[go: up one dir, main page]

JP2010092799A - Electrode catalyst for polymer electrolyte fuel cell - Google Patents

Electrode catalyst for polymer electrolyte fuel cell Download PDF

Info

Publication number
JP2010092799A
JP2010092799A JP2008263869A JP2008263869A JP2010092799A JP 2010092799 A JP2010092799 A JP 2010092799A JP 2008263869 A JP2008263869 A JP 2008263869A JP 2008263869 A JP2008263869 A JP 2008263869A JP 2010092799 A JP2010092799 A JP 2010092799A
Authority
JP
Japan
Prior art keywords
fuel cell
polymer electrolyte
plane
electrolyte fuel
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008263869A
Other languages
Japanese (ja)
Inventor
Kuninori Miyazaki
邦典 宮碕
Atsushi Okamura
淳志 岡村
Masaaki Okuno
政昭 奥野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP2008263869A priority Critical patent/JP2010092799A/en
Publication of JP2010092799A publication Critical patent/JP2010092799A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrode catalyst for a polymer electrolyte fuel cell to exhibit superior catalytic activity. <P>SOLUTION: In the electrode catalyst for the polymer electrolyte fuel cell, a catalyst component containing Pt is carried on conductive carbon, wherein a crystal structure of the catalyst component containing Pt has a face-centered cubic structure, the crystalline diameter (D1) of (111) plane is larger than 3.8 nm and 5 nm or less, the crystalline diameter (D2) of (220) plane is larger than 3.0 nm and 4 nm or less, and the ratio (D1/D2) is in the range of 1.21/1 to 1.26/1. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は固体高分子型燃料電池用電極触媒に関する。   The present invention relates to an electrode catalyst for a polymer electrolyte fuel cell.

燃料電池用電極触媒として、例えば、特許文献1には、触媒粒子の(111)結晶面に垂直な方向の結晶子径の平均値D111と(100)結晶面に垂直な方向の結晶子径D100との比がD100/D111<1であり、触媒粒子の平均結晶子径が5nm以下である燃料電池用電極触媒体が記載されている。   As an electrode catalyst for a fuel cell, for example, Patent Document 1 discloses an average value D111 of crystallite diameters in a direction perpendicular to the (111) crystal plane of catalyst particles and a crystallite diameter D100 in a direction perpendicular to the (100) crystal plane. The fuel cell electrode catalyst body is described in which the ratio of D100 / D111 <1 and the average crystallite diameter of the catalyst particles is 5 nm or less.

特開2003−157857号公報JP 2003-157857 A

本発明の目的は、優れた触媒活性を示す固体高分子型燃料電池用電極触媒を提供することにある。   An object of the present invention is to provide an electrode catalyst for a polymer electrolyte fuel cell exhibiting excellent catalytic activity.

白金(Pt)を含む触媒成分の結晶構造が面心立方構造である場合、(111)面は表面エネルギーが(100)面あるいは(110)面より小さく、結晶面が表面に現れやすいが、触媒活性は(100)面あるいは(l10)面より低い。一方、(100)面や(110)面の表面エネルギーは(111)面より高いが(111)面より触媒活性が高い。よって、(100)面あるいは(110)面がより表面に現れている電極触媒ほど高い性能が得られるといえる。   When the crystal structure of the catalyst component containing platinum (Pt) is a face-centered cubic structure, the (111) plane has a surface energy smaller than the (100) plane or the (110) plane, and the crystal plane tends to appear on the surface. The activity is lower than the (100) plane or the (l10) plane. On the other hand, the surface energy of the (100) plane and the (110) plane is higher than that of the (111) plane, but the catalytic activity is higher than that of the (111) plane. Therefore, it can be said that the higher the performance of the electrode catalyst, the more the (100) plane or (110) plane appears on the surface.

