extend in a straight line, and their tip ends are connected to the inlet side of each heat transfer pipe 31.

ここで、液分岐管58は、図3に示すように、その内面に螺旋溝(螺旋状抵抗部)が形成されており、各冷媒通路(液分岐管を含む)を流通する冷媒に対して抵抗を与えるようにしている。各液分岐管58a〜58eに設けられた螺旋溝の寸法、即ち、螺旋溝の長さ、ピッチ或いは溝高さ等の形状が異なるものを使用することで、各通路に流れる冷媒量を任意に調整することが可能となる。   Here, as shown in FIG. 3, the liquid branch pipe 58 has a spiral groove (spiral resistance portion) formed on the inner surface thereof, and with respect to the refrigerant flowing through each refrigerant passage (including the liquid branch pipe). I try to give resistance. The amount of the refrigerant flowing in each passage can be arbitrarily determined by using the spiral grooves provided in the liquid branch pipes 58a to 58e having different dimensions such as the length, pitch or groove height of the spiral grooves. It becomes possible to adjust.

均質流下部50は、図2及び図4に示すように、液ヘッダ57の入口側に接続され且つ液ヘッダ57の流路断面積より大きい流路断面積を有する胴体51と、この胴体51内の中間部に配置され、且つ微細な穴を有する多孔体53などから構成されている。多孔体53は、カシメ55a,55bにより胴体51との間に隙間のないように固定されている。   As shown in FIGS. 2 and 4, the homogeneous flow lower part 50 is connected to an inlet side of the liquid header 57 and has a body 51 having a channel cross-sectional area larger than the channel cross-sectional area of the liquid header 57, and the inside of the body 51. It is comprised from the porous body 53 etc. which are arrange | positioned in the intermediate part of this, and have a fine hole. The porous body 53 is fixed by caulking 55a, 55b so that there is no gap between the porous body 53 and the body 51.

このため、流入口52から流入する気液二相状態の冷媒はすべて多孔体53を通過し、流出口54から液ヘッダ57へ流出する。ここで、多孔体53は、ニッケル金属やアルミ合金の焼結体或いは、デミスタ材の圧縮部材などにより構成されており、気孔及び間隙の大きさが0.3〜1.0mm程度に成形されたものを使用している。   For this reason, all of the gas-liquid two-phase refrigerant flowing in from the inlet 52 passes through the porous body 53 and flows out from the outlet 54 to the liquid header 57. Here, the porous body 53 is composed of a sintered body of nickel metal or aluminum alloy or a compression member of a demister material, and the pores and gaps are formed to have a size of about 0.3 to 1.0 mm. I am using something.

図4に示す均質流下部50の別の例を図5に示す。図5の例は、多孔体53の前後両側に網目状フィルタ56a,56bを配置したものである。具体的には、多孔体53の入口側に多孔体53の平均孔径よりも小さな網目径を有する入口側の網目状フィルタ56a、及び多孔体53の出口側に多孔体53の出口面積よりも大きな流路面積を有すると共に多孔体53の平均孔径よりも小さな網目径を有する網目状フィルタ56bを設置したものである。入口側の網目状フィルタ56aは入口側に円錐状に突出して形成され、出口側の網目状フィルタ56bは出口側に円錐状に突出して形成されている。この網目状フィルタ56a,56bは多孔体の平均孔径の大きさ0.3〜1.0mmよりも細かい網目径のものが用いられ、例えば100メッシュ(0.254mmピッチ)のものが用いられる。   FIG. 5 shows another example of the homogeneous flow lower part 50 shown in FIG. In the example of FIG. 5, mesh filters 56 a and 56 b are arranged on both front and rear sides of the porous body 53. Specifically, the inlet-side mesh filter 56 a having a mesh diameter smaller than the average pore diameter of the porous body 53 on the inlet side of the porous body 53, and the outlet area of the porous body 53 on the outlet side of the porous body 53 is larger. A mesh filter 56b having a channel area and a mesh diameter smaller than the average pore diameter of the porous body 53 is provided. The mesh filter 56a on the inlet side is formed so as to protrude in a conical shape on the inlet side, and the mesh filter 56b on the outlet side is formed so as to protrude in a conical shape on the outlet side. As the mesh filters 56a and 56b, those having a mesh size finer than the average pore size of 0.3 to 1.0 mm are used, and for example, those having a mesh size of 100 mesh (0.254 mm pitch) are used.

