JP2010001162A - Separation method of metallic-semiconducting carbon nanotube using saccharide as density gradient agent - Google Patents
Separation method of metallic-semiconducting carbon nanotube using saccharide as density gradient agent Download PDFInfo
- Publication number
- JP2010001162A JP2010001162A JP2008158751A JP2008158751A JP2010001162A JP 2010001162 A JP2010001162 A JP 2010001162A JP 2008158751 A JP2008158751 A JP 2008158751A JP 2008158751 A JP2008158751 A JP 2008158751A JP 2010001162 A JP2010001162 A JP 2010001162A
- Authority
- JP
- Japan
- Prior art keywords
- density gradient
- cnt
- type
- carbon nanotubes
- metal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Carbon And Carbon Compounds (AREA)
Abstract
Description
本発明は、密度勾配遠心分離法を用いて、金属型カーボンナノチューブと半導体型カーボンナノチューブを分離する方法に関するものである。 The present invention relates to a method for separating metallic carbon nanotubes and semiconducting carbon nanotubes using density gradient centrifugation.
単層カーボンナノチューブ(以下、「SWCNT」ともいう。)は、1991年(非特許文献1)に発表されて以来、1次元細線、触媒など種々の潜在的な応用が期待される新しい材料として積極的に開発が進められてきた。
SWCNTはそのグラフェンシートの巻き方によって、金属型・半導体型を示す。SWCNTのデバイス応用において金属型・半導体型SWCNTの分離は非常に重要とされ、数多くの分離法が提案されている。特に近年、密度勾配遠心分離法によって金属型カーボンナノチューブ(以下、「CNT」ともいう。)と半導体型CNTが分離可能であることが報告されており(非特許文献2、非特許文献3)、密度勾配遠心分離法によって金属型・半導体型CNTを“高純度”で分離する為には、iodixanolという薬品を使う必要があった。例えば、金属型CNTが高純度(精製試料に含まれる、金属型CNTの第一吸収バンドの強度と半導体型CNTの第二吸収バンドの比が1以上)で含まれる溶液を、iodixanol分子を利用せずに、密度勾配遠心分離を用いて達成した報告例は無い。
SWCNT indicates a metal type or a semiconductor type depending on how the graphene sheet is wound. Separation of metal / semiconductor SWCNTs is very important in SWCNT device applications, and many separation methods have been proposed. In recent years, it has been reported that metal-type carbon nanotubes (hereinafter also referred to as “CNT”) and semiconductor-type CNTs can be separated by density gradient centrifugation (Non-patent Documents 2 and 3). In order to separate metal-type and semiconductor-type CNTs with “high purity” by density gradient centrifugation, it was necessary to use a chemical called iodixanol. For example, a solution containing metal-type CNTs with high purity (the ratio of the first absorption band of metal-type CNTs to the second absorption band of semiconductor-type CNTs contained in the purified sample is 1 or more) using iodixanol molecules Without reports, there have been no reports achieved using density gradient centrifugation.
本発明者らは、これまでに、密度勾配遠心分離法を用いて、高純度で金属型CNTと半導体型CNTを分離する可能にする技術について研究をすすめた結果、界面活性剤として、これまで使用されていなかったデオキシコール酸ナトリウムを用いることにより分離能を改善し得ることを見いだし、出願している(特願2007−81630、特願2007−160649号)。
しかしながら、密度勾配剤として使用しているiodixanol分子は、非常に高価である為、安価な試薬を用いて高純度で分離可能な技術を開発する必要があった。
本発明は、以上のような事情に鑑みてなされたものであって、新規な安価な密度勾配剤、及びそれを用いて遠心操作により高純度で金属型・半導体型CNTを分離する方法を提供することを目的とするものである。
As a result of researches on the technology that enables separation of metal-type CNTs and semiconductor-type CNTs with high purity using density gradient centrifugation, the present inventors have heretofore been introduced as surfactants. It has been found that the resolution can be improved by using sodium deoxycholate that has not been used (Japanese Patent Application No. 2007-81630, Japanese Patent Application No. 2007-160649).
However, since iodixanol molecules used as a density gradient agent are very expensive, it was necessary to develop a technique that can be separated with high purity using inexpensive reagents.
The present invention has been made in view of the above circumstances, and provides a novel inexpensive density gradient agent and a method for separating metal-type and semiconductor-type CNTs with high purity by centrifugation using the same. It is intended to do.
本発明者らは、上記目的を達成すべ鋭意研究し、糖類という非常に安価な物質を密度勾配剤として用いることにより、高純度で金属型CNT・半導体型CNTを分離できることを見いだした。
また、密度勾配遠心分離において、溶媒の密度の最適化は非常に重要な課題であり、密度勾配形成剤として糖類を用いた場合、その最適な密度の範囲は、1.15〜1.23g/mlであることを見出した。
さらに、密度勾配遠心分離において、金属型CNTと半導体型CNTの分離能の改善の為には、界面活性剤の吸着条件に大きな影響を及ぼす温度が重要であり、最適な温度範囲は9〜18℃であることを見いだした。
さらにまた、密度勾配遠心分離において用いる界面活性剤として、ドデシル硫酸ナトリウム及びコール酸ナトリウの2種類を用いるのが好ましいこともわかった。
The present inventors have intensively studied to achieve the above object, and have found that metal CNTs and semiconductor CNTs can be separated with high purity by using a very inexpensive substance called saccharide as a density gradient agent.