本発明者らは、鋭意検討を行った結果、固体高分子型燃料電池用アノード触媒では、導電性カーボン担体にPtを含む触媒成分の結晶構造が面心立方構造を有し、(111)面の結晶子径が3.8nmより大きく5nm以下であり、(220)面の結晶子径が3.0nmより大きく4nm以下である触媒が好適であることを見出した。また、(111)面の結晶子径(D1)と(220)面の結晶子径(D2)との比(D1/D2)が1.21/1〜1.26/1である触媒が好適であることを見出した。   As a result of intensive studies, the present inventors have found that in the anode catalyst for a polymer electrolyte fuel cell, the crystal structure of the catalyst component containing Pt in the conductive carbon support has a face-centered cubic structure, and the (111) plane It was found that a catalyst having a crystallite diameter of 3.8 nm to 5 nm or less and a (220) plane crystallite diameter of more than 3.0 nm to 4 nm or less is suitable. A catalyst having a ratio (D1 / D2) of the crystallite diameter (D1) of the (111) plane to the crystallite diameter (D2) of the (220) plane is preferably 1.21 / 1-1.26 / 1. I found out.

(220)面は(110)面の倍周期であるので、(110)面の結晶子径と(220)面の結晶子径は等価であるので、(220)面の結晶子径を代用することが可能である。したがって、(111)面の結晶子径と(220)面の結晶子径との比は、(111)面の結晶子径と(110)面の結晶子径との比とみなすことができる。   Since the (220) plane has a period twice that of the (110) plane, the crystallite diameter of the (110) plane and the crystallite diameter of the (220) plane are equivalent, so the crystallite diameter of the (220) plane is substituted. It is possible. Therefore, the ratio between the crystallite diameter of the (111) plane and the crystallite diameter of the (220) plane can be regarded as the ratio of the crystallite diameter of the (111) plane and the crystallite diameter of the (110) plane.

本発明は次のとおりのものである。
(1)白金(Pt)を含む触媒成分が導電性カーボンに担持された固体高分子型燃料電池用電極触媒であって、該白金を含む触媒成分の結晶構造が面心立方構造を有し、(111)面の結晶子径(D1)が3.8nmより大きく5nm以下であり、(220)面の結晶子径(D2)が3.0nmより大きく4nm以下であり、かつ、比(D1/D2)が1.21/1〜1.26/1であることを特徴とする固体高分子型燃料電池用電極触媒。
(2)触媒成分がPtとRu、Ir、Au、Os、Rh、W、Mo、SnおよびTaから選ばれる少なくとも1種の元素とを含む上記(1)の固体高分子型燃料電池用電極触媒。
(3)PtとRu、Ir、Au、Os、Rh、W、Mo、SnおよびTaから選ばれる少なくとも1種の元素との割合(原子比)が30:70〜60:40である上記(2)の固体高分子型燃料電池用電極触媒。
(4)導電性カーボンがSiO 修飾導電性カーボンであって、その比表面積が100〜800m/gである上記(1)、(2)または(3)の固体高分子型燃料電池用電極触媒。
(5)SiO 担持量が、導電性カーボン担体とSiO との総質量に対し、1〜40質量%である上記(4)の固体高分子型燃料電池用電極触媒。
(6)SiO 修飾導電性カーボンが、シランカップリング剤を導電性カーボンに吸着担持させた後、シラン化合物で処理して得られたものである上記(4)または(5)の固体高分子型燃料電池用電極触媒。
The present invention is as follows.
(1) A solid polymer fuel cell electrode catalyst in which a catalyst component containing platinum (Pt) is supported on conductive carbon, and the crystal structure of the catalyst component containing platinum has a face-centered cubic structure, The crystallite diameter (D1) of the (111) plane is greater than 3.8 nm and 5 nm or less, the crystallite diameter (D2) of the (220) plane is greater than 3.0 nm and 4 nm or less, and the ratio (D1 / D2) is 1.21 / 1-1.26 / 1, and is a polymer electrolyte fuel cell electrode catalyst.
(2) The electrode catalyst for a polymer electrolyte fuel cell according to (1), wherein the catalyst component includes Pt and at least one element selected from Ru, Ir, Au, Os, Rh, W, Mo, Sn, and Ta. .
(3) The ratio (atomic ratio) between Pt and at least one element selected from Ru, Ir, Au, Os, Rh, W, Mo, Sn and Ta is 30:70 to 60:40 (2 ) Electrocatalyst for polymer electrolyte fuel cell.
(4) The polymer electrolyte fuel cell electrode according to (1), (2) or (3) above, wherein the conductive carbon is SiO 2 -modified conductive carbon and the specific surface area is 100 to 800 m 2 / g. catalyst.
(5) The electrode catalyst for a polymer electrolyte fuel cell according to (4), wherein the amount of SiO 2 supported is 1 to 40% by mass with respect to the total mass of the conductive carbon support and SiO 2 .
(6) The solid polymer of (4) or (5) above, wherein the SiO 2 -modified conductive carbon is obtained by adsorbing and supporting a silane coupling agent on the conductive carbon and then treating with a silane compound. Type fuel cell electrode catalyst.