このように網目状フィルタ56a,56bを設けることにより、冷凍サイクル中の金属紛等の異物(コンタミ)が多孔体の間隙に詰まることを防止できる。   By providing the mesh filters 56a and 56b in this way, it is possible to prevent foreign matters (contamination) such as metal powder in the refrigeration cycle from being clogged in the gap between the porous bodies.

ガスヘッダ70は、多数の伝熱管31の出口側に沿って、この出口側と対向するように上下方向に長く伸びるように配置されている。ガスヘッダ70の流路断面積は、伝熱管31及びガス分岐管71の流路断面積より大きく設定されている。ガス分岐管71は、ガスヘッダ70から多数分岐されて直線状に延び、その先端が各伝熱管31の出口側に接続されている。液ヘッダ57とガスヘッダ70とは左右に隣接して配置されている。   The gas header 70 is disposed so as to extend in the vertical direction along the outlet sides of the large number of heat transfer tubes 31 so as to face the outlet sides. The flow path cross-sectional area of the gas header 70 is set larger than the flow path cross-sectional areas of the heat transfer pipe 31 and the gas branch pipe 71. A large number of gas branch pipes 71 are branched from the gas header 70 and extend in a straight line, and their tips are connected to the outlet side of each heat transfer pipe 31. The liquid header 57 and the gas header 70 are disposed adjacent to each other on the left and right.

暖房運転時に室外機100に流入した液冷媒は、室外膨張弁4を通過するときに減圧,沸騰されて気液二相状態となり、この気液二相状態の冷媒は、均質流下部50で二相流の気相と液相が微細化されて均一化される。このため、液分岐管58の入口では気液二相流が均質化された状態を保っているため、下部から上部までの液分岐管58のいずれにおいても乾き度(気相の質量流量比)が等しくなる。そのため、室外熱交換器3を通る室外空気がほぼ均一な風速分布の場合においては、冷媒の流量及び乾き度が等分配であれば、熱交換器出口のガス分岐管71での冷媒状態はどの流路においても、ほぼ同じ比エンタルピーの冷媒状態となり、結果として、熱交換器の熱交換量を最大にすることが可能となる。このほぼ均一な風速分布状態での風速分布に対する冷媒流量の関係を図6に示す。   The liquid refrigerant that has flowed into the outdoor unit 100 during the heating operation is reduced in pressure and boiled when passing through the outdoor expansion valve 4 to be in a gas-liquid two-phase state. The gas phase and liquid phase of the phase flow are made fine and uniform. For this reason, since the gas-liquid two-phase flow is kept homogenized at the inlet of the liquid branch pipe 58, the dryness (gas phase mass flow ratio) of any of the liquid branch pipes 58 from the lower part to the upper part is maintained. Are equal. Therefore, in the case where the outdoor air passing through the outdoor heat exchanger 3 has a substantially uniform wind speed distribution, if the refrigerant flow rate and the dryness are equally distributed, which state of the refrigerant is in the gas branch pipe 71 at the heat exchanger outlet? Even in the flow path, the refrigerant state has substantially the same specific enthalpy, and as a result, the heat exchange amount of the heat exchanger can be maximized. FIG. 6 shows the relationship of the refrigerant flow rate with respect to the wind speed distribution in this almost uniform wind speed distribution state.

これに対して、室外熱交換器3を通る室外空気が不均一な風速分布である場合においては、図7に示すように、各冷媒流路の冷媒流量を調整しなければ熱交換器の性能を維持することができなくなる。このような場合には、その風速分布に合わせて各液分岐管58の内面に形成された螺旋溝の内径,長さ,溝高さ,ピッチ,捩れ角度などに差を持たせることにより図7に示すような流量調整が可能となる。   On the other hand, when the outdoor air passing through the outdoor heat exchanger 3 has a non-uniform wind speed distribution, the performance of the heat exchanger is not adjusted unless the refrigerant flow rate of each refrigerant flow path is adjusted as shown in FIG. Can not be maintained. In such a case, a difference is made in the inner diameter, length, groove height, pitch, twist angle, and the like of the spiral groove formed on the inner surface of each liquid branch pipe 58 in accordance with the wind speed distribution. The flow rate can be adjusted as shown in FIG.

