JP2010019553A - Specific bonding riaction detecting method of molecule by monomolecular fluorometric analysis - Google Patents
Specific bonding riaction detecting method of molecule by monomolecular fluorometric analysis Download PDFInfo
- Publication number
- JP2010019553A JP2010019553A JP2006299696A JP2006299696A JP2010019553A JP 2010019553 A JP2010019553 A JP 2010019553A JP 2006299696 A JP2006299696 A JP 2006299696A JP 2006299696 A JP2006299696 A JP 2006299696A JP 2010019553 A JP2010019553 A JP 2010019553A
- Authority
- JP
- Japan
- Prior art keywords
- molecule
- fluorescence
- sample
- fluorescence intensity
- dna
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000000034 method Methods 0.000 title claims abstract description 69
- 238000004458 analytical method Methods 0.000 title claims description 21
- 239000000523 sample Substances 0.000 claims abstract description 57
- 239000011324 bead Substances 0.000 claims abstract description 44
- 239000007850 fluorescent dye Substances 0.000 claims abstract description 44
- 239000012488 sample solution Substances 0.000 claims abstract description 27
- 239000002245 particle Substances 0.000 claims description 58
- 108020004414 DNA Proteins 0.000 claims description 50
- 238000005259 measurement Methods 0.000 claims description 40
- 230000009870 specific binding Effects 0.000 claims description 24
- 239000000243 solution Substances 0.000 claims description 15
- 238000002060 fluorescence correlation spectroscopy Methods 0.000 claims description 14
- 102000052510 DNA-Binding Proteins Human genes 0.000 claims description 13
- 101710096438 DNA-binding protein Proteins 0.000 claims description 13
- 238000001179 sorption measurement Methods 0.000 claims description 9
- 238000000475 fluorescence cross-correlation spectroscopy Methods 0.000 claims description 7
- 210000002966 serum Anatomy 0.000 claims description 7
- 239000000463 material Substances 0.000 claims description 4
- 230000028161 membrane depolarization Effects 0.000 claims description 4
- 239000011259 mixed solution Substances 0.000 claims description 4
- 238000002156 mixing Methods 0.000 claims description 4
- 239000011521 glass Substances 0.000 claims description 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 3
- 239000004816 latex Substances 0.000 claims description 3
- 229920000126 latex Polymers 0.000 claims description 3
- 239000006249 magnetic particle Substances 0.000 claims description 3
- 230000009149 molecular binding Effects 0.000 claims description 3
- 239000004033 plastic Substances 0.000 claims description 3
- 238000001514 detection method Methods 0.000 abstract description 11
- 239000012535 impurity Substances 0.000 abstract description 6
- 206010029719 Nonspecific reaction Diseases 0.000 abstract description 2
- 239000007790 solid phase Substances 0.000 abstract 1
- 238000012921 fluorescence analysis Methods 0.000 description 28
- 101710177166 Phosphoprotein Proteins 0.000 description 25
- 239000012472 biological sample Substances 0.000 description 23
- 238000009739 binding Methods 0.000 description 14
- 230000033001 locomotion Effects 0.000 description 14
- 230000008859 change Effects 0.000 description 11
- 239000000356 contaminant Substances 0.000 description 11
- 238000005516 engineering process Methods 0.000 description 10
- 238000006243 chemical reaction Methods 0.000 description 8
- 230000008569 process Effects 0.000 description 8
- 102000004169 proteins and genes Human genes 0.000 description 7
- 108090000623 proteins and genes Proteins 0.000 description 7
- 230000027455 binding Effects 0.000 description 6
- 239000000975 dye Substances 0.000 description 6
- 230000009871 nonspecific binding Effects 0.000 description 6
- 230000005653 Brownian motion process Effects 0.000 description 5
- 238000005537 brownian motion Methods 0.000 description 5
- 239000003814 drug Substances 0.000 description 5
- 230000003287 optical effect Effects 0.000 description 5
- 230000010287 polarization Effects 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 238000003759 clinical diagnosis Methods 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 230000000975 bioactive effect Effects 0.000 description 3
- 238000002306 biochemical method Methods 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 201000010099 disease Diseases 0.000 description 3
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 3
- 230000003100 immobilizing effect Effects 0.000 description 3
