JP2010006679A - Method of producing quartz glass formed member - Google Patents
Method of producing quartz glass formed member Download PDFInfo
- Publication number
- JP2010006679A JP2010006679A JP2008171585A JP2008171585A JP2010006679A JP 2010006679 A JP2010006679 A JP 2010006679A JP 2008171585 A JP2008171585 A JP 2008171585A JP 2008171585 A JP2008171585 A JP 2008171585A JP 2010006679 A JP2010006679 A JP 2010006679A
- Authority
- JP
- Japan
- Prior art keywords
- quartz glass
- mold material
- mold
- carbon
- base material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 title claims abstract description 77
- 238000000034 method Methods 0.000 title claims description 10
- 239000000463 material Substances 0.000 claims abstract description 159
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 39
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 39
- 238000004519 manufacturing process Methods 0.000 claims abstract description 20
- 238000010438 heat treatment Methods 0.000 claims abstract description 14
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims abstract description 10
- 229920000049 Carbon (fiber) Polymers 0.000 claims abstract description 9
- 239000004917 carbon fiber Substances 0.000 claims abstract description 9
- 238000002844 melting Methods 0.000 claims description 12
- 230000008018 melting Effects 0.000 claims description 12
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 4
- 239000012298 atmosphere Substances 0.000 claims description 4
- 229910052786 argon Inorganic materials 0.000 claims description 2
- 229910052754 neon Inorganic materials 0.000 claims description 2
- GKAOGPIIYCISHV-UHFFFAOYSA-N neon atom Chemical compound [Ne] GKAOGPIIYCISHV-UHFFFAOYSA-N 0.000 claims description 2
- 229910052757 nitrogen Inorganic materials 0.000 claims description 2
- 239000007789 gas Substances 0.000 claims 1
- 239000011261 inert gas Substances 0.000 claims 1
- 238000005520 cutting process Methods 0.000 abstract description 7
- 239000002994 raw material Substances 0.000 abstract description 7
- 230000007547 defect Effects 0.000 abstract 1
- 238000000465 moulding Methods 0.000 description 9
- 230000000052 comparative effect Effects 0.000 description 6
- 238000012545 processing Methods 0.000 description 6
- 239000005350 fused silica glass Substances 0.000 description 4
- 239000012299 nitrogen atmosphere Substances 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 3
- 238000005530 etching Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- VCUFZILGIRCDQQ-KRWDZBQOSA-N N-[[(5S)-2-oxo-3-(2-oxo-3H-1,3-benzoxazol-6-yl)-1,3-oxazolidin-5-yl]methyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C1O[C@H](CN1C1=CC2=C(NC(O2)=O)C=C1)CNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F VCUFZILGIRCDQQ-KRWDZBQOSA-N 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000156 glass melt Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 230000013011 mating Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P40/00—Technologies relating to the processing of minerals
- Y02P40/50—Glass production, e.g. reusing waste heat during processing or shaping
- Y02P40/57—Improving the yield, e-g- reduction of reject rates
Landscapes
- Glass Melting And Manufacturing (AREA)
Abstract
Description
本発明は、石英ガラス成形部材の製造方法に関し、石英ガラス母材を型材内に設置して加熱溶融炉内で加熱溶融し、溶融石英ガラスを型材の形状に合致させた石英ガラス部材を成形する方法に関する。 The present invention relates to a method for producing a quartz glass molded member, wherein a quartz glass base material is placed in a mold material, heated and melted in a heating and melting furnace, and a fused silica glass is formed to match the shape of the mold material. Regarding the method.
近年、石英ガラス製部品は、光学レンズ等の光学機器に限らず、その耐久性や化学的安定性等の利点を生かし、半導体製造用治具、LCDパネル製造用フォトマスクや光通信用の精密部品等に広く用いられている。一般的な石英ガラス製部品の製造プロセスは、研削加工やエッチングのような母材の石英ガラスを除去して所望の形状とする工程が殆どである。
しかし、石英ガラスの研削加工には加工時間が長くかかることや、石英ガラス母材を研削するので、完成品重量に比べて余分の原材料を必要とし、コストがかかる要因となっている。エッチングによる加工の場合、石英ガラス加工品表面の比較的微小な加工に限定され、大型の石英ガラス製品への適用は困難である。
However, the grinding process of the quartz glass takes a long time, and the quartz glass base material is ground, so that an extra raw material is required compared with the weight of the finished product, which is a costly factor. In the case of processing by etching, the processing is limited to relatively fine processing on the surface of the processed quartz glass product, and it is difficult to apply to a large quartz glass product.
