JP2010046898A - Heat-resistant composite film, and substrate film for flexible electronics device composed of the same - Google Patents
Heat-resistant composite film, and substrate film for flexible electronics device composed of the same Download PDFInfo
- Publication number
- JP2010046898A JP2010046898A JP2008212781A JP2008212781A JP2010046898A JP 2010046898 A JP2010046898 A JP 2010046898A JP 2008212781 A JP2008212781 A JP 2008212781A JP 2008212781 A JP2008212781 A JP 2008212781A JP 2010046898 A JP2010046898 A JP 2010046898A
- Authority
- JP
- Japan
- Prior art keywords
- heat
- film
- composite film
- layer
- biaxially oriented
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002131 composite material Substances 0.000 title claims abstract description 82
- 239000000758 substrate Substances 0.000 title claims description 33
- 239000010410 layer Substances 0.000 claims abstract description 85
- 229920006267 polyester film Polymers 0.000 claims abstract description 67
- 239000012790 adhesive layer Substances 0.000 claims abstract description 18
- -1 polyethylene terephthalate Polymers 0.000 claims description 31
- 229920000728 polyester Polymers 0.000 claims description 23
- 239000000853 adhesive Substances 0.000 claims description 14
- 230000001070 adhesive effect Effects 0.000 claims description 11
- 229920000139 polyethylene terephthalate Polymers 0.000 claims description 11
- 239000005020 polyethylene terephthalate Substances 0.000 claims description 11
- 239000004760 aramid Substances 0.000 claims description 9
- 229920003235 aromatic polyamide Polymers 0.000 claims description 9
- 239000003822 epoxy resin Substances 0.000 claims description 6
- 229920000647 polyepoxide Polymers 0.000 claims description 6
- 229920001721 polyimide Polymers 0.000 claims description 4
- 239000009719 polyimide resin Substances 0.000 claims description 4
- 229920006122 polyamide resin Polymers 0.000 claims description 3
- 230000008602 contraction Effects 0.000 abstract description 5
- 239000010408 film Substances 0.000 description 147
- 239000011521 glass Substances 0.000 description 15
- 239000002253 acid Substances 0.000 description 14
- 239000004744 fabric Substances 0.000 description 14
- 230000008859 change Effects 0.000 description 12
- 150000002009 diols Chemical class 0.000 description 12
- 238000010438 heat treatment Methods 0.000 description 12
- 238000000034 method Methods 0.000 description 12
- 239000002245 particle Substances 0.000 description 12
- 239000002346 layers by function Substances 0.000 description 11
- 238000005259 measurement Methods 0.000 description 11
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 10
- 229920005989 resin Polymers 0.000 description 9
- 239000011347 resin Substances 0.000 description 9
- 239000000835 fiber Substances 0.000 description 8
- QQVIHTHCMHWDBS-UHFFFAOYSA-N isophthalic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=C1 QQVIHTHCMHWDBS-UHFFFAOYSA-N 0.000 description 8
- 238000006116 polymerization reaction Methods 0.000 description 7
- 238000012545 processing Methods 0.000 description 7
- 230000004888 barrier function Effects 0.000 description 6
- 239000003795 chemical substances by application Substances 0.000 description 6
- 229920001577 copolymer Polymers 0.000 description 6
- 239000007789 gas Substances 0.000 description 6
- 239000000314 lubricant Substances 0.000 description 6
- 229920000642 polymer Polymers 0.000 description 6
- 238000005809 transesterification reaction Methods 0.000 description 6
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 5
- 238000007334 copolymerization reaction Methods 0.000 description 5
- 238000009998 heat setting Methods 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 4
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 4
- ADCOVFLJGNWWNZ-UHFFFAOYSA-N antimony trioxide Chemical compound O=[Sb]O[Sb]=O ADCOVFLJGNWWNZ-UHFFFAOYSA-N 0.000 description 4
- 229920006231 aramid fiber Polymers 0.000 description 4
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 description 4
- 230000015556 catabolic process Effects 0.000 description 4
- 239000003054 catalyst Substances 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 230000007547 defect Effects 0.000 description 4
- 238000006731 degradation reaction Methods 0.000 description 4
- 238000011161 development Methods 0.000 description 4
- XNGIFLGASWRNHJ-UHFFFAOYSA-N phthalic acid Chemical compound OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 description 4
- YPFDHNVEDLHUCE-UHFFFAOYSA-N propane-1,3-diol Chemical compound OCCCO YPFDHNVEDLHUCE-UHFFFAOYSA-N 0.000 description 4
- CXMXRPHRNRROMY-UHFFFAOYSA-N sebacic acid Chemical compound OC(=O)CCCCCCCCC(O)=O CXMXRPHRNRROMY-UHFFFAOYSA-N 0.000 description 4
- 229920000049 Carbon (fiber) Polymers 0.000 description 3
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 3
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 3
- 239000004917 carbon fiber Substances 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 239000004973 liquid crystal related substance Substances 0.000 description 3
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 3
- RXOHFPCZGPKIRD-UHFFFAOYSA-N naphthalene-2,6-dicarboxylic acid Chemical compound C1=C(C(O)=O)C=CC2=CC(C(=O)O)=CC=C21 RXOHFPCZGPKIRD-UHFFFAOYSA-N 0.000 description 3
- WPUMVKJOWWJPRK-UHFFFAOYSA-N naphthalene-2,7-dicarboxylic acid Chemical compound C1=CC(C(O)=O)=CC2=CC(C(=O)O)=CC=C21 WPUMVKJOWWJPRK-UHFFFAOYSA-N 0.000 description 3
- SLCVBVWXLSEKPL-UHFFFAOYSA-N neopentyl glycol Chemical compound OCC(C)(C)CO SLCVBVWXLSEKPL-UHFFFAOYSA-N 0.000 description 3
- 238000000059 patterning Methods 0.000 description 3
- 229920006254 polymer film Polymers 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 230000003746 surface roughness Effects 0.000 description 3
- 239000004925 Acrylic resin Substances 0.000 description 2
- 229920000178 Acrylic resin Polymers 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 229930185605 Bisphenol Natural products 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- 229920000271 Kevlar® Polymers 0.000 description 2
- JZMZZQIVTBNPPP-UHFFFAOYSA-N NC(=O)C1=CC=CC=C1C(=O)N1C2=CC=C1C=C2 Chemical compound NC(=O)C1=CC=CC=C1C(=O)N1C2=CC=C1C=C2 JZMZZQIVTBNPPP-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 229920001494 Technora Polymers 0.000 description 2
- 239000001361 adipic acid Substances 0.000 description 2
- 235000011037 adipic acid Nutrition 0.000 description 2
- 239000003513 alkali Substances 0.000 description 2
- LJCFOYOSGPHIOO-UHFFFAOYSA-N antimony pentoxide Chemical compound O=[Sb](=O)O[Sb](=O)=O LJCFOYOSGPHIOO-UHFFFAOYSA-N 0.000 description 2
- 239000002216 antistatic agent Substances 0.000 description 2
- 239000002585 base Substances 0.000 description 2
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 2
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 239000012792 core layer Substances 0.000 description 2
- TVIDDXQYHWJXFK-UHFFFAOYSA-N dodecanedioic acid Chemical compound OC(=O)CCCCCCCCCCC(O)=O TVIDDXQYHWJXFK-UHFFFAOYSA-N 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- YBMRDBCBODYGJE-UHFFFAOYSA-N germanium dioxide Chemical compound O=[Ge]=O YBMRDBCBODYGJE-UHFFFAOYSA-N 0.000 description 2
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 2
- XXMIOPMDWAUFGU-UHFFFAOYSA-N hexane-1,6-diol Chemical compound OCCCCCCO XXMIOPMDWAUFGU-UHFFFAOYSA-N 0.000 description 2
- 229920001519 homopolymer Polymers 0.000 description 2
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 239000004761 kevlar Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- CKFGINPQOCXMAZ-UHFFFAOYSA-N methanediol Chemical compound OCO CKFGINPQOCXMAZ-UHFFFAOYSA-N 0.000 description 2
- KYTZHLUVELPASH-UHFFFAOYSA-N naphthalene-1,2-dicarboxylic acid Chemical compound C1=CC=CC2=C(C(O)=O)C(C(=O)O)=CC=C21 KYTZHLUVELPASH-UHFFFAOYSA-N 0.000 description 2
- BDJRBEYXGGNYIS-UHFFFAOYSA-N nonanedioic acid Chemical compound OC(=O)CCCCCCCC(O)=O BDJRBEYXGGNYIS-UHFFFAOYSA-N 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- 238000006068 polycondensation reaction Methods 0.000 description 2
- 239000002861 polymer material Substances 0.000 description 2
- 239000002685 polymerization catalyst Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000004950 technora Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- WGTYBPLFGIVFAS-UHFFFAOYSA-M tetramethylammonium hydroxide Chemical compound [OH-].C[N+](C)(C)C WGTYBPLFGIVFAS-UHFFFAOYSA-M 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- JMXKSZRRTHPKDL-UHFFFAOYSA-N titanium ethoxide Chemical compound [Ti+4].CC[O-].CC[O-].CC[O-].CC[O-] JMXKSZRRTHPKDL-UHFFFAOYSA-N 0.000 description 2
- 239000002759 woven fabric Substances 0.000 description 2
- 125000001989 1,3-phenylene group Chemical group [H]C1=C([H])C([*:1])=C([H])C([*:2])=C1[H] 0.000 description 1
- PXGZQGDTEZPERC-UHFFFAOYSA-N 1,4-cyclohexanedicarboxylic acid Chemical compound OC(=O)C1CCC(C(O)=O)CC1 PXGZQGDTEZPERC-UHFFFAOYSA-N 0.000 description 1
- XFEGRFIENDJTCK-UHFFFAOYSA-N 2-phenyl-2,3-dihydroindene-1,1-dicarboxylic acid Chemical compound C1C2=CC=CC=C2C(C(=O)O)(C(O)=O)C1C1=CC=CC=C1 XFEGRFIENDJTCK-UHFFFAOYSA-N 0.000 description 1
- WMRCTEPOPAZMMN-UHFFFAOYSA-N 2-undecylpropanedioic acid Chemical compound CCCCCCCCCCCC(C(O)=O)C(O)=O WMRCTEPOPAZMMN-UHFFFAOYSA-N 0.000 description 1
- MMINFSMURORWKH-UHFFFAOYSA-N 3,6-dioxabicyclo[6.2.2]dodeca-1(10),8,11-triene-2,7-dione Chemical group O=C1OCCOC(=O)C2=CC=C1C=C2 MMINFSMURORWKH-UHFFFAOYSA-N 0.000 description 1
- NEQFBGHQPUXOFH-UHFFFAOYSA-N 4-(4-carboxyphenyl)benzoic acid Chemical compound C1=CC(C(=O)O)=CC=C1C1=CC=C(C(O)=O)C=C1 NEQFBGHQPUXOFH-UHFFFAOYSA-N 0.000 description 1
- 239000005995 Aluminium silicate Substances 0.000 description 1
- 239000005711 Benzoic acid Substances 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 239000004386 Erythritol Substances 0.000 description 1
- UNXHWFMMPAWVPI-UHFFFAOYSA-N Erythritol Natural products OCC(O)C(O)CO UNXHWFMMPAWVPI-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 239000004640 Melamine resin Substances 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 238000003917 TEM image Methods 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- YIMQCDZDWXUDCA-UHFFFAOYSA-N [4-(hydroxymethyl)cyclohexyl]methanol Chemical compound OCC1CCC(CO)CC1 YIMQCDZDWXUDCA-UHFFFAOYSA-N 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 125000002723 alicyclic group Chemical group 0.000 description 1
- 125000005907 alkyl ester group Chemical group 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- VBIXEXWLHSRNKB-UHFFFAOYSA-N ammonium oxalate Chemical compound [NH4+].[NH4+].[O-]C(=O)C([O-])=O VBIXEXWLHSRNKB-UHFFFAOYSA-N 0.000 description 1
- 230000003712 anti-aging effect Effects 0.000 description 1
- 229940058905 antimony compound for treatment of leishmaniasis and trypanosomiasis Drugs 0.000 description 1
- 150000001463 antimony compounds Chemical class 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 235000010233 benzoic acid Nutrition 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- QHIWVLPBUQWDMQ-UHFFFAOYSA-N butyl prop-2-enoate;methyl 2-methylprop-2-enoate;prop-2-enoic acid Chemical compound OC(=O)C=C.COC(=O)C(C)=C.CCCCOC(=O)C=C QHIWVLPBUQWDMQ-UHFFFAOYSA-N 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 1
- 239000000292 calcium oxide Substances 0.000 description 1
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 239000013065 commercial product Substances 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 229920006038 crystalline resin Polymers 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- MHKBNMVNEQRFFF-UHFFFAOYSA-N cyclohexane;methanediol Chemical compound OCO.C1CCCCC1 MHKBNMVNEQRFFF-UHFFFAOYSA-N 0.000 description 1
- GYUVMLBYMPKZAZ-UHFFFAOYSA-N dimethyl naphthalene-2,6-dicarboxylate Chemical compound C1=C(C(=O)OC)C=CC2=CC(C(=O)OC)=CC=C21 GYUVMLBYMPKZAZ-UHFFFAOYSA-N 0.000 description 1
