[go: up one dir, main page]

JP2010010042A - Sheeted battery - Google Patents

Sheeted battery Download PDF

Info

Publication number
JP2010010042A
JP2010010042A JP2008170292A JP2008170292A JP2010010042A JP 2010010042 A JP2010010042 A JP 2010010042A JP 2008170292 A JP2008170292 A JP 2008170292A JP 2008170292 A JP2008170292 A JP 2008170292A JP 2010010042 A JP2010010042 A JP 2010010042A
Authority
JP
Japan
Prior art keywords
battery
electrode
sheet
electrode terminal
current collector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008170292A
Other languages
Japanese (ja)
Inventor
Masahiro Yamamoto
真裕 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Battery Co Ltd
Original Assignee
Furukawa Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Battery Co Ltd filed Critical Furukawa Battery Co Ltd
Priority to JP2008170292A priority Critical patent/JP2010010042A/en
Publication of JP2010010042A publication Critical patent/JP2010010042A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Connection Of Batteries Or Terminals (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sheeted battery wherein a connection portion between an electrode collector group and an electrode terminal is stably connected thereto even when using a laminated film in the state of accumulating gas in the battery for an exterior case. <P>SOLUTION: In the sheeted battery, an electrode group having a positive electrode laminated via a separator on a negative electrode is stored in the exterior case having the laminated film, and an electrode collector or the electrode terminal mounted thereon and connected to a lead wire is delivered to the outside of the case. A spacer formed of a resin material or a metal plate covered with the resin material is inserted between the connection portion between the collector or the lead wire and the electrode terminal and the exterior case in the state of being bent. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、リチウムイオン二次電池等に適用されるラミネートフィルムを外装ケースとするシート状電池に関するものである。 The present invention relates to a sheet battery having an outer case made of a laminate film applied to a lithium ion secondary battery or the like.

近年のエレクトロニクス分野の急速な進展により、電子機器の高性能化、小型化、ポータブル化が進み、これら電子機器に使用される再充電可能な高エネルギー密度二次電池の要求が強まっている。
従来これらの電子機器に搭載される二次電池としては、鉛蓄電池、ニカド電池、ニッケル−水素電池等が挙げられるが、近年、リチウムイオンを吸蔵・放出できる炭素材料、リチウム合金などを活物質として用いた負極と、リチウム含有複合酸化物などを活物質として用いた正極と組み合わせたリチウムイオン二次電池が研究、開発され、実用化されている。この種の電池は電池電圧が高く、前記従来の電池に比し、重量及び体積あたりのエネルギー密度が大きく、今後、最も期待される二次電池である。
Due to rapid progress in the electronics field in recent years, electronic devices have become more sophisticated, smaller and more portable, and the demand for rechargeable high energy density secondary batteries used in these electronic devices has increased.
Conventionally, secondary batteries mounted on these electronic devices include lead-acid batteries, nickel-cadmium batteries, nickel-hydrogen batteries, etc. Recently, carbon materials that can occlude / release lithium ions, lithium alloys, etc. are used as active materials. A lithium ion secondary battery in which the negative electrode used and a positive electrode using a lithium-containing composite oxide or the like as an active material is researched, developed, and put into practical use. This type of battery has a high battery voltage and a higher energy density per weight and volume than the conventional battery, and is the most expected secondary battery in the future.

高エネルギー密度を有し、小型軽量なリチウムイオン二次電池は、特に大きなエネルギー密度を有する用途では、一対の絶縁樹脂フィルムにアルミニウム等の金属シートを積層して一体化してなる、軽量且つ薄膜のラミネートフィルムを外装ケースに用いることがしばしばある。この種のシート状電池ではケース自体に形状を維持する耐力がないので、電極群を均等圧で拘束するためにセル内を減圧状態にして、大気圧で拘束するのが一般的である。 A small and lightweight lithium-ion secondary battery having a high energy density is a lightweight and thin film that is formed by laminating and integrating a metal sheet such as aluminum on a pair of insulating resin films, particularly in applications having a large energy density. A laminate film is often used for an outer case. In this type of sheet battery, since the case itself does not have a yield strength to maintain the shape, it is general that the inside of the cell is depressurized and constrained at atmospheric pressure in order to constrain the electrode group with uniform pressure.

また、シート状電池では、電極集電部群とケース外部に導出する電極端子との接続に抵抗溶接や超音波溶接等がしばしば用いられるが、この接続部分が最もデリケートな部分である。 In sheet batteries, resistance welding, ultrasonic welding, or the like is often used for connection between the electrode current collector portion group and the electrode terminal led out of the case, but this connection portion is the most delicate portion.

この接続部分に関する技術としては、ラミネートシートを外装体とする電池において、リードの表面の少なくともラミネートシートのシール部位を通過する部分が金属との接着性のよい熱融着性樹脂で被覆されてなるもの(特許文献1)や、シート型電気化学素子において外部接続用端子の両面の外装体による封止部分に酸変性ポリオレフィンが塗布されているもの(特許文献2)などが提案されている。 As a technique related to this connection portion, in a battery having a laminate sheet as an exterior body, at least a portion of the lead surface that passes through the sealing portion of the laminate sheet is coated with a heat-fusible resin having good adhesion to metal. There are proposed ones (Patent Document 1) and those in which acid-modified polyolefin is applied to the sealing portions of the both sides of the external connection terminals in the sheet type electrochemical element (Patent Document 2).

また、板状電池において、電極端子部材の少なくとも一部が位置する封止部を含む外装部材と、前記外装部材の封止部における前記電極端子部材が位置する領域の封止を補強する封止補強手段とを備えるもの(特許文献3)が提案されている。 Further, in the plate battery, an exterior member including a sealing portion where at least a part of the electrode terminal member is located, and a seal that reinforces sealing of a region where the electrode terminal member is located in the sealing portion of the exterior member The thing provided with a reinforcement means (patent document 3) is proposed.