従来、図5に示すように、石英ガラス部材の成形には、円筒を縦方向に2分割したカーボン型材を使用している。型材は、カーボン母材を円筒形にくり貫いたものを切断して2分割していたため、図5に示すように切断代(d)の分だけ欠如し、分割片を組み合わせても型材の内面形状は真円とならず楕円形となってしまい、この型材を用いて成形した石英ガラス成形部材の外径が真円とはならない。リング状石英ガラス部品を製造する場合、この変形を考慮に入れて型材を所望形状より多少大きくして石英ガラス成形部材を製造し、真円となるよう切削加工していたため、原材料の石英ガラスは余分な重量が必要であった。
また、組み合わせた型材の形状を維持するために図6に示すようにキャップ6を型材1の上部に被せることにより、分割された型材の拡がりを押さえていたので型材はキャップ6の内径以上には拡がらず、型材が固定される。しかしながら、固定部分が型材の上部のみであるため、成形の際溶融した石英加工品の自重による圧力のため型材が多少拡がり、その結果、成形体が型材寸法に比べ大きめになってしまう、という問題があった。
本発明は、石英ガラス部材の熱間成形において、真円の成形体を得ることを目的とするものであり、また、組み合わせた型材が熱間成形時にずれないようにし、使用する石英ガラス原材料の低減、及び作業の効率化を図り、低コストで石英ガラス加工品を製造できる熱間成形方法を提供するものである。
Conventionally, as shown in FIG. 5, a carbon mold material in which a cylinder is divided into two in the vertical direction is used for forming a quartz glass member. The mold material was cut into two parts by cutting a hollow carbon base material into a cylindrical shape. Therefore, as shown in FIG. 5, the mold material lacks the cutting allowance (d). The shape is not a perfect circle but an ellipse, and the outer diameter of the quartz glass molded member formed using this mold material is not a perfect circle. When manufacturing ring-shaped quartz glass parts, taking this deformation into account, the mold material was made slightly larger than the desired shape, and a quartz glass molded member was manufactured and cut to a perfect circle. Extra weight was required.
In addition, in order to maintain the shape of the combined mold material, as shown in FIG. 6, the expansion of the divided mold material is suppressed by covering the
The object of the present invention is to obtain a perfect circular molded body in hot forming of a quartz glass member, and to prevent the combined mold materials from shifting during hot forming, and to provide a quartz glass raw material to be used. The present invention provides a hot forming method capable of producing a quartz glass processed product at a low cost by reducing the efficiency and improving the work efficiency.
前記の課題を解決するためには、円筒形のカーボン型材を製作する際に分割した型材を組み合わせたときに内面形状が真円となるように型材を設計・製作すればよいという観点から、本発明は、円筒を分割した型材が真円の一部分を構成するように製造し、これらを組み合わせて真円の円筒形となる型材とするものであり、カーボンの角材或いは丸材の母材を研削によって内面が真円となる分割した型材を製作し、これらを組み合わせて内面が真円の型材とするものである。
また、型材を組み合わせた真円の状態を維持するため、組みあわせた型材の周囲にカーボン繊維の糸条体を巻きつけ、緊締して型材を固定することによってずれを防止したものである。
In order to solve the above-mentioned problems, from the viewpoint that the mold material should be designed and manufactured so that the inner surface shape becomes a perfect circle when the divided mold materials are combined when manufacturing the cylindrical carbon mold material. The invention is such that a mold material obtained by dividing a cylinder constitutes a part of a perfect circle, and these are combined into a mold material that becomes a perfect circular cylindrical shape. A carbon square or round base material is obtained by grinding. A divided mold material whose inner surface is a perfect circle is manufactured, and these are combined to form a mold material whose inner surface is a perfect circle.