- GKMXREIWPASRMP-UHFFFAOYSA-J dipotassium;oxalate;oxygen(2-);titanium(4+) Chemical compound [O-2].[K+].[K+].[Ti+4].[O-]C(=O)C([O-])=O.[O-]C(=O)C([O-])=O GKMXREIWPASRMP-UHFFFAOYSA-J 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 238000000635 electron micrograph Methods 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- UNXHWFMMPAWVPI-ZXZARUISSA-N erythritol Chemical compound OC[C@H](O)[C@H](O)CO UNXHWFMMPAWVPI-ZXZARUISSA-N 0.000 description 1
- 229940009714 erythritol Drugs 0.000 description 1
- 235000019414 erythritol Nutrition 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 230000005294 ferromagnetic effect Effects 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 235000019256 formaldehyde Nutrition 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 150000002291 germanium compounds Chemical class 0.000 description 1
- 229940119177 germanium dioxide Drugs 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- 239000012760 heat stabilizer Substances 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 230000005291 magnetic effect Effects 0.000 description 1
- 229940082328 manganese acetate tetrahydrate Drugs 0.000 description 1
- CESXSDZNZGSWSP-UHFFFAOYSA-L manganese(2+);diacetate;tetrahydrate Chemical compound O.O.O.O.[Mn+2].CC([O-])=O.CC([O-])=O CESXSDZNZGSWSP-UHFFFAOYSA-L 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- DFFZOPXDTCDZDP-UHFFFAOYSA-N naphthalene-1,5-dicarboxylic acid Chemical compound C1=CC=C2C(C(=O)O)=CC=CC2=C1C(O)=O DFFZOPXDTCDZDP-UHFFFAOYSA-N 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 239000012785 packaging film Substances 0.000 description 1
- 229920006280 packaging film Polymers 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- NAYYNDKKHOIIOD-UHFFFAOYSA-N phthalamide Chemical compound NC(=O)C1=CC=CC=C1C(N)=O NAYYNDKKHOIIOD-UHFFFAOYSA-N 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229920003207 poly(ethylene-2,6-naphthalate) Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920001707 polybutylene terephthalate Polymers 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 239000011112 polyethylene naphthalate Substances 0.000 description 1
- 229920006290 polyethylene naphthalate film Polymers 0.000 description 1
- 229920001228 polyisocyanate Polymers 0.000 description 1
- 239000005056 polyisocyanate Substances 0.000 description 1
- 229920000307 polymer substrate Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920013636 polyphenyl ether polymer Polymers 0.000 description 1
- 229920005990 polystyrene resin Polymers 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 238000002203 pretreatment Methods 0.000 description 1
- HKJYVRJHDIPMQB-UHFFFAOYSA-N propan-1-olate;titanium(4+) Chemical compound CCCO[Ti](OCCC)(OCCC)OCCC HKJYVRJHDIPMQB-UHFFFAOYSA-N 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000011342 resin composition Substances 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000012748 slip agent Substances 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- KKEYFWRCBNTPAC-UHFFFAOYSA-L terephthalate(2-) Chemical compound [O-]C(=O)C1=CC=C(C([O-])=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-L 0.000 description 1
- 150000003609 titanium compounds Chemical class 0.000 description 1
- STCOOQWBFONSKY-UHFFFAOYSA-N tributyl phosphate Chemical compound CCCCOP(=O)(OCCCC)OCCCC STCOOQWBFONSKY-UHFFFAOYSA-N 0.000 description 1
- DQWPFSLDHJDLRL-UHFFFAOYSA-N triethyl phosphate Chemical compound CCOP(=O)(OCC)OCC DQWPFSLDHJDLRL-UHFFFAOYSA-N 0.000 description 1
- WVLBCYQITXONBZ-UHFFFAOYSA-N trimethyl phosphate Chemical compound COP(=O)(OC)OC WVLBCYQITXONBZ-UHFFFAOYSA-N 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000001993 wax Substances 0.000 description 1
- 238000009941 weaving Methods 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Landscapes
- Laminated Bodies (AREA)
- Devices For Indicating Variable Information By Combining Individual Elements (AREA)
Abstract
【課題】高温度域での温度膨張係数及び熱収縮率の双方が小さく、優れた耐熱寸法安定性を有するとともにフィルム表面平坦性に優れた耐熱性複合フィルムを提供する。
【解決手段】耐熱絶縁紙の両面に接着層を介して二軸配向ポリエステルフィルムが積層された少なくとも5層の層構成を有する複合フィルムであって、該複合フィルムの最外層は二軸配向ポリエステルフィルムであり、かつ(1)100〜180℃における温度膨張係数(αt)がフィルムの長手方向および幅方向のいずれも−5ppm/℃〜15ppm/℃の範囲であり、(2)200℃×10分における熱収縮率がフィルムの長手方向および幅方向のいずれも−0.2%以上0.2%以下で表される(1)及び(2)の特性を同時に満たす耐熱性複合フィルム。
【選択図】なしThe present invention provides a heat-resistant composite film having both a low thermal expansion coefficient and a low thermal contraction rate in a high temperature range, excellent heat-resistant dimensional stability, and excellent film surface flatness.
SOLUTION: A composite film having a layer structure of at least 5 layers in which biaxially oriented polyester films are laminated on both surfaces of heat-resistant insulating paper via an adhesive layer, and the outermost layer of the composite film is a biaxially oriented polyester film. And (1) the temperature expansion coefficient (αt) at 100 to 180 ° C. is in the range of −5 ppm / ° C. to 15 ppm / ° C. in both the longitudinal and width directions of the film, and (2) 200 ° C. × 10 minutes. The heat-resistant composite film which simultaneously satisfies the characteristics (1) and (2), in which the heat shrinkage ratio in the film is expressed by -0.2% or more and 0.2% or less in both the longitudinal direction and the width direction of the film.
[Selection figure] None
Description
本発明は耐熱寸法安定性及び表面平坦性に優れた耐熱性複合フィルムおよびそれからなるフレキシブルエレクトロニクスデバイス用基板フィルムに関し、さらに詳しくは、高温度域での温度膨張係数及び熱収縮率の双方が小さく、かつ表面平坦性に優れた耐熱性複合フィルムおよびそれからなる有機EL、電子ペーパー、太陽電池などのフレキシブルエレクトロニクスデバイス用基板フィルムに関する。 The present invention relates to a heat-resistant composite film excellent in heat-resistant dimensional stability and surface flatness and a substrate film for flexible electronic devices comprising the same, and more specifically, both the temperature expansion coefficient and the heat shrinkage rate in a high temperature range are small, The present invention also relates to a heat-resistant composite film having excellent surface flatness and a substrate film for flexible electronic devices such as organic EL, electronic paper, and solar cells.
ポリエステルフィルム、特にポリエチレンテレフタレートやポリエチレンナフタレートの二軸延伸フィルムは、優れた機械的性質、耐熱性、耐薬品性を有するため、磁気テープ、強磁性薄膜テープ、写真フィルム、包装用フィルム、電子部品用フィルム、電気絶縁フィルム、金属ラミネート用フィルム、ガラスディスプレイ等の表面に貼るフィルム、各種部材の保護用フィルム等の素材として広く用いられている。 Polyester films, especially biaxially stretched films of polyethylene terephthalate and polyethylene naphthalate, have excellent mechanical properties, heat resistance, and chemical resistance. Therefore, magnetic tape, ferromagnetic thin film tape, photographic film, packaging film, electronic parts It is widely used as a material such as a film for electrical use, an electrical insulation film, a film for metal lamination, a film attached to the surface of a glass display, and a protective film for various members.
液晶ディスプレイに代表される画像表示装置には、従来ガラス基板が用いられてきた。しかし、近年、画像表示装置は薄型、軽量化、大画面化、形状の自由度、曲面表示という要求から、重くて割れやすいガラス基板から高透明高分子フィルム基板への検討が行われてきている。特に近年では有機ELに代表される自発光素子の開発が進み、液晶ディスプレイのようにバックライトを採用せざるを得ないがために多くの部材を使用する必要がある画像表示装置にとって変わろうとしており、このような用途でもガラスの欠点のひとつである割れ易さや重さを改良したいという要求が年々高まってきている。 Conventionally, a glass substrate has been used for an image display device represented by a liquid crystal display. In recent years, however, image display devices have been studied from heavy and fragile glass substrates to highly transparent polymer film substrates because of demands for thinness, weight reduction, large screen, freedom of shape, and curved surface display. . In particular, in recent years, development of self-luminous elements typified by organic EL has progressed, and an image display apparatus that needs to use many members because it has to adopt a backlight like a liquid crystal display is going to change. Even in such applications, demands for improving the ease of breaking and weight, which are one of the drawbacks of glass, are increasing year by year.
高透明高分子フィルム基板として、種々の高分子材料が検討されており、より耐熱寸法安定性の高い材料の1つとして例えば特許文献1のようにポリエチレンナフタレートフィルムが検討されている。一方で、特にフレキシブルエレクトロニクス分野では温度変化に対する寸法安定性が求められており、例えば特許文献2において、30〜100℃における温度膨張係数(αt)がフィルムの長手方向および幅方向のいずれも15ppm/℃以下である二軸配向ポリエステルフィルムが提案されている。しかしながら、フレキシブルエレクトロニクス分野においては、近年、さらに高温の100〜180℃の温度域においても100℃以下の温度域と同様に寸法変化の小さい基材フィルムが求められている。 Various polymer materials have been studied as highly transparent polymer film substrates, and a polyethylene naphthalate film has been studied as one of materials having higher heat-resistant dimensional stability, for example, as disclosed in Patent Document 1. On the other hand, particularly in the flexible electronics field, dimensional stability against temperature change is required. For example, in Patent Document 2, the temperature expansion coefficient (αt) at 30 to 100 ° C. is 15 ppm / both in the longitudinal direction and the width direction of the film. Biaxially oriented polyester films having a temperature of 0 ° C. or less have been proposed. However, in the flexible electronics field, in recent years, a substrate film having a small dimensional change has been demanded even in a higher temperature range of 100 to 180 ° C. as in the temperature range of 100 ° C. or less.
室温から175℃までのより高温域まで耐熱寸法安定性に優れる二軸配向ポリエステルフィルムの一例としては、例えば特許文献3において少なくとも3層からなり、芯層に液晶性樹脂を10〜70重量%含有する積層フィルムが提案されている。一方、本特許文献はフレキシブルプリント回路基板として例えば銅との熱膨張係数を合わせるため、具体的に開示されている室温から175℃にかけてのフィルムの熱膨張係数は20ppm前後の状況である。 As an example of a biaxially oriented polyester film excellent in heat-resistant dimensional stability from room temperature to a higher temperature range from 175 ° C., for example, it is composed of at least three layers in Patent Document 3 and contains 10 to 70% by weight of a liquid crystalline resin in the core layer A laminated film has been proposed. On the other hand, since this patent document matches the thermal expansion coefficient with, for example, copper as a flexible printed circuit board, the thermal expansion coefficient of the film from room temperature to 175 ° C. specifically disclosed is about 20 ppm.
一方、フレキシブルエレクトロニクスデバイスなどの分野で高分子材料を用いた基板フィルム上に各種機能層を高温で加工する際、180℃前後で加工されることがあるが、そのような温度域において高分子基板フィルムに対し、ガラス基板と同様の5ppm前後の低い温度膨張係数および0%前後の低い熱収縮率が求められている。また、積層された各種機能層の機能性を高めるために、基板フィルムの表面は平坦であることが求められているものの、未だ温度膨張係数ppm程度の耐熱寸法安定性を有し、かつ表面平坦性に優れるフィルムは得られていないのが現状である。 On the other hand, when various functional layers are processed at a high temperature on a substrate film using a polymer material in the field of flexible electronics devices and the like, it may be processed at around 180 ° C., but in such a temperature range, the polymer substrate The film is required to have a low thermal expansion coefficient of about 5 ppm and a low thermal shrinkage of about 0%, which are the same as those of the glass substrate. In addition, the surface of the substrate film is required to be flat in order to enhance the functionality of the laminated various functional layers, but it still has heat-resistant dimensional stability with a temperature expansion coefficient of about ppm and is flat. The present condition is that the film which is excellent in the property is not obtained.
本発明の目的は、かかる従来技術の課題を解消し、高温度域での温度膨張係数及び熱収縮率の双方が小さく、優れた耐熱寸法安定性を有するとともにフィルム表面平坦性に優れた耐熱性複合フィルムを提供することにある。 The object of the present invention is to eliminate such problems of the prior art, have both a low thermal expansion coefficient and a low thermal contraction rate in a high temperature range, have excellent heat-resistant dimensional stability, and excellent film surface flatness. It is to provide a composite film.
本発明の他の目的は、高温度域での温度膨張係数及び熱収縮率の双方が小さく、かつフィルム表面平坦性に優れたフレキシブルエレクトロニクスデバイス用途の基板として好適な耐熱性複合フィルムを提供することにある。 Another object of the present invention is to provide a heat-resistant composite film suitable as a substrate for use in flexible electronic devices that has both a low coefficient of thermal expansion and a high thermal contraction rate in a high temperature range and excellent film surface flatness. It is in.