- ABZLKHKQJHEPAX-UHFFFAOYSA-N tetramethylrhodamine Chemical compound C=12C=CC(N(C)C)=CC2=[O+]C2=CC(N(C)C)=CC=C2C=1C1=CC=CC=C1C([O-])=O ABZLKHKQJHEPAX-UHFFFAOYSA-N 0.000 description 3
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 2
- 238000002965 ELISA Methods 0.000 description 2
- 239000000427 antigen Substances 0.000 description 2
- 102000036639 antigens Human genes 0.000 description 2
- 108091007433 antigens Proteins 0.000 description 2
- 238000005311 autocorrelation function Methods 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 229940098773 bovine serum albumin Drugs 0.000 description 2
- 238000005314 correlation function Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 230000004001 molecular interaction Effects 0.000 description 2
- 108020004707 nucleic acids Proteins 0.000 description 2
- 102000039446 nucleic acids Human genes 0.000 description 2
- 150000007523 nucleic acids Chemical class 0.000 description 2
- 238000012216 screening Methods 0.000 description 2
- -1 Alexa647 Chemical compound 0.000 description 1
- 102000053602 DNA Human genes 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- 238000001042 affinity chromatography Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 238000004624 confocal microscopy Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 208000018459 dissociative disease Diseases 0.000 description 1
- 238000001962 electrophoresis Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000001215 fluorescent labelling Methods 0.000 description 1
- 102000034287 fluorescent proteins Human genes 0.000 description 1
- 108091006047 fluorescent proteins Proteins 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 238000001641 gel filtration chromatography Methods 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 239000008363 phosphate buffer Substances 0.000 description 1
- 239000002504 physiological saline solution Substances 0.000 description 1
- 102000004196 processed proteins & peptides Human genes 0.000 description 1
- 108090000765 processed proteins & peptides Proteins 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- PYWVYCXTNDRMGF-UHFFFAOYSA-N rhodamine B Chemical compound [Cl-].C=12C=CC(=[N+](CC)CC)C=C2OC2=CC(N(CC)CC)=CC=C2C=1C1=CC=CC=C1C(O)=O PYWVYCXTNDRMGF-UHFFFAOYSA-N 0.000 description 1
- 235000020183 skimmed milk Nutrition 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 239000013076 target substance Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- 238000001262 western blot Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/543—Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
- G01N33/54313—Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being characterised by its particulate form
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
- G01N21/6428—Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
- G01N2021/6417—Spectrofluorimetric devices
- G01N2021/6421—Measuring at two or more wavelengths
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
- G01N21/6428—Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
- G01N2021/6439—Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes" with indicators, stains, dyes, tags, labels, marks
- G01N2021/6441—Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes" with indicators, stains, dyes, tags, labels, marks with two or more labels
Landscapes
- Health & Medical Sciences (AREA)
- Immunology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Urology & Nephrology (AREA)
- Molecular Biology (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Pathology (AREA)
- Hematology (AREA)
- Biomedical Technology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Cell Biology (AREA)
- Biotechnology (AREA)
- Microbiology (AREA)
- Optics & Photonics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Food Science & Technology (AREA)
- Medicinal Chemistry (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
- Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
Description
本発明は、蛍光一分子からの蛍光を計測することによりタンパク質、ペプチド、核酸、脂質、アミノ酸及びその他の生理活性物質又は生体分子(以下、「生体分子等」とする。)の特異的な結合反応を検出する方法に係り、より詳細には、種々の生体分子間に於ける特異的な結合反応と非特異的な結合反応を識別可能な検出方法に係る。 In the present invention, specific binding of proteins, peptides, nucleic acids, lipids, amino acids and other physiologically active substances or biomolecules (hereinafter referred to as “biomolecules”) is measured by measuring fluorescence from a single fluorescent molecule. The present invention relates to a method for detecting a reaction, and more particularly, to a detection method capable of distinguishing a specific binding reaction and a non-specific binding reaction between various biomolecules.