Further, in order to maintain a perfect circle state in which the mold materials are combined, a carbon fiber thread is wound around the combined mold materials and tightened to fix the mold material to prevent deviation.
分割片のカーボン型材の内面形状が組み合わせたときに真円となるものであればよく、分割数は限定されず、真円という観点からみれば2分割のほかに3分割や4分割以上の分割数であっても構わない。
更に、分割の形態は正多分割とするのが望ましい。これは、分割片を組み合わせて1つの型材にするときの組み立てが容易であるからである。
型材の分割数は上述のように、2分割、3分割、4分割とそれぞれ効果的であるが分割数はこれ以上の分割数であっても構わない。
型材の材質は、熱間強度、化学的安定性が高く、高純度が要求されるが、特にその材質は問わないが、機械加工の容易さからカーボンが好ましい。
The inner shape of the carbon pieces of the divided pieces may be a perfect circle, and the number of divisions is not limited. From the viewpoint of a perfect circle, in addition to two divisions, three divisions or four or more divisions It can be a number.
Furthermore, it is desirable that the division form is a regular multi-division. This is because the assembly when the divided pieces are combined into one mold is easy.
As described above, the number of divisions of the mold material is effective as two divisions, three divisions, and four divisions, respectively, but the number of divisions may be larger than this.
The material of the mold material is required to have high hot strength, high chemical stability, and high purity. However, the material is not particularly limited, but carbon is preferable because of easy machining.
本発明の成形方法によれば、リング状の石英ガラス製部品を低コストで製造することが可能になる。従来の方法では石英ガラス成形体が真円とならないので石英ガラス成形体を研削するなどしていたため、余分の重量の石英ガラスを必要とし、また、真円のリング材に切削加工するには時間がかかり、切削刃が消耗するなど、コストアップにつながっていたが、本発明の方法によれば、資材が節約されると共に、加工費の節減にもつながり、低コストで石英ガラス成形部品を製造することができる。
組みあわせた型材の周囲にカーボン繊維の糸条体を巻きつけ、緊締して型材を固定するようにしたので、型材を組み合わせた形状が維持され、精度の高い形状の成形体を得ることが可能である。
According to the molding method of the present invention, it is possible to manufacture a ring-shaped quartz glass part at low cost. In the conventional method, the quartz glass molded body does not become a perfect circle, so the quartz glass molded body has been ground, etc., so an extra weight of quartz glass is required, and it takes time to cut into a circular ring material. However, according to the method of the present invention, the material can be saved and the processing cost can be reduced, so that a quartz glass molded part can be manufactured at a low cost. can do.
Since the carbon fiber thread is wrapped around the combined mold material and tightened to fix the mold material, the shape of the combined mold material is maintained, and a highly accurate molded product can be obtained. It is.
従来の2分割の型材は、円筒形のカーボン型材を縦方向に切断して2分割したものであるため、組み合わせて型材として使用する場合は切断代の分だけ真円からずれが生じ楕円形となるため、成形体の外形も型材の形状に従って成形されるため、石英ガラス加工品に加工する際にはこの変形分を考慮しなければならず、石英ガラス母材重量を大きくする必要があり、また、所定寸法の石英ガラス加工品に研削加工する手間もかかっていたが、真円となる2分割型材とすることにより成形体の外形が真円となるため、従来のように切削工程が不要となり、生産効率・歩留まりを改善することができる。
また、3分割の型材とすることで次の利点を知見した。
従来の2分割型材では長期間の使用により分割部方向を長径とする楕円形になることがある。これは石英ガラス母材を電気炉内で加熱溶融して成形する際、型材内において石英ガラス母材は溶融されて溶融体となって広がるように変形していき、型材の内面形状に合致するように成形されるが、その際に石英ガラス溶融体は自重により型材へ圧をかけることになる。型材が2分割の場合、この圧により、次第に変形を繰り返して、分割部方向を長径とする楕円形になる。その結果、正確な寸法の成形体が得られなくなるという問題が発生していた。型材を3分割とすることにより、カーボン製型材にかかる自重圧を、2方向から3方向へ増やすことができ、それによってカーボン製型材はほとんど変形することなく、長期間に渡り使用可能であることがわかった。すなわち、石英ガラス母材を加熱して溶融した溶融体の自重が、カーボン型材の局所に偏ってかかることなく、多方向に分散してかかるようにすることで、従来のカーボン製2分割型材の変形を抑制することが可能となる。このため型材の分割数を3とすることが効果的である。なお、分割数は3であればよいが、型材にかかる成形溶融体の自重圧の偏りを防ぐ意味では、正3分割とすることが好ましい。
また、4分割の型材とすることでも、従来の2分割型材での成形溶融体がかかる自重圧を2方向から4方向へ分散させることで、カーボン製型材が変形することなく、長期間に渡り使用可能であることを知見した。また、4分割型材を使用することで、3分割型材使用時よりも型材の組み立てが容易で作業効率がよいことを知見した。これは型材が3分割といった奇数の場合よりも4分割、2分割といった偶数であるほうが、型材を合わせる際に、合わせ部分が90度、180度であるため目視においても容易に確認できるためである。
このように型材の分割数が増えることで、石英ガラスの母材を加熱溶融した溶融体の圧力がカーボン型材の局所に偏って荷重がかかることが少なくなり、安定した成形が可能となると共に、各分割片に均等に圧力が作用するので過大な圧力が作用せず、変形が小さくなり、型材の繰り返し使用回数を増大させることができる。