本発明の電極触媒は優れた触媒性能を発揮する。   The electrode catalyst of the present invention exhibits excellent catalytic performance.

本発明において、(111)面および(220)面の結晶子径はCuKα線を用いた粉末X線回折法により算出する。すなわち、粉末X線回折法により、30°〜50°、65°〜75°を保持時間100〜400秒で測定し、得られる回折パターンから(111)面および(220)面の回折ピークの半値幅(β)を求め、シェラーの式:D=Kλ/βcosθにより各結晶子径を算出する。ここで、シェーラー定数(K)=1、測定X線波長(λ)=1.5405である。   In the present invention, the crystallite diameters of the (111) plane and the (220) plane are calculated by a powder X-ray diffraction method using CuKα rays. That is, by powder X-ray diffractometry, 30 ° to 50 ° and 65 ° to 75 ° were measured at a holding time of 100 to 400 seconds, and from the obtained diffraction pattern, half of the diffraction peaks of the (111) plane and the (220) plane were measured. The value width (β) is obtained, and each crystallite diameter is calculated according to Scherrer's formula: D = Kλ / βcos θ. Here, the Scherrer constant (K) = 1 and the measured X-ray wavelength (λ) = 1.5405.

本発明の触媒成分としては、例えば、PtとRu、Ir、Au、Os、Rh、W、Mo、SnおよびTaから選ばれる少なくとも1種の元素との組み合わせを挙げることができる。PtとRu、Ir、Au、Os、Rh、W、Mo、SnおよびTaから選ばれる少なくとも1種の元素との割合(原子比)は、通常、30:70〜60:40である。   Examples of the catalyst component of the present invention include a combination of Pt and at least one element selected from Ru, Ir, Au, Os, Rh, W, Mo, Sn, and Ta. The ratio (atomic ratio) of Pt to at least one element selected from Ru, Ir, Au, Os, Rh, W, Mo, Sn and Ta is usually 30:70 to 60:40.

触媒成分の担持量は、導電性カーボン担体とSiO との総質量に対して、0.1〜20質量%、好ましくは1〜10質量%である。 The supported amount of the catalyst component is 0.1 to 20% by mass, preferably 1 to 10% by mass, based on the total mass of the conductive carbon support and SiO 2 .

本発明で用いる導電性カーボン担体としては、この種の電極触媒の製造に一般に用いられているものを用いることができる。例えば、カーボンブラック、カーボンナノホン、活性炭カーボン、カーボンナノチューブ、フラレンなどが用いられるが、なかでも、カーボンブラックが好適に用いられる。   As the conductive carbon carrier used in the present invention, those generally used in the production of this type of electrode catalyst can be used. For example, carbon black, carbon nanophone, activated carbon, carbon nanotube, fullerene and the like are used, and among these, carbon black is preferably used.

本発明においては、導電性カーボン担体として、SiO 修飾導電性カーボンであって、その比表面積が100〜800m/g、好ましくは150〜600m/gであるものが好適に用いられる。 In the present invention, as the conductive carbon carrier, a SiO 2 modified conductive carbon having a specific surface area of 100 to 800 m 2 / g, preferably 150 to 600 m 2 / g is suitably used.

上記SiO 修飾導電性カーボンにおける、SiO 担持量は、導電性カーボン担体とSiO との総質量に対し、1〜40質量%、好ましくは5〜30質量%である。 The amount of SiO 2 supported in the SiO 2 -modified conductive carbon is 1 to 40% by mass, preferably 5 to 30% by mass, based on the total mass of the conductive carbon support and SiO 2 .

上記SiO 修飾導電性カーボンは、常法により、シランカップリング剤を導電性カーボンに吸着担持させた後、シラン化合物で処理して得るのが好ましい。 The SiO 2 modified conductive carbon, by a conventional method, After adsorption carry a silane coupling agent on a conductive carbon, preferably obtained by treating with a silane compound.