本発明者らは、前記課題を解決するために鋭意検討した結果、二軸配向ポリエステルフィルムは昇温に従い面方向にプラス方向に膨張する傾向にあり、延伸倍率や延伸後の熱処理などによるだけでは100〜180℃における温度膨張係数(αt)を数ppmにするには限界があること、一方アラミドペーパーなどに代表される耐熱絶縁紙は、昇温に従い面方向に収縮する傾向にある、との知見をもとに、二軸配向ポリエステルフィルムと耐熱絶縁紙とを接着層を介して積層させて、100〜180℃における温度膨張係数(αt)がガラス基板の温度膨張係数に近い−5〜15ppmの範囲にあり、同時に200℃程度の高温下での熱収縮率にも非常に優れた耐熱性の複合フィルムが得られることを見出したものである。また複合フィルムの最外層を二軸配向ポリエステルフィルムにすることにより、フィルム表面平坦性も付与できることを見出し、本発明を完成するに至った。 As a result of intensive studies to solve the above problems, the present inventors have a tendency that the biaxially oriented polyester film expands in the positive direction in the plane direction as the temperature rises. There is a limit to setting the temperature expansion coefficient (αt) at 100 to 180 ° C. to several ppm, while heat-resistant insulating paper typified by aramid paper tends to shrink in the surface direction as the temperature rises. Based on the knowledge, a biaxially oriented polyester film and heat-resistant insulating paper are laminated via an adhesive layer, and the temperature expansion coefficient (αt) at 100 to 180 ° C. is close to the temperature expansion coefficient of the glass substrate −5 to 15 ppm. It has been found that a heat-resistant composite film having an excellent thermal shrinkage rate at a high temperature of about 200 ° C. can be obtained. Moreover, it discovered that film surface flatness could be provided by making the outermost layer of a composite film into a biaxially oriented polyester film, and came to complete this invention.
すなわち本発明によれば、本発明の目的は、耐熱絶縁紙の両面に接着層を介して二軸配向ポリエステルフィルムが積層された少なくとも5層の層構成を有する複合フィルムであって、該複合フィルムの最外層は二軸配向ポリエステルフィルムであり、かつ
(1)100〜180℃における温度膨張係数(αt)がフィルムの長手方向および幅方向のいずれも−5ppm/℃以上15ppm/℃以下の範囲であり、
(2)200℃×10分における熱収縮率がフィルムの長手方向および幅方向のいずれも−0.2%以上0.2%以下
で表される(1)及び(2)の特性を同時に満たす耐熱性複合フィルムによって達成される。
That is, according to the present invention, an object of the present invention is a composite film having a layer structure of at least five layers in which a biaxially oriented polyester film is laminated on both sides of a heat-resistant insulating paper via an adhesive layer, The outermost layer is a biaxially oriented polyester film, and (1) the temperature expansion coefficient (αt) at 100 to 180 ° C. is in the range of −5 ppm / ° C. to 15 ppm / ° C. in both the longitudinal direction and the width direction of the film. Yes,
(2) The thermal shrinkage rate at 200 ° C. for 10 minutes satisfies the characteristics of (1) and (2), which are represented by −0.2% or more and 0.2% or less in both the longitudinal direction and the width direction of the film. Achieved by heat resistant composite film.
また本発明の耐熱性複合フィルムは、その好ましい態様として、耐熱性複合フィルムが耐熱絶縁紙の両面に接着層及び二軸配向ポリエステルフィルムが順次積層された5層構成からなること、耐熱絶縁紙がアラミドペーパーであること、二軸配向ポリエステルフィルムを構成する主たるポリエステルがポリエチレンテレフタレートまたはポリエチレンナフタレンジカルボキシレートであること、耐熱絶縁紙の1層あたりの厚みが20μm以上200μm以下であること、二軸配向ポリエステルフィルムの1層あたりの厚みが6μm以上250μm以下であること、二軸配向ポリエステルフィルムの各層厚みの合計に対する耐熱絶縁紙の各層厚みの合計の比が0.25以上4以下であること、接着層がエポキシ樹脂、ポリイミド樹脂及びポリアミド樹脂からなる群から選ばれる少なくとも1種を主たる成分とする接着剤で構成されること、のいずれか少なくとも1つを具備する。 The heat-resistant composite film of the present invention has a preferred embodiment in which the heat-resistant composite film has a five-layer structure in which an adhesive layer and a biaxially oriented polyester film are sequentially laminated on both surfaces of the heat-resistant insulating paper. It is aramid paper, the main polyester constituting the biaxially oriented polyester film is polyethylene terephthalate or polyethylene naphthalene dicarboxylate, the thickness per layer of heat-resistant insulating paper is 20 μm or more and 200 μm or less, biaxial orientation The thickness per layer of the polyester film is 6 μm or more and 250 μm or less, the ratio of the total thickness of each heat-resistant insulating paper to the total thickness of each layer of the biaxially oriented polyester film is 0.25 or more and 4 or less, adhesion Layer is epoxy resin, polyimide resin and polyamide The at least one selected from the group consisting of the resin is composed of an adhesive whose main component comprises at least one of.
また本発明は、上記の耐熱性複合フィルムからなるフレキシブルエレクトロニクスデバイス用基板フィルムを包含するものであり、フレキシブルエレクトロニクスデバイスとして、有機EL、電子ペーパーおよび太陽電池からなる群から選ばれる少なくとも1種が例示される。 Moreover, this invention includes the board | substrate film for flexible electronics devices which consists of said heat resistant composite film, and at least 1 sort (s) chosen from the group which consists of organic EL, electronic paper, and a solar cell is illustrated as a flexible electronics device. Is done.
本発明の耐熱性複合フィルムは、100〜180℃の高温域での温度膨張係数が−5〜15ppm/℃という極めて温度膨張係数が小さく、同時に、200℃程度の高温下での熱収縮率にも非常に優れており、かつフィルム表面平坦性にも優れることから、有機EL、電子ペーパー、太陽電池などのフレキシブルエレクトロニクスデバイス用基板フィルムとして好適に用いることができる。 The heat resistant composite film of the present invention has a very small temperature expansion coefficient of −5 to 15 ppm / ° C. at a high temperature range of 100 to 180 ° C., and at the same time, the heat shrinkage rate at a high temperature of about 200 ° C. In addition, it is also excellent as a substrate film for flexible electronic devices such as organic EL, electronic paper, and solar cells.
以下、本発明を詳しく説明する。
<二軸配向ポリエステルフィルム>
本発明の二軸配向ポリエステルフィルムを構成するポリエステルは、芳香族二塩基酸またはそのエステル形成性誘導体とジオールまたはそのエステル形成性誘導体とから合成される線状飽和ポリエステルである。
The present invention will be described in detail below.
<Biaxially oriented polyester film>
The polyester constituting the biaxially oriented polyester film of the present invention is a linear saturated polyester synthesized from an aromatic dibasic acid or an ester-forming derivative thereof and a diol or an ester-forming derivative thereof.
かかるポリエステルの具体例として、ポリエチレンテレフタレート、ポリエチレンイソフタレート、ポリエチレンイソフタレート、ポリブチレンテレフタレート、ポリ(1,4−シクロヘキシレンジメチレンテレフタレート)、ポリエチレンナフタレンジカルボキシレートを例示することができ、これらの共重合体またはこれと小割合の他樹脂とのブレンドであってもよい。これらのポリエステルのうち、ポリエチレンテレフタレート、ポリエチレンナフタレンジカルボキシレートが熱的特性、力学的物性や光学物性等のバランスが良いので好ましい。特にポリエチレンナフタレンジカルボキシレートは高温での熱膨張係数や熱収縮率、機械的強度の大きさ、などの点でポリエチレンテレフタレートにまさっている。 Specific examples of such polyesters include polyethylene terephthalate, polyethylene isophthalate, polyethylene isophthalate, polybutylene terephthalate, poly (1,4-cyclohexylenedimethylene terephthalate), and polyethylene naphthalene dicarboxylate. It may be a polymer or a blend of this with a small proportion of other resins. Among these polyesters, polyethylene terephthalate and polyethylene naphthalene dicarboxylate are preferable because they have a good balance of thermal characteristics, mechanical properties, optical properties, and the like. In particular, polyethylene naphthalene dicarboxylate is superior to polyethylene terephthalate in terms of thermal expansion coefficient and thermal shrinkage at high temperatures and mechanical strength.
ポリエステルは、ホモポリマーでも第三成分を共重合した共重合体でもよいが、ホモポリマーが好ましい。
ポリエステルが共重合体である場合、ポリエチレンテレフタレート共重合体として、イソフタル酸共重合ポリエチレンテレフタレートが最適である。このイソフタル酸共重合ポリエチレンテレフタレートは、二軸配向ポリエステルフィルムを構成するポリエステルの全酸成分又は全ジオール成分を基準として、主たる成分であるエチレンテレフタレート単位が95mol%以上であり、共重合成分であるイソフタル酸が5mol%以下であることが好ましい。またポリエチレンテレフタレート共重合体は、イソフタル酸以外の共重合ジカルボン酸成分または共重合ジオール成分が、その特性を損なわない範囲、例えば当該ポリエステルの全酸成分又は全ジオール成分に対して3モル%以下の割合で共重合されていてもよい。該共重合ジカルボン酸成分としては、フタル酸、2,6−ナフタレンジカルボン酸等の如き芳香族ジカルボン酸、アジピン酸、アゼライン酸、セバシン酸、1,10−デカンジカルボン酸等の如き脂肪族ジカルボン酸等が例示でき、また共重合ジオール成分としては、1,4−ブタンジオール、1,6−ヘキサンジオール、ネオペンチルグリコール等の如き脂肪族ジオール、1,4−シクロヘキサンジメタノールの如き脂環族ジオール等が例示できる。これらの共重合成分は単独または二種以上を使用することができる。
The polyester may be a homopolymer or a copolymer obtained by copolymerizing a third component, but a homopolymer is preferred.
When the polyester is a copolymer, isophthalic acid copolymerized polyethylene terephthalate is optimal as the polyethylene terephthalate copolymer. This isophthalic acid-copolymerized polyethylene terephthalate is composed of 95 mol% or more of the main component ethylene terephthalate unit based on the total acid component or total diol component of the polyester constituting the biaxially oriented polyester film. It is preferable that an acid is 5 mol% or less. In addition, the polyethylene terephthalate copolymer has a copolymer dicarboxylic acid component or copolymer diol component other than isophthalic acid in a range where the properties are not impaired, for example, 3 mol% or less based on the total acid component or total diol component of the polyester. It may be copolymerized in proportion. Examples of the copolymerized dicarboxylic acid component include aromatic dicarboxylic acids such as phthalic acid and 2,6-naphthalenedicarboxylic acid, and aliphatic dicarboxylic acids such as adipic acid, azelaic acid, sebacic acid, and 1,10-decanedicarboxylic acid. Examples of the copolymer diol component include aliphatic diols such as 1,4-butanediol, 1,6-hexanediol and neopentyl glycol, and alicyclic diols such as 1,4-cyclohexanedimethanol. Etc. can be illustrated. These copolymerization components can be used alone or in combination of two or more.
またポリエチレンナフタレンジカルボキシレート共重合体の場合、主たるジカルボン酸成分としてナフタレンジカルボン酸が用いられ、主たるジオール成分としてエチレングリコールが用いられる。ナフタレンジカルボン酸としては、たとえば2,6−ナフタレンジカルボン酸、2,7−ナフタレンジカルボン酸、1,5−ナフタレンジカルボン酸を挙げることができ、これらの中で2,6−ナフタレンジカルボン酸が好ましい。ポリエチレンナフタレンジカルボキシレート共重合体の主たる成分は、二軸配向ポリエステルフィルムを構成するポリエステルの全酸成分又は全ジオール成分を基準として少なくとも90mol%、好ましくは少なくとも95mol%であることが好ましい。 In the case of a polyethylene naphthalene dicarboxylate copolymer, naphthalene dicarboxylic acid is used as the main dicarboxylic acid component, and ethylene glycol is used as the main diol component. Examples of naphthalenedicarboxylic acid include 2,6-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, and 1,5-naphthalenedicarboxylic acid. Among these, 2,6-naphthalenedicarboxylic acid is preferable. The main component of the polyethylene naphthalene dicarboxylate copolymer is preferably at least 90 mol%, preferably at least 95 mol% based on the total acid component or total diol component of the polyester constituting the biaxially oriented polyester film.
ポリエチレンナフタレンジカルボキシレート共重合体の共重合成分として、分子内に2つのエステル形成性官能基を有する化合物を用いることができ、かかる共重合成分は、二軸配向ポリエステルフィルムを構成するポリエステルの全酸成分又は全ジオール成分を基準として10mol%以下であることが好ましく、さらに好ましくは5mol%以下である。
ポリエチレンナフタレンジカルボキシレート共重合体の共重合成分として、例えば、蓚酸、アジピン酸、フタル酸、セバシン酸、ドデカンジカルボン酸、イソフタル酸、テレフタル酸、1,4−シクロヘキサンジカルボン酸、4,4’−ジフェニルジカルボン酸、フェニルインダンジカルボン酸、2,7−ナフタレンジカルボン酸、テトラリンジカルボン酸、デカリンジカルボン酸、ジフェニルエーテルジカルボン酸等の如きジカルボン酸成分、p−オキシ安息香酸、p−オキシエトキシ安息香酸の如きオキシカルボン酸、或いはプロピレングリコール、トリメチレングリコール、テトラメチレングリコール、ヘキサメチレングリコール、シクロヘキサンメチレングリコール、ネオペンチルグリコール、ビスフェノールスルホンのエチレンオキサイド付加物、ビスフェノールAのエチレンオキサイド付加物、ジエチレングリコール、ポリエチレンオキシドグリコールの如きジオール成分を好ましく用いることができる。
As the copolymerization component of the polyethylene naphthalene dicarboxylate copolymer, a compound having two ester-forming functional groups in the molecule can be used, and such copolymerization component is used for all the polyesters constituting the biaxially oriented polyester film. The amount is preferably 10 mol% or less, more preferably 5 mol% or less, based on the acid component or the total diol component.