Since the conventional two-part mold material is obtained by cutting a cylindrical carbon mold material into two parts in the vertical direction, when combined and used as a mold material, a deviation from a perfect circle occurs by an amount corresponding to the cutting margin. Therefore, since the outer shape of the molded body is also shaped according to the shape of the mold material, this deformation must be taken into account when processing into a quartz glass processed product, and the weight of the quartz glass base material needs to be increased, In addition, it took time and effort to grind the quartz glass processed product of a predetermined size, but the outer shape of the molded body becomes a perfect circle by using a two-part mold that becomes a perfect circle, so there is no need for a cutting process as in the past Thus, production efficiency and yield can be improved.
Moreover, the following advantage was discovered by setting it as a 3-part mold material.
The conventional two-part mold material may become an ellipse having a major axis in the direction of the part after long-term use. This is because when a quartz glass base material is heated and melted in an electric furnace, the quartz glass base material is melted and deformed so as to spread in the mold material, and conforms to the inner shape of the mold material. In this case, the quartz glass melt applies pressure to the mold material by its own weight. When the mold material is divided into two parts, the deformation is gradually repeated by this pressure to form an ellipse having a major axis in the direction of the divided part. As a result, there has been a problem that it is impossible to obtain a molded body having an accurate dimension. By dividing the mold material into three parts, the self-weight pressure applied to the carbon mold material can be increased from two directions to three directions, so that the carbon mold material can be used for a long period of time with almost no deformation. I understood. In other words, the weight of the melt obtained by heating and melting the quartz glass base material is distributed in multiple directions without being biased locally in the carbon mold material. Deformation can be suppressed. For this reason, it is effective to set the number of divisions of the mold material to 3. The number of divisions may be three, but it is preferably a regular three-part division in order to prevent unevenness of the weight of the molding melt applied to the mold material.
In addition, even if a four-part mold material is used, the self-weight pressure applied by the molding melt of the conventional two-part mold material is dispersed from two directions to four directions, so that the carbon mold material is not deformed for a long period of time. It was found that it can be used. Further, it has been found that by using a four-part mold material, it is easier to assemble the mold material and the work efficiency is better than when using a three-part mold material. This is because, when the mold material is an even number such as 4 divisions or 2 divisions, when the mold materials are combined, the alignment portions are 90 degrees and 180 degrees, so that it can be easily confirmed visually. .
Thus, by increasing the number of divisions of the mold material, the pressure of the melt obtained by heating and melting the quartz glass base material is less biased locally and the load is reduced, and stable molding becomes possible. Since pressure acts equally on each divided piece, excessive pressure does not act, deformation is reduced, and the number of repeated use of the mold can be increased.