上記シラン化合物としては、メチルトリクロロシラン、メチルジクロロシラン、エチルトリクロロシラン、フェニルトリクロロシラン、ジフェニルジクロロシラン等のクロロシラン;テトラメトキシシラン、メチルトリメトキシシラン、フェニルトリメトキシシラン等のアルコキシシラン;テトラエチルオルトシリケートなどが挙げられる。   Examples of the silane compound include chlorosilanes such as methyltrichlorosilane, methyldichlorosilane, ethyltrichlorosilane, phenyltrichlorosilane, and diphenyldichlorosilane; alkoxysilanes such as tetramethoxysilane, methyltrimethoxysilane, and phenyltrimethoxysilane; tetraethylorthosilicate Etc.

上記シランカップリング剤としては、ビニルトリエトキシシラン、β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、γ−グリシドキシプロピルトリエトキシシラン、γ−グリシドキシプロピルメチルジエトキシシラン、γ−メタクリロキシプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、γ−クロロプロピルトリメトキシシラン、γ−メルカプトプロピルトリメトキシシランなどが挙げられる。なかでも、エチルトリメトキシシラン、ビニルトリエトキシシランが好適に用いられる。   Examples of the silane coupling agent include vinyltriethoxysilane, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, γ-glycidoxypropyltriethoxysilane, γ-glycidoxypropylmethyldiethoxysilane, γ -Methacryloxypropyltrimethoxysilane, γ-aminopropyltriethoxysilane, γ-chloropropyltrimethoxysilane, γ-mercaptopropyltrimethoxysilane and the like. Of these, ethyltrimethoxysilane and vinyltriethoxysilane are preferably used.