また、ポリマー固体電解質リチウムイオン二次電池において、電極から延設されたリードが、リード端子上で溶着され、この溶着部分が絶縁テープで巻回されて保護されているもの(特許文献4)が提案されている。 Further, in a polymer solid electrolyte lithium ion secondary battery, a lead extended from an electrode is welded on a lead terminal, and the welded portion is wound and protected with an insulating tape (Patent Document 4). Proposed.

特開平11−233133号公報JP-A-11-233133 特開平11−345599号公報Japanese Patent Laid-Open No. 11-345599 特開2001−93491号公報JP 2001-93491 A 特開2004−71438号公報JP 2004-71438 A

ラミネートフィルムを外装ケースに用いたシート状電池は、電池自体が健全である場合、デリケートな電極集電部群と電極端子との接続部分を有しても基本的な機能には問題がないが、リチウムイオン二次電池は、電池の使用の程度に応じてわずかずつではあるが、電池内でガス発生があり、このガスが電池内で蓄積する。このような電池内でのガス発生は他の種の蓄電池でも見られるが、アルカリ系の蓄電池の場合、内部で発生したガスは電極で吸収され、鉛蓄電池では電池外に放出したり、触媒を備えて再度水に戻す機構が装備されたりしている。一方、このような機構をリチウムイオン二次電池で構成するのは現在のところ困難であり、電池内で発生したガスは電池内に蓄積する。 The sheet-like battery using the laminate film for the outer case has no problem in basic functions even if the battery itself is healthy, even if it has a connection part between the delicate electrode current collector part and the electrode terminal. In the lithium ion secondary battery, gas is generated in the battery, although this is little by little depending on the degree of use of the battery, and this gas accumulates in the battery. This kind of gas generation in the battery can also be seen in other types of storage batteries, but in the case of alkaline storage batteries, the gas generated inside is absorbed by the electrode, and in lead storage batteries, the catalyst is released outside the battery It is equipped with a mechanism to prepare for returning to water again. On the other hand, it is currently difficult to construct such a mechanism with a lithium ion secondary battery, and gas generated in the battery accumulates in the battery.

このような電池内のガスの蓄積は金属缶などのハードケースを用いたリチウムイオン二次電池でも起こるが、ラミネートフィルムを外装ケースに用いたリチウムイオン二次電池では、前述の電池内部の減圧が低下し、電極集電体群と電極端子の接続部の拘束力が低下し、用途如何によっては、その振動や衝撃といった機械条件で、最悪の場合、該接続部が断線することもある。 Such accumulation of gas in the battery also occurs in a lithium ion secondary battery using a hard case such as a metal can, but in a lithium ion secondary battery using a laminate film as an outer case, the internal pressure of the battery is reduced. The contact force of the electrode current collector group and the electrode terminal is reduced, and depending on the application, the connection part may be broken in the worst case due to mechanical conditions such as vibration and impact.

上記特許文献1や特許文献2に記載の発明は、電極端子のフィルムとの接触部分が保護されているものであり、集電体と電極端子の接続部が保護されているものではない。 In the inventions described in Patent Document 1 and Patent Document 2, the contact portion between the electrode terminal and the film is protected, and the connecting portion between the current collector and the electrode terminal is not protected.

また、特許文献3に記載の発明は、集電体と電極端子の接続部は温度が上昇しやすいため、この部分を外装部材の封止部とすると熱影響でシール性や絶縁性に悪影響を及ぼす可能性がある。また、集電体と電極端子の接続部が外装部材の封止部にあるため、厚みが薄く曲がりやすいこの部分が支点となって振動や衝撃に対して弱いという問題点がある。さらに、前記接続部を固めているために形状の自由度がなく、結果として振動や衝撃により壊れやすいという問題点がある。 In the invention described in Patent Document 3, since the temperature of the connecting portion between the current collector and the electrode terminal is likely to rise, if this portion is used as the sealing portion of the exterior member, the sealing effect and the insulating property are adversely affected by the heat. There is a possibility of effect. In addition, since the connecting portion between the current collector and the electrode terminal is in the sealing portion of the exterior member, there is a problem that this portion that is thin and easily bent becomes a fulcrum and is vulnerable to vibration and impact. Further, since the connecting portion is hardened, there is no degree of freedom in shape, and as a result, there is a problem that it is easily broken by vibration or impact.

また、上記特許文献4に記載の発明は、電極から延設されたリードとリード端子との溶着部分が、対極との絶縁防止のために巻回されているものであり、アルミニウム箔の両面をプラスチックフィルムでラミネートされた可撓性の収納容器内でこの部分が浮いた形になっているため、保護はされているものの外部からの振動や衝撃に対し信頼性が低い。 Further, in the invention described in Patent Document 4, the welded portion between the lead extending from the electrode and the lead terminal is wound to prevent insulation from the counter electrode. Since this portion is floated in a flexible storage container laminated with a plastic film, it is protected against external vibrations and impacts although it is protected.

本発明は上記従来技術の課題に鑑みてなされたものであり、電池内でガスが蓄積した状態のラミネートフィルムを外装ケースに用いたシート状電池であっても、電極の集電体群と電極端子との接続部が安定に接続されたシート状電池を提供することを目的とする。 The present invention has been made in view of the above-mentioned problems of the prior art, and even in a sheet-like battery using a laminate film in a state where gas is accumulated in the battery as an outer case, the current collector group of the electrode and the electrode It aims at providing the sheet-like battery in which the connection part with a terminal was connected stably.