実施例1
図1に、石英ガラス母材4をカーボン型材1を用いて石英ガラス成形部材を製造する場合の模式図を示すもので(1)は加熱前、(2)は加熱溶融後の状態である。
本実施例は、円筒を2分割した型材1の例であり、カーボン製の型材1は外筒11、外筒12、底板3からなり、型材1の中央空間に原材料なる石英ガラス母材4を装填する。
石英ガラス母材4は、電気ヒーターで加熱され、溶融して型材1の内面形状に合致する形状、すなわち真の円形に成形される。加熱雰囲気はアルゴン、ネオン、窒素等の不活性雰囲気或いは真空であり、加熱温度は、1500〜2000℃である。1500℃未満では、石英ガラスが、まだ、高粘性であり、石英ガラス母材4が変形しにくく、型材1の形状に完全に合致しないことがあり、逆に、2000℃を超える場合は、石英ガラス母材4が分解し、型材1のカーボンとの反応が激しくなり、クラックの発生や欠けを生じる不良部が多く形成されるからである。好ましくは、加熱温度は1750〜1900℃である。
Example 1
FIG. 1 shows a schematic view when a quartz glass molded member is produced using a quartz
This embodiment is an example of a
The quartz
溶融した石英ガラス母材4は、自重により変形するが、この際、圧力を加えて変形を促進させることができる。型材1に溝等を形成して石英ガラス母材4を複雑な形状に成形する場合には、この加圧が有効である。加圧手段としては、油圧プレス、メカニカルプレス等の公知の方法を用いる。
直径250〜350(mm)、高さ300〜600(mm)、重量50〜70kgの円柱形の石英ガラス母材4をカーボン型材1の内部に配置し、電気炉内部の圧力を0.03MPa、窒素雰囲気中1800℃で溶融することによって型材の内面形状に合致した形状に変形させ、石英ガラス成形体5を得た。成形した円柱形部材5の直径を直交する2箇所で計測したところ、外形直径が549.3〜549.4(mm)であった。溶融条件と成形体の計測結果を表1に示す。直交する直径がほぼ一致し、得られた円柱形部材5は、ほぼ真円であるといえる。但し、実施例1−10で用いた成形前の石英ガラス母材4は、正確な円柱形ではないので、形状寸法の数値は平均値である。
この成形体5を加工することによって、φ520相当のリング材を得ることができる。
The molten quartz
A cylindrical quartz
By processing this molded body 5, a ring material corresponding to φ520 can be obtained.
比較例1
従来の円筒形を2分割に切断して得たカーボン型材を用いて石英ガラス成形体を製造した場合の結果を表2に示す。成形体の外径1と外径2との差が5mm以上あり、真円とはいえないことが明らかである。
Comparative Example 1
Table 2 shows the results when a quartz glass molded body was produced using a carbon mold obtained by cutting a conventional cylindrical shape into two parts. It is clear that the difference between the
実施例2(3分割)
図2に示すように、円筒を3分割した型材1の例であり、カーボン製の型材1(正3分割)は外筒11、12、及び13からなり底板3を用い、型材1(正3分割)の中央空間に原材料の石英ガラス母材4を装填するものである。
φ250〜350×300〜700h(mm)、重量50〜70kgの石英ガラス母材4を、正3分割したカーボン製の型材1(正3分割)の内部に配置し、電気炉内部を圧力が0.03MPaの窒素雰囲気とし、1800℃で溶融して石英ガラス成形体を得た。
3分割のカーボン型材1(正3分割)を継続して繰り返し使用しても、従来の2分割型材と異なり、型材1(正3分割)の変形が非常に小さく、変形して使用できなくなるまでの回数が増加した。表3に、3分割のカーボン型材(正3分割)を用いた場合の、カーボン型材(正3分割)の繰り返し使用による内径変化を示した。実施例2−20では98回使用後においても、内径の変化がほとんど認められなかった。
なお、実施例2で用いた成形前の石英ガラス母材4は、正確な円柱形ではないので、形状寸法の数値は平均値である。
Example 2 (3 divisions)
As shown in FIG. 2, it is an example of a
A quartz
Even if the three-part carbon mold 1 (normal three divisions) is continuously used repeatedly, unlike the conventional two-part mold material, the deformation of the mold material 1 (normal three-part division) is very small, until it is deformed and cannot be used. The number of times increased. Table 3 shows changes in the inner diameter due to repeated use of the carbon mold material (normal three divisions) when a three-part carbon mold material (normal three divisions) was used. In Example 2-20, almost no change in the inner diameter was observed even after 98 uses.