(実施例1)
エタノール250gに3−アミノプロピルトリエトキシシラン5gおよびカーボンブラック(VulcanXC72、Cabot社)10gを添加し、30分間、室温で攪拌を行った。次に、ろ過、水洗後、窒素雰囲気下、110℃で乾燥し、SiO 修飾導電性カーボン担体を得た。次に、このSiO 修飾導電性カーボン担体を1規定の硝酸水溶液100gに加え、室温で2時間攪拌した後、ろ過、水洗を行い、窒素雰囲気下110℃で乾燥した。次に、上記硝酸処理したSiO 修飾導電性カーボン担体を、テトラエチルオルトシリケート21gおよびエタノール230gの溶液に加え、室温で15分間攪拌した後、25%アンモニアすい6.8g、水11.2gを添加し、室温で約10時間攪拌を行った。その後、ろ過、水洗を行い、窒素雰囲気下110℃で乾燥し、担体Aを得た。
<触媒調製>
エチレングリコール100mLにNaOH(顆粒状)2gを添加し、窒素雰囲気下、70℃で溶解させた。次に、エチレングリコール100mLにジニトロジアンミン白金硝酸水溶液(Pt:0.386g)4.79g、硝酸ルテニウム水溶液(Ru:0.425g)9.34gを添加した。このエチレングリコール溶液に、NaOHを溶解させたエチレングリコール溶液を添加し、窒素雰囲気下、室温で1時間攪拌した(脱気)。次に、この溶液を、窒素雰囲気下、90℃(液温)で3時間還流した。冷却後、この溶液に担体Aを0.386g添加し、窒素雰囲気下、室温で、1時間攪拌した(脱気)後で、160℃(液温)で、窒素雰囲気下、3時間還流した。冷却後、攪拌しながら、1N硝酸水溶液を徐々に滴下し、pH1に調整した。固体をろ過し、イオン交換水で十分に洗浄し、窒素雰囲気下110℃で乾燥した後に、水素を用いて300℃で2時間還元処理して触媒Aを作成した。得られた触媒Aを分析したところ、その組成は、Pt:Ru:SiO :カーボンブラック=38:23:9:30(質量%)であった。この触媒をX線回折法で分析を行ったところ、触媒Aの結晶構造は面心立方構造であった。なお、(111)面の結晶子経(D1)、(220)面の結晶子経(D2)、およびD1/D2を表1に示す。
<性能評価>
触媒A10mgを5%ナフィオン溶液(Aldrich社製)を加え、超音波により十分に分散させ触媒ペーストを作成した。この触媒ペースト5μLをグラッシーカーボン電極上に固定化し試験電極とした。
Example 1
To 250 g of ethanol, 5 g of 3-aminopropyltriethoxysilane and 10 g of carbon black (Vulcan XC72, Cabot) were added and stirred at room temperature for 30 minutes. Next, after filtration and washing with water, it was dried at 110 ° C. in a nitrogen atmosphere to obtain a SiO 2 -modified conductive carbon carrier. Next, this SiO 2 -modified conductive carbon carrier was added to 100 g of 1N aqueous nitric acid solution, stirred at room temperature for 2 hours, filtered, washed with water, and dried at 110 ° C. in a nitrogen atmosphere. Next, the nitric acid-treated SiO 2 -modified conductive carbon carrier was added to a solution of 21 g of tetraethylorthosilicate and 230 g of ethanol, stirred for 15 minutes at room temperature, and then added with 6.8 g of 25% ammonia and 11.2 g of water. The mixture was stirred at room temperature for about 10 hours. Thereafter, filtration, washing with water were performed, and drying was performed at 110 ° C. in a nitrogen atmosphere, whereby Carrier A was obtained.
<Catalyst preparation>
2 g of NaOH (granular) was added to 100 mL of ethylene glycol and dissolved at 70 ° C. in a nitrogen atmosphere. Next, 4.79 g of dinitrodiammine platinum nitrate aqueous solution (Pt: 0.386 g) and 9.34 g of ruthenium nitrate aqueous solution (Ru: 0.425 g) were added to 100 mL of ethylene glycol. To this ethylene glycol solution, an ethylene glycol solution in which NaOH was dissolved was added and stirred at room temperature for 1 hour under a nitrogen atmosphere (degassing). Next, this solution was refluxed at 90 ° C. (liquid temperature) for 3 hours under a nitrogen atmosphere. After cooling, 0.386 g of carrier A was added to this solution, stirred for 1 hour at room temperature in a nitrogen atmosphere (degassing), and then refluxed at 160 ° C. (liquid temperature) in a nitrogen atmosphere for 3 hours. After cooling, 1N nitric acid aqueous solution was gradually added dropwise with stirring to adjust the pH to 1. The solid was filtered, thoroughly washed with ion-exchanged water, dried at 110 ° C. under a nitrogen atmosphere, and then reduced with hydrogen at 300 ° C. for 2 hours to prepare Catalyst A. When the obtained catalyst A was analyzed, the composition was Pt: Ru: SiO 2 : carbon black = 38: 23: 9: 30 (mass%). When this catalyst was analyzed by an X-ray diffraction method, the crystal structure of the catalyst A was a face-centered cubic structure. Table 1 shows the crystallite length (D1) of the (111) plane, the crystallite length (D2) of the (220) plane, and D1 / D2.
<Performance evaluation>
A catalyst paste was prepared by adding 10 mg of catalyst A to a 5% Nafion solution (manufactured by Aldrich) and sufficiently dispersing with ultrasonic waves. 5 μL of this catalyst paste was fixed on a glassy carbon electrode to obtain a test electrode.