Further, in density gradient centrifugation, optimization of the density of the solvent is a very important issue. When sugars are used as the density gradient forming agent, the optimum density range is 1.15 to 1.23 g / It was found to be ml.
Furthermore, in density gradient centrifugation, a temperature that greatly affects the adsorption condition of the surfactant is important for improving the separation ability of the metal-type CNT and the semiconductor-type CNT, and the optimum temperature range is 9-18. I found that it was ℃.
Furthermore, it has been found that it is preferable to use two types of surfactants used in density gradient centrifugation, sodium dodecyl sulfate and sodium cholate.
本発明は、これらの知見に基づいて完成に至ったものであり、以下のとおりのものである。
(1)界面活性剤を含有する水溶液中にカーボンナノチューブを分散させたカーボンナノチューブ分散液を、密度勾配を形成した遠心分離用チューブ内に挿入して遠心分離を行い、金属型カーボンナノチューブと半導体型カーボンナノチューブを分離する方法であって、前記密度勾配形成剤として糖類を用いることを特徴とするカーボンナノチューブの分離方法。
(2)前記糖類が、グルコース、フルクトース若しくはガラクトースから選ばれる単糖類、又はスクロース、ラクトース、マルトース若しくはセロビオースから選ばれる二糖類のいずれかであることを特徴とする、前記(1)のカーボンナノチューブの分離方法。
(3)前記界面活性剤として、ドデシル硫酸ナトリウム及びコール酸ナトリウムを用いることを特徴とする、前記(1)又は(2)のカーボンナノチューブの分離方法。
(4)前記密度勾配を、1.15〜1.23g/mlの範囲内で形成することを特徴とする、前記(1)〜(3)のカーボンナノチューブの分離法。
(5)遠心分離を9〜18℃で行うことを特徴とする、前記(1)〜(4)のカーボンナノチューブの分離方法。
(6)前記(1)〜(5)の分離方法より分離された金属型カーボンナノチューブ。
(7)前記(1)〜(5)の分離方法より分離された半導体型カーボンナノチューブ。
The present invention has been completed based on these findings, and is as follows.
(1) A carbon nanotube dispersion liquid in which carbon nanotubes are dispersed in an aqueous solution containing a surfactant is inserted into a centrifuge tube having a density gradient, and subjected to centrifugation. A method for separating carbon nanotubes, wherein a saccharide is used as the density gradient forming agent.
(2) The carbon nanotube according to (1), wherein the saccharide is any one of a monosaccharide selected from glucose, fructose or galactose, or a disaccharide selected from sucrose, lactose, maltose or cellobiose. Separation method.
(3) The method for separating carbon nanotubes according to (1) or (2), wherein sodium dodecyl sulfate and sodium cholate are used as the surfactant.
(4) The method for separating carbon nanotubes according to (1) to (3), wherein the density gradient is formed within a range of 1.15 to 1.23 g / ml.
(5) The method for separating carbon nanotubes according to (1) to (4) above, wherein the centrifugation is performed at 9 to 18 ° C.
(6) Metal-type carbon nanotubes separated by the separation methods (1) to (5) above.
(7) Semiconductor-type carbon nanotubes separated by the separation methods (1) to (5) above.
本発明によれば、安価な単糖類又は二糖類を密度勾配形成剤として用いて、高純度の、すなわち、精製試料に含まれる、金属型CNTの第一吸収バンドの強度と半導体型CNTの第二吸収バンドの比が1以上の金属型CNT又は半導体型CNTを分離することが可能となる。 According to the present invention, by using an inexpensive monosaccharide or disaccharide as the density gradient forming agent, the strength of the first absorption band of the metal-type CNT contained in the purified sample, ie, the purity of the metal-type CNT, and the first of the semiconductor-type CNT are increased. It is possible to separate metal-type CNTs or semiconductor-type CNTs having a ratio of two absorption bands of 1 or more.
本発明は、密度勾配遠心分離法により、金属型CNTと半導体型CNTを分離する方法に関するものである。
密度勾配遠心分離法は、具体的には、まず、水にCNTを分散させた分散液を作成しておき、密度勾配を形成した遠心分離用チューブの上に、その分散液を載せ、この遠心分離用チューブを遠心分離器に入れ、遠心を行うものであるが、本発明では、この遠心分離用チューブ内に密度勾配を形成するための材料として、糖類を用いることを特徴とするものである。
本発明において、密度勾配形成剤として用いられる糖類としては、グルコース、フルクトースもしくはガラクトースから選ばれる単糖類、又はスクロース、ラクトース、マルトースもしくはセロビオースから選ばれる二糖類が用いられる。
The present invention relates to a method for separating metal-type CNT and semiconductor-type CNT by density gradient centrifugation.