In addition, since the quartz glass preform |
比較例2
従来の2分割のカーボン型材を用いた場合の比較例を表4に示す。比較例2−10では、69回使用後に型材の内径が10mm以上変化しているのが認められ、3分割の有効性が確認できた。
Comparative Example 2
Table 4 shows a comparative example in which a conventional two-part carbon mold is used. In Comparative Example 2-10, it was confirmed that the inner diameter of the mold material changed by 10 mm or more after 69 times of use, and the effectiveness of the three divisions could be confirmed.
実施例3(4分割)
図3に示すように、円筒を4分割した型材1の例であり、カーボン製の型材1(正4分割)は外筒11、12、13、及び14からなり、底板3を用い、型材1(正4分割)の中央空間に原材料の石英ガラス母材4を装填するものである。
φ250〜350×300〜700h(mm)、重量50〜72kgの石英ガラス母材を正4分割したカーボン型材1(正4分割)の内部に配置し、電気炉内を圧力0.03MPaの窒素雰囲気とし、1800℃で加熱溶融して石英ガラス成形体を成形した。カーボン型材1(正4分割)を継続して使用した後も、表5に示すように、従来の2分割型材と比較して型材1(正4分割)の変形が非常に小さい。
4分割カーボン型材(正4分割)を用いた場合の、実施例3におけるカーボン型材1の繰り返し使用による内径変化を示した。99回使用後においても、内径の変化がほとんど認められなかった。
実施例3で用いた成形前の石英ガラス母材4は、正確な円柱形ではないので、形状寸法の数値は平均値である。
Example 3 (4 divisions)
As shown in FIG. 3, it is an example of a
φ250-350 × 300-700h (mm), weight 50-72kg quartz glass base material is placed inside the carbon mold 1 (positive 4 split) divided into 4 parts, and the electric furnace has a nitrogen atmosphere with a pressure of 0.03 MPa The quartz glass molded body was molded by heating and melting at 1800 ° C. Even after the carbon mold 1 (normally divided into 4) is continuously used, as shown in Table 5, the deformation of the mold 1 (positively divided into 4) is very small as compared with the conventional 2-divided mold.
The inner diameter change due to repeated use of the
Since the quartz
2分割型材は、3分割、4分割型材に比べ、型材の耐久性という点で劣り、コストアップとなる。これに比べ4分割型材では、実施例3に示したように、耐久性が良好であり、石英ガラス部品の製造コストの大幅な削減につながる。また、3分割型材についても4分割型材と同様の効果が確認できたが、作業性の点で4分割型材のほうが優れているといえる。
なぜなら、分割数が偶数の2分割と4分割型材では、組み合わせが容易である一方、奇数の3分割では組み合わせに時間を要した。偶数分割の組み合わせが容易なのは、型材の合わせ部分は、2分割型材では2箇所(180度)を目視で容易に確認でき、また、4分割型材でも4箇所(90度)を目視で容易に確認できるからである。一方、3分割型材では合わせ部分の3箇所(120度)を目視で決めることが困難であり、型材の組み立て時間が余分に必要となる。
The two-part mold material is inferior to the three-part / four-part mold material in terms of the durability of the mold material, and increases the cost. In contrast, the quadrant material has good durability as shown in the third embodiment, which leads to a significant reduction in the manufacturing cost of the quartz glass part. Further, the same effect as that of the four-part mold material was confirmed for the three-part mold material, but it can be said that the four-part mold material is superior in terms of workability.