As a copolymerization component of the polyethylene naphthalene dicarboxylate copolymer, for example, oxalic acid, adipic acid, phthalic acid, sebacic acid, dodecanedicarboxylic acid, isophthalic acid, terephthalic acid, 1,4-cyclohexanedicarboxylic acid, 4,4′- Dicarboxylic acid components such as diphenyldicarboxylic acid, phenylindanedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, tetralindicarboxylic acid, decalindicarboxylic acid, diphenyletherdicarboxylic acid, oxy such as p-oxybenzoic acid, p-oxyethoxybenzoic acid Carboxylic acid or ethylene oxide of propylene glycol, trimethylene glycol, tetramethylene glycol, hexamethylene glycol, cyclohexane methylene glycol, neopentyl glycol, bisphenol sulfone A diol component such as a side adduct, an ethylene oxide adduct of bisphenol A, diethylene glycol, or polyethylene oxide glycol can be preferably used.
これらの共重合成分は単独または二種以上を使用することができる。これらの中で好ましい酸成分として、イソフタル酸、テレフタル酸、4,4’−ジフェニルジカルボン酸、2,7−ナフタレンジカルボン酸、p−オキシ安息香酸が例示され、ジオール成分としてはトリメチレングリコール、ヘキサメチレングリコール、ネオペンチルグリコール、ビスフェノールスルホンのエチレンオキサイド付加物が例示される。 These copolymerization components can be used alone or in combination of two or more. Among these, preferable acid components include isophthalic acid, terephthalic acid, 4,4′-diphenyldicarboxylic acid, 2,7-naphthalenedicarboxylic acid, and p-oxybenzoic acid. Examples of the diol component include trimethylene glycol, hexa Examples thereof include ethylene oxide adducts of methylene glycol, neopentyl glycol, and bisphenol sulfone.
また、上記ポリエステルは、例えば安息香酸、メトキシポリアルキレングリコールなどの一官能性化合物によって末端の水酸基および/またはカルボキシル基の一部または全部を封鎖したものであってよく、ごく少量の例えばグリセリン、ペンタエリスリトール等の如き三官能以上のエステル形成性化合物で実質的に線状のポリマーが得られる範囲内で共重合したものであってもよい。 The polyester may be one in which a part or all of the terminal hydroxyl group and / or carboxyl group is blocked with a monofunctional compound such as benzoic acid or methoxypolyalkylene glycol. It may be copolymerized with a trifunctional or higher functional ester-forming compound such as erythritol within a range where a substantially linear polymer is obtained.
本発明のポリエステルは従来公知の方法、例えばジカルボン酸とジオールとの反応で直接低重合度ポリエステルを得る方法や、ジカルボン酸の低級アルキルエステルとジオールとを従来公知のエステル交換触媒である、例えばナトリウム、カリウム、マグネシウム、カルシウム、亜鉛、ストロンチウム、チタン、ジルコニウム、マンガン、コバルトを含む化合物の一種または二種以上を用いて反応させた後、重合触媒の存在下で重合反応を行う方法で得ることができる。重合触媒としては、三酸化アンチモン、五酸化アンチモンのようなアンチモン化合物、二酸化ゲルマニウムで代表されるようなゲルマニウム化合物、テトラエチルチタネート、テトラプロピルチタネート、テトラフェニルチタネートまたはこれらの部分加水分解物、蓚酸チタニルアンモニウム、蓚酸チタニルカリウム、チタントリスアセチルアセトネートのようなチタン化合物を用いることができる。 The polyester of the present invention is a conventionally known method, for example, a method of directly obtaining a low polymerization degree polyester by reaction of a dicarboxylic acid and a diol, or a lower alkyl ester of a dicarboxylic acid and a diol are conventionally known transesterification catalysts, such as sodium It can be obtained by performing a polymerization reaction in the presence of a polymerization catalyst after reacting with one or more of compounds containing potassium, magnesium, calcium, zinc, strontium, titanium, zirconium, manganese, and cobalt. it can. As a polymerization catalyst, antimony compounds such as antimony trioxide and antimony pentoxide, germanium compounds represented by germanium dioxide, tetraethyl titanate, tetrapropyl titanate, tetraphenyl titanate or a partial hydrolyzate thereof, titanyl ammonium oxalate , Titanium compounds such as potassium titanyl oxalate and titanium trisacetylacetonate can be used.
エステル交換反応を経由して重合を行う場合は、重合反応前にエステル交換触媒を失活させる目的でトリメチルホスフェート、トリエチルホスフェート、トリ−n−ブチルホスフェート、正リン酸等のリン化合物が通常は添加され、リン元素としてのポリエステル中の含有量が20〜100重量ppmであることがポリエステルの熱安定性の点から好ましい。 When polymerization is performed via a transesterification reaction, a phosphorus compound such as trimethyl phosphate, triethyl phosphate, tri-n-butyl phosphate, or normal phosphoric acid is usually added for the purpose of deactivating the transesterification catalyst before the polymerization reaction. In view of thermal stability of the polyester, the content of the phosphorus element in the polyester is preferably 20 to 100 ppm by weight.
なお、ポリエステルは、溶融重合後これをチップ化し、加熱減圧下または窒素などの不活性気流中において更に固相重合を施してもよい。
ポリエステルの固有粘度は0.40dl/g以上であることが好ましく、0.40〜0.90dl/gであることが更に好ましい。固有粘度が0.40dl/g未満では工程切断が多発することがある。また0.9dl/gより高いと溶融粘度が高いため溶融押出しが困難であるうえ、重合時間が長く不経済である。
The polyester may be converted into chips after melt polymerization, and further subjected to solid phase polymerization under heating under reduced pressure or in an inert gas stream such as nitrogen.
The intrinsic viscosity of the polyester is preferably 0.40 dl / g or more, and more preferably 0.40 to 0.90 dl / g. If the intrinsic viscosity is less than 0.40 dl / g, process cutting may occur frequently. On the other hand, if it is higher than 0.9 dl / g, melt extrusion is difficult because of high melt viscosity, and the polymerization time is long and uneconomical.
本発明の二軸配向ポリエステルフィルムには、本発明の機能を損なわない範囲内で着色剤、帯電防止剤、酸化防止剤を含有してもよい。
本発明の二軸配向ポリエステルフィルムは、二軸方向に延伸された配向フィルムであることが必要である。未延伸または一軸ポリエステルフィルムの場合、寸法安定性の高い耐熱絶縁紙と貼り合せても、複合フィルムにおいて、延伸されていない方向の温度膨張係数や熱収縮率特性について本願発明の範囲を達成することができない。
The biaxially oriented polyester film of the present invention may contain a colorant, an antistatic agent and an antioxidant within a range not impairing the function of the present invention.
The biaxially oriented polyester film of the present invention needs to be an oriented film stretched in the biaxial direction. In the case of an unstretched or uniaxial polyester film, even if it is bonded to a heat-resistant insulating paper with high dimensional stability, the composite film achieves the scope of the present invention in terms of the thermal expansion coefficient and thermal shrinkage characteristics in the unstretched direction. I can't.
本発明の二軸配向ポリエステルフィルムは、滑剤を含有しないか、含有しても特性に影響を与えないような小粒径の滑剤を少量の範囲で含有することが好ましい。本発明の二軸配向ポリエステルフィルムは、複合フィルムの表面平坦性を発現させるために最外層に用いられる。本発明における表面平坦性は後述の測定方法において評価される程度の平滑性を指しており、かかる平滑性を達成するためには、フィルム中に滑剤を含有しないか、含有する場合はフィルムの重量を基準として好ましくは5重量%以下、より好ましくは1重量%以下の範囲内で含有するものである。滑剤の平均粒径は特に限定されないが、0.001〜5μmであることが好ましい。ここで平均粒径とは、粒子の電子顕微鏡写真または透過型電子顕微鏡写真により粒子10点について測定した粒子径の平均値を意味する。また滑剤の種類は特に特定されず、例えば炭酸カルシウム、酸化カルシウム、酸化アルミニウム、カオリン、シリカ、架橋アクリル樹脂粒子、架橋ポリスチレン樹脂粒子、メラミン樹脂粒子、架橋シリコーン樹脂粒子が挙げられる。 The biaxially oriented polyester film of the present invention preferably does not contain a lubricant or contains a small particle size lubricant that does not affect the properties even if contained. The biaxially oriented polyester film of the present invention is used for the outermost layer in order to develop the surface flatness of the composite film. The surface flatness in the present invention refers to the degree of smoothness evaluated in the measurement method described later. In order to achieve such smoothness, the film does not contain a lubricant or, if it contains, the weight of the film. Is preferably 5% by weight or less, more preferably 1% by weight or less. The average particle size of the lubricant is not particularly limited, but is preferably 0.001 to 5 μm. Here, the average particle diameter means an average value of the particle diameters measured for 10 particles by an electron micrograph or a transmission electron micrograph of the particles. The type of lubricant is not particularly specified, and examples thereof include calcium carbonate, calcium oxide, aluminum oxide, kaolin, silica, crosslinked acrylic resin particles, crosslinked polystyrene resin particles, melamine resin particles, and crosslinked silicone resin particles.
本発明の二軸配向ポリエステルフィルムの1層あたりの厚みは6μm以上250μm以下であることが好ましく、さらに好ましくは12μm以上200μm以下、特に好ましくは25μm以上125μm以下である。二軸配向ポリエステルフィルムの1層あたりの厚みが下限に満たない場合、複合フィルム中に占める二軸配向ポリエステルフィルムの割合が少なく、面方向の温度膨張係数がマイナス方向に大きくなり、複合フィルムの温度膨張係数の下限に満たないことがある。また二軸配向ポリエステルフィルムの1層あたりの厚みが上限を超える場合、複合フィルム中に占める二軸配向ポリエステルフィルムの割合が増えて面方向の温度膨張係数がプラス方向に大きくなり、複合フィルムの温度膨張係数の上限を超えることがある。その他、二軸配向ポリエステルフィルムの1層あたりの厚みが上限を超える場合、フレキシブルエレクトロニクスデバイスの基板フィルムとして用いた場合に自由な屈曲性を得られないことがある。 The thickness per layer of the biaxially oriented polyester film of the present invention is preferably 6 μm or more and 250 μm or less, more preferably 12 μm or more and 200 μm or less, and particularly preferably 25 μm or more and 125 μm or less. When the thickness per layer of the biaxially oriented polyester film is less than the lower limit, the ratio of the biaxially oriented polyester film in the composite film is small, the thermal expansion coefficient in the surface direction is increased in the negative direction, and the temperature of the composite film May not meet the lower limit of expansion coefficient. When the thickness per layer of the biaxially oriented polyester film exceeds the upper limit, the ratio of the biaxially oriented polyester film in the composite film increases, and the temperature expansion coefficient in the plane direction increases in the positive direction, and the temperature of the composite film May exceed the upper limit of expansion coefficient. In addition, when the thickness per layer of the biaxially oriented polyester film exceeds the upper limit, it may not be possible to obtain free flexibility when used as a substrate film of a flexible electronic device.
<耐熱絶縁紙>
本発明の耐熱絶縁紙は、耐熱性の無機系または有機系の繊維布であり、具体的にはガラス系繊維布、アラミド系繊維布、ポリベンザゾール繊維布及び炭素系繊維布からなる群から選ばれる少なくとも1種であることが好ましく、これらの中でもアラミド系繊維布、ポリベンザゾール繊維布がさらに好ましい。
ガラス系繊維布はガラスクロスとも称され、Eガラス(無アルカリガラス)、Sガラス、Dガラス、クォーツ、高誘電率ガラス等が挙げられる。またアラミド系繊維布はアラミドペーパーとも称され、アラミド繊維を必要に応じてバインダーとともに抄紙した後、温度及び圧力をかけて製造したものである。なお、アラミドとしては、ケブラー(商品名:デュポン・東レ・ケブラー社製)、テクノーラ(商品名:帝人テクノプロダクツ社製)、コーネックス(商品名:帝人テクノプロダクツ社製)に代表されるポリ-p-フェニレンフタルアミド、ポリ-m-フェニレンフタルアミド、p-フェニレンフタルアミドおよび3,4'- ジフェニルエーテルフタルアミドの共重合体等が例示される。また炭素系繊維布として、炭素繊維、炭化珪素繊維等が挙げられる。
これらの中でも、好ましくはアラミドペーパーが挙げられ、特に耐熱性の点で、通常パラ系アラミドとも称されるポリ-p-フェニレンフタルアミドを用いたアラミドペーパーが好ましい。
<Heat resistant insulation paper>
The heat-resistant insulating paper of the present invention is a heat-resistant inorganic or organic fiber cloth, specifically, a glass fiber cloth, an aramid fiber cloth, a polybenzazole fiber cloth, and a carbon fiber cloth. At least one selected from the above is preferable, and among these, an aramid fiber cloth and a polybenzazole fiber cloth are more preferable.