図8は分岐管内面に螺旋溝を設けたものと、螺旋溝を設けない平滑管における冷媒流通時の流路抵抗を測定したものである。ここで、測定に使用した内面螺旋溝の形状はJIS B0205で規定されているメートル並目ネジM5(内径4.134mm,溝高さ0.433mm)である。この測定結果から、同じ内径の管において螺旋溝付き管は平滑管の2倍程度の圧力損失があることが確認できる。このことから、冷媒流量調節に必要な流路抵抗を得るためには、螺旋溝付き管では長さを半分以下に短縮することが可能となる。よって、ヘッダ型の冷媒分配器においては、ヘッダと熱交換器との距離を縮めることが可能となり、機器の省スペース化や分岐管材料費の低減が可能になる。また、分岐管内径の極端に細いものを選択する必要もなくなり、金属粉等の冷凍サイクル中の異物による流路の閉塞も防止することが可能となり、信頼性も向上できる。   FIG. 8 shows the measured flow resistance at the time of refrigerant flow in a spiral pipe provided with a spiral groove and a smooth pipe without a spiral groove. Here, the shape of the inner spiral groove used for the measurement is a metric coarse screw M5 (inner diameter: 4.134 mm, groove height: 0.433 mm) defined in JIS B0205. From this measurement result, it can be confirmed that the spiral grooved tube has about twice the pressure loss of the smooth tube in the tube having the same inner diameter. From this, in order to obtain the flow path resistance necessary for adjusting the refrigerant flow rate, the length of the spiral grooved tube can be reduced to half or less. Therefore, in the header type refrigerant distributor, it is possible to reduce the distance between the header and the heat exchanger, and it is possible to save the space of the device and reduce the cost of the branch pipe material. In addition, it is not necessary to select a pipe having an extremely small inner diameter of the branch pipe, and it is possible to prevent the blockage of the flow path due to foreign matters in the refrigeration cycle such as metal powder, and the reliability can be improved.

次に、図7に示すような風速分布を有する熱交換器に対して、冷媒通路(分岐管)毎の螺旋溝の内径と必要長さを検討した例を図9に示す。図7に示すような風速分布を有する熱交換器では、各冷媒通路毎の必要な流路抵抗は異なる。また、内面螺旋溝の内径は小さいほど冷媒流路の必要長さが短くなるため、螺旋溝付の分岐管の材料費は低減される。その反面、異物により分岐管が閉塞するリスクも高まると共に、溝加工の精度も高く要求され、加工コストが上昇する。そのため、螺旋溝部の内径は1.6〜3.0mm、長さは20〜160mmの間で選択することが望ましい。   Next, FIG. 9 shows an example in which the inner diameter and the required length of the spiral groove for each refrigerant passage (branch pipe) are examined for a heat exchanger having a wind speed distribution as shown in FIG. In a heat exchanger having a wind speed distribution as shown in FIG. 7, the required flow path resistance for each refrigerant path is different. Moreover, since the required length of the refrigerant flow path is shortened as the inner diameter of the inner spiral groove is smaller, the material cost of the branch pipe with the spiral groove is reduced. On the other hand, there is an increased risk that the branch pipe will be blocked by foreign matter, and high groove processing accuracy is required, which increases the processing cost. Therefore, it is desirable to select the inner diameter of the spiral groove portion from 1.6 to 3.0 mm and the length from 20 to 160 mm.