近年の技術などの光計測技術の発展により、現在では、蛍光一分子からの蛍光を測定・解析する蛍光相関分光分析(Fluorescence Correlation Spectroscopy:FCS)、蛍光強度分布分析(Fluorescence-Intensity Distribution Analysis:FIDA)といった蛍光分析方法が利用できるようになっている。これらの蛍光一分子レベルの蛍光測定を行う蛍光分析法(一分子蛍光分析技術)に於いては、レーザー共焦点顕微鏡の光学系とフォトンカウンティング(1光子検出)も可能な超高感度の光検出装置とを用いて蛍光一分子からの蛍光強度が測定され、その強度の揺らぎを種々の方法により解析して、蛍光分子又は蛍光標識された分子の運動の速さ又は分子の大きさ(FCSの場合)、分子(又は粒子)の数密度又は一分子当たりの蛍光強度(FIDAの場合)といった情報を得ることができる。従って、これらの情報に基づいて、分子の構造又は大きさの変化や分子の結合・解離反応又は分散・凝集といった種々の現象を検出することができる。 With the development of optical measurement technology such as recent technology, at present, fluorescence correlation spectroscopy (FCS) for measuring and analyzing fluorescence from a single fluorescent molecule, and fluorescence-intensity distribution analysis (FIDA) ) Fluorescence analysis methods can be used. In these fluorescence analysis methods (single molecule fluorescence analysis technology) that measure fluorescence at the single molecule level, the optical system of a laser confocal microscope and photon counting (one-photon detection) are possible. The fluorescence intensity from a single fluorescent molecule is measured using a device, and fluctuations in the intensity are analyzed by various methods to determine the speed of movement of the fluorescent molecule or fluorescently labeled molecule or the size of the molecule (FCS ), Number density of molecules (or particles) or fluorescence intensity per molecule (in the case of FIDA). Therefore, based on such information, various phenomena such as a change in the structure or size of the molecule, a binding / dissociation reaction or dispersion / aggregation of the molecule can be detected.
生物科学、医学又は薬学の分野に於いては、上記の如き一分子蛍光分析技術を生体分子等の状態及び運動の検出・観測に応用し、種々の生体分子等の現象・反応を細胞レベル又は分子レベルで解明する試みがなされている。例えば、互いに特異的に相互作用する一対の分子(DNAとDNA結合タンパク質、抗原と抗体など)のうち、少なくとも一方の分子に蛍光分子等で蛍光標識を施した上で、それらの分子を反応させると、一方の分子上の蛍光分子の運動や状態の変化が蛍光分子からの蛍光強度又はその揺らぎに反映され、これにより、タンパク質又はDNA等の分子間の相互作用が検出できることとなる。既に、そのような一分子蛍光分析技術を用いて分子レベルにてタンパク質と核酸の結合反応や抗原抗体反応の検出が為された例が報告されつつある(例えば、特許文献1−2、非特許文献1−2)。また、一分子蛍光分析技術は、従前の生化学的な方法に比して極めて微量な試料にて且短時間にて計測が可能であるので、医学・薬理学等の分野に於いて、種々の病気の臨床診断や生理活性物質のスクーリングに於ける応用も期待される。
上記の如き一分子蛍光分析技術に於いて用いられる光学系及び光検出装置の性能は、確かに、蛍光一分子からの蛍光又は一光子程度の光量を検出・測定することが可能なほど向上されているが、検出したい光が微弱であることに変わりはなく、従って、背景の光が高ければ、検出すべき光が背景に埋もれてしまい、識別することができなくなってしまう。特に、生体分子等の相互作用の観測や病気の臨床診断等に使用されることとなる生体試料又は生体由来の試料(血清、血漿など)は、一般に、検出したい反応に関わりのない種々の構成物又は夾雑物が多く含まれており、その中の観測対象の分子以外に多数の分子からの自家蛍光によって背景光が高くなり、このことにより、測定結果の精度又は信頼性が低下してしまうこととなる。また、生体分子等の特異的な結合反応を検出しようとする場合、生体試料中には検出したい特異的な反応とは別の反応又は非特異的な結合又は吸着をする分子が存在している場合が多く、そのような場合、検出したい反応以外の反応や非特異的な結合・吸着が測定結果及び解析結果に影響すると、誤差が生じ、結果の信頼性が低下する。 The performance of the optical system and the photodetection device used in the above-described single molecule fluorescence analysis technology is certainly improved so that it is possible to detect and measure the amount of fluorescence from a single fluorescent molecule or about one photon. However, the light to be detected is still weak, so if the background light is high, the light to be detected is buried in the background and cannot be identified. In particular, biological samples or biological samples (serum, plasma, etc.) that are used for observation of interactions such as biomolecules or clinical