The glass-based fiber cloth is also called a glass cloth, and examples thereof include E glass (non-alkali glass), S glass, D glass, quartz, and high dielectric constant glass. The aramid fiber cloth is also referred to as aramid paper, and is produced by making aramid fibers with a binder as necessary and then applying temperature and pressure. In addition, as aramid, poly- typified by Kevlar (trade name: manufactured by DuPont Toray Kevlar), Technora (trade name: manufactured by Teijin Techno Products), and Conex (product name: manufactured by Teijin Techno Products) Examples include copolymers of p-phenylene phthalamide, poly-m-phenylene phthalamide, p-phenylene phthalamide, and 3,4'-diphenyl ether phthalamide. Examples of the carbon fiber cloth include carbon fiber and silicon carbide fiber.
Among these, aramid paper is preferable, and an aramid paper using poly-p-phenylenephthalamide, which is usually also referred to as para-aramid, is particularly preferable from the viewpoint of heat resistance.
耐熱絶縁紙を構成する繊維布の織布フィラメントの織り方について、特に限定されるものではなく、平織り、ななこ織り、朱子織り、綾織り等の構造を有する織物でも良く、好ましくは平織りである。 また、織布に限定されるのではなく不織布であってもかまわない。耐熱絶縁紙の1層あたりの厚みは、20μm以上200μm以下であることが好ましく、より好ましくは40μm以上120μm以下である。耐熱絶縁紙の1層あたりの厚みが下限に満たない場合、複合フィルム中に占める耐熱絶縁紙の割合が少なく、面方向の温度膨張係数がプラス方向に大きくなり、複合フィルムの温度膨張係数の上限を超えることがある。また耐熱絶縁紙の1層あたりの厚みが上限を超える場合、複合フィルム中に占める耐熱絶縁紙の割合が増えて面方向の温度膨張係数がマイナス方向に大きくなり、複合フィルムの温度膨張係数の下限に満たないことがある。 The weaving method of the woven filaments of the fiber cloth constituting the heat-resistant insulating paper is not particularly limited, and may be a woven fabric having a structure such as plain weave, nanako weave, satin weave, twill weave, and preferably plain weave. Moreover, it is not limited to a woven fabric and may be a non-woven fabric. The thickness per layer of the heat-resistant insulating paper is preferably 20 μm or more and 200 μm or less, more preferably 40 μm or more and 120 μm or less. If the thickness per layer of heat-resistant insulating paper is less than the lower limit, the proportion of heat-resistant insulating paper in the composite film is small, the temperature expansion coefficient in the surface direction is increased in the positive direction, and the upper limit of the temperature expansion coefficient of the composite film May be exceeded. Also, if the thickness per layer of heat-resistant insulating paper exceeds the upper limit, the proportion of heat-resistant insulating paper in the composite film will increase and the temperature expansion coefficient in the surface direction will increase in the negative direction, and the lower limit of the temperature expansion coefficient of the composite film May be less than
<接着層>
本発明の複合フィルムは、耐熱絶縁紙と二軸配向ポリエステルフィルムとの接着力を高める目的で、耐熱絶縁紙と二軸配向ポリエステルフィルムとが接着層を介して積層されることを要する。接着層を有さない場合、耐熱絶縁紙と二軸配向ポリエステルフィルムとの接着力が十分でないために複合フィルムの100〜180℃における温度膨張係数が本発明の範囲からはずれる。
<Adhesive layer>
The composite film of the present invention requires that the heat-resistant insulating paper and the biaxially oriented polyester film are laminated via an adhesive layer for the purpose of increasing the adhesive force between the heat-resistant insulating paper and the biaxially oriented polyester film. In the case where the adhesive layer is not provided, since the adhesive force between the heat-resistant insulating paper and the biaxially oriented polyester film is not sufficient, the temperature expansion coefficient of the composite film at 100 to 180 ° C. is out of the scope of the present invention.
本発明の接着層を構成する接着剤については、樹脂の接着剤として用いられている通常の接着剤を用いることができ、耐熱性の観点から主たる成分として硬化性樹脂を含むことが好ましい。かかる硬化性樹脂として、エポキシ樹脂、フェノール樹脂、アクリル樹脂、ポリイミド樹脂、ポリアミド樹脂、ポリイソシアネート樹脂、ポリエステル樹脂、ポリフェニルエーテル樹脂、脂環式オレフィン重合体などが挙げられる。これらの中で、好ましくは、接着層がエポキシ樹脂、ポリイミド樹脂及びポリアミド樹脂からなる群から選ばれる少なくとも1種を主たる成分とする接着剤で構成されることが好ましい。 About the adhesive agent which comprises the contact bonding layer of this invention, the normal adhesive agent used as an adhesive agent of resin can be used, and it is preferable that curable resin is included as a main component from a heat resistant viewpoint. Examples of such curable resins include epoxy resins, phenol resins, acrylic resins, polyimide resins, polyamide resins, polyisocyanate resins, polyester resins, polyphenyl ether resins, and alicyclic olefin polymers. Among these, it is preferable that the adhesive layer is composed of an adhesive mainly containing at least one selected from the group consisting of epoxy resins, polyimide resins, and polyamide resins.
また、接着剤には硬化性樹脂といった接着成分以外に、所望に応じてその他の成分を配合することができる。配合剤としては、紫外線吸収剤、軟質重合体、フィラー、熱安定剤、耐候安定剤、老化防止剤、レベリング剤、帯電防止剤、スリップ剤、アンチブロッキング剤、防曇剤、染料、顔料、天然油、合成油、ワックス、乳剤、充填剤、硬化剤、難燃剤などが挙げられ、その配合割合は、本発明の目的を損なわない範囲で適宜選択される。
接着層の厚みは特に限定されないが、好ましくは5〜50μmの範囲であり、より好ましくは5〜30μm、さらに好ましくは5〜20μm、特に好ましくは5〜10μmである。
In addition to the adhesive component such as a curable resin, other components can be blended in the adhesive as desired. Compounding agents include UV absorbers, soft polymers, fillers, heat stabilizers, weathering stabilizers, anti-aging agents, leveling agents, antistatic agents, slip agents, antiblocking agents, antifogging agents, dyes, pigments, natural Examples thereof include oils, synthetic oils, waxes, emulsions, fillers, curing agents, flame retardants, and the like, and the blending ratio thereof is appropriately selected within a range not impairing the object of the present invention.
The thickness of the adhesive layer is not particularly limited, but is preferably in the range of 5 to 50 μm, more preferably 5 to 30 μm, still more preferably 5 to 20 μm, and particularly preferably 5 to 10 μm.
<層構成>
本発明の複合フィルムは、耐熱絶縁紙(A)の両面に接着層(B)を介して二軸配向ポリエステルフィルム(C)が積層された少なくとも5層の層構成を有し、かつ複合フィルムの最外層が二軸配向ポリエステルフィルムであることを要する。すなわち本発明の複合フィルムは、少なくとも(C)/(B)/(A)/(B)/(C)からなる5層を基本構成として含むものであり、さらにかかる5層構成の二軸配向ポリエステルフィルム(C)の片面または両面に(B)/(A)/(B)/(C)の層構成を1ユニットとして、1ユニット以上積層させた9層構成、13層構成、17構成などが好ましく例示される。本発明の複合フィルムは、特に好ましくは耐熱絶縁紙の両面に接着層および二軸配向ポリエステルフィルムが順次積層された(C)/(B)/(A)/(B)/(C)の5層構成である。
なお、複合フィルムの(A)/(B)間には、さらに接着性の他層が存在していてもよく、例えばポリエステルの少なくとも片面に易接着性の塗布層を設けることができる。
<Layer structure>
The composite film of the present invention has a layer structure of at least 5 layers in which a biaxially oriented polyester film (C) is laminated on both sides of a heat resistant insulating paper (A) via an adhesive layer (B), and the composite film The outermost layer is required to be a biaxially oriented polyester film. That is, the composite film of the present invention includes at least five layers composed of (C) / (B) / (A) / (B) / (C) as a basic structure, and further biaxial orientation of such a five-layer structure. The polyester film (C) has a 9-layer structure, a 13-layer structure, a 17-layer structure, etc., in which one or more layers are laminated on one or both sides of the polyester film (C). Is preferably exemplified. The composite film of the present invention is particularly preferably (C) / (B) / (A) / (B) / (C) 5 in which an adhesive layer and a biaxially oriented polyester film are sequentially laminated on both surfaces of a heat-resistant insulating paper. It is a layer structure.
In addition, another adhesive layer may exist between (A) / (B) of the composite film. For example, an easily adhesive coating layer can be provided on at least one surface of polyester.
本発明の複合フィルムは、芯層として面方向の温度膨張係数がマイナス方向にあるシート状物の耐熱絶縁紙を用い、面方向の温度膨張係数がプラス方向にある二軸配向ポリエステルフィルムと積層させることにより、両層が有する面方向にマイナス方向の温度膨張係数及びプラス方向の温度膨張係数が相殺され、複合フィルムとして100〜180℃の高温域において−5〜15ppm/℃という、従来の基板用高分子フィルムでは得られなかった領域の温度膨張係数を達成することができる。100〜180℃という高温域において、−5〜15ppm/℃というガラス基板に近い温度膨張係数は、二軸配向ポリエステルフィルムだけでは通常達成しえない領域であり、一方、耐熱性の高い無機系または有機系材料は、加工性に乏しく、薄肉フィルム化が難しい材料であるため、本発明のような繊維布で構成されるシート状の耐熱絶縁紙を用いることにより達成されるものである。また二軸配向ポリエステルフィルムを最外層に用いることにより、繊維布で構成されるシート状の耐熱絶縁紙の表面粗さを隠蔽し、フレキシブルエレクトロニクスデバイスの基板フィルムに求められる表面平坦性をも具備することができる。 The composite film of the present invention uses a sheet-like heat-resistant insulating paper having a negative temperature expansion coefficient in the plane direction as a core layer, and is laminated with a biaxially oriented polyester film having a positive temperature expansion coefficient in the plane direction. Thus, the negative direction thermal expansion coefficient and the positive direction thermal expansion coefficient are offset in the plane direction of both layers, and the composite film is for a conventional substrate of −5 to 15 ppm / ° C. in a high temperature range of 100 to 180 ° C. It is possible to achieve a temperature expansion coefficient in a region not obtained with a polymer film. In a high temperature range of 100 to 180 ° C., a temperature expansion coefficient close to that of a glass substrate of −5 to 15 ppm / ° C. is a region that cannot be normally achieved with a biaxially oriented polyester film alone, while an inorganic system having high heat resistance or An organic material is a material that is poor in processability and difficult to form into a thin film, and is therefore achieved by using a sheet-like heat-resistant insulating paper composed of a fiber cloth as in the present invention. In addition, by using a biaxially oriented polyester film as the outermost layer, the surface roughness of the sheet-like heat-resistant insulating paper composed of the fiber cloth is concealed, and the surface flatness required for the substrate film of the flexible electronic device is also provided. be able to.
<温度膨張係数(αt)>
本発明の複合フィルムは、100〜180℃における温度膨張係数(αt)が、フィルムの長手方向および幅方向のいずれも−5ppm/℃以上15ppm/℃以下の範囲である。なおフィルムの長手方向は、フィルム連続製膜方向、縦方向またはMD方向と称することがある。またフィルムの幅方向とは、フィルムの長手方向に直交する方向であり、横方向またはTD方向と称することがある。複合フィルムの100〜180℃における両方向の温度膨張係数(αt)の下限は、好ましくは−3ppm/℃であり、さらに好ましくは2ppm/℃である。また複合フィルムの100〜180℃における両方向の温度膨張係数(αt)の上限は、好ましくは10ppm/℃であり、さらに好ましくは7ppm/℃である。かかる温度膨張係数(αt)が下限に満たない場合は、温度変化により面方向においてマイナス方向に寸法変化が大きくなりすぎるため、例えばフレキシブルディスプレイの基板フィルムとして用いた場合に基板フィルム上に積層するガスバリア層、電極層などとの温度膨張係数の差が生じ、高温加工時に機能層に欠陥が生じる他、パターンのアライメントずれが生じるなどして性能低下につながる。一方、かかる温度膨張係数(αt)が上限を超える場合は、温度変化により面方向においてプラス方向に寸法変化が大きくなりすぎるため、例えばフレキシブルディスプレイの基板フィルムとして用いた場合に基板フィルム上に積層するガスバリア層、電極層などとの温度膨張係数の差が生じ、高温加工時に機能層に欠陥が生じる他、パターンのアライメントずれが生じるなどして性能低下につながる。
<Temperature expansion coefficient (αt)>
The composite film of the present invention has a temperature expansion coefficient (αt) at 100 to 180 ° C. in the range of −5 ppm / ° C. to 15 ppm / ° C. in both the longitudinal direction and the width direction of the film. In addition, the longitudinal direction of a film may be called a film continuous film forming direction, a vertical direction, or MD direction. Moreover, the width direction of a film is a direction orthogonal to the longitudinal direction of a film, and may be called a horizontal direction or a TD direction. The lower limit of the temperature expansion coefficient (αt) in both directions at 100 to 180 ° C. of the composite film is preferably −3 ppm / ° C., more preferably 2 ppm / ° C. The upper limit of the temperature expansion coefficient (αt) in both directions at 100 to 180 ° C. of the composite film is preferably 10 ppm / ° C., more preferably 7 ppm / ° C. When the temperature expansion coefficient (αt) is less than the lower limit, the dimensional change becomes too large in the minus direction in the surface direction due to the temperature change. For example, when used as a substrate film of a flexible display, a gas barrier laminated on the substrate film A difference in temperature expansion coefficient from a layer, an electrode layer, etc. occurs, a defect occurs in the functional layer during high temperature processing, and a pattern misalignment occurs, leading to performance degradation. On the other hand, when the temperature expansion coefficient (αt) exceeds the upper limit, the dimensional change becomes too large in the plane direction due to the temperature change. For example, when it is used as a substrate film of a flexible display, it is laminated on the substrate film. A difference in temperature expansion coefficient from a gas barrier layer, an electrode layer or the like occurs, and a defect occurs in the functional layer during high-temperature processing, and a misalignment of the pattern occurs, leading to performance degradation.