液分岐管58内の螺旋溝形状の例を図10〜図12に示す。液ヘッダ57と伝熱管31の間隔はどの冷媒通路においても同一にし、液分岐管58の長さは全て同一とすることが、構造の簡略化につながるため望ましい。そのためには螺旋溝の長さを変化させる必要がある。図10は液分岐管58の全長Ltに対して、内面螺旋溝の長さをLmとし、残りの部分を溝の外径よりも大きな内径にしたものである。この構造にすることで、液分岐管58の長さを変えずに螺旋溝部の長さを任意に選択することが可能となる。   Examples of the spiral groove shape in the liquid branch pipe 58 are shown in FIGS. It is desirable that the distance between the liquid header 57 and the heat transfer pipe 31 be the same in any refrigerant passage, and that all the liquid branch pipes 58 have the same length, because this leads to simplification of the structure. For this purpose, it is necessary to change the length of the spiral groove. In FIG. 10, the length of the inner spiral groove is Lm with respect to the total length Lt of the liquid branch pipe 58, and the remaining portion has an inner diameter larger than the outer diameter of the groove. With this structure, it is possible to arbitrarily select the length of the spiral groove without changing the length of the liquid branch pipe 58.

図11に示す液分岐管58の例は、液分岐管58の内部に螺旋溝形状を有するピース59を挿入し、カシメ62でピース59を固定したものである。この構造を用いた場合、内面溝形状ピース59として任意の長さのものを選択して用いることができる。また、螺旋溝加工を施した配管を加工し、その後に適宜長さに切断してピースを製作するようにすれば、加工コストを低減できる。   In the example of the liquid branch pipe 58 shown in FIG. 11, a piece 59 having a spiral groove shape is inserted into the liquid branch pipe 58 and the piece 59 is fixed by caulking 62. When this structure is used, the inner surface groove-shaped piece 59 having an arbitrary length can be selected and used. Moreover, if the pipe which processed the spiral groove process is processed, and it cut | disconnects to length suitably after that and will make a piece, processing cost can be reduced.

図12の例では、分岐管の内面に螺旋溝を形成したり、図11に示す螺旋溝形状を有するピースを挿入する代わりに、バネ状部材61を挿入するようにしたものである。バネ状部材を構成する線材の断面形状は円形が一般的であるが、台形形状などにすると、バネ状に巻きつけた際にねじの内面形状に近い螺旋溝形状が実現できることから、そのような形状を選択することがより望ましい。また、この構造では溝加工の必要が無く、線材のらせん状巻き付け加工のみとなるため、上述の別の構造を用いた場合に対して更に加工コスト低減が図れる。   In the example of FIG. 12, instead of forming a spiral groove on the inner surface of the branch pipe or inserting a piece having the spiral groove shape shown in FIG. 11, a spring-like member 61 is inserted. The cross-sectional shape of the wire constituting the spring-like member is generally circular, but if it is made trapezoidal, etc., it can realize a spiral groove shape close to the inner surface shape of the screw when wound in a spring shape. It is more desirable to select a shape. Further, in this structure, there is no need for grooving, and only the spiral winding process of the wire is performed, so that the processing cost can be further reduced as compared with the case of using another structure described above.

以上、室外熱交換器3が蒸発器として動作する暖房運転時の場合について、室外熱交換器に接続される冷媒分配器40の説明をしてきたが、室内熱交換器8が蒸発器として作用する冷房運転時の場合でも、室内熱交換器に接続される冷媒分配器60の構成・動作は、室外熱交換器に接続される冷媒分配器の場合と基本的に同じであるので、その説明については省略する。但し、室内機200は室外機100に比べて一般的に、ユニットに要求されるサイズが小さいため、より省スペース化が求められる上に、室内熱交換器を通過する空気の分布は偏る傾向が強い。従って、本発明の冷媒分配器を適用した場合の効果はより大きくなる。   As described above, in the case of the heating operation in which the outdoor heat exchanger 3 operates as an evaporator, the refrigerant distributor 40 connected to the outdoor heat exchanger has been described, but the indoor heat exchanger 8 functions as an evaporator. Even in the cooling operation, the configuration and operation of the refrigerant distributor 60 connected to the indoor heat exchanger are basically the same as those of the refrigerant distributor connected to the outdoor heat exchanger. Is omitted. However, since the indoor unit 200 is generally smaller in size required for the unit than the outdoor unit 100, more space is required and the distribution of air passing through the indoor heat exchanger tends to be biased. strong. Therefore, the effect when the refrigerant distributor of the present invention is applied is further increased.