This is because the combination of the two-part and four-part molds with an even number of divisions is easy, while the combination of the odd-numbered three parts takes time. The combination of even divisions is easy because the two parts can be easily confirmed visually (180 degrees) with the two-part mold, and the four parts (90 degrees) can be easily confirmed with the four-part mold. Because it can. On the other hand, in the case of a three-part mold material, it is difficult to visually determine three locations (120 degrees) of the mating portion, and an extra time for assembling the mold material is required.
組み合わせ作業を行ったところ、3分割型材と4分割型材では、作業工数の違いの存在が判明した。表6に、3分割型材での作業工数を1としたときの、4分割型材の作業工数を示した。4分割型材では、3分割型材に比べ、作業効率が20%以上良好である。 As a result of the combination work, it was found that there is a difference in work man-hours between the three-part mold material and the four-part mold material. Table 6 shows the work man-hours of the four-part mold material when the work man-hours of the three-part mold material is 1. The four-part mold material has a working efficiency of 20% or more better than the three-part mold material.
円筒形に組み合わせた型材1の形状を保持するために図4に示すように、カーボン繊維からなる糸条体60を型材1の周囲に1回若しくは複数回巻きつけ、糸条体60の端を緊締して型材1を固定した。
カーボン繊維からなる糸条体60の太さは、1mm以上のものを使用する。糸条体60を巻きつける位置は、型材1の高さ方向の、上部、中間部、下部の3箇所以上が望ましく、各々の位置において、糸条体60を2本以上、好ましくは5本以上、特に好ましくは10本以上束ねて用いる。10本1セットの糸条体60の束を用いてカーボン型材の周囲に巻きつけた場合は1回りで十分であるが、少ない糸条体60の束の場合は、2回り以上巻いてから、糸条体60の束の端を緊締する。
In order to maintain the shape of the
The
また、カーボン繊維からなる糸条体60の太さは、直径が3mm以上10mm程度まで使用することができ、型材1に巻きつける位置は太さ1mmの糸条体の場合と同じであり、型材1の高さ方向の上部、中間部、下部の3箇所以上とする。糸条体60の太さが10mmの場合、1箇所に1本で型材を十分固定することができ、溶融石英ガラスの圧力よっても型材1が移動することなく所望の直径の成形体を得ることができる。
Moreover, the thickness of the
実施例4
2分割のカーボン型材1を太さ3mmカーボン繊維の糸2本で上中下の3箇所に巻きつけて固定したものを使用し、φ210〜260×130〜210h(mm)、重量10〜20kgの石英ガラス母材4をカーボン型材1内に配置し、電気炉内部の圧力を0.03MPaの窒素雰囲気として加熱溶融して成形した結果を表7に示す。成形体の外径が、カーボン型材1の内径とほぼ一致し、所望の形状が得られていることがわかる。
Example 4
A two-
比較例4
これに対して、比較例4のカーボン製の拘束材による固定の場合、型材1の下部が、溶融した石英ガラス母材4の圧力で拡大し、石英ガラス成形体5の外径は、表8に示すように、カーボン型材1の内径と成形体の外径との差が10mm以上あり、型材1の内径以上の寸法となり、所望の寸法の石英ガラス部品を得るには余分の原料重量が必要となり、糸条体60によってカーボン型材を固定することが有効である。
但し、実施例5で用いた成形前の石英ガラス母材4は、正確な円柱形ではないので、形状寸法の数値には平均値を採用している。
Comparative Example 4
On the other hand, in the case of fixing with the carbon restraint material of Comparative Example 4, the lower part of the
However, since the pre-molded quartz
1 型材
11〜14 外筒
3 底板
4 石英ガラス母材
5 石英ガラス成形体
60 糸条体
DESCRIPTION OF
Claims (10)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2008171585A JP2010006679A (en) | 2008-06-30 | 2008-06-30 | Method of producing quartz glass formed member |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2008171585A JP2010006679A (en) | 2008-06-30 | 2008-06-30 | Method of producing quartz glass formed member |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JP2010006679A true JP2010006679A (en) | 2010-01-14 |
Family
ID=41587594
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2008171585A Pending JP2010006679A (en) | 2008-06-30 | 2008-06-30 | Method of producing quartz glass formed member |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP2010006679A (en) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2012153586A (en) * | 2011-01-27 | 2012-08-16 | Tosoh Quartz Corp | Apparatus for producing quartz glass molded body |
| US9027365B2 (en) | 2013-01-08 | 2015-05-12 | Heraeus Quartz America Llc | System and method for forming fused quartz glass |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS56129621A (en) * | 1980-03-10 | 1981-10-09 | Shin Etsu Chem Co Ltd | Molding method for quartz glass |