Specifically, in the density gradient centrifugation method, first, a dispersion liquid in which CNTs are dispersed in water is prepared, and the dispersion liquid is placed on a centrifuge tube in which a density gradient is formed. The separation tube is put in a centrifuge and centrifuged. In the present invention, a saccharide is used as a material for forming a density gradient in the centrifugation tube. .
In the present invention, as the saccharide used as the density gradient forming agent, a monosaccharide selected from glucose, fructose or galactose, or a disaccharide selected from sucrose, lactose, maltose or cellobiose is used.
本発明において、試料となるカーボンナノチューブを均一に分散させた水溶液を調整するには、好ましくは、界面活性剤としてコール酸ナトリウム(SC)1%を用いて、カーボンナノチューブを分散した水溶液を、更にコール酸ナトリウム(SC)及びドデシル硫酸ナトリウム(SDS)を混ぜ合わせ、SCおよびSDSの濃度を調整し、糖類を用いて密度を調整し、前記遠心チューブに挿入する。 In the present invention, in order to prepare an aqueous solution in which carbon nanotubes as samples are uniformly dispersed, preferably, an aqueous solution in which carbon nanotubes are dispersed using sodium cholate (SC) 1% as a surfactant is further added. Sodium cholate (SC) and sodium dodecyl sulfate (SDS) are mixed, the concentration of SC and SDS is adjusted, the density is adjusted using sugars, and the mixture is inserted into the centrifuge tube.
カーボンナノチューブの分散方法は以下による。
カーボンナノチューブを含む水溶液(界面活性剤としてコール酸ナトリウム1%)に超音波を4時間から20時間かける。その後、その溶液に対して28万G、1時間の遠心操作を行い、上積み液を取り出すことで分散液を得る。
The carbon nanotube dispersion method is as follows.
Ultrasonic waves are applied to an aqueous solution containing carbon nanotubes (sodium cholate 1% as a surfactant) for 4 to 20 hours. Thereafter, the solution is centrifuged at 280,000 G for 1 hour, and the upper liquid stack is taken out to obtain a dispersion.
遠心分離用チューブ内に密度勾配をさせるために、前述の密度勾配形成剤とともに界面活性剤が用いられるが、密度勾配形成剤として糖類を用いる本発明においては、界面活性剤として、ドデシル硫酸ナトリウム及びコール酸ナトリウムの二種類を用いることが好ましいことがわかった。 In order to create a density gradient in the centrifuge tube, a surfactant is used together with the above-described density gradient forming agent. In the present invention using saccharides as the density gradient forming agent, sodium dodecyl sulfate and It has been found preferable to use two types of sodium cholate.
また、本発明における密度勾配遠心分離において、溶媒の密度の最適化は非常に重要な課題であり、密度1.18〜1,29g/mlにおいて最適に分離が可能であることを見出した。すなわち、後述する実施例と比較例から明らかなようにこれ以上密度が薄いと試料は全てチューブの底に沈殿してしまうし、またこれ以上密度が濃いと逆に分離が充分に起こらない。 Further, in the density gradient centrifugation according to the present invention, optimization of the density of the solvent is a very important issue, and it has been found that separation can be optimally performed at a density of 1.18 to 1,29 g / ml. That is, as will be apparent from Examples and Comparative Examples described later, if the density is lower than this, all the samples will settle to the bottom of the tube, and if the density is higher than this, separation will not occur sufficiently.
さらに、本発明における密度勾配遠心分離において、金属型CNTと半導体型CNTの分離能の改善の為には、界面活性剤の吸着条件に大きな影響を及ぼす温度が重要であり、後述する実施例から明らかなように、糖類を密度勾配形成剤として用いた遠心分離においては、9〜18℃の範囲で遠心することにより、金属型・半導体型CNTを高純度で分離精製することができる。 Furthermore, in the density gradient centrifugation according to the present invention, a temperature that greatly affects the adsorption condition of the surfactant is important for improving the separation ability of the metal-type CNT and the semiconductor-type CNT. As is clear, in the centrifugation using saccharides as the density gradient forming agent, the metal-type / semiconductor-type CNTs can be separated and purified with high purity by centrifuging in the range of 9 to 18 ° C.
本発明の糖類を密度勾配形成剤に用いた遠心分離法において、遠心は40000〜65000rpmで、遠心時間48〜4時間行うのが好ましい。 In the centrifugation method using the saccharide of the present invention as a density gradient forming agent, the centrifugation is preferably performed at 40,000 to 65,000 rpm and the centrifugation time of 48 to 4 hours.
以下、本発明を実施例によってさらに具体的に説明するが、本発明はこれら実施例により何ら限定されるものではない。
〈密度勾配遠心分離前のCNTの前処理〉
CNTをSC1%水溶液に超音波ホモジナイザー(Branson社、ソニファイアー)を用いて分散させる。28万G(日立工機 CP100WX,ローター P40ST)で一時間遠心を行い、その上澄みを得る。CNTの純度が高い場合は、同上澄みを利用して密度勾配遠心作業へと移る。純度が低い場合は、さらに28万Gで20時間遠心を行い、上澄みを取り除き、遠心チューブの底に凝集したペレットを回収する。同ペレットを再度SC1%溶液に分散させ、同分散液を用いて密度勾配遠心作業へ移る。
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples.