本発明の冷媒分配器を備えた空気調和機の冷凍サイクル構成図である。It is a refrigerating cycle block diagram of the air conditioner provided with the refrigerant distributor of the present invention. 図1に示す室外熱交換器及びその周辺の詳細説明図(暖房運転時)である。It is a detailed explanatory drawing (at the time of heating operation) of the outdoor heat exchanger shown in FIG. 1 and its periphery. 図2に示す冷媒分配器の断面構造を示す図である。It is a figure which shows the cross-section of the refrigerant distributor shown in FIG. 図2に示す冷媒分配器における均質流下部の断面図である。It is sectional drawing of the homogeneous flow lower part in the refrigerant distributor shown in FIG. 均質流下部の他の例を示す図で図4に相当する図である。It is a figure which shows the other example of a homogeneous flow lower part, and is a figure equivalent to FIG. 本発明の冷媒分配器を備えた熱交換器が蒸発器として作用した場合の冷媒流量と風速分布の一例を示す線図である。It is a diagram which shows an example of a refrigerant | coolant flow volume and wind velocity distribution at the time of the heat exchanger provided with the refrigerant distributor of this invention acting as an evaporator. 冷媒流量と風速分布の他の例を示すもので図6に相当する図である。It is a figure which shows the other example of a refrigerant | coolant flow volume and wind speed distribution, and is equivalent to FIG. 分岐管内面に螺旋溝を設けたものと、螺旋溝を設けない平滑管における冷媒流通時の流路抵抗を測定した線図である。It is the diagram which measured the channel resistance at the time of the refrigerant | coolant distribution | circulation in the thing which provided the spiral groove in the branch pipe inner surface, and the smooth pipe which does not provide a spiral groove. 図7に示すような風速分布を有する熱交換器に対して、冷媒通路毎の螺旋溝の内径と必要長さを検討した例を示す線図である。It is a diagram which shows the example which examined the internal diameter and required length of the spiral groove for every refrigerant path with respect to the heat exchanger which has a wind speed distribution as shown in FIG. 本発明の冷媒分配器における分岐管部の一例を示す断面図である。It is sectional drawing which shows an example of the branch pipe part in the refrigerant distributor of this invention. 本発明の冷媒分配器における分岐管部の他の例を示す断面図である。It is sectional drawing which shows the other example of the branch pipe part in the refrigerant distributor of this invention. 本発明の冷媒分配器における分岐管部の更に他の例を示す断面図である。It is sectional drawing which shows the further another example of the branch pipe part in the refrigerant distributor of this invention.

符号の説明Explanation of symbols

1 圧縮機
2 四方弁
3 室外熱交換器
4 室外膨張弁
5 液阻止弁
6 液側接続配管
7 室内膨張弁
8 室内熱交換器
9 ガス側接続配管
10 ガス阻止弁
11 アキュムレータ
31 伝熱管
32 フィン
40 室外冷媒分配器
50 均質流下部
51 胴体
52 流入口
53 多孔体
54 流出口
55a,55b,62 カシメ
56a,56b 網目状フィルタ
57 液ヘッダ
58,58a〜58e 液分岐管(分岐管)
59 ピース
60 室内冷媒分配器
61 バネ状部材
70 ガスヘッダ
71 ガス分岐管
100 室外機
200 室内機
DESCRIPTION OF SYMBOLS 1 Compressor 2 Four-way valve 3 Outdoor heat exchanger 4 Outdoor expansion valve 5 Liquid blocking valve 6 Liquid side connection piping 7 Indoor expansion valve 8 Indoor heat exchanger 9 Gas side connection piping 10 Gas blocking valve 11 Accumulator 31 Heat transfer tube 32 Fin 40 Outdoor refrigerant distributor 50 Homogeneous flow lower part 51 Body 52 Inlet 53 Porous body 54 Outlet 55a, 55b, 62 Caulking 56a, 56b Mesh filter 57 Liquid header 58, 58a-58e Liquid branch pipe (branch pipe)
59 pieces 60 indoor refrigerant distributor 61 spring-like member 70 gas header 71 gas branch pipe 100 outdoor unit 200 indoor unit