diagnosis of diseases generally have various configurations that are not related to the reaction to be detected. There are many objects or impurities, and the background light becomes high due to autofluorescence from many molecules in addition to the molecules to be observed, which reduces the accuracy or reliability of the measurement results. It will be. In addition, when a specific binding reaction such as a biomolecule is to be detected, a biological sample contains a molecule that undergoes a reaction other than the specific reaction to be detected or a nonspecific binding or adsorption. In many cases, if a reaction other than the reaction to be detected or nonspecific binding / adsorption affects the measurement result and the analysis result, an error occurs and the reliability of the result is lowered.
上記の如き一分子蛍光分析の試料中の観測対象の分子以外の構成物又は夾雑物の影響は、試料からそれらの夾雑物を除去するか或いは観測対象の分子を精製することにより排除することができる。しかしながら、試料から特定の分子を抽出したり、或いは、特定の分子以外を除去することは、時間、労力及び多量の試料を必要とし、微量にて短時間に計測が可能であるという一分子蛍光分析技術の利点を損なうこととなる。また、生体試料の場合、物質の抽出・精製又は除去の処理操作中に目的の物質が変性してしまうこともあり、結局、目的の測定が実施できなくなってしまうことも有り得る。 The influence of the constituents or contaminants other than the molecule to be observed in the sample of single molecule fluorescence analysis as described above can be eliminated by removing those impurities from the sample or purifying the molecule to be observed. it can. However, extracting a specific molecule from a sample or removing other than a specific molecule requires time, labor and a large amount of sample, and single molecule fluorescence that can be measured in a short amount of time. The advantage of analysis technology will be lost. In the case of a biological sample, the target substance may be denatured during the process of extracting / purifying or removing the substance, and eventually the target measurement may not be performed.
かくして、本発明の一つの主な課題は、一分子蛍光分析技術を用いた分子の相互作用、特に、分子の特異的な結合、の検出及び観測に於いて、検出・観測結果の精度及び信頼性を損なう原因となる試料中に含まれる検出対象の分子以外の夾雑物を除去することなく、それらの夾雑物の存在に起因する背景光や非特異的な反応の影響を排除するか又は相対的に低減できるようにすることである。 Thus, one main subject of the present invention is the accuracy and reliability of detection and observation results in the detection and observation of molecular interactions, particularly the specific binding of molecules, using single molecule fluorescence analysis technology. Without removing contaminants other than the molecules to be detected contained in the sample that cause damage to the sample, the effects of background light and non-specific reactions due to the presence of these contaminants can be eliminated or relative It is to be able to reduce it.
また、本発明のもう一つの課題は、上記の如き一分子蛍光分析技術を用いた分子の相互作用の検出及び観測に於いて、特に、試料として生体試料又は生体由来の試料(血清、血漿など)を用いる場合に、計測結果に於いて、試料中の非特異的な結合又は吸着の影響を排除し、計測結果の精度、信頼性をより向上させることである。 Another object of the present invention is to detect and observe the molecular interaction using the single-molecule fluorescence analysis technique as described above. In particular, the sample is a biological sample or a biological sample (serum, plasma, etc.). ) Is used, the influence of non-specific binding or adsorption in the sample is eliminated in the measurement result, and the accuracy and reliability of the measurement result are further improved.