<Pretreatment of CNT before density gradient centrifugation>
CNTs are dispersed in an SC 1% aqueous solution using an ultrasonic homogenizer (Branson, Sonifier). Centrifuge at 280,000 G (Hitachi Koki CP100WX, rotor P40ST) for 1 hour to obtain the supernatant. When the purity of CNT is high, the supernatant is used to proceed to density gradient centrifugation. When the purity is low, the mixture is further centrifuged at 280,000 G for 20 hours, the supernatant is removed, and the pellet aggregated at the bottom of the centrifuge tube is collected. The pellet is again dispersed in SC 1% solution, and the dispersion is used for density gradient centrifugation.
(実施例1)
本実施例では、スクロース分子を密度勾配剤として用いた金属型CNT・半導体型CNTの分離における密度の最適化を行った。
CNTをコール酸ナトリウム1%水溶液に分散させたCNT分散液を用意する。同分散液に対して、スクロース、コール酸ナトリウム、及びドデシル硫酸ナトリウムを加え、最終的に(a)スクロース20%、コール酸ナトリウム2.4%、ドデシル硫酸ナトリウム0.6%を含むCNT混合液と、(b)スクロース40%、コール酸ナトリウム2%、ドデシル硫酸ナトリウム1%を含むCNT混合液の二種類を調整した。
一方、遠心チューブ内部に、コール酸ナトリウム2%、ドデシル硫酸ナトリウム1%を含むスクロース溶液を用いて密度を調整し、(a)スクロース濃度22.5%から40%の密度勾配をかけた溶液、及び(b)スクロース濃度40%から60%の密度勾配をかけた溶液、の二つの遠心チューブを作製する。(a)のCNT溶液を含んだ遠心チューブの密度勾配に関しては、温度25度において、密度1.08g/ml〜1.18g/mlとなっており、(b)に関しては、密度1.18g/ml〜1.29g/mlとなっている。
その二つの遠心チューブ(a)、(b)に、前述のCNT混合液(a)、(b)をそれぞれ挿入して、温度25度、65000rpmで20時間遠心(日立工機 CP100WX,ローター P65VT3)を行い、(a)と(b)の比較検討を行った。図1は、その結果を撮影した写真である。
図1に見られるように、(a)の場合は、CNTは遠心チューブの底に存在するのに対し、(b)においては遠心チューブの真ん中に存在しており、(b)の密度において最適に分離ができることがわかった。
Example 1
In this example, optimization of density in the separation of metallic CNT / semiconductor CNT using sucrose molecules as a density gradient agent was performed.
A CNT dispersion liquid in which CNTs are dispersed in a 1% sodium cholate aqueous solution is prepared. To the dispersion, sucrose, sodium cholate and sodium dodecyl sulfate are added, and finally (a) a CNT mixed solution containing 20% sucrose, 2.4% sodium cholate and 0.6% sodium dodecyl sulfate. And (b) two types of CNT mixed liquid containing 40% sucrose, 2% sodium cholate, and 1% sodium dodecyl sulfate.
On the other hand, the density is adjusted using a sucrose solution containing 2% sodium cholate and 1% sodium dodecyl sulfate inside the centrifuge tube, and (a) a solution with a sucrose concentration applied from 22.5% to 40%, And (b) two centrifuge tubes with a density gradient of 40% to 60% sucrose concentration. Regarding the density gradient of the centrifuge tube containing the CNT solution of (a), the density is 1.08 g / ml to 1.18 g / ml at a temperature of 25 degrees, and for (b), the density is 1.18 g / ml. ml to 1.29 g / ml.
The aforementioned CNT mixed solutions (a) and (b) are inserted into the two centrifuge tubes (a) and (b), respectively, and centrifuged at a temperature of 25 degrees and 65000 rpm for 20 hours (Hitachi Koki CP100WX, rotor P65VT3). And (a) and (b) were compared. FIG. 1 is a photograph of the result.
As can be seen in FIG. 1, in the case of (a), CNT exists at the bottom of the centrifuge tube, whereas in (b), it exists in the middle of the centrifuge tube and is optimal at the density of (b). It was found that separation was possible.