Claims (7)

冷媒を並列に流す多数の伝熱管を有し且つ蒸発器として動作する熱交換器に接続され、前記多数の伝熱管に冷媒を分配して流す冷媒分配器において、
分配部と、
この分配部から多数に分岐されて延びる多数の分岐管とを備え、
この分岐管は前記多数の伝熱管の入口側に接続されると共に、該分岐管の内面には分岐管内面を流れる冷媒の流通抵抗を調節するための螺旋状の抵抗部が設けられていることを特徴とする冷媒分配器。
In a refrigerant distributor having a large number of heat transfer tubes that flow the refrigerant in parallel and connected to a heat exchanger that operates as an evaporator, and distributing and flowing the refrigerant to the multiple heat transfer tubes,
A distribution unit;
A number of branch pipes extending from the distribution section and branching into a large number;
The branch pipe is connected to the inlet side of the plurality of heat transfer pipes, and a spiral resistance portion for adjusting the flow resistance of the refrigerant flowing through the inner face of the branch pipe is provided on the inner surface of the branch pipe. A refrigerant distributor characterized by.
冷媒を並列に流す多数の伝熱管を有し且つ蒸発器として動作する熱交換器に接続され、前記多数の伝熱管に冷媒を分配して流す冷媒分配器において、
前記多数の伝熱管の入口側に沿って長く配設されたヘッダと、
該ヘッダから多数に分岐されて延びる多数の分岐管とを備え、
この分岐管は前記多数の伝熱管の入口側に接続されると共に、該分岐管の内面には螺旋溝が形成されていることを特徴とする冷媒分配器。
In a refrigerant distributor having a large number of heat transfer tubes that flow the refrigerant in parallel and connected to a heat exchanger that operates as an evaporator, and distributing and flowing the refrigerant to the multiple heat transfer tubes,
A header disposed long along an inlet side of the plurality of heat transfer tubes;
A plurality of branch pipes extending from the header to be branched in a large number;
The branch pipe is connected to the inlet side of the plurality of heat transfer pipes, and a spiral groove is formed on the inner surface of the branch pipe.
請求項2において、前記分岐管の内面に形成された螺旋溝の寸法は、分岐管毎に違いを持たせたことを特徴とする冷媒分配器。   3. The refrigerant distributor according to claim 2, wherein the dimension of the spiral groove formed on the inner surface of the branch pipe is different for each branch pipe. 請求項3において、前記分岐管内面に形成した螺旋溝は、その長さが20〜160mm、内径が1.6〜3.0mmであることを特徴とする冷媒分配器。   4. The refrigerant distributor according to claim 3, wherein the spiral groove formed on the inner surface of the branch pipe has a length of 20 to 160 mm and an inner diameter of 1.6 to 3.0 mm. 請求項2において、前記ヘッダへの入口側に接続され且つ前記ヘッダの流路断面積より大きい流路断面積を有する均質流下部を設け、この均質流下部の胴体内には微細な穴を有する多孔体が配置されていることを特徴とする冷媒分配器。   3. A homogeneous flow lower portion connected to an inlet side to the header and having a flow passage cross-sectional area larger than the flow passage cross-sectional area of the header is provided, and the body of the homogeneous flow lower portion has a fine hole. A refrigerant distributor in which a porous body is disposed. 請求項5において、前記均質流下部の胴体内に設けた前記多孔体の入口側及び出口側に網目状フィルタを設置したことを特徴とする冷媒分配器。   6. The refrigerant distributor according to claim 5, wherein a mesh filter is provided on an inlet side and an outlet side of the porous body provided in the body of the homogeneous flow lower part. 冷媒を並列に流す多数の伝熱管を有し且つ蒸発器として動作する熱交換器に接続され、前記多数の伝熱管に冷媒を分配して流す冷媒分配器において、
前記多数の伝熱管の入口側に沿って長く配設されたヘッダと、
該ヘッダから多数に分岐されて延びる多数の分岐管とを備え、
この分岐管は前記多数の伝熱管の入口側に接続されると共に、該分岐管の内面には螺旋溝形状を有するピース或いは螺旋状のバネ状部材が挿入設置されていることを特徴とする冷媒分配器。
In a refrigerant distributor having a large number of heat transfer tubes that flow the refrigerant in parallel and connected to a heat exchanger that operates as an evaporator, and distributing and flowing the refrigerant to the multiple heat transfer tubes,
A header disposed long along an inlet side of the plurality of heat transfer tubes;
A plurality of branch pipes extending from the header to be branched in a large number;
The branch pipe is connected to the inlet side of the plurality of heat transfer tubes, and a piece having a spiral groove shape or a spiral spring-like member is inserted and installed on the inner surface of the branch pipe. Distributor.
JP2008070559A 2008-03-19 2008-03-19 Refrigerant distributor Withdrawn JP2009222366A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008070559A JP2009222366A (en) 2008-03-19 2008-03-19 Refrigerant distributor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008070559A JP2009222366A (en) 2008-03-19 2008-03-19 Refrigerant distributor