本発明によれば、上記の如き一分子蛍光分析技術を用いて、特定の分子の特異的結合を、夾雑物を多く含む試料、特に生体試料溶液中に於いて精度良く又は信頼性高く検出することのできる分子の特異的結合反応検出方法が提供される。 According to the present invention, specific binding of a specific molecule is detected with high accuracy or reliability in a sample containing a large amount of contaminants, particularly a biological sample solution, using the single molecule fluorescence analysis technique as described above. A method for detecting a specific binding reaction of a molecule is provided.
本発明の一つの態様によれば、特定の分子の特異的結合を検出する方法は、蛍光標識された第一の分子を含む第一の試料と、前記の蛍光標識された第一の分子と特異的に結合するか否かが判定される第二の分子を含む第二の試料とを混合し混合試料溶液を調製する過程と、第二の分子に特異的に結合する第三の分子が表面に固相化された外径1μm以下の粒子を混合試料溶液へ添加する過程と、前記の粒子が添加された混合試料溶液中の第一の分子の蛍光標識の蛍光強度を測定する過程と、蛍光強度に基づいて、第一の分子が前記粒子上に固定されているか否かを判定する過程とを含み、第一の分子が粒子上に固定されている判定された場合には、第一の分子が第二の分子に特異的に結合したと判定することを特徴とする。即ち、この態様に於いては、第一の分子が第二の分子と特異的な結合するか否かを判定することができる。 According to one aspect of the present invention, a method for detecting specific binding of a particular molecule comprises a first sample comprising a first fluorescently labeled molecule, the first fluorescently labeled molecule, A process of preparing a mixed sample solution by mixing a second sample containing a second molecule to be specifically determined whether or not to bind, and a third molecule that specifically binds to the second molecule A process of adding particles having an outer diameter of 1 μm or less solid-phased on the surface to the mixed sample solution, a process of measuring the fluorescence intensity of the fluorescent label of the first molecule in the mixed sample solution to which the particles are added, and Determining whether the first molecule is immobilized on the particle based on the fluorescence intensity, and if it is determined that the first molecule is immobilized on the particle, It is determined that one molecule is specifically bound to a second molecule. That is, in this embodiment, it can be determined whether or not the first molecule specifically binds to the second molecule.
一分子蛍光分析技術を用いて或る分子(例えば、上記第一の分子)と或る別の分子(上記第二の分子)とが特異的な結合をするか否かを判定する場合、現在までに(従来の技術に於いて)提案されている方法では、蛍光標識された第一の分子を含む第一の試料と、第二の分子を含む第二の試料とを混合し、そのまま、その混合試料の蛍光測定と結果の解析が行われていた。この場合、試料中に夾雑物が多いと、背景光が高くS/N比が悪い場合があり、また、夾雑物と蛍光標識された分子との非特異的な結合・吸着があっても、それが特異的な結合とは区別がつかない。 When determining whether or not a specific molecule (for example, the first molecule) and a certain other molecule (the second molecule) have specific binding using single molecule fluorescence analysis technology, In the method proposed so far (in the prior art), a first sample containing a fluorescently labeled first molecule and a second sample containing a second molecule are mixed together, The mixed sample was subjected to fluorescence measurement and analysis of the results. In this case, if there are many contaminants in the sample, the background light may be high and the S / N ratio may be poor, and even if there is nonspecific binding / adsorption between the contaminants and the fluorescently labeled molecules, It is indistinguishable from specific binding.