上記課題を解決するために、本発明者はシート状電池の集電体群と電極端子との接続部について詳細に検討した結果、この接続部と外装ケースとの間にスペーサを挿入し、固着することで、この接続部が安定に接続されることを見出した。すなわち、請求項1に記載の通り、正極をセパレータを介して負極と積層してなる電極群をラミネートフィルムから成る外装ケースに収納し、各電極の集電体またはこれに取り付けられたリード線と接続された電極端子をケース外部に導出してなるシート状電池において、前記集電体またはリード線と電極端子の接続部と前記外装ケースとの間に樹脂材料または樹脂材料を被覆した金属板からなるスペーサが屈曲した状態で介挿されていることを特徴とするシート状電池である。 In order to solve the above problems, the present inventor has studied in detail the connecting portion between the current collector group of the sheet-like battery and the electrode terminal. As a result, a spacer is inserted between the connecting portion and the outer case, and is fixed. By doing so, it has been found that this connecting portion is stably connected. That is, as described in claim 1, an electrode group formed by laminating a positive electrode with a negative electrode through a separator is housed in an outer case made of a laminate film, and a current collector of each electrode or a lead wire attached thereto In a sheet-like battery in which connected electrode terminals are led out of the case, a resin material or a metal plate coated with a resin material between the current collector or the lead wire and the connection portion of the electrode terminal and the outer case The sheet-like battery is characterized in that the spacer is inserted in a bent state.

また、本発明は、上記シート状電池において、スペーサを構成する樹脂材料はポリオレフィン系樹脂であることを特徴とするものである。 In the sheet battery, the present invention is characterized in that the resin material constituting the spacer is a polyolefin resin.

本発明は、シート状電池の集電体群と電極端子との接続部において、該接続部と外装ケースとの間にスペーサを屈曲した状態で介挿することで、前記集電体群と前記電極端子とが安定に接続される。このため、電池内部の減圧が低下して電極集電体群と電極端子の接続部の拘束力が低下し、振動や衝撃などで該接続部に機械的な圧力が加わった場合でも、断線して内部短絡が発生することがない。よって、本発明の技術を用いることにより、ラミネートフィルムで外装ケースを構成したシート状の高エネルギー密度型リチウムイオン二次電池においても高い信頼性を得ることができるものである。 According to the present invention, in the connection portion between the current collector group of the sheet-like battery and the electrode terminal, a spacer is bent between the connection portion and the exterior case, so that the current collector group and the electrode terminal are inserted. The electrode terminal is stably connected. For this reason, the decompression inside the battery is reduced, the restraining force of the connection part between the electrode current collector group and the electrode terminal is reduced, and even when mechanical pressure is applied to the connection part due to vibration or impact, the wire breaks. Internal short circuit will not occur. Therefore, by using the technique of the present invention, high reliability can be obtained even in a sheet-like high energy density type lithium ion secondary battery in which an outer case is formed of a laminate film.

次に、本発明のシート状電池について図面を参照して実施の形態例を説明する。図1は本発明の一実施例であるシート状電池の上面図を示したものである。また、図2は図1におけるA−A線間の断面図を示したものである。さらに、図3は、図2の要部拡大断面図を示したものである。なお、ここではシート状電池において対抗する二辺から正・負極端子をそれぞれ一つずつ引き出したものを示しているが、一辺から正・負極端子両方を引き出すものについても適用可能である。電極の作製方法については実施例の項目で後述することとし、ここでは本発明の特徴であるスペーサ5について説明する。 Next, embodiments of the sheet battery of the present invention will be described with reference to the drawings. FIG. 1 shows a top view of a sheet battery according to an embodiment of the present invention. FIG. 2 is a sectional view taken along line AA in FIG. Further, FIG. 3 shows an enlarged cross-sectional view of the main part of FIG. Here, the sheet-like battery is shown in which one positive / negative electrode terminal is drawn out from each of two opposing sides, but it can also be applied to one in which both the positive / negative electrode terminals are drawn out from one side. A method for manufacturing the electrode will be described later in the item of the embodiment, and here, the spacer 5 which is a feature of the present invention will be described.

袋状のセパレータ3に収納した正極板1と負極板1を積層してなる電極群4を、カップ状にエンボス加工した所定サイズの外装ケース6に挿入した。なお、この電極群4は、正極集電体1a群に正極端子1bを、負極集電体2a群に負極端子2bをそれぞれ超音波溶接して正極端子接続部1c、負極端子接続部2cを形成してある。そして、電極群4の外装ケース6への挿入時に同時に、スペーサ5を前記接続部1c、2cに当接しながら超音波溶接部と外装ケース6のエンボス加工した傾斜部との間に挿入した。その後、外装ケース6の平坦部を沿わせ、端子部を含む辺及びもう一辺をヒートシールして熱溶着領域7を形成し、ドライセルを作製した。 The electrode group 4 formed by laminating the positive electrode plate 1 and the negative electrode plate 1 housed in the bag-like separator 3 was inserted into an outer case 6 having a predetermined size embossed in a cup shape. In this electrode group 4, a positive electrode terminal connection portion 1c and a negative electrode terminal connection portion 2c are formed by ultrasonic welding the positive electrode terminal 1b to the positive electrode current collector 1a group and the negative electrode terminal 2b to the negative electrode current collector 2a group, respectively. It is. At the same time when the electrode group 4 was inserted into the outer case 6, the spacer 5 was inserted between the ultrasonic welded portion and the embossed inclined portion of the outer case 6 while being in contact with the connecting portions 1 c and 2 c. Then, along the flat part of the outer case 6, the side including the terminal part and the other side were heat-sealed to form the heat-welded region 7, thereby producing a dry cell.

スペーサ5の挿入状態については、電極の集電体群と電極端子との接続部1c、2cの安定性を高めるために、スペーサ5を該接続部に接着する等して固定しても構わない。 The inserted state of the spacer 5 may be fixed by bonding the spacer 5 to the connecting portion in order to enhance the stability of the connecting portions 1c and 2c between the current collector group of the electrodes and the electrode terminal. .