Publications (1)

Publication Number Publication Date
JP2009222366A true JP2009222366A (en) 2009-10-01

Family

ID=41239334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008070559A Withdrawn JP2009222366A (en) 2008-03-19 2008-03-19 Refrigerant distributor

Country Status (1)

Country Link
JP (1) JP2009222366A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011089710A (en) * 2009-10-22 2011-05-06 Daikin Industries Ltd Refrigerant heat exchanger
WO2011099255A1 (en) * 2010-02-15 2011-08-18 ダイキン工業株式会社 Air conditioner
JP2012002475A (en) * 2010-06-21 2012-01-05 Mitsubishi Electric Corp Refrigerant distributor, and heat pump device using the refrigerant distributor
JP2012098916A (en) * 2010-11-02 2012-05-24 Kawamura Electric Inc Server cooling system
JP2012111486A (en) * 2010-11-23 2012-06-14 Visteon Global Technologies Inc Cooling system equipped with refrigerant evaporator system, and method for parallel air cooling and battery contact cooling
WO2013160952A1 (en) * 2012-04-26 2013-10-31 三菱電機株式会社 Coolant distributor, and heat exchanger equipped with coolant distributor
WO2014030236A1 (en) * 2012-08-23 2014-02-27 三菱電機株式会社 Refrigeration device
WO2015076644A1 (en) * 2013-11-25 2015-05-28 삼성전자주식회사 Air conditioner
KR20170076892A (en) * 2015-12-24 2017-07-05 주식회사 비엠티 Air conditioning system of the production line using compressed air
US10107572B2 (en) 2012-06-14 2018-10-23 Alfa Lavalcorporate Ab Plate heat exchanger
JP2019184208A (en) * 2018-04-17 2019-10-24 株式会社神戸製鋼所 Fluid flow passage device
WO2020079731A1 (en) * 2018-10-15 2020-04-23 三菱電機株式会社 Heat exchanger
JP2021050901A (en) * 2019-03-06 2021-04-01 三星電子株式会社Samsung Electronics Co.,Ltd. Distributor and heat exchanger unit
CN113007931A (en) * 2021-03-25 2021-06-22 青岛海尔空调器有限总公司 Fluid distributor and shunt tube set
CN114288828A (en) * 2022-01-06 2022-04-08 浙江天地环保科技股份有限公司 Aperture regulator for flow equalizing sieve plate
WO2024176459A1 (en) * 2023-02-24 2024-08-29 日揮グローバル株式会社 Vibrating sieve device and liquid discharge unit