触媒性能の評価は、硫酸水溶液にメタノールを1mol/Lとなるように添加した。25℃に保持されたこの溶液中に上記試験電極を浸漬し、作用極とし、対極には白金線、参照極には可逆水素電極(RHE)を用いて電位規制法によりメタノール酸化電流と電極電位の関係を測定し、0.6V.vs.RHEにおける酸化電流値をグラッシーカーボン電極上に塗布した触媒中に含有される白金質量で除した値(白金質量当たりの酸化電流値)とした。電流値が高いほど高性能である。結果を表1に示す。
(比較例1)
Johnson Mattey社製のPtRu担持カーボン触媒(HiSPEC10100)を用いて実施例1と同様にして性能評価を行った。この触媒の結晶構造は面心立方構造であった。(111)面の結晶子経(D1)、(220)面の結晶子経(D2)、およびD1/D2、それに性能評価結果を表1に示す。
(比較例2)
E−TEK社製のPtRu担持カーボン触媒(HP60%、Pt:Ru=1:1on DMFCopimized carbon、C20−60)を用いて実施例1と同様にして性能評価を行った。この触媒の結晶構造は面心立方構造であった。(111)面の結晶子経(D1)、(220)面の結晶子経(D2)、およびD1/D2、それに性能評価結果を表1に示す。
(比較例3)
石福金属社製のPtRu担持カーボン触媒(IFDM40A、PtRu(60%)/KetjenBlackEC)を用いて実施例1と同様にして性能評価を行った。この触媒の結晶構造は面心立方構造であった。(111)面の結晶子経(D1)、(220)面の結晶子経(D2)、およびD1/D2、それに性能評価結果を表1に示す。
For the evaluation of the catalyst performance, methanol was added to the sulfuric acid aqueous solution so as to be 1 mol / L. The test electrode is immersed in this solution maintained at 25 ° C. to serve as a working electrode, a platinum wire as a counter electrode, and a reversible hydrogen electrode (RHE) as a reference electrode, and a methanol oxidation current and an electrode potential by a potential regulation method. The relationship of 0.6V. vs. The value obtained by dividing the oxidation current value in RHE by the mass of platinum contained in the catalyst coated on the glassy carbon electrode (oxidation current value per platinum mass) was used. The higher the current value, the higher the performance. The results are shown in Table 1.
(Comparative Example 1)
Performance evaluation was performed in the same manner as in Example 1 using a PtRu-supported carbon catalyst (HiSPEC10100) manufactured by Johnson Mattey. The crystal structure of this catalyst was a face-centered cubic structure. Table 1 shows the crystallite size (D1) of the (111) plane, the crystallite size (D2) of the (220) plane, D1 / D2, and performance evaluation results.
(Comparative Example 2)
Performance evaluation was performed in the same manner as in Example 1 using a PtRu-supported carbon catalyst (HP 60%, Pt: Ru = 1: 1 on DMF Coupled carbon, C20-60) manufactured by E-TEK. The crystal structure of this catalyst was a face-centered cubic structure. Table 1 shows the crystallite size (D1) of the (111) plane, the crystallite size (D2) of the (220) plane, D1 / D2, and performance evaluation results.
(Comparative Example 3)
Performance evaluation was performed in the same manner as in Example 1 using a PtRu-supported carbon catalyst (IFDM40A, PtRu (60%) / KetjenBlackEC) manufactured by Ishifuku Metal Co., Ltd. The crystal structure of this catalyst was a face-centered cubic structure. Table 1 shows the crystallite size (D1) of the (111) plane, the crystallite size (D2) of the (220) plane, D1 / D2, and performance evaluation results.

Figure 2010092799
Figure 2010092799

Claims (6)

白金(Pt)を含む触媒成分が導電性カーボンに担持された固体高分子型燃料電池用電極触媒であって、該白金を含む触媒成分の結晶構造が面心立方構造を有し、(111)面の結晶子径(D1)が3.8nmより大きく5nm以下であり、(220)面の結晶子径(D2)が3.0nmより大きく4nm以下であり、かつ、比(D1/D2)が1.21/1〜1.26/1であることを特徴とする固体高分子型燃料電池用電極触媒。 An electrode catalyst for a polymer electrolyte fuel cell in which a catalyst component containing platinum (Pt) is supported on conductive carbon, wherein the crystal structure of the catalyst component containing platinum has a face-centered cubic structure, (111) The crystallite diameter (D1) of the plane is greater than 3.8 nm and 5 nm or less, the crystallite diameter (D2) of the (220) plane is greater than 3.0 nm and 4 nm or less, and the ratio (D1 / D2) is An electrode catalyst for a polymer electrolyte fuel cell, wherein the electrode catalyst is 1.21 / 1-1.26 / 1. 触媒成分がPtとRu、Ir、Au、Os、Rh、W、Mo、SnおよびTaから選ばれる少なくとも1種の元素とを含む請求項1に記載の固体高分子型燃料電池用電極触媒。 The electrode catalyst for a polymer electrolyte fuel cell according to claim 1, wherein the catalyst component contains Pt and at least one element selected from Ru, Ir, Au, Os, Rh, W, Mo, Sn and Ta. PtとRu、Ir、Au、Os、Rh、W、Mo、SnおよびTaから選ばれる少なくとも1種の元素との割合(原子比)が30:70〜60:40である請求項2に記載の固体高分子型燃料電池用電極触媒。 The ratio (atomic ratio) between Pt and at least one element selected from Ru, Ir, Au, Os, Rh, W, Mo, Sn, and Ta is 30:70 to 60:40. Electrocatalyst for polymer electrolyte fuel cell. 導電性カーボンがSiO 修飾導電性カーボンであって、その比表面積が100〜800m/gである請求項1、2または3に記載の固体高分子型燃料電池用電極触媒。 4. The electrode catalyst for a polymer electrolyte fuel cell according to claim 1, wherein the conductive carbon is SiO 2 -modified conductive carbon and has a specific surface area of 100 to 800 m 2 / g. SiO 担持量が、導電性カーボン担体とSiO との総質量に対し、1〜40質量%である請求項4に記載の固体高分子型燃料電池用電極触媒。 The electrode catalyst for a polymer electrolyte fuel cell according to claim 4, wherein the amount of SiO 2 supported is 1 to 40% by mass relative to the total mass of the conductive carbon support and SiO 2 . SiO 修飾導電性カーボンが、シランカップリング剤を導電性カーボンに吸着担持させた後、シラン化合物で処理して得られたものである請求項4または5に記載の固体高分子型燃料電池用電極触媒。 SiO 2 modified conductive carbon, After adsorption carries a silane coupling agent on a conductive carbon, for a polymer electrolyte fuel cell according to claim 4 or 5 is obtained by treating with a silane compound Electrocatalyst.
JP2008263869A 2008-10-10 2008-10-10 Electrode catalyst for polymer electrolyte fuel cell Pending JP2010092799A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008263869A JP2010092799A (en) 2008-10-10 2008-10-10 Electrode catalyst for polymer electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008263869A JP2010092799A (en) 2008-10-10 2008-10-10 Electrode catalyst for polymer electrolyte fuel cell