なお、本発明の温度膨張係数は、TMA装置を用い、チャック間距離20mmで40mNの荷重をかけた状態で180℃の温度条件下で30分間前処理後、室温まで降温させ、その後100℃から180℃まで5℃/分の昇温速度で昇温させて、フィルムの長手方向及び幅方向それぞれの寸法変化を測定し、下記式(1)により算出した寸法変化率によって求められる。
αt={〔(L2−L1)×106〕/(L1×ΔT)} ・・・(1)
(上式中、L1は100℃時のサンプル長(mm)、L2は180℃時のサンプル長(mm)、ΔTは測定温度差である80(=180℃−100℃)をそれぞれ表す)
The temperature expansion coefficient of the present invention is determined by using a TMA apparatus, pre-treating under a temperature condition of 180 ° C. for 30 minutes under a load of 40 mN with a distance between chucks of 20 mm, and then lowering the temperature to room temperature. The temperature is raised to 180 ° C. at a rate of temperature rise of 5 ° C./min, the dimensional change in the longitudinal direction and the width direction of the film is measured, and the dimensional change rate calculated by the following formula (1) is obtained.
[alpha] t = {[(L 2 -L 1) × 10 6 ] / (L 1 × ΔT)} ··· (1)
(In the above formula, L 1 represents a sample length (mm) at 100 ° C., L 2 represents a sample length (mm) at 180 ° C., and ΔT represents 80 (= 180 ° C.-100 ° C.) which is a measurement temperature difference. )
<熱収縮率>
本発明の複合フィルムは、200℃で10分間熱処理した際の熱収縮率が、フィルムの長手方向および幅方向のいずれも−0.2%以上0.2%以下である。複合フィルムを200℃で10分間熱処理した際の両方向の熱収縮率の下限は、好ましくは−0.1%である。また複合フィルムを200℃で10分間熱処理した際の両方向の熱収縮率の上限は、好ましくは0.1%である。かかる熱収縮率が下限に満たない場合、高温下で面方向においてマイナス方向に寸法変化が大きくなりすぎるため、例えばフレキシブルディスプレイの基板フィルムとして用いた場合に基板フィルム上に積層するガスバリア層、電極層などとの熱収縮率の差が生じ、高温加工時に機能層に欠陥が生じる他、パターンのアライメントずれが生じるなどして性能低下につながる。一方、かかる熱収縮率が上限を超える場合は、高温下で面方向においてプラス方向に寸法変化が大きくなりすぎるため、例えばフレキシブルディスプレイの基板フィルムとして用いた場合に基板フィルム上に積層するガスバリア層、電極層などとの熱収縮率の差が生じ、高温加工時に機能層に欠陥が生じる他、パターンのアライメントずれが生じるなどして性能低下につながる。
<Heat shrinkage>
The composite film of the present invention has a thermal shrinkage rate of −0.2% or more and 0.2% or less in both the longitudinal direction and the width direction when heat-treated at 200 ° C. for 10 minutes. The lower limit of the heat shrinkage rate in both directions when the composite film is heat-treated at 200 ° C. for 10 minutes is preferably −0.1%. The upper limit of the heat shrinkage rate in both directions when the composite film is heat-treated at 200 ° C. for 10 minutes is preferably 0.1%. When such a heat shrinkage rate is less than the lower limit, the dimensional change becomes too large in the negative direction in the surface direction at high temperatures. For example, when used as a substrate film of a flexible display, a gas barrier layer and an electrode layer laminated on the substrate film This causes a difference in the thermal shrinkage rate, etc., which causes a defect in the functional layer during high-temperature processing, and also causes a misalignment of the pattern, leading to performance degradation. On the other hand, if the thermal shrinkage rate exceeds the upper limit, the dimensional change becomes too large in the plus direction in the surface direction at high temperature, for example, a gas barrier layer laminated on the substrate film when used as a substrate film of a flexible display, A difference in the thermal shrinkage rate from the electrode layer or the like occurs, and a defect occurs in the functional layer at the time of high-temperature processing, and a misalignment of the pattern occurs.
なお、本発明の熱収縮率とは、フィルムサンプルに30cm間隔で標点をつけ、荷重をかけずに200℃のオーブンで10分間熱処理を実施し、熱処理後の標点間隔を測定して、フィルムの長手方向、幅方向において、下記式(2)により算出した熱収縮率である。
熱収縮率(%)={(熱処理前標点間距離−熱処理後標点間距離)/熱処理前標点間距離}×100 ・・・(2)
In addition, with the heat shrinkage rate of the present invention, the film samples are marked at intervals of 30 cm, heat-treated in an oven at 200 ° C. for 10 minutes without applying a load, and the distance between the marks after heat treatment is measured, It is the thermal shrinkage calculated by the following formula (2) in the longitudinal direction and the width direction of the film.
Thermal shrinkage rate (%) = {(distance between the pre-heat treatment gauge points−distance between the heat treatment gauge points) / distance between the heat treatment gauge points} × 100 (2)
本発明の温度膨張係数および熱収縮率の双方を達成するためには、耐熱性絶縁紙と二軸配向ポリエステルフィルムとを接着剤を介して積層し、二軸配向ポリエステルフィルムの各層厚みの合計に対する耐熱絶縁紙の各層厚みの合計の比、フィルム延伸倍率及び熱固定温度の条件がそれぞれ後述する範囲にあることによって達成される。 In order to achieve both the temperature expansion coefficient and the heat shrinkage rate of the present invention, a heat-resistant insulating paper and a biaxially oriented polyester film are laminated via an adhesive, and the total thickness of each layer of the biaxially oriented polyester film is This is achieved when the ratio of the total thickness of the heat-resistant insulating paper, the film stretching ratio, and the heat setting temperature are within the ranges described below.
<フィルム厚み>
本発明の複合フィルムの総厚みは42μm以上1350μm以下であることが好ましい。複合フィルムの総厚みの下限は、さらに好ましくは50μm、特に好ましくは100μmである。また複合フィルムの総厚みの上限は、より好ましくは800μm、さらに好ましくは700μm、特に好ましくは500μm、最も好ましくは250μmである。複合フィルムの総厚みが下限に満たない場合、例えばフレキシブルディスプレイの基材として用いた場合に支持体としての十分な強度を有さないことがある。また複合フィルムの総厚みが上限を超える場合、例えばフレキシブルディスプレイの基材として用いた場合に自由な屈曲性を得られないことがある。
<Film thickness>
The total thickness of the composite film of the present invention is preferably 42 μm or more and 1350 μm or less. The lower limit of the total thickness of the composite film is more preferably 50 μm, and particularly preferably 100 μm. The upper limit of the total thickness of the composite film is more preferably 800 μm, still more preferably 700 μm, particularly preferably 500 μm, and most preferably 250 μm. When the total thickness of the composite film is less than the lower limit, for example, when used as a base material for a flexible display, it may not have sufficient strength as a support. Moreover, when the total thickness of a composite film exceeds an upper limit, when using as a base material of a flexible display, for example, free flexibility may not be acquired.
二軸配向ポリエステルフィルムの各層厚み及び耐熱絶縁紙の厚みは既述の通りである。
また二軸配向ポリエステルフィルムの各層の合計厚みに対する耐熱絶縁紙の各層厚みの合計の比は、0.25以上4以下であることが好ましく、さらに好ましくは0.33以上3以下、特に好ましくは0.5以上2以下である。二軸配向ポリエステルフィルムの各層の合計厚みに対する耐熱絶縁紙の各層厚みの合計の比が下限に満たない場合、耐熱絶縁紙の複合フィルム中に占める割合が少ないため、本発明の温度膨張係数及び熱収縮率が上限を超えることがある。一方、二軸配向ポリエステルフィルムの各層の合計厚みに対する耐熱絶縁紙の各層厚みの合計の比が上限を超える場合、耐熱絶縁紙の複合フィルム中に占める割合が多くなりすぎるため、本発明の温度膨張係数及び熱収縮率が下限に満たないことがある。
The thickness of each layer of the biaxially oriented polyester film and the thickness of the heat-resistant insulating paper are as described above.
The ratio of the total thickness of each layer of heat-resistant insulating paper to the total thickness of each layer of the biaxially oriented polyester film is preferably 0.25 or more and 4 or less, more preferably 0.33 or more and 3 or less, particularly preferably 0. .5 or more and 2 or less. When the ratio of the total thickness of each layer of the heat-resistant insulating paper to the total thickness of each layer of the biaxially oriented polyester film is less than the lower limit, the ratio of the heat-resistant insulating paper in the composite film is small. The shrinkage rate may exceed the upper limit. On the other hand, when the ratio of the total thickness of each layer of the heat-resistant insulating paper to the total thickness of each layer of the biaxially oriented polyester film exceeds the upper limit, the proportion of the heat-resistant insulating paper in the composite film becomes too large, so the temperature expansion of the present invention The coefficient and heat shrinkage rate may be less than the lower limit.
<表面平坦性>
本発明の耐熱性複合フィルムは、耐熱絶縁紙(A)の両面に接着層(B)を介して二軸配向ポリエステルフィルム(C)が積層された少なくとも5層の層構成を有し、かつ複合フィルムの最外層が二軸配向ポリエステルフィルムであることにより、フレキシブルエレクトロニクスデバイスの基板フィルムに求められる表面平坦性を有する。
本発明における表面平坦性は、中心面平均粗さ(WRa)が0.1nm以上20nm以下であることが好ましい。中心面平均粗さ(WRa)は、WYKO社製非接触式三次元粗さ計(NT―2000)を用いて測定倍率25倍、測定面積246.6μm×187.5μm(0.0462mm2)の条件にて、該粗さ計に内蔵された表面解析ソフトにより、下記式から求められる。
<Surface flatness>
The heat resistant composite film of the present invention has a layer structure of at least 5 layers in which a biaxially oriented polyester film (C) is laminated on both sides of a heat resistant insulating paper (A) via an adhesive layer (B), and is a composite When the outermost layer of the film is a biaxially oriented polyester film, it has surface flatness required for a substrate film of a flexible electronic device.
The surface flatness in the present invention preferably has a center plane average roughness (WRa) of 0.1 nm or more and 20 nm or less. The center surface average roughness (WRa) is a measurement magnification of 25 times using a non-contact type three-dimensional roughness meter (NT-2000) manufactured by WYKO, and a measurement area of 246.6 μm × 187.5 μm (0.0462 mm 2 ). Under the condition, it is obtained from the following equation by the surface analysis software built in the roughness meter.
複合フィルムの最外層の中心面平均粗さ(WRa)が下限に満たない場合、加工時のフィルムの滑り性が悪く、作業性が低下することがある。また複合フィルムの最外層の中心面平均粗さ(WRa)が上限を超える場合、ガスバリア層や電極層などの機能層を積層した際、複合フィルムとの間に微細な隙間が発生して機能層の性能が十分に発揮されなかったり、機能層の表面性に影響を与えることがある。かかる中心面平均粗さ(WRa)の範囲を達成するためには、複合フィルムの最外層が二軸配向ポリエステルフィルム層であることが必要であり、また好ましくは該二軸配向ポリエステルフィルム中に滑剤を含有しないか、含有する場合はフィルムの重量を基準として好ましくは5重量%以下、より好ましくは1重量%以下の範囲内で含有するものである。 When the center plane average roughness (WRa) of the outermost layer of the composite film is less than the lower limit, the slipperiness of the film during processing may be poor, and workability may be reduced. When the center plane average roughness (WRa) of the outermost layer of the composite film exceeds the upper limit, when a functional layer such as a gas barrier layer or an electrode layer is laminated, a fine gap is generated between the composite film and the functional layer. Performance may not be sufficiently exerted or the surface properties of the functional layer may be affected. In order to achieve such a range of the center plane average roughness (WRa), it is necessary that the outermost layer of the composite film is a biaxially oriented polyester film layer, and preferably a lubricant is contained in the biaxially oriented polyester film. Is contained, or when it is contained, it is preferably contained in the range of 5% by weight or less, more preferably 1% by weight or less based on the weight of the film.