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011089710A (en) * 2009-10-22 2011-05-06 Daikin Industries Ltd Refrigerant heat exchanger
WO2011099255A1 (en) * 2010-02-15 2011-08-18 ダイキン工業株式会社 Air conditioner
JP2011163740A (en) * 2010-02-15 2011-08-25 Daikin Industries Ltd Air conditioner
JP2012002475A (en) * 2010-06-21 2012-01-05 Mitsubishi Electric Corp Refrigerant distributor, and heat pump device using the refrigerant distributor
JP2012098916A (en) * 2010-11-02 2012-05-24 Kawamura Electric Inc Server cooling system
JP2012111486A (en) * 2010-11-23 2012-06-14 Visteon Global Technologies Inc Cooling system equipped with refrigerant evaporator system, and method for parallel air cooling and battery contact cooling
US9897356B2 (en) 2010-11-23 2018-02-20 Hanon Systems Refrigeration plant with refrigerant evaporator arrangement and process for parallel air and battery contact cooling
WO2013160952A1 (en) * 2012-04-26 2013-10-31 三菱電機株式会社 Coolant distributor, and heat exchanger equipped with coolant distributor
US10107572B2 (en) 2012-06-14 2018-10-23 Alfa Lavalcorporate Ab Plate heat exchanger
WO2014030236A1 (en) * 2012-08-23 2014-02-27 三菱電機株式会社 Refrigeration device
JPWO2014030236A1 (en) * 2012-08-23 2016-07-28 三菱電機株式会社 Refrigeration equipment
WO2015076644A1 (en) * 2013-11-25 2015-05-28 삼성전자주식회사 Air conditioner
KR20170076892A (en) * 2015-12-24 2017-07-05 주식회사 비엠티 Air conditioning system of the production line using compressed air
KR102000649B1 (en) * 2015-12-24 2019-10-02 주식회사 비엠티 Air conditioning system of the production line using compressed air
JP2019184208A (en) * 2018-04-17 2019-10-24 株式会社神戸製鋼所 Fluid flow passage device
WO2019203025A1 (en) * 2018-04-17 2019-10-24 株式会社神戸製鋼所 Fluid flow-path device
WO2020079731A1 (en) * 2018-10-15 2020-04-23 三菱電機株式会社 Heat exchanger
JPWO2020079731A1 (en) * 2018-10-15 2021-03-11 三菱電機株式会社 Heat exchanger
JP2021050901A (en) * 2019-03-06 2021-04-01 三星電子株式会社Samsung Electronics Co.,Ltd. Distributor and heat exchanger unit
CN113007931A (en) * 2021-03-25 2021-06-22 青岛海尔空调器有限总公司 Fluid distributor and shunt tube set
CN114288828A (en) * 2022-01-06 2022-04-08 浙江天地环保科技股份有限公司 Aperture regulator for flow equalizing sieve plate
WO2024176459A1 (en) * 2023-02-24 2024-08-29 日揮グローバル株式会社 Vibrating sieve device and liquid discharge unit

Similar Documents

Publication Publication Date Title
JP2009222366A (en) Refrigerant distributor
JP4887213B2 (en) Refrigerant distributor and air conditioner
JP4055449B2 (en) Heat exchanger and air conditioner using the same
KR101338283B1 (en) Multi-channel heat exchanger with improved uniformity of refrigerant fluid distribution
EP2902717B1 (en) Air conditioner
JP6202451B2 (en) Heat exchanger and air conditioner
JP4180801B2 (en) Refrigeration and air conditioning cycle equipment
JP6894520B2 (en) Condenser
JP4845943B2 (en) Finned tube heat exchanger and refrigeration cycle air conditioner
US10371422B2 (en) Condenser with tube support structure
KR101797176B1 (en) Dual pipe structure for internal heat exchanger
JPH07113555A (en) Air conditioner
JP2017044428A (en) Heat exchanger, split flow component and heat exchanging device
US20140352352A1 (en) Outdoor heat exchanger and air conditioner
JP2015017738A (en) Heat exchanger
JP5030932B2 (en) Heat exchanger and air-conditioning refrigeration system
WO2014083651A1 (en) Air conditioner
JP5646257B2 (en) Refrigeration cycle equipment
CN110832260B (en) Heat Exchangers and Refrigeration Cycle Devices
JP2007139231A (en) Refrigerant distributor and air conditioner using the same
JP5627635B2 (en) Air conditioner
JP2003214727A (en) Fluid distributor and air conditioner with the same
JP2012237518A (en) Air conditioner
CN113646597A (en) Refrigeration cycle device
KR20170109463A (en) Double pipe heat exchanger method of maufacturing and the double pipe

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20110607