また、スペーサ5の大きさは、電極の集電体群と電極端子との接続部1c、2cにおいて、電極端子引出方向には少なくとも該接続部の長さ以上あることが好ましく、また、その電極端子引出方向と直角方向には、少なくとも該接続部の長さの2/3以上あることが好ましい。該接続部を覆う面積が少なくなり過ぎると、圧力に対する保護の効果が少なくなるからである。また、シート状電池の一辺から正・負極端子両方を引き出すものでは、端子の引出方向と直角方向において、少なくとも両方の電極端子を覆う長さがあれば問題ない。このときは、一つのスペーサ5で両方の電極端子を覆うことができ効率的である。 Further, the size of the spacer 5 is preferably at least the length of the connecting portion in the electrode terminal drawing direction in the connecting portions 1c and 2c between the current collector group of the electrodes and the electrode terminals. It is preferable that there is at least 2/3 or more of the length of the connecting portion in the direction perpendicular to the terminal drawing direction. This is because if the area covering the connection portion is too small, the effect of protection against pressure is reduced. Further, in the case where both the positive and negative terminals are drawn from one side of the sheet-like battery, there is no problem as long as at least the length of both electrode terminals is covered in the direction perpendicular to the terminal drawing direction. In this case, both the electrode terminals can be covered with a single spacer 5, which is efficient.

ここで、スペーサ5の形状について述べると、絶縁性材料からなるプレートを折り曲げてC字に加工したものである。そして、その折り曲げ部を端子方向に向けて、加圧し弾性変形させた状態で電池内に挿入してある。このようにすることにより、電池内部の減圧状況が低下した場合だけでなく、仮に電池内圧が大気圧を超えたとしてもその圧力変化に追従することができる。また、プレートの種類や厚みにより加圧力を制御でき、外装ケース6に使用するラミネートフィルムの特性に合わせて弾性力が容易に選択できるというメリットがある。 Here, the shape of the spacer 5 will be described. A plate made of an insulating material is bent into a C shape. Then, the bent portion is inserted into the battery in a state where the bent portion is pressed and elastically deformed in the terminal direction. By doing in this way, not only when the decompression state inside a battery falls, but even if the battery internal pressure exceeds atmospheric pressure, the pressure change can be tracked. Further, there is an advantage that the pressing force can be controlled by the type and thickness of the plate, and the elastic force can be easily selected according to the characteristics of the laminate film used for the outer case 6.

次に、その材質については、ポリエチレンやポリプロピレン等のポリオレフィン系の絶縁性材料であることが好ましい。必ずしも絶縁性である必要はないが、絶縁性である方が電池内部での短絡の可能性が低く、また正極と負極が横並びする種類の電池において、単一のスペーサで端子接続部を拘束することができて好適である。 Next, the material is preferably a polyolefin-based insulating material such as polyethylene or polypropylene. It does not necessarily have to be insulative, but insulative is less likely to cause a short circuit inside the battery, and in a type of battery in which the positive and negative electrodes are arranged side by side, the terminal connection portion is constrained by a single spacer. This is preferable.

また、前記スペーサ5を構成するプレートは、絶縁性で、C字加工によって弾性が得られ、一般的にリチウムイオン二次電池で使用される電解液に不溶で、化学的にも電気化学的にも安定なものであれば特に限定されるものではない。樹脂材料や樹脂材料を被覆した金属板等が使用できるが、ポリオレフィン系の材料の方がコスト、軽量、加工の容易さ、端子の異常発熱時に短絡のないことから特に好適である。 Further, the plate constituting the spacer 5 is insulative and elastic by C-shaped processing, is generally insoluble in an electrolytic solution used in a lithium ion secondary battery, and is chemically and electrochemically. As long as it is stable, it is not particularly limited. A resin material or a metal plate coated with a resin material can be used. However, a polyolefin-based material is particularly preferable because it is low in cost, light weight, easy to process, and has no short circuit when the terminal is abnormally heated.

次に、本発明のラミネートフィルムを外装ケースとするシート状電池には、リチウムイオン二次電池が好適に用いられる。 Next, a lithium ion secondary battery is suitably used for a sheet-like battery having the laminate film of the present invention as an outer case.

このリチウムイオン二次電池の正極活物質には、LiMn等のスピネル構造化合物や、一般的にLiMOで表せられるα−NaFeO構造を有するリチウム含有遷移金属複合酸化物(ここでMはCo、Ni、Al、Mn、Ti、Fe等から選ばれる単独もしくは2種類以上の金属元素)、リチウム含有リン酸系化合物等が利用できる。さらには、電池の製造方法を工夫すればリチウムの挿入可能なMnOやV等の金属酸化物や、TiSやZnS等の金属硫化物、電気化学的酸化還元活性を有するポリアニリンやポリピロール等のπ共役系高分子、分子内に硫黄−硫黄結合の形成−開裂を利用するジスルフィド化合物等を用いることも可能である。 Examples of the positive electrode active material of the lithium ion secondary battery include a spinel structure compound such as LiMn 2 O 4 and a lithium-containing transition metal composite oxide having an α-NaFeO 2 structure generally represented by LiMO 2 (here, M Can be used alone or two or more metal elements selected from Co, Ni, Al, Mn, Ti, Fe, etc., lithium-containing phosphoric acid compounds, and the like. Furthermore, if the battery manufacturing method is devised, metal oxides such as MnO 2 and V 2 O 5 into which lithium can be inserted, metal sulfides such as TiS 2 and ZnS 2, and polyaniline having electrochemical redox activity It is also possible to use a π-conjugated polymer such as polypyrrole or a disulfide compound utilizing the formation-cleavage of a sulfur-sulfur bond in the molecule.

一方負極としては、金属リチウムもしくは各種リチウム合金、SnO等各種金属酸化物、あるいはリチウムを吸蔵放出可能な炭素材料を用いることができる。炭素材料としては天然に産出される黒鉛もしくは有磯原料を2000℃以上の高温で焼成し、グラファイト構造が発達した平坦な電位特性を有する黒鉛系炭素材料、あるいは有機原料を1000℃以下の比較的低温で焼成し、黒鉛系材料よりも大きな充放電容量が期待できるコークス系炭素材料等が用いられる。 On the other hand, as the negative electrode, metallic lithium or various lithium alloys, various metal oxides such as SnO 2 , or a carbon material capable of occluding and releasing lithium can be used. As the carbon material, naturally produced graphite or baked raw material is fired at a high temperature of 2000 ° C. or higher, and a graphite-based carbon material having a flat potential characteristic with a developed graphite structure, or an organic raw material is relatively heated to 1000 ° C. or lower. A coke-based carbon material that is fired at a low temperature and can be expected to have a larger charge / discharge capacity than a graphite-based material is used.