そこで、本発明に於いては、上記の如く、蛍光標識された第一の分子と第二の分子とを含む混合試料溶液に、第二の分子に特異的に結合する第三の分子が表面に固相化された外径1μm以下の粒子を混合試料溶液へ添加し、その上で蛍光測定と結果の解析が行われるよう従前の方法の過程が修正される。第二の分子に特異的に結合する第三の分子を表面に担持する粒子が混合溶液に添加されると、第三の分子が第二の分子にのみ結合し、その結果、粒子の表面上に第二の分子が収集されることとなる。もし第二の分子が第一の分子と特異的に結合するものであれば、蛍光標識された第一の分子も粒子上に集められ、その結果、蛍光標識から発せられる蛍光強度は、蛍光標識が外径1μm以下の粒子上に固定された状態を反映されたものとなる。他方、もし第二の分子が第一の分子と特異的に結合しないものであれば、仮に夾雑物と非特異的な結合をしていても、第一の分子上の蛍光標識からの蛍光強度は、第一の分子がフリーの状態(粒子上に結合していない状態)と大きくは変わらないはずである。また、蛍光標識が外径1μm以下の粒子上に固定された状態となると、そうでない状態に比して、蛍光標識のブラウン運動が大幅制限され、また、測定領域内での蛍光標識の分布も大きく変化し、更に、蛍光標識が粒子上に収集されることにより、粒子上の複数又は多数の蛍光標識より蛍光が発せられることになるので、一時に観測される蛍光強度も大きくなり、測定のS/Nが大幅に改善される。かくして、上記の如く、第一の分子が、第二の分子と第三の分子の特異的な結合を介して粒子上に「固定」されるか否かを判定するよう方法の構成を修正することにより、第一の分子が第二の分子と特異的に結合する場合とそうでない場合とが、より高いS/N比にて検出することができるようになる。 Therefore, in the present invention, as described above, the third molecule that specifically binds to the second molecule is on the surface of the mixed sample solution containing the first molecule and the second molecule that are fluorescently labeled. The process of the previous method is modified so that particles having an outer diameter of 1 μm or less that are solid-phased are added to the mixed sample solution, and then fluorescence measurement and analysis of the results are performed. When particles carrying a third molecule that specifically binds to the second molecule on the surface are added to the mixed solution, the third molecule only binds to the second molecule, and as a result, on the surface of the particle. The second molecule will be collected. If the second molecule specifically binds to the first molecule, the fluorescently labeled first molecule is also collected on the particle, so that the fluorescence intensity emitted from the fluorescent label is Is reflected on the state of being fixed on particles having an outer diameter of 1 μm or less. On the other hand, if the second molecule does not specifically bind to the first molecule, the fluorescence intensity from the fluorescent label on the first molecule, even if it is non-specifically bound to a contaminant. Should not be significantly different from the free state of the first molecule (not bound on the particle). In addition, when the fluorescent label is fixed on a particle having an outer diameter of 1 μm or less, the Brownian motion of the fluorescent label is greatly limited as compared to the case where the fluorescent label is not, and the distribution of the fluorescent label in the measurement region is also limited. Since the fluorescence label is collected on the particle, fluorescence is emitted from a plurality or many of the fluorescence labels on the particle, so that the fluorescence intensity observed at one time also increases, S / N is greatly improved. Thus, as described above, the configuration of the method is modified to determine whether the first molecule is “fixed” on the particle through the specific binding of the second and third molecules. Thus, the case where the first molecule specifically binds to the second molecule and the case where it does not can be detected at a higher S / N ratio.