| JPS5767031A (en) * | 1980-10-06 | 1982-04-23 | Shin Etsu Chem Co Ltd | Formation of quartz glass |
| JPS61176229U (en) * | 1985-04-19 | 1986-11-04 | ||
| JP2004307265A (en) * | 2003-04-07 | 2004-11-04 | Nikon Corp | Quartz glass forming equipment |
-
2008
- 2008-06-30 JP JP2008171585A patent/JP2010006679A/en active Pending
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS56129621A (en) * | 1980-03-10 | 1981-10-09 | Shin Etsu Chem Co Ltd | Molding method for quartz glass |
| JPS5767031A (en) * | 1980-10-06 | 1982-04-23 | Shin Etsu Chem Co Ltd | Formation of quartz glass |
| JPS61176229U (en) * | 1985-04-19 | 1986-11-04 | ||
| JP2004307265A (en) * | 2003-04-07 | 2004-11-04 | Nikon Corp | Quartz glass forming equipment |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2012153586A (en) * | 2011-01-27 | 2012-08-16 | Tosoh Quartz Corp | Apparatus for producing quartz glass molded body |
| US9027365B2 (en) | 2013-01-08 | 2015-05-12 | Heraeus Quartz America Llc | System and method for forming fused quartz glass |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP4798674B1 (en) | Rack bar and manufacturing method thereof | |
| CN104907595B (en) | The inner support swelling fixture and Cutting Process of ultra-thin-wall large-size cylinder body class cutting workpiece | |
| KR102132252B1 (en) | Quartz reforming method | |
| JP2010006679A (en) | Method of producing quartz glass formed member | |
| KR20140044430A (en) | Implant abutment semi-product structure | |
| KR101334900B1 (en) | Method for manufacturing washer cap for pem nut | |
| JP2007230834A (en) | Molding method of optical glass element | |
| KR20190078421A (en) | Lens molding apparatus increasing weight ratio | |
| JP2011236101A (en) | Mold for forming cylindrical quartz glass and forming method using the same | |
| KR20120074506A (en) | Hard plate processing method for pressure vessel and hard plate formed using the same | |
| KR20200053947A (en) | Manufacturing method of hastelloy steel bolt | |
| JP2009234858A (en) | Mold material and method for molding glass material using mold material | |
| US6553789B1 (en) | Quartz glass plates with high refractive index homogeneity | |
| JP6198757B2 (en) | Method for manufacturing a rod lens | |
| CN112404908A (en) | Method for quickly forming bottomless spherical crown steel part based on fuse wire additive | |
| JP2011026152A (en) | Mold for optical element and molding method | |
| JP5657937B2 (en) | Method for changing diameter of mold for producing quartz glass molded body and method for producing quartz glass molded body | |
| KR101942754B1 (en) | Mold for Fresnel lens production and manufacturing method thereof | |
| CN200977709Y (en) | Fixed die base of die core for vulcanizing curved rubber hose | |
| JP5112120B2 (en) | Optical element manufacturing method and mold assembly for manufacturing the same | |
| JP6567303B2 (en) | Optical fiber preform manufacturing method | |
| JP5732213B2 (en) | Method for changing diameter of inscribed circle of mold for manufacturing quartz glass molded body and method for manufacturing quartz glass molded body | |
| JP2012153586A (en) | Apparatus for producing quartz glass molded body | |
| CN114029491B (en) | Method for repairing inner hole of hard alloy blank | |
| CN205188111U (en) | Quartz glass melts fixing device |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110531 |
|
| A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120612 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120619 |
|
| A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20121016 |