極板の集電部については、集電体に活物質を塗工するときに、その端部に活物質を塗工しない無地部を大きく形成してこれを集電部としている。が、活物質の塗工面積を大きく取りたいときは、この無地部を小さく形成してこれにリード線を溶接して、該リード線を集電部としても構わない。   Regarding the current collector part of the electrode plate, when an active material is applied to the current collector, a plain part on which the active material is not applied is formed largely at the end part, and this is used as the current collector part. However, when it is desired to increase the coating area of the active material, the uncoated portion may be formed small and a lead wire may be welded to the uncoated portion so that the lead wire serves as a current collecting portion.

正極集電体としては5〜60μmの厚さのアルミニウム箔が好ましく、この集電体の少なくとも片面に、前記正極活物質と、鱗状グラファイトやカーボンブラック等の導電助剤及びポリフッ化ビニリデン等のバインダーを溶剤でペースト状にしたものを塗工、乾燥して30〜300μmの厚さの正極活物質含有塗膜を形成したものを使用できる。 The positive electrode current collector is preferably an aluminum foil having a thickness of 5 to 60 μm, and the positive electrode active material, a conductive auxiliary agent such as scaly graphite and carbon black, and a binder such as polyvinylidene fluoride are provided on at least one surface of the current collector. A paste formed with a solvent can be applied and dried to form a positive electrode active material-containing coating film having a thickness of 30 to 300 μm.

負極集電体としては5〜60μmの厚さの銅箔が好ましく、この集電体の少なくとも片面に、前記負極活物質と、ポリフッ化ビニリデン等のバインダーを溶剤でペースト状にして塗工、乾燥して30〜300μmの厚さの負極活物質含有塗膜を形成したものを使用できる。 As the negative electrode current collector, a copper foil having a thickness of 5 to 60 μm is preferable, and the negative electrode active material and a binder such as polyvinylidene fluoride are pasted into a paste with a solvent on at least one surface of the current collector, and then dried. And what formed the 30-300 micrometer-thick negative electrode active material containing coating film can be used.

電解液の溶媒としては通常、電解液系リチウムイオン二次電池で使用されている溶媒、例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、γブチロラクトン(GBL)、スルホラン(SL)、ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)、ジメトキシエタン(DME)、ジエトキシエタン(DEE)、2−メチル−テトラヒドロフラン(2MeTHF)、各種グライム類等を単独もしく混合系で用いることができるが、LiBETIを2.0まで溶解できる溶媒構成にする必要がある。また、DMC、DME、DEE等は引火点が室温以下であることから、避けることが望ましい。 As a solvent for the electrolytic solution, a solvent usually used in an electrolytic lithium ion secondary battery, for example, ethylene carbonate (EC), propylene carbonate (PC), γ-butyrolactone (GBL), sulfolane (SL), diethyl carbonate (DEC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), dimethoxyethane (DME), diethoxyethane (DEE), 2-methyl-tetrahydrofuran (2MeTHF), various glymes, etc. alone or in a mixed system Although it can be used, it is necessary to have a solvent structure capable of dissolving LiBETI up to 2.0. Also, it is desirable to avoid DMC, DME, DEE, etc. because the flash point is below room temperature.

また、電解液の溶質として使用するリチウム塩は通常、電解液系リチウムイオン二次電池で使用されているリチウム塩、例えば、六フッ化燐酸リチウム(LiPF)、過塩素酸リチウム(LiClO)、四フッ化ホウ酸リチウム(LiBF)等の無機リチウム塩、トリフルオロメチルスルホン酸リチウム(LiOSOCF)、ビス(トリフルオロメチルスルフォニル)イミドリチウム(LiN(CFSO)、ビス(パーフルオロエチルスルフォニル)イミドリチウム(LiN(CFSO)等の有機リチウム塩を、電解質ゲルの合成方法に即して、適宜選択して使用できる。 The lithium salt used as the solute of the electrolytic solution is usually a lithium salt used in an electrolytic lithium ion secondary battery, such as lithium hexafluorophosphate (LiPF 6 ), lithium perchlorate (LiClO 4 ). Inorganic lithium salts such as lithium tetrafluoroborate (LiBF 4 ), lithium trifluoromethylsulfonate (LiOSO 2 CF 3 ), lithium bis (trifluoromethylsulfonyl) imide (LiN (CF 3 SO 2 ) 2 ), An organic lithium salt such as bis (perfluoroethylsulfonyl) imidolithium (LiN (CF 5 SO 2 ) 2 ) can be appropriately selected and used in accordance with the synthesis method of the electrolyte gel.

セパレータとしては、ポリオレフィン系の合成樹脂製の不織布や多孔シートが好適である。 As the separator, a nonwoven fabric or a porous sheet made of a polyolefin-based synthetic resin is suitable.

また、外装ケース6を構成するラミネートフィルムには、アルミニウム等の金属シートを内側にして、その両面または片面に熱融着性樹脂のシートを接合したものが使用できる。この熱融着性樹脂としては、ポリプロピレン、変性ポリプロピレン、ポリエチレン、変性ポリエチレン、ポリエチレンテレフタレート、熱融着性ポリエチレンテレフタレート、熱融着性ポリイミド、ポリメタクリル酸メチル等の樹脂、あるいはこれらの2種以上の樹脂の共重合体を採用することができる。 Further, as the laminate film constituting the exterior case 6, a film in which a metal sheet such as aluminum is placed inside and a sheet of heat-fusible resin is bonded to both sides or one side can be used. As this heat-fusible resin, resins such as polypropylene, modified polypropylene, polyethylene, modified polyethylene, polyethylene terephthalate, heat-fusible polyethylene terephthalate, heat-fusible polyimide, polymethyl methacrylate, or two or more of these Resin copolymers can be employed.