<用途>
本発明の耐熱性複合フィルムは、100〜180℃の高温域での温度膨張係数が−5〜15ppm/℃と極めて温度膨張係数が0に近く、同時に、200℃程度の高温下での熱収縮率にも非常に優れた耐熱性フィルムが得られることから、180℃前後の加熱加工工程を含むフレキシブルエレクトロニクスデバイスの基板フィルムに適している。フレキシブルエレクトロニクスデバイスの種類として、有機EL、電子ペーパー、太陽電池、反射型液晶、有機TFT、フレキシブルプリント回路などが例示され、これらの中でも特に有機EL、電子ペーパー及び太陽電池からなる群から選ばれる少なくとも1種が好ましく例示される。
<Application>
The heat resistant composite film of the present invention has a temperature expansion coefficient of -5 to 15 ppm / ° C. at a high temperature range of 100 to 180 ° C., which is very close to 0, and at the same time, heat shrinkage at a high temperature of about 200 ° C. Since a heat-resistant film having a very excellent rate can be obtained, it is suitable for a substrate film of a flexible electronic device including a heating process at around 180 ° C. Examples of the flexible electronic device include organic EL, electronic paper, solar cell, reflective liquid crystal, organic TFT, flexible printed circuit and the like. Among these, at least selected from the group consisting of organic EL, electronic paper, and solar cell. One type is preferably exemplified.
フレキシブルエレクトロニクスデバイス用基板フィルムとして用いた場合、本発明の複合フィルムは精密な耐熱寸法安定性を有することからガスバリア層や電極層などの機能層との温度膨張係数および熱収縮率が近く、高温加工時に機能層にひびや割れが生じることがなく、機能性の性能低下が少ない効果が得られ、またパターンのアライメントずれのない優れた解像度が得られるといった特徴を有する。 When used as a substrate film for flexible electronic devices, the composite film of the present invention has precise heat-resistant dimensional stability, so the thermal expansion coefficient and thermal contraction rate of functional layers such as gas barrier layers and electrode layers are close, and high-temperature processing is possible. In some cases, the functional layer is not cracked or cracked, the effect of reducing the performance degradation is obtained, and an excellent resolution without pattern misalignment is obtained.
<製造方法>
本発明の複合フィルムを構成する二軸配向ポリエステルフィルムは下記の方法により製造することができる。
二軸配向ポリエステルフィルムは、例えば前出のポリエステルをフィルム状に溶融押出し、キャスティングドラムで冷却固化させて未延伸フィルムとし、この未延伸フィルムをTg〜(Tg+60)℃で縦方向、横方向に倍率2.0〜5.0倍で2軸方向に延伸し、(Tm−100)〜(Tm―5)℃の温度で1〜100秒間熱固定することで所望のフィルムを得ることができる。ここでTgはポリエステルのガラス転移温度、Tmはポリエステルの融点をそれぞれ表す。
<Manufacturing method>
The biaxially oriented polyester film constituting the composite film of the present invention can be produced by the following method.
The biaxially oriented polyester film is obtained by, for example, melt-extruding the above polyester into a film shape and cooling and solidifying it with a casting drum to form an unstretched film. This unstretched film is stretched in the vertical and horizontal directions from Tg to (Tg + 60) ° C. A desired film can be obtained by stretching in the biaxial direction at 2.0 to 5.0 times and heat-setting at a temperature of (Tm-100) to (Tm-5) ° C. for 1 to 100 seconds. Here, Tg represents the glass transition temperature of the polyester, and Tm represents the melting point of the polyester.
延伸は一般に用いられる方法、例えばロールによる方法やステンターを用いる方法で行うことができ、縦方向、横方向を同時に延伸してもよく、また縦方向、横方向に逐次延伸してもよい。さらに弛緩処理を行う場合は、加熱処理をフィルムの(X−80)〜X℃の温度において行うことができる。ここでXは熱固定温度を表す。 Stretching can be performed by a generally used method, for example, a method using a roll or a method using a stenter. The stretching may be performed simultaneously in the longitudinal direction and the transverse direction, or may be sequentially performed in the longitudinal direction and the transverse direction. Furthermore, when performing a relaxation | loosening process, heat processing can be performed in the temperature of (X-80)-X degreeC of a film. Here, X represents a heat setting temperature.
一方、耐熱絶縁紙は市販品を用いることができる。複合フィルムを製造する具体的方法は、得られた二軸配向ポリエステルフィルムと耐熱絶縁紙との対向する面に接着剤を塗布して積層し、200℃に加熱したラミネーターで貼り合わせる方法が挙げられる。 On the other hand, a commercial product can be used as the heat-resistant insulating paper. A specific method for producing the composite film includes a method in which an adhesive is applied and laminated on the opposing surfaces of the obtained biaxially oriented polyester film and the heat-resistant insulating paper, and is bonded with a laminator heated to 200 ° C. .
以下、実施例により本発明を詳述するが、本発明はこれらの実施例のみに限定されるものではない。なお、各特性値は以下の方法で測定した。また、実施例中の部および%は、特に断らない限り、それぞれ重量部および重量%を意味する。 EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited only to these Examples. Each characteristic value was measured by the following method. Moreover, unless otherwise indicated, the part and% in an Example mean a weight part and weight%, respectively.
(1)温度膨張係数(αt)
測定方向が長さ方向となるように、フィルムサンプルを長さ30mm、幅4mmに切り出し、セイコーインスツルメンツ(株)製のTMA/6100を用い、チャック間距離20mmで40mNの荷重をかけた状態で180℃の温度条件下で30分間前処理後、室温まで降温させ、その後100℃から180℃まで5℃/分の昇温速度で昇温させて、フィルムの長手方向及び幅方向それぞれの寸法変化を測定し、下記式(1)により寸法変化率を求めた。
αt={〔(L2−L1)×106〕/(L1×ΔT)} ・・・(1)
(上式中、L1は100℃時のサンプル長(mm)、L2は180℃時のサンプル長(mm)、ΔTは測定温度差である80(=180℃−100℃)をそれぞれ表す)
(1) Temperature expansion coefficient (αt)
The film sample was cut into a length of 30 mm and a width of 4 mm so that the measurement direction was the length direction, and TMA / 6100 manufactured by Seiko Instruments Inc. was used, and a load of 40 mN was applied at a distance of 20 mm between chucks. After pre-treatment for 30 minutes under the temperature condition of ° C., the temperature is lowered to room temperature, and then the temperature is raised from 100 ° C. to 180 ° C. at a rate of 5 ° C./min. The dimensional change rate was determined by the following formula (1).
[alpha] t = {[(L 2 -L 1) × 10 6 ] / (L 1 × ΔT)} ··· (1)
(In the above formula, L 1 represents a sample length (mm) at 100 ° C., L 2 represents a sample length (mm) at 180 ° C., and ΔT represents 80 (= 180 ° C.-100 ° C.) which is a measurement temperature difference. )
(2)熱収縮率
フィルムサンプルに30cm間隔で標点をつけ、荷重をかけずに200℃のオーブンで10分間熱処理を実施し、熱処理後の標点間隔を測定して、フィルムの長手方向、幅方向において、下記式(2)により熱収縮率を算出した。
熱収縮率(%)={(熱処理前標点間距離−熱処理後標点間距離)/熱処理前標点間距離}×100 ・・・(2)
(2) Heat shrinkage rate Marks are applied to film samples at intervals of 30 cm, heat treatment is carried out in an oven at 200 ° C. for 10 minutes without applying a load, the distance between the marks after heat treatment is measured, In the width direction, the thermal contraction rate was calculated by the following formula (2).
Thermal shrinkage rate (%) = {(distance between the pre-heat treatment gauge points−distance between the heat treatment gauge points) / distance between the heat treatment gauge points} × 100 (2)
(3)フィルム厚み
複合フィルムの総厚みは、電子マイクロメータ(アンリツ(株)製の商品名「K−312A型」)を用いて針圧30gにて測定した。また、二軸配向ポリエステルフィルムの各層厚み、接着剤層の各層厚み及び耐熱絶縁紙の各層厚みは、フィルムの小片をエポキシ樹脂(リファインテック(株)製の商品名「エポマウント」)中に包埋し、Reichert−Jung社製Microtome2050を用いて包埋樹脂ごと50nm厚さにスライスし、透過型電子顕微鏡(LEM−2000)により加速電圧100KVで3000倍で測定して求めた。
(3) Film thickness The total thickness of the composite film was measured using an electronic micrometer (trade name “K-312A type” manufactured by Anritsu Corporation) at a needle pressure of 30 g. In addition, each layer thickness of the biaxially oriented polyester film, each layer thickness of the adhesive layer, and each layer thickness of the heat-resistant insulating paper is wrapped in an epoxy resin (trade name “Epomount” manufactured by Refine Tech Co., Ltd.). The embedded resin was sliced to a thickness of 50 nm using a Microtome 2050 manufactured by Reichert-Jung Co., Ltd., and measured by a transmission electron microscope (LEM-2000) at an acceleration voltage of 100 KV and 3000 times.
(4)表面粗さ
WYKO社製非接触式三次元粗さ計(NT―2000)を用いて測定倍率25倍、測定面積246.6μm×187.5μm(0.0462mm2)の条件にて、該粗さ計に内蔵された表面解析ソフトにより、下記式から中心面平均粗さ(WRa)を求める。表面粗さは、両最表面についてそれぞれ行い、それぞれの表面について、測定回数(n)10回での平均値を求めた。
(4) Surface roughness Using a non-contact type three-dimensional roughness meter (NT-2000) manufactured by WYKO, with a measurement magnification of 25 times and a measurement area of 246.6 μm × 187.5 μm (0.0462 mm 2 ), The center plane average roughness (WRa) is obtained from the following equation using the surface analysis software incorporated in the roughness meter. The surface roughness was measured for both outermost surfaces, and the average value of the number of measurements (n) 10 times was determined for each surface.
それぞれの面について得られた中心面平均粗さ(WRa)のうち、平坦面側について、下記の判断基準で評価した。
〇:0.1nm以上20nm以下 (表面平坦性良好)
×:20nmを超える (表面平坦性不良)
Of the central surface average roughness (WRa) obtained for each surface, the flat surface side was evaluated according to the following criteria.
○: 0.1 nm to 20 nm (good surface flatness)
×: Over 20 nm (Poor surface flatness)
(5)密着性(ピール強度)
得られた複合フィルムの二軸配向ポリエステルフィルムと耐熱絶縁紙の接着層を介した密着性について、2cm/minの速度で剥すピール強度を測定し、下記基準で評価する。
○: 1.0N/mm以上 ・・・・接着性良好
×: 1.0N/mm未満 ・・・・接着性弱い
(5) Adhesion (peel strength)
About the adhesiveness through the adhesive layer of the biaxially oriented polyester film of the obtained composite film and heat-resistant insulating paper, the peel strength peeled off at a rate of 2 cm / min is measured and evaluated according to the following criteria.
○: 1.0 N / mm or more ··· Good adhesion ×: Less than 1.0 N / mm ····· Adhesion is weak
(6)カール性
20cm×20cmの大きさのフィルムサンプルを鉄板上に載せ、鉄板を180℃に温度設定されたオーブンの中にいれて、5分後に取り出し、自然冷却させた。フィルムサンプルを硝子板上に乗せ、4隅の高さ(鉛直方向)を測定し、それらの平均値を求めた。フィルムの面を逆にして同様の測定を行い、値の大きいほうを加熱カール高さとし、下記基準で評価した。
○: 0cm以上3cm未満
×: 3cm以上
(6) Curling property A film sample having a size of 20 cm × 20 cm was placed on an iron plate, and the iron plate was put into an oven set at a temperature of 180 ° C. and taken out after 5 minutes and allowed to cool naturally. The film sample was placed on a glass plate, the heights (vertical direction) of the four corners were measured, and the average value thereof was obtained. The same measurement was performed with the film surface reversed, and the larger value was defined as the heating curl height, and evaluation was performed according to the following criteria.
○: 0 cm or more and less than 3 cm ×: 3 cm or more
(7)パターニング特性評価
ポジ型感光性樹脂組成物をスピンコーター(大日本スクリーン製造社製、Dspin636)にて、フィルム上にスピン塗布し、ホットプレートにて130℃、180秒間プリベークを行い、膜厚8.0μmの塗膜を形成した。膜厚は膜厚測定装置(大日本スクリーン製造社製、ラムダエース)にて測定した。この塗膜に、100μm幅のラインテストパターン付きレチクルを通してi線(365nm)の露光波長を有するステッパ(ニコン社製、NSR2005i8A)を用いて露光量を段階的に変化させて露光した。これをアルカリ現像液(クラリアントジャパン社製、AZ300MIFデベロッパー、2.38質量%水酸化テトラメチルアンモニウム水溶液)を用い、23℃の条件下で現像後膜厚が6.6μmとなるように現像時間を調整して現像し、純水にてリンスを行い、その後180℃×30分間ポストベークを行い、ポジ型のレリーフパターンを形成した。完成したテストパターンのズレを以下の基準で判断した。
○: パターンズレが0.1%以下 パターニング特性良好
×: パターンズレが0.1%を超える パターニング特性不良
(7) Patterning characteristic evaluation A positive photosensitive resin composition is spin-coated on a film with a spin coater (Daishin Screen Manufacturing Co., Ltd., Dspin 636), pre-baked on a hot plate at 130 ° C. for 180 seconds, and film A coating film having a thickness of 8.0 μm was formed. The film thickness was measured with a film thickness measuring device (Lambda Ace, manufactured by Dainippon Screen Mfg. Co., Ltd.). This coating film was exposed through a reticle having a line test pattern with a width of 100 μm using a stepper having an exposure wavelength of i-line (365 nm) (Nikon Corporation, NSR2005i8A) while changing the exposure amount stepwise. Using an alkali developer (manufactured by Clariant Japan, AZ300MIF developer, 2.38 mass% tetramethylammonium hydroxide aqueous solution), the development time was adjusted so that the film thickness after development was 6.6 μm under the condition of 23 ° C. Adjustment and development were performed, followed by rinsing with pure water, followed by post-baking at 180 ° C. for 30 minutes to form a positive relief pattern. The deviation of the completed test pattern was judged according to the following criteria.