上記の第二の分子に特異的に結合する第三の分子が表面に固相化された外径1μm以下の粒子を混合試料溶液へ添加し、その蛍光測定及び分析により、蛍光標識された第一の分子が粒子上に固定されているか否かを判定する手法は、或る試料に第二の分子が存在するか否かを検出するために用いることもできる。従って、本発明のもう一つの態様によれば、本発明の特定の分子の特異的結合を検出する方法は、蛍光標識された第一の分子を含む第一の試料と、蛍光標識された第一の分子と特異的に結合する第二の分子が存在するか否かが判定される第二の試料とを混合して混合試料溶液を調製する過程と、第二の分子に特異的に結合する第三の分子が表面に固相化された外径1μm以下の粒子を第一及び第二の試料の混合試料溶液へ添加する過程と、粒子が添加された混合試料溶液中の第一の分子の蛍光標識の蛍光強度を測定する過程と、蛍光強度に基づいて、第一の分子が粒子上に固定されているか否かを判定する過程とを含み、第一の分子が粒子上に固定されている判定された場合には、第二の分子が第二の試料に存在していると判定することを特徴とする。かかる構成によれば、或る分子(第一の分子と第三の分子に特異的に結合する分子)が任意の試料(第二の試料)に含まれているか否かが、前記の態様と同様に、従前に比して、より高いS/N比にて検出することができるようになる。 Particles having an outer diameter of 1 μm or less in which a third molecule that specifically binds to the second molecule is immobilized on the surface are added to a mixed sample solution, and fluorescence-labeled The technique of determining whether one molecule is immobilized on a particle can also be used to detect whether a second molecule is present in a sample. Thus, according to another aspect of the present invention, a method for detecting specific binding of a particular molecule of the present invention comprises a first sample comprising a fluorescently labeled first molecule and a fluorescently labeled first molecule. A process of preparing a mixed sample solution by mixing a second sample to determine whether there is a second molecule that specifically binds to one molecule, and specifically binding to the second molecule Adding a particle having an outer diameter of 1 μm or less having a third molecule immobilized on the surface thereof to the mixed sample solution of the first and second samples, and a first sample in the mixed sample solution to which the particles are added The process includes measuring the fluorescence intensity of the fluorescent label of the molecule and determining whether the first molecule is immobilized on the particle based on the fluorescence intensity, and the first molecule is immobilized on the particle. The second molecule is present in the second sample. To. According to this configuration, whether or not a certain molecule (a molecule that specifically binds to the first molecule and the third molecule) is contained in an arbitrary sample (second sample) Similarly, it becomes possible to detect at a higher S / N ratio than before.
上記の本発明の分子の特異的結合の検出方法に於ける蛍光測定及び分析(又は解析)は、FCS、FIDA、蛍光相互相関分光法(Fluorescence cross-correlation Spectroscopy:FCCS)など、レーザー共焦点顕微鏡の光学系に超高感度光検出装置を組み合わせた蛍光測定装置により実施される一分子蛍光分析法のいずれか任意のものであってよい。また、その他の分子の構造・状態・運動の変化を観測できる任意の蛍光分析法、例えば、蛍光偏光解消法(Fluorescence Depolarization Spectroscopy:FDS)などが用いられてもよい(本発明の構成により各々蛍光分析方法に於いて蛍光測定・分析の結果にどのようになるかは、実施の形態の説明の欄に於いて説明される。)。理解されるべきことは、第一の分子が粒子に固定されているか否かを検出できる蛍光分析方法であれば任意のものであってよく、そのような場合も本発明の範囲に属する。 Fluorescence measurement and analysis (or analysis) in the above-described method for detecting specific binding of the molecule of the present invention is performed by laser confocal microscopy such as FCS, FIDA, or fluorescence cross-correlation spectroscopy (FCCS). Any one of the single-molecule fluorescence analysis methods performed by a fluorescence measuring device in which an ultrasensitive photodetection device is combined with the above optical system may be used. In addition, any fluorescence analysis method capable of observing changes in the structure, state, and motion of other molecules, such as fluorescence depolarization spectroscopy (FDS), may be used (each of which is fluorescent according to the configuration of the present invention). How the result of fluorescence measurement / analysis in the analysis method will be described in the description of the embodiment). It should be understood that any fluorescence analysis method that can detect whether or not the first molecule is immobilized on a particle may be used, and such a case is also within the scope of the present invention.