(実施例2)
本実施例では、スクロース分子を密度勾配剤として用いた金属型CNT・半導体型CNTの分離における温度の最適化を行った。
CNTをコール酸ナトリウム1%水溶液に分散させたCNT分散液を用意する。同分散液に対して、スクロース・コール酸ナトリウム・ドデシル硫酸ナトリウムを加え、最終的にスクロース40%、コール酸ナトリウム2%、ドデシル硫酸ナトリウム1%を含むCNT混合液を調整する。
一方、遠心チューブ内部に、コール酸ナトリウム2%、ドデシル硫酸ナトリウム1%を含むスクロース溶液を用いて密度を調整し、スクロース濃度45%から60%の密度勾配をかけた溶液を作製する(CNT混合液を含めると密度1.18〜1.29g/mlに調整)。その遠心チューブに、前述のCNT混合液を挿入し、65000rpmで20時間遠心を、25℃、20℃、15℃、10℃、5℃、及び2℃と異なる温度で実験を行い、比較検討を行った。各試料から、金属型CNTが多く含まれる箇所を抽出し、その吸収スペクトルを測定した。図2は、その結果を示すものである。図3は、金属型CNTの第一吸収バンドの強度(M11)と、半導体型CNTの第二吸収バンド(S22)の比を指標として、分離能の評価を行った結果を示すものであり、図中、点線は分離前の強度比(M11/S22=0.34)を示し、0.34比より大きい場合は金属型CNTが増強されていることを示している。
約10〜15℃付近に最も高純度で分離が可能であることが分かった。また、M11(金属型CNTの吸収バンドのピーク強度)とS22(半導体型CNTの吸収バンドのピーク強度)の比が0.8より大きくなり金属型CNTの増強が顕著になるのは、9〜18℃の範囲であることが分かった。
(Example 2)
In this example, the temperature in the separation of metal-type CNTs / semiconductor-type CNTs using sucrose molecules as a density gradient agent was optimized.
A CNT dispersion liquid in which CNTs are dispersed in a 1% sodium cholate aqueous solution is prepared. Sucrose / sodium cholate / sodium dodecyl sulfate are added to the dispersion, and finally a CNT mixed solution containing 40% sucrose, 2% sodium cholate, and 1% sodium dodecyl sulfate is prepared.
On the other hand, the density is adjusted using a sucrose solution containing 2% sodium cholate and 1% sodium dodecyl sulfate inside the centrifuge tube, and a solution with a density gradient from 45% to 60% sucrose concentration is prepared (CNT mixing) When the liquid is included, the density is adjusted to 1.18 to 1.29 g / ml). Insert the above CNT mixture into the centrifuge tube, centrifuge at 65000 rpm for 20 hours, conduct experiments at temperatures different from 25 ° C, 20 ° C, 15 ° C, 10 ° C, 5 ° C, and 2 ° C, and conduct comparative studies. went. From each sample, a portion containing a large amount of metallic CNT was extracted, and its absorption spectrum was measured. FIG. 2 shows the result. FIG. 3 shows the results of evaluation of the separation performance using the ratio between the intensity (M 11 ) of the first absorption band of the metal-type CNT and the second absorption band (S 22 ) of the semiconductor-type CNT as an index. In the figure, the dotted line indicates the intensity ratio before separation (M 11 / S 22 = 0.34), and if it is greater than 0.34 ratio, it indicates that the metal CNT is enhanced.
It was found that separation was possible with the highest purity in the vicinity of about 10 to 15 ° C. Further, the ratio of M 11 (peak intensity of absorption band of metal-type CNT) and S 22 (peak intensity of absorption band of semiconductor-type CNT) is larger than 0.8, and the enhancement of metal-type CNT becomes remarkable. It was found to be in the range of 9-18 ° C.
(実施例3)
本実施例では、SC及びSDSの比の最適化を行った。
金属型・半導体型CNTの分離能はSCとSDSの比によって大きく影響を受ける。そこで、(a)SC1.5%、SDS1.5%、(b)SC2%、SDS1%、(c)SC2.4%、SDS0.6%、に調整し、他のパラメータは全て同じ(スクロースの濃度勾配40%〜60%、分離温度13℃)にして分離実験を行い、比較検討を行った。遠心条件は65000rpm20時間である。
遠心後に得られる遠心チューブ内に存在するCNT帯、すなわち、図1bの黒くなっている箇所を5分割し、それぞれ光吸収スペクトルを測定し、M11およびS22バンドの強度比(ここではM11/(M11+S22))を調べた。
図4にその結果を示す。左は(a)SC1.5%、SDS1.5%、および(b)SC2%、SDS1.0%との比較、右は(c)SC2.4%、SDS0.6%、および(b)SC2%、SDS1.0%との比較を行ったものである。参考の為、点線で分離前の強度比[M11/(M11+S22)=0.25]を示す。
この結果、SC及びSDSの比が2:1の時において、金属型および半導体型CNTの両者において増強が確認させる溶液を得ることが可能であり、分離において最適条件であることが分かった。
(Example 3)
In this example, the ratio of SC and SDS was optimized.
The separation ability of metal-type / semiconductor-type CNTs is greatly affected by the ratio of SC and SDS. Therefore, (a) SC 1.5%, SDS 1.5%, (b) SC 2%, SDS 1%, (c) SC 2.4%, SDS 0.6%, all other parameters are the same (sucrose Separation experiments were performed with a concentration gradient of 40% to 60% and a separation temperature of 13 ° C., and a comparative study was performed. The centrifugation condition is 65,000 rpm for 20 hours.
CNT bands present in the centrifuge tube obtained after centrifugation, i.e., point to the 5 divided that is black in 1b, the respectively measured optical absorption spectrum, M 11 and S 22 band intensity ratio (M 11 is here / (M 11 + S 22 )).
FIG. 4 shows the result. Left: (a) SC 1.5%, SDS 1.5%, and (b) Comparison with SC 2%, SDS 1.0%, Right: (c) SC 2.4%, SDS 0.6%, and (b) SC2. % And SDS 1.0%. For reference, the intensity ratio [M 11 / (M 11 + S 22 ) = 0.25] before separation is indicated by a dotted line.