○: Pattern misalignment is 0.1% or less Good patterning characteristics ×: Pattern misalignment exceeds 0.1% Poor patterning characteristics
[実施例1]
ナフタレン−2,6−ジカルボン酸ジメチルおよびエチレングリコールをモノマー原料として用い、エステル交換後、重縮合反応を行ってポリエチレン−2,6−ナフタレンジカルボキシレート(固有粘度0.66dl/g)を得た。エステル交換触媒として酢酸マンガン四水塩、重縮合触媒として三酸化アンチモンを用いた。また、エステル交換反応の段階で、平均粒径0.25μm、粒径比1.1の球状シリカ粒子を0.13重量%添加した。
[Example 1]
Polyethylene-2,6-naphthalenedicarboxylate (intrinsic viscosity 0.66 dl / g) was obtained by performing polycondensation reaction after transesterification using dimethyl naphthalene-2,6-dicarboxylate and ethylene glycol as monomer raw materials. . Manganese acetate tetrahydrate was used as the transesterification catalyst, and antimony trioxide was used as the polycondensation catalyst. In addition, 0.13% by weight of spherical silica particles having an average particle size of 0.25 μm and a particle size ratio of 1.1 was added at the stage of the transesterification reaction.
このポリエチレン−2,6−ナフタレンジカルボキシレートのペレットを170℃で6時間乾燥後、押出機ホッパーに供給し、溶融温度305℃で溶融し、平均目開きが17μmのステンレス鋼細線フィルターで濾過し、2mmのスリット状ダイを通して表面温度60℃の回転冷却ドラム上で押出し、急冷して未延伸フィルムを得た。このようにして得られた未延伸フィルムを120℃にて予熱し、さらに低速、高速のロール間で15mm上方より900℃のIRヒーターにて加熱して縦方向に3.1倍に延伸した。続いてテンターに供給し、145℃にて横方向に.3.3倍に延伸した。得られた二軸配向フィルムを235℃の温度で40秒間熱固定し厚み50μmの二軸配向ポリエステルフィルムを得た。得られた二軸配向ポリエステルフィルム(A層)と耐熱絶縁紙(C層)としてデュポン帝人アドバンスドペーパー社製のアラミドペーパー『テクノーラ』(商品名)の100μm厚みのものを用い、接着剤層(B層)として汎用エポキシ系樹脂と可塑剤からなる接着剤を用い、A層/B層/C層/B層/A層の5層に積層し、200℃に加熱したラミネーターで張合わせて耐熱性複合フィルムを得た。得られた耐熱性複合フィルムの特性を表1に示す。温度膨張係数、熱収縮率および湿度膨張係数のいずれも0に近い、非常に高い寸法安定性を有するフィルムを得ることが出来た。 The polyethylene-2,6-naphthalenedicarboxylate pellets were dried at 170 ° C. for 6 hours, then fed to an extruder hopper, melted at a melting temperature of 305 ° C., and filtered through a stainless steel fine wire filter having an average opening of 17 μm. The film was extruded through a 2 mm slit die on a rotary cooling drum having a surface temperature of 60 ° C. and rapidly cooled to obtain an unstretched film. The unstretched film thus obtained was preheated at 120 ° C., and further heated by a 900 ° C. IR heater 15 mm above between low-speed and high-speed rolls and stretched 3.1 times in the longitudinal direction. Subsequently, it was supplied to a tenter and laterally at 145 ° C. 3. Stretched 3 times. The obtained biaxially oriented film was heat-fixed at a temperature of 235 ° C. for 40 seconds to obtain a biaxially oriented polyester film having a thickness of 50 μm. The obtained biaxially oriented polyester film (A layer) and the heat-resistant insulating paper (C layer) are 100 μm thick aramid paper “Technora” (trade name) manufactured by DuPont Teijin Advanced Paper Ltd. Layer) using an adhesive composed of general-purpose epoxy resin and plasticizer, laminated in 5 layers of A layer / B layer / C layer / B layer / A layer, and laminated with a laminator heated to 200 ° C. A composite film was obtained. Table 1 shows the characteristics of the obtained heat-resistant composite film. A film having very high dimensional stability in which all of the temperature expansion coefficient, thermal shrinkage coefficient and humidity expansion coefficient were close to 0 could be obtained.
[実施例2]
ポリエチレン−2,6−ナフタレンジカルボキシレートポリマーに代えて、固有粘度0.69dl/gのポリエチレンテレフタレートポリマーを用いた以外は実施例1と同様の操作を行い、複合フィルムを得た。得られた耐熱性複合フィルムの特性を表1に示す。温度膨張係数、熱収縮率および湿度膨張係数のいずれも0に近い、非常に高い寸法安定性を有するフィルムを得ることが出来た。
[Example 2]
A composite film was obtained in the same manner as in Example 1 except that a polyethylene terephthalate polymer having an intrinsic viscosity of 0.69 dl / g was used instead of the polyethylene-2,6-naphthalene dicarboxylate polymer. Table 1 shows the characteristics of the obtained heat-resistant composite film. A film having very high dimensional stability in which all of the temperature expansion coefficient, thermal shrinkage coefficient and humidity expansion coefficient were close to 0 could be obtained.
[実施例3〜6]
二軸配向ポリエステルフィルムの層厚みと耐熱絶縁紙の層厚みを表1に示すように変更した以外は実施例1と同様の操作を行い、複合フィルムを得た。得られた耐熱性複合フィルムの特性を表1に示す。
[Examples 3 to 6]
A composite film was obtained in the same manner as in Example 1 except that the layer thickness of the biaxially oriented polyester film and the layer thickness of the heat-resistant insulating paper were changed as shown in Table 1. Table 1 shows the characteristics of the obtained heat-resistant composite film.
[比較例1〜3]
層構成を表1に示すように変更した以外は実施例1と同様の操作を行い、複合フィルムを得た。得られた耐熱性複合フィルムの特性を表1に示す。
[Comparative Examples 1-3]
A composite film was obtained in the same manner as in Example 1 except that the layer configuration was changed as shown in Table 1. Table 1 shows the characteristics of the obtained heat-resistant composite film.
[比較例4〜5]
実施例1で用いたポリエチレン−2,6−ナフタレンジカルボキシレートポリマーを使用し、表1に示す延伸倍率、熱固定温度でフィルム製膜を行い、二軸配向ポリエステルフィルムからなる単層フィルムを得た。延伸倍率、熱固定温度以外の製膜方法は実施例1に準じた。
[Comparative Examples 4 to 5]
Using the polyethylene-2,6-naphthalene dicarboxylate polymer used in Example 1, film formation was carried out at the draw ratio and heat setting temperature shown in Table 1 to obtain a monolayer film composed of a biaxially oriented polyester film. It was. The film forming method other than the draw ratio and heat setting temperature was in accordance with Example 1.
[比較例6]
二軸配向ポリエステルフィルムを使用せず、耐熱絶縁紙のみで評価を行った。得られた耐熱絶縁紙の特性を表1に示す。
[Comparative Example 6]
Evaluation was made only with heat-resistant insulating paper without using a biaxially oriented polyester film. Table 1 shows the characteristics of the obtained heat-resistant insulating paper.
本発明の耐熱性複合フィルムは、100〜180℃の高温域での温度膨張係数が−5〜15ppm/℃という極めて温度膨張係数が小さく、同時に、200℃程度の高温下での熱収縮率にも非常に優れており、かつフィルム表面平坦性にも優れることから、有機EL、電子ペーパー、太陽電池などのフレキシブルエレクトロニクスデバイス用基板フィルムとして好適に用いることができる。 The heat resistant composite film of the present invention has a very small temperature expansion coefficient of −5 to 15 ppm / ° C. at a high temperature range of 100 to 180 ° C., and at the same time, the heat shrinkage rate at a high temperature of about 200 ° C. In addition, it is also excellent as a substrate film for flexible electronic devices such as organic EL, electronic paper, and solar cells.
Claims (10)
(1)100〜180℃における温度膨張係数(αt)がフィルムの長手方向および幅方向のいずれも−5ppm/℃以上15ppm/℃以下の範囲であり、
(2)200℃×10分における熱収縮率がフィルムの長手方向および幅方向のいずれも−0.2%以上0.2%以下
で表される(1)及び(2)の特性を同時に満たすことを特徴とする耐熱性複合フィルム。 A composite film having a layer configuration of at least 5 layers in which a biaxially oriented polyester film is laminated on both sides of a heat-resistant insulating paper via an adhesive layer, the outermost layer of the composite film being a biaxially oriented polyester film; and (1) The temperature expansion coefficient (αt) at 100 to 180 ° C. is in the range of −5 ppm / ° C. to 15 ppm / ° C. in both the longitudinal direction and the width direction of the film,
(2) The thermal shrinkage rate at 200 ° C. for 10 minutes satisfies the characteristics of (1) and (2), which are represented by −0.2% or more and 0.2% or less in both the longitudinal direction and the width direction of the film. A heat-resistant composite film characterized by that.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2008212781A JP2010046898A (en) | 2008-08-21 | 2008-08-21 | Heat-resistant composite film, and substrate film for flexible electronics device composed of the same |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2008212781A JP2010046898A (en) | 2008-08-21 | 2008-08-21 | Heat-resistant composite film, and substrate film for flexible electronics device composed of the same |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JP2010046898A true JP2010046898A (en) | 2010-03-04 |
Family
ID=42064413
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2008212781A Pending JP2010046898A (en) | 2008-08-21 | 2008-08-21 | Heat-resistant composite film, and substrate film for flexible electronics device composed of the same |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP2010046898A (en) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2019216172A1 (en) * | 2018-05-07 | 2019-11-14 | 東洋紡株式会社 | Folding-type display and portable terminal device |
| US10948764B2 (en) | 2009-11-12 | 2021-03-16 | Keio University | Method for improving visibility of liquid crystal display device, and liquid crystal display device using the same |
-
2008
- 2008-08-21 JP JP2008212781A patent/JP2010046898A/en active Pending
Cited By (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US10948764B2 (en) | 2009-11-12 | 2021-03-16 | Keio University | Method for improving visibility of liquid crystal display device, and liquid crystal display device using the same |
| WO2019216172A1 (en) * | 2018-05-07 | 2019-11-14 | 東洋紡株式会社 | Folding-type display and portable terminal device |
| CN112055874A (en) * | 2018-05-07 | 2020-12-08 | 东洋纺株式会社 | Folding Displays and Mobile Terminals |
| KR20210005226A (en) * | 2018-05-07 | 2021-01-13 | 도요보 가부시키가이샤 | Folding display and portable terminal device |
| JPWO2019216172A1 (en) * | 2018-05-07 | 2021-03-25 | 東洋紡株式会社 | Foldable displays and mobile devices |
| KR102539401B1 (en) * | 2018-05-07 | 2023-06-01 | 도요보 가부시키가이샤 | Folding display and portable terminal device |
| JP7512593B2 (en) | 2018-05-07 | 2024-07-09 | 東洋紡株式会社 | Foldable displays and mobile terminal devices |
| US12066864B2 (en) | 2018-05-07 | 2024-08-20 | Toyobo Co., Ltd. | Folding-type display and portable terminal device |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| KR101175083B1 (en) | Oriented polyester film | |
| JP5363206B2 (en) | Optical polyester film | |
| KR101393937B1 (en) | Biaxially-oriented polyester film for flexible display | |
| JP2000141568A (en) | Release film | |
| JP7673447B2 (en) | Polyester Film Roll | |
| US10699827B2 (en) | Film, and electrical insulation sheet, adhesive tape, rotating machine using same | |
| JP2010225434A (en) | Flexible electronics device substrate and manufacturing method thereof | |
| JP2022025703A (en) | Laminated film | |
| JP2003321561A (en) | Highly transparent and easily adhering polyester film | |
| JP2018021168A (en) | Biaxially oriented polyester film | |
| JP2010234673A (en) | Polyester film | |
| JP5108675B2 (en) | Composite film | |
| JPWO2016199675A1 (en) | Biaxially oriented polyester film | |
| TWI710587B (en) | Polyester film | |
| JP2010046898A (en) | Heat-resistant composite film, and substrate film for flexible electronics device composed of the same | |
| JP3948908B2 (en) | Polyester film for coverlay film | |
| JP2010024409A (en) | Biaxially oriented polyester film | |
| JP2001047580A (en) | Release film | |
| JP2010046899A (en) | Heat-resistant composite film and substrate film for flexible electronics device composed of the same | |
| KR101920098B1 (en) | Laminated body for manufacturing flexible electronic device, biaxially-oriented polyester film used for same, flexible electronic device using same, and manufacturing method therefor | |
| JP5607520B2 (en) | Optical polyester film | |
| JP3920039B2 (en) | Polyester film for TAB spacer | |
| KR20010047778A (en) | The processing method of polyester film | |
| JP5405968B2 (en) | Flame retardant laminated polyester film for flat cable | |
| JP4904019B2 (en) | Biaxially oriented polyester film |