本発明の方法に於いて用いられる試料に於いて、蛍光標識される第一の分子、第二の分子及び第三の分子は、予め特定されている必要があるが、第二の分子を含有する第二の試料は、夾雑物を含んでいてもよく、従って、生物科学、医学又は薬学の分野の研究、病気の臨床診断又は生理活性物質のスクリーニング等に於いて使用される血清又は血漿又はその他の生体から得られた溶液試料であってよい。上記の本発明の態様の説明から理解される如く、第二の試料を生体から得られた溶液試料とする場合、第二の分子がその生体試料に含まれているか否か又は第一の分子と特異的に結合するか否かが、生体試料に或る程度の量の夾雑物が含まれていても、検出が可能となる。例えば、第一の分子をDNAとし、第二の分子をDNA結合タンパク質とし、第三の分子が第二の分子に対する抗体とすれば、或る塩基配列を有するDNAに対して或るDNA結合タンパク質が特異的に結合するか否か又は或る塩基配列を有するDNAに対して特異的に結合するDNA結合タンパク質が或る試料(例えば、血清や血漿)中に含まれているか否かが検出される。 In the sample used in the method of the present invention, the first molecule, the second molecule, and the third molecule to be fluorescently labeled need to be specified in advance, but contain the second molecule. The second sample may contain contaminants, and thus serum or plasma used in research in the fields of biological science, medicine or pharmacology, clinical diagnosis of diseases or screening of bioactive substances, etc. It may be a solution sample obtained from another living body. As will be understood from the above description of the embodiments of the present invention, when the second sample is a solution sample obtained from a living body, whether or not the second molecule is contained in the biological sample or the first molecule Can be detected even if the biological sample contains a certain amount of impurities. For example, if the first molecule is DNA, the second molecule is a DNA-binding protein, and the third molecule is an antibody against the second molecule, a certain DNA-binding protein against DNA having a certain base sequence Is detected in a sample (eg, serum or plasma) that contains a DNA binding protein that specifically binds to DNA having a certain base sequence. The
上記の構成に於いて、第三の分子が表面に固相化される粒子は、生物科学、医学又は薬学の分野の実験に於いて通常用いられているナノメートルオーダーのビーズであってよく、プラスチック、ラテックス、金コロイド、磁性粒子及びガラスから成る群から選択された少なくとも一つの材料からなるビーズであってよい。第三の分子を粒子の表面上に固相化、即ち、固定する方法は、生物科学、医学又は薬学の実験の分野に於いて通常知られている任意の方法であってよく、当業者に於いて、ビーズの材質、第三の分子の種類に応じて、適宜選択されてよい。好適には、粒子の表面は、第二の分子と第三の分子との特異的結合を除く混合試料溶液中に存在する分子の吸着又は結合を防止するための吸着防止処理が施される。かかる処理もこの分野に於いて知られた任意の方法であってよい(例えば、反応に寄与しないタンパク質(牛血清アルブミンなど)を第三の分子を粒子に固定した後に表面に吸着させるなど。)。 In the above configuration, the particle on which the third molecule is immobilized on the surface may be a nanometer-order bead commonly used in experiments in the field of biological science, medicine, or pharmacy, It may be a bead made of at least one material selected from the group consisting of plastic, latex, colloidal gold, magnetic particles and glass. The method of immobilizing, ie immobilizing, the third molecule on the surface of the particle may be any method commonly known in the field of biological science, medicine or pharmacology, and will be understood by those skilled in the art. In this case, it may be appropriately selected according to the material of the beads and the type of the third molecule. Preferably, the surface of the particles is subjected to an anti-adsorption treatment for preventing adsorption or binding of molecules present in the mixed sample solution excluding specific binding between the second molecule and the third molecule. Such treatment may be any method known in this field (for example, a protein that does not contribute to the reaction (such as bovine serum albumin) is immobilized on the particle and then adsorbed to the surface). .
なお、上記の本発明の構成に於いて、混合試料溶液へ粒子を添加した後の蛍光測定・分析の結果と比較するために、混合試料溶液への粒子を添加に先立って混合試料溶液中の第一の分子の蛍光標識の