As a result, it was found that when the ratio of SC and SDS was 2: 1, it was possible to obtain a solution in which enhancement was confirmed in both metal-type and semiconductor-type CNTs, which was the optimum condition for separation.
図5は、遠心分離前、並びに13℃(密度勾配40%〜60%、界面活性剤濃度SC2%、SDS1%)での遠心分離後の、金属型CNTを多く含む溶液半導体型CNTを多く含む溶液の吸収スペクトルを示す図である。ここでは限外濾過(ミリポア社製、アミコン 30kDa)を用いてSC1%溶液へと溶液を置換した。遠心分離前のものと比較してある。
密度・温度・界面活性剤濃度を最適化することで図5のように、高純度な金属型・半導体型CNTを最終的に得ることに成功した。
FIG. 5 is rich in solution-semiconductor-type CNTs rich in metal-type CNTs before centrifugation and after centrifugation at 13 ° C. (density gradient 40% to 60%, surfactant concentration SC 2%, SDS 1%). It is a figure which shows the absorption spectrum of a solution. Here, the solution was replaced with an SC 1% solution using ultrafiltration (Millipore, Amicon 30 kDa). Compared to the one before centrifugation.
By optimizing the density, temperature, and surfactant concentration, we succeeded in finally obtaining high-purity metal / semiconductor CNTs as shown in FIG.
(実施例4)
本実施例では、界面活性剤の濃度による金属型・半導体型CNTの分離能への影響について検討した。
SCとSDSの比を2:1にして、実施例3における界面活性剤の総濃度(SCとSDSの濃度の和)を3%から、1.5%、0.75%、及び0.45%に変えた以外は、実施例3と同様にして分離を行った。
その結果、界面活性剤の総濃度(SCとSDSの濃度の和)を3%から、1.5%、0.75%、及び0.45%に変えた場合にも、実施例3における3%の場合とほぼ同等に金属型・半導体型が分離可能という結果が得られた。
このことから、スクロースを用いた本発明では、界面活性剤の量を少なくできることが判明した。そして、従来の密度勾配形成剤である高価なiodixanolを使用した場合には、通常2〜3%の界面活性剤が最適とされており、本発明において、界面活性剤の使用量を少なくできることは、安価な密度勾配形成剤の使用が可能であることに加えて、コスト削減の点でよりいっそう有利である。
Example 4
In this example, the influence of the surfactant concentration on the separation ability of metal-type and semiconductor-type CNTs was examined.
The ratio of SC to SDS was 2: 1, and the total surfactant concentration (sum of SC and SDS concentrations) in Example 3 was increased from 3% to 1.5%, 0.75%, and 0.45. Separation was carried out in the same manner as in Example 3 except that the percentage was changed to%.
As a result, even when the total surfactant concentration (sum of SC and SDS concentrations) was changed from 3% to 1.5%, 0.75%, and 0.45%, 3 in Example 3 As a result, the metal type / semiconductor type can be separated almost as much as in the case of%.
From this, it was found that the amount of the surfactant can be reduced in the present invention using sucrose. And when expensive iodixanol, which is a conventional density gradient forming agent, is used, usually 2-3% of the surfactant is optimum, and in the present invention, the amount of the surfactant used can be reduced. In addition to being able to use an inexpensive density gradient former, it is even more advantageous in terms of cost reduction.
(実施例5)
本実施例では、グルコース分子を密度勾配剤として用いた金属型CNT・半導体型CNTの分離を行った。
CNTをコール酸ナトリウム1%水溶液に分散させたCNT分散液を用意する。同分散液に対して、グルコース・コール酸ナトリウム・ドデシル硫酸ナトリウムを加え、最終的にグルコース33.3%、コール酸ナトリウム2%、ドデシル硫酸ナトリウム1%を含むCNT混合液に調整する。
一方、遠心チューブ内部に、コール酸ナトリウム2%、ドデシル硫酸ナトリウム1%を含むグルコース溶液を用いて密度を調整し、グルコース濃度35%〜50%の密度勾配をかけた溶液を作製する。同遠心チューブに、前述のCNT混合液を挿入し、10度65000rpmで10時間遠心を行う。得られた溶液を、1mlずつ分取を行い、金属型CNTを多く含まれる溶液と、半導体CNTを多く含まれる溶液を得た。
図6は、それぞれの吸収スペクトルを示す図であり、上は、金属型CNTを多く含む溶液の吸収スペクトル、下は、半導体型CNTを多く含む溶液の吸収スペクトルである。
(Example 5)
In this example, separation of metal-type CNTs / semiconductor-type CNTs using glucose molecules as a density gradient agent was performed.
A CNT dispersion liquid in which CNTs are dispersed in a 1% sodium cholate aqueous solution is prepared. Glucose / sodium cholate / sodium dodecyl sulfate are added to the dispersion, and finally adjusted to a CNT mixed solution containing 33.3% glucose, 2% sodium cholate and 1% sodium dodecyl sulfate.