次に、実施例により詳細に本発明の効果を示す。 Next, the effects of the present invention will be described in detail by way of examples.

[正極の作製]
正極活物質としてLiCoO粉末91重量部、バインダーとしてポリフッ化ビニリデン樹脂4.0重量部、導電剤としてグラファイト粉末5.0重量部、分散剤としてN−メチルピロリドンを配合したものを、分散機にて攪拌混合することにより正極活物質合剤の塗工用スラリーを調製した。
[Production of positive electrode]
In the dispersing machine, 91 parts by weight of LiCoO 2 powder as the positive electrode active material, 4.0 parts by weight of polyvinylidene fluoride resin as the binder, 5.0 parts by weight of graphite powder as the conductive agent, and N-methylpyrrolidone as the dispersing agent were used. Then, a slurry for coating the positive electrode active material mixture was prepared by stirring and mixing.

次いで、上記の正極活物質合剤の塗工用スラリーを、ダイコータを用いてアルミ箔から成る集電体1aに両面同時塗工し、オーブンで乾燥して分散剤を除去することにより正極活物質合剤塗膜を形成した。これを所定の密度までプレスし、所定サイズに切断して、所定幅の無地部1aを有する正極板1を得た。 Next, the positive electrode active material mixture slurry is applied on both sides of the current collector 1a made of aluminum foil using a die coater and dried in an oven to remove the dispersant, thereby removing the positive electrode active material. A mixture coating film was formed. This was pressed to a predetermined density, cut into a predetermined size, and a positive electrode plate 1 having a plain portion 1a with a predetermined width was obtained.

[負極の作製]
人造黒鉛粉末を90重量部、バインダーとしてポリフッ化ビニリデン樹脂を10重量部、分散剤としてN−メチルピロリドンを配合したものを、分散機にて攪拌混合させることにより、負極活物質合剤の塗工用スラリーを調製した。
[Production of negative electrode]
Application of negative electrode active material mixture by mixing 90 parts by weight of artificial graphite powder, 10 parts by weight of polyvinylidene fluoride resin as a binder, and N-methylpyrrolidone as a dispersant by stirring and mixing with a disperser A slurry was prepared.

次いで、上記の負極活物質合剤の塗工用スラリーを、ダイコータを用いて銅箔から成る集電体2aに両面同時塗工し、オーブンで乾燥して分散剤を除去することにより負極活物質合剤塗膜を形成した。これを所定の密度にプレスし、所定サイズに切断して、所定幅の無地部2aを有する負極板2を得た。 Next, the negative electrode active material mixture slurry is applied on both sides of the current collector 2a made of copper foil using a die coater and dried in an oven to remove the dispersant, thereby removing the negative electrode active material. A mixture coating film was formed. This was pressed to a predetermined density and cut to a predetermined size to obtain a negative electrode plate 2 having a plain portion 2a having a predetermined width.

[電池の組立て]
2枚のポリエチレン製多孔シートから成るセパレータ3を部分的にヒートシールして、封筒状のセパレータ袋を作製し、これに、上記作製した正極板1を、上記無地部1aを残して挿入して、セパレータ包被正極板を得た。
[Battery assembly]
A separator 3 made of two polyethylene porous sheets is partially heat-sealed to produce an envelope-like separator bag, and the prepared positive electrode plate 1 is inserted into the separator plate 1 leaving the plain portion 1a. A separator-covered positive electrode plate was obtained.

次に、上記負極板2、セパレータ包被正極板1、負極板2、…、セパレータ包被正極板1、負極板2の順で、正極板1の無地部1aと負極板2の無地部2aが互いに横並びになるようにスタックして、正極板10枚、負極板11枚の電極群4を作製した。なお、図面中では模式的に正極板2枚、負極板3枚の例を示している。 Next, the uncoated portion 1a of the positive electrode plate 1 and the uncoated portion 2a of the negative electrode plate 2 in the order of the negative electrode plate 2, the separator-covered positive electrode plate 1, the negative electrode plate 2,. Were stacked side by side to produce an electrode group 4 of 10 positive plates and 11 negative plates. In the drawing, an example of two positive plates and three negative plates is schematically shown.

次に、このように作製した電極群4の正極板無地部1aにアルミ板からなる正極端子1bを、負極板無地部2aにニッケル板からなる負極端子2bを、それぞれ所定の条件で超音波溶接法にて取り付けてそれぞれ正極端子接続部1c、負極端子接続部2cを形成し、電池素子を作製した。 Next, the positive electrode plate uncoated portion 1a of the electrode group 4 thus produced is ultrasonically welded with a positive electrode terminal 1b made of an aluminum plate, and the negative electrode plate uncoated portion 2a with a negative electrode terminal 2b made of a nickel plate under a predetermined condition. The positive electrode terminal connection part 1c and the negative electrode terminal connection part 2c were respectively formed by attaching by a method to produce a battery element.

次に、このように作製した電池素子を、カップ状にエンボス加工した所定サイズのアルミラミネートフィルムからなる外装ケース6に挿入した。このとき、超音波溶接部と外装ケース6のエンボス加工した傾斜部との間にポリエチレン板をC字に折り曲げたスペーサ5を接続部1c、2cにそれぞれ当接しながら同時に挿入した。その後、外装ケース6の平坦部を沿わせ、端子部を含む辺及びもう一辺をヒートシールして熱溶着領域7を形成し、残り一辺を開口部としてドライセルを作製した。 Next, the battery element produced in this way was inserted into an outer case 6 made of an aluminum laminate film of a predetermined size embossed in a cup shape. At this time, a spacer 5 in which a polyethylene plate was bent in a C shape was inserted between the ultrasonic welded portion and the embossed inclined portion of the outer case 6 at the same time while contacting the connecting portions 1c and 2c. Then, along the flat part of the outer case 6, the side including the terminal part and the other side were heat-sealed to form the heat-welded region 7, and the remaining side was used as an opening to produce a dry cell.