Publications (1)

Publication Number Publication Date
JP2010092799A true JP2010092799A (en) 2010-04-22

Family

ID=42255319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008263869A Pending JP2010092799A (en) 2008-10-10 2008-10-10 Electrode catalyst for polymer electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP2010092799A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015099784A (en) * 2015-01-09 2015-05-28 ユーティーシー パワー コーポレイション Shape controlled palladium and palladium alloy nanoparticle catalyst
CN105006578A (en) * 2014-04-15 2015-10-28 丰田自动车株式会社 Electrode catalyst for fuel cell and preparation method thereof, and cathode, anode and fuel cell comprising electrode catalyst
US9343768B2 (en) 2011-12-28 2016-05-17 Honda Motor Co., Ltd. Method for activating fuel cell
WO2017010233A1 (en) * 2015-07-14 2017-01-19 田中貴金属工業株式会社 Core-shell catalyst and reaction acceleration method
US9663600B2 (en) 2012-12-21 2017-05-30 Audi Ag Method of fabricating an electrolyte material
US9923223B2 (en) 2012-12-21 2018-03-20 Audi Ag Electrolyte membrane, dispersion and method therefor
US9923224B2 (en) 2012-12-21 2018-03-20 Audi Ag Proton exchange material and method therefor
TWI660777B (en) * 2017-01-16 2019-06-01 日本國立大學法人大阪大學 Core-shell catalyst and method for reducing oxygen
US10505197B2 (en) 2011-03-11 2019-12-10 Audi Ag Unitized electrode assembly with high equivalent weight ionomer