On the other hand, the density is adjusted using a glucose solution containing 2% sodium cholate and 1% sodium dodecyl sulfate inside the centrifuge tube, and a solution having a density gradient with a glucose concentration of 35% to 50% is prepared. The above-mentioned CNT mixed solution is inserted into the centrifuge tube and centrifuged at 10 degrees 65,000 rpm for 10 hours. The obtained solution was fractionated 1 ml at a time to obtain a solution containing a large amount of metallic CNT and a solution containing a large amount of semiconductor CNT.
FIG. 6 is a diagram showing respective absorption spectra. The upper is the absorption spectrum of a solution containing a large amount of metal CNT, and the lower is the absorption spectrum of a solution containing a lot of semiconductor CNT.
Claims (7)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2008158751A JP5435531B2 (en) | 2008-06-18 | 2008-06-18 | Separation method of metallic and semiconducting carbon nanotubes using saccharides as a density gradient agent. |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2008158751A JP5435531B2 (en) | 2008-06-18 | 2008-06-18 | Separation method of metallic and semiconducting carbon nanotubes using saccharides as a density gradient agent. |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JP2010001162A true JP2010001162A (en) | 2010-01-07 |
| JP5435531B2 JP5435531B2 (en) | 2014-03-05 |
Family
ID=41583194
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2008158751A Expired - Fee Related JP5435531B2 (en) | 2008-06-18 | 2008-06-18 | Separation method of metallic and semiconducting carbon nanotubes using saccharides as a density gradient agent. |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP5435531B2 (en) |
Cited By (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN102019224A (en) * | 2010-09-29 | 2011-04-20 | 中国科学院苏州纳米技术与纳米仿生研究所 | Separation method of metallic carbon nanotubes and semiconducting carbon nanotubes |
| WO2012047247A3 (en) * | 2010-05-28 | 2012-07-19 | Northwestern University | Separation of single-walled carbon nanotubes by electronic type using block copolymers |
| WO2013022887A3 (en) * | 2011-08-08 | 2013-04-04 | Northwestern University | Separation of single-walled carbon nanotubes by self-forming density gradient ultracentrifugation |
| WO2019225651A1 (en) | 2018-05-23 | 2019-11-28 | 花王株式会社 | Method for producing semicondcutor-type single-walled carbon nanotube dispersion |
| WO2020059348A1 (en) * | 2018-09-19 | 2020-03-26 | 国立大学法人名古屋大学 | Method for separating semiconducting carbon nanotubes, mixed solution, and dispersion |
| WO2021095864A1 (en) | 2019-11-15 | 2021-05-20 | 花王株式会社 | Method for producing semiconductor-type single-walled carbon nanotube dispersion |
| WO2021095870A1 (en) | 2019-11-15 | 2021-05-20 | 花王株式会社 | Method for producing semiconductor-type single-walled carbon nanotube dispersion liquid |
Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| TW200819388A (en) * | 2006-08-30 | 2008-05-01 | Univ Northwestern | Monodisperse single-walled carbon nanotube populations and related methods for providing same |
| JP2008266112A (en) * | 2007-03-27 | 2008-11-06 | National Institute Of Advanced Industrial & Technology | Direct separation method of metallic CNT semiconducting CNTs using a centrifuge |
-
2008
- 2008-06-18 JP JP2008158751A patent/JP5435531B2/en not_active Expired - Fee Related
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| TW200819388A (en) * | 2006-08-30 | 2008-05-01 | Univ Northwestern | Monodisperse single-walled carbon nanotube populations and related methods for providing same |
| JP2010502548A (en) * | 2006-08-30 | 2010-01-28 | ノースウェスタン ユニバーシティ | A population of monodispersed single-walled carbon nanotubes and related methods for providing this population |
| JP2008266112A (en) * | 2007-03-27 | 2008-11-06 | National Institute Of Advanced Industrial & Technology | Direct separation method of metallic CNT semiconducting CNTs using a centrifuge |
Cited By (17)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2012047247A3 (en) * | 2010-05-28 | 2012-07-19 | Northwestern University | Separation of single-walled carbon nanotubes by electronic type using block copolymers |
| US9034213B2 (en) | 2010-05-28 | 2015-05-19 | Northwestern University | Separation of single-walled carbon nanotubes by electronic type using block copolymers |
| US10037832B2 (en) | 2010-05-28 | 2018-07-31 | Northwestern University | Separation of single-walled carbon nanotubes by electronic type using block copolymers |
| CN102019224A (en) * | 2010-09-29 | 2011-04-20 | 中国科学院苏州纳米技术与纳米仿生研究所 | Separation method of metallic carbon nanotubes and semiconducting carbon nanotubes |
| WO2013022887A3 (en) * | 2011-08-08 | 2013-04-04 | Northwestern University | Separation of single-walled carbon nanotubes by self-forming density gradient ultracentrifugation |
| US9266735B2 (en) | 2011-08-08 | 2016-02-23 | Northwestern University | Separation of single-walled carbon nanotubes by self-forming density gradient ultracentrifugation |
| KR20210003192A (en) | 2018-05-23 | 2021-01-11 | 카오카부시키가이샤 | Method for producing semiconductor type single-walled carbon nanotube dispersion |
| WO2019225651A1 (en) | 2018-05-23 | 2019-11-28 | 花王株式会社 | Method for producing semicondcutor-type single-walled carbon nanotube dispersion |