次に、このドライセルを所定の条件にて真空乾燥した後、前記開口部から重量混合比3:7のエチレンカーボネートとジエチルカーボネートに六フッ化リン酸リチウムを1.3mol/lになるように溶解した有機溶液を注入し、セル内を減圧状態にして前記開口部をヒートシールして封口した後、0.1CAの電流で所定の初充電、所定時間保管を行い、その後、0.2CAの電流でセル電圧が2.75Vになるまで放電し、最後に活性化処理を行い、シート状電池を10個作製した。この電池を実施例1とする。 Next, the dry cell is vacuum-dried under predetermined conditions, and then lithium hexafluorophosphate is dissolved in ethylene carbonate and diethyl carbonate at a weight mixing ratio of 3: 7 from the opening so as to be 1.3 mol / l. The organic solution was injected, the inside of the cell was evacuated, the opening was heat sealed and sealed, and then subjected to a predetermined initial charge at a current of 0.1 CA, storage for a predetermined time, and then a current of 0.2 CA. Then, the battery was discharged until the cell voltage reached 2.75 V, and finally the activation process was performed to produce ten sheet-like batteries. This battery is referred to as Example 1.

スペーサ5を、ポリプロピレンで作製した以外は実施例1と同様にして、シート状電池を10個作製した。この電池を実施例2とする。 Ten sheet-like batteries were produced in the same manner as in Example 1 except that the spacer 5 was made of polypropylene. This battery is referred to as Example 2.

スペーサ5を、ポリプロピレンで被覆したステンレス板で作製した以外は実施例1と同様にしてシート状電池を10個作製した。この電池を実施例3とする。 Ten sheet-like batteries were produced in the same manner as in Example 1 except that the spacer 5 was made of a stainless steel plate coated with polypropylene. This battery is referred to as Example 3.

スペーサ5を、内包しない以外は実施例1と同様にして10個のシート状電池を作製した。この電池を従来例1とする。 Ten sheet-like batteries were produced in the same manner as in Example 1 except that the spacer 5 was not included. This battery is referred to as Conventional Example 1.

[衝撃試験]
電池の電極端子の接続部の安定性を確認するために、以下の条件で衝撃試験を実施した。このように作製した夫々の電池を各水準5個ずつ、0.5CAの電流で、4.1V電圧規制で4時間の充電、30分の休止、0.5CAの電流でセル電圧が2.75Vになるまで放電、30分の休止を1000回繰り返した後、電池の短端子方向に、25G0−Pのハーフsin波形10msec間の衝撃を連続2回入力し、その前後で電池の内部インピーダンスを測定し比較した。その結果(5個の平均値)を表1に示す。
[Shock test]
In order to confirm the stability of the connection portion of the battery electrode terminal, an impact test was performed under the following conditions. Each battery made in this way has 5 cells at each level, with 0.5 CA current, 4.1 V voltage regulation for 4 hours charging, 30 minute rest, 0.5 CA current with a cell voltage of 2.75 V. After repeating the discharge and 30-minute pauses 1000 times, the impact of 25G 0-P half sin waveform 10 msec is input twice in the short terminal direction of the battery, and the internal impedance of the battery before and after that is input. Measured and compared. The results (average value of 5) are shown in Table 1.

評価の結果、本発明に係る実施例1〜3の電池は衝撃試験前後の内部抵抗に明確な変化がなく、良好な結果が得られた。一方、従来例1の電池は衝撃試験後に衝撃試験前と比較して内部抵抗値が50%近く上昇していることが分かった。 As a result of the evaluation, the batteries of Examples 1 to 3 according to the present invention did not clearly change the internal resistance before and after the impact test, and good results were obtained. On the other hand, it was found that the internal resistance value of the battery of Conventional Example 1 increased by nearly 50% after the impact test compared to before the impact test.

[短絡試験]
次に、挿入したスペーサ5に使用した材料の熱的安定性を確認するために、以下の条件で短絡試験を実施した。上記作製した実施例1〜3の電池と従来例1の電池を各水準5個ずつ、0.5CAの電流で、4.2V電圧規制で2時間の充電後、回路抵抗5mΩの銅線で10時間短絡した。このとき、0.1分ごとに外部短絡と短絡開放を繰り返し、電池内での短絡の有無を確認した。その結果(5個の平均値)を表2に示す。
[Short-circuit test]
Next, in order to confirm the thermal stability of the material used for the inserted spacer 5, a short-circuit test was performed under the following conditions. The batteries of Examples 1 to 3 and the battery of Conventional Example 1 prepared above were charged at a level of 5 CA at a current of 0.5 CA for 2 hours with a 4.2 V voltage regulation, and then 10 copper wires with a circuit resistance of 5 mΩ. Shorted for hours. At this time, the external short-circuit and the short-circuit open were repeated every 0.1 minute, and the presence or absence of a short circuit in the battery was confirmed. The results (average value of 5) are shown in Table 2.

その結果、従来例1の電池は18.7分後に電池内で短絡が発生したのに対し、実施例3の電池では552.2分後まで短絡が発生せず、実施例1〜2の電池では外部短絡を600分間行っても電池内部で短絡は発生しなかった。このことより、本発明の電池のうち、弾性を有するスペーサ材料としてポリプロピレンやポリエチレンが電池の内部短絡といった、端子が異常高温にさらされる場合でも電池内は短絡が発生しにくく、弾性スペーサ材料として好適であることが分かった。 As a result, the battery of Conventional Example 1 was short-circuited in the battery after 18.7 minutes, whereas the battery of Example 3 was not short-circuited until 552.2 minutes later. Then, even if the external short circuit was performed for 600 minutes, the short circuit did not occur inside the battery. Therefore, among the batteries of the present invention, polypropylene or polyethylene as an elastic spacer material is less likely to cause a short circuit in the battery even when the terminal is exposed to an abnormally high temperature such as an internal short circuit of the battery, and is suitable as an elastic spacer material. It turns out that.