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10505197B2 (en) 2011-03-11 2019-12-10 Audi Ag Unitized electrode assembly with high equivalent weight ionomer
US9343768B2 (en) 2011-12-28 2016-05-17 Honda Motor Co., Ltd. Method for activating fuel cell
US9663600B2 (en) 2012-12-21 2017-05-30 Audi Ag Method of fabricating an electrolyte material
US9923223B2 (en) 2012-12-21 2018-03-20 Audi Ag Electrolyte membrane, dispersion and method therefor
US9923224B2 (en) 2012-12-21 2018-03-20 Audi Ag Proton exchange material and method therefor
CN109994749A (en) * 2014-04-15 2019-07-09 丰田自动车株式会社 Electrode catalyst for fuel cell and preparation method thereof, and cathode, anode and fuel cell comprising electrode catalyst
CN105006578A (en) * 2014-04-15 2015-10-28 丰田自动车株式会社 Electrode catalyst for fuel cell and preparation method thereof, and cathode, anode and fuel cell comprising electrode catalyst
US10938039B2 (en) 2014-04-15 2021-03-02 Toyota Jidosha Kabushiki Kaisha Electrode catalyst for fuel cell and method of producing the same, and cathode, anode, and fuel cell including electrode catalyst
US10734658B2 (en) 2014-04-15 2020-08-04 Toyota Jidosha Kabushiki Kaisha Electrode catalyst for fuel cell and method of producing the same, and cathode, anode, and fuel cell including electrode catalyst
JP2015099784A (en) * 2015-01-09 2015-05-28 ユーティーシー パワー コーポレイション Shape controlled palladium and palladium alloy nanoparticle catalyst
WO2017010233A1 (en) * 2015-07-14 2017-01-19 田中貴金属工業株式会社 Core-shell catalyst and reaction acceleration method
EP3323508A4 (en) * 2015-07-14 2019-03-13 Tanaka Kikinzoku Kogyo K.K. MALE-SHEATH CATALYST AND REACTION ACCELERATION METHOD
JPWO2017010233A1 (en) * 2015-07-14 2018-04-26 田中貴金属工業株式会社 Core-shell catalyst and reaction promotion method
US11527761B2 (en) 2015-07-14 2022-12-13 Tanaka Kikinzoku Kogyo K.K. Cathode electrode catalyst of fuel cell, and reaction acceleration method
TWI660777B (en) * 2017-01-16 2019-06-01 日本國立大學法人大阪大學 Core-shell catalyst and method for reducing oxygen

Similar Documents

Publication Publication Date Title
JP2010092799A (en) Electrode catalyst for polymer electrolyte fuel cell
US8017548B2 (en) Method for manufacture of noble metal alloy catalysts and catalysts prepared therewith
JP5328290B2 (en) Fuel cell electrode catalyst
JP6161239B2 (en) Core-shell nanoparticle-supported catalyst body, process for producing the same, and fuel cell using the catalyst body
JPH01210037A (en) Method for alloying metals on a support
CN103384933A (en) Extended two-dimensional metallic nanotubes and nanowires useful as fuel cell catalysts and fuel cells containing same
CN1964782B (en) Platinum catalyst obtained by reduction of in situ formed platinum dioxide
JPH09167620A (en) ELECTRODE CATALYST FOR FUEL CELL, MANUFACTURING METHOD THEREOF, AND ELECTRODE AND FUEL CELL USING THE CATALYST
WO2018159644A1 (en) Pd-Ru SOLID SOLUTION NANOPARTICLES, PRODUCTION METHOD AND CATALYST THEREFOR, METHOD FOR CONTROLLING CRYSTAL STRUCTURE OF Pt-Ru SOLID SOLUTION NANOPARTICLES, Au-Ru SOLID SOLUTION NANOPARTICLES, AND METHOD FOR MANUFACTURING SAME
CN101310403A (en) Fuel cell catalyst, fuel cell electrode, and polymer electrolyte fuel cell having the fuel cell electrode
JP5365231B2 (en) Method for producing conductive oxide carrier
JP5506075B2 (en) Platinum ordered lattice catalyst for fuel cell and method for producing the same
JP2010092814A (en) Electrode catalyst for polymer electrolyte fuel cell
WO2005081340A1 (en) Supported catalyst for fuel cell, method for producing same and fuel cell
JPWO2015182138A1 (en) Redox catalyst, electrode material, electrode, membrane electrode assembly for fuel cell, and fuel cell
JP2009117287A (en) Direct alcohol fuel cell electrode catalyst and process for producing the electrode catalyst
JP6815590B2 (en) Platinum catalyst, its manufacturing method, and fuel cells using the platinum catalyst
JP6331580B2 (en) Electrode catalyst, catalyst layer precursor, catalyst layer, and fuel cell
JP2002001095A (en) Colloid solution and method for producing colloid solution
WO2012127540A1 (en) Metal oxide-platinum compound catalyst and method for producing same
JPH04141235A (en) Electrode catalyst for an anode pole
JP5255989B2 (en) Electrocatalyst for polymer electrolyte fuel cell
JP2010027506A (en) Fuel cell electrode catalyst and its manufacturing method, and solid polymer fuel cell using the same
JP2010092808A (en) Electrode catalyst for polymer electrolyte fuel cell
JP6731755B2 (en) Dispersion of metal-containing particles, method for producing the same, and catalyst prepared using the dispersion