| US11708269B2 (en) | 2018-05-23 | 2023-07-25 | Kao Corporation | Method for producing semiconducting single-walled carbon nanotube dispersion |
| WO2020059348A1 (en) * | 2018-09-19 | 2020-03-26 | 国立大学法人名古屋大学 | Method for separating semiconducting carbon nanotubes, mixed solution, and dispersion |
| JPWO2020059348A1 (en) * | 2018-09-19 | 2021-10-21 | 国立大学法人東海国立大学機構 | Separation method of semiconductor carbon nanotubes, mixed solution and dispersion |
| TWI800671B (en) * | 2018-09-19 | 2023-05-01 | 國立大學法人名古屋大學 | Method for separating semiconductor carbon nanotubes, mixed solution, and dispersion |
| JP7308490B2 (en) | 2018-09-19 | 2023-07-14 | 国立大学法人東海国立大学機構 | Method for separating semiconducting carbon nanotubes, mixed solution and dispersion |
| WO2021095864A1 (en) | 2019-11-15 | 2021-05-20 | 花王株式会社 | Method for producing semiconductor-type single-walled carbon nanotube dispersion |
| WO2021095870A1 (en) | 2019-11-15 | 2021-05-20 | 花王株式会社 | Method for producing semiconductor-type single-walled carbon nanotube dispersion liquid |
| US12006218B2 (en) | 2019-11-15 | 2024-06-11 | Kao Corporation | Method for producing semiconducting single-walled carbon nanotube dispersion |
| US12030778B2 (en) | 2019-11-15 | 2024-07-09 | Kao Corporation | Method for producing semiconducting single-walled carbon nanotube dispersion |
Also Published As
| Publication number | Publication date |
|---|---|
| JP5435531B2 (en) | 2014-03-05 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP5435531B2 (en) | Separation method of metallic and semiconducting carbon nanotubes using saccharides as a density gradient agent. | |
| Green et al. | Processing and properties of highly enriched double-wall carbon nanotubes | |
| Pham et al. | Comparative electron paramagnetic resonance investigation of reduced graphene oxide and carbon nanotubes with different chemical functionalities for quantum dot attachment | |
| JP5594727B2 (en) | A simpler method for separating and recovering carbon nanotubes | |
| Liu et al. | Large-scale single-chirality separation of single-wall carbon nanotubes by simple gel chromatography | |
| Han et al. | Extremely efficient liquid exfoliation and dispersion of layered materials by unusual acoustic cavitation | |
| JP5553282B2 (en) | Carbon nanotube separation and recovery method and carbon nanotube | |
| Antaris et al. | Sorting single-walled carbon nanotubes by electronic type using nonionic, biocompatible block copolymers | |
| Hirano et al. | pH-and solute-dependent adsorption of single-wall carbon nanotubes onto hydrogels: mechanistic insights into the metal/semiconductor separation | |
| Xin et al. | Dispersing carbon nanotubes in aqueous solutions by a starlike block copolymer | |
| Liao et al. | Oxidative etching of hexagonal boron nitride toward nanosheets with defined edges and holes | |
| Fan et al. | Unzipped multiwalled carbon nanotube oxide/multiwalled carbon nanotube hybrids for polymer reinforcement | |
| US20160280547A1 (en) | Method of separating and recovering optically active carbon nanotube, and optically active carbon nanotube | |
| JP2008266112A (en) | Direct separation method of metallic CNT semiconducting CNTs using a centrifuge | |
| US10173149B2 (en) | Methods for separating carbon nanotubes | |
| Kharlamova et al. | Synthesis, sorting, and applications of single-chirality single-walled carbon nanotubes | |
| Lian et al. | Nondestructive and high-recovery-yield purification of single-walled carbon nanotubes by chemical functionalization | |
| Yomogida et al. | Sorting transition-metal dichalcogenide nanotubes by centrifugation | |
| de Sousa Maia et al. | Drying of graphene oxide: effects on red blood cells and protein corona formation | |
| KR102141140B1 (en) | Separation method of semiconducting carbon nanotube and metallic carbon nanotube | |
| Mehmood et al. | Modified structural and optical characteristics of Au-NPs–MWCNTs nanohybrids | |
| Buckley et al. | Trajectory of the selective dissolution of charged single-walled carbon nanotubes | |
| JP5481175B2 (en) | Carbon nanotube diameter separation method | |
| CN103569994B (en) | The treatment process of a kind of Single Walled Carbon Nanotube | |
| Sun et al. | Nanomechanics of graphene oxide-bacteriophage based self-assembled porous composites |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100224 |
|
| A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120220 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120403 |
|
| A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120604 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130402 |
|
| A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130530 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20131008 |
|
| A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20131021 |
|
| TRDD | Decision of grant or rejection written | ||
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20131203 |
|
| A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20131204 |
|
| R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
| S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
| R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
| LAPS | Cancellation because of no payment of annual fees |