本発明によれば、電極の集電体群と電極端子との接続部と外装ケースとの間にスペーサを屈曲した状態で介挿することによって、両部材が安定して接続される。このため、本発明のシート状電池は、高エネルギー密度型リチウムイオン二次電池として高い信頼性を得ることができ、自動二輪車、電気自動車、ハイブリッド電気自動車等の電源に用いることができるが、用途は特に限定されない。 According to the present invention, both members are stably connected by inserting the spacer in a bent state between the connection portion between the current collector group of the electrode and the electrode terminal and the outer case. For this reason, the sheet-like battery of the present invention can obtain high reliability as a high energy density type lithium ion secondary battery, and can be used as a power source for motorcycles, electric cars, hybrid electric cars, etc. Is not particularly limited.

本発明の一実施例であるシート状電池の上面図である。It is a top view of the sheet-like battery which is one Example of this invention. 図1におけるA−A線間の断面図を示したものである。FIG. 2 is a cross-sectional view taken along line AA in FIG. 1. 図2の要部拡大断面図を示したものである。FIG. 3 is an enlarged cross-sectional view of a main part of FIG. 2.

符号の説明Explanation of symbols

1 正極板
1a 正極集電体(正極板無地部)
1b 正極端子
1c 正極端子接続部
2 負極板
2a 負極集電体(負極板無地部)
2b 負極端子
2c 負極端子接続部
3 セパレータ
4 電極群
5 スペーサ
6 外装ケース
7 熱溶着領域
DESCRIPTION OF SYMBOLS 1 Positive electrode plate 1a Positive electrode electrical power collector (positive electrode plate plain part)
1b positive electrode terminal 1c positive electrode terminal connection part 2 negative electrode plate 2a negative electrode current collector (negative electrode plate plain part)
2b Negative electrode terminal 2c Negative electrode terminal connection part 3 Separator 4 Electrode group 5 Spacer 6 Exterior case 7 Thermal welding area

Claims (2)

正極をセパレータを介して負極と積層してなる電極群をラミネートフィルムから成る外装ケースに収納し、各電極の集電体またはこれに取り付けられたリード線と接続された電極端子をケース外部に導出してなるシート状電池において、前記集電体またはリード線と電極端子の接続部と、前記外装ケースとの間に樹脂材料または樹脂材料を被覆した金属板からなるスペーサが屈曲した状態で介挿されていることを特徴とするシート状電池。 An electrode group consisting of a positive electrode laminated with a negative electrode through a separator is housed in an outer case made of a laminate film, and the electrode terminal connected to the current collector of each electrode or the lead wire attached to it is led out of the case In the sheet-like battery thus formed, a spacer made of a resin material or a metal plate coated with a resin material is interposed between the current collector or lead wire and electrode terminal connection portion and the outer case, and is inserted in a bent state. A sheet battery characterized by being made. 前記樹脂材料がポリオレフィン系樹脂からなることを特徴とする請求項1に記載のシート状電池。 The sheet-like battery according to claim 1, wherein the resin material is made of a polyolefin-based resin.
JP2008170292A 2008-06-30 2008-06-30 Sheeted battery Pending JP2010010042A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008170292A JP2010010042A (en) 2008-06-30 2008-06-30 Sheeted battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008170292A JP2010010042A (en) 2008-06-30 2008-06-30 Sheeted battery

Publications (1)

Publication Number Publication Date
JP2010010042A true JP2010010042A (en) 2010-01-14

Family

ID=41590263

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008170292A Pending JP2010010042A (en) 2008-06-30 2008-06-30 Sheeted battery

Country Status (1)

Country Link
JP (1) JP2010010042A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019186850A1 (en) * 2018-03-28 2019-10-03 株式会社 東芝 Battery, battery pack, power storage device, vehicle, and flying object

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019186850A1 (en) * 2018-03-28 2019-10-03 株式会社 東芝 Battery, battery pack, power storage device, vehicle, and flying object

Similar Documents

Publication Publication Date Title
JP5178111B2 (en) Non-aqueous electrolyte battery and pack battery
JP5699559B2 (en) Non-aqueous electrolyte battery
JP5629789B2 (en) Battery and battery manufacturing method
JP4927064B2 (en) Secondary battery
US11515532B2 (en) Electrode, nonaqueous electrolyte battery and battery pack
US20070248884A1 (en) Negative electrode and secondary battery
JP6246901B2 (en) Nonaqueous electrolyte battery and battery pack
JP2015084320A (en) Battery active material, electrode, non-aqueous electrolyte battery and battery pack
JP2014120399A (en) Electrode, battery, and battery pack
JP2016035901A (en) Non-aqueous electrolyte battery, method for producing non-aqueous electrolyte battery, and battery pack
CN108432025B (en) Non-aqueous electrolyte batteries and battery packs
JP6173729B2 (en) Battery manufacturing method
US20150263334A1 (en) Non-aqueous electrolyte secondary battery
CN107836061A (en) Nonaqueous electrolyte battery and battery bag
JP4455008B2 (en) Nonaqueous electrolyte secondary battery
JP5214364B2 (en) Lithium ion secondary battery
JP2011222128A (en) Secondary battery
JP5674357B2 (en) Lithium ion secondary battery
JP6903683B2 (en) Non-aqueous electrolyte batteries and battery packs
JP6178183B2 (en) Nonaqueous electrolyte battery, assembled battery and storage battery device
JP6070691B2 (en) Nonaqueous electrolyte secondary battery
JP5270910B2 (en) Ultrasonic welding method of positive electrode current collector and tab for storage battery
JP6048477B2 (en) Method for producing non-aqueous electrolyte battery
JP4300172B2 (en) Nonaqueous electrolyte secondary battery
JP5639903B2 (en) Lithium ion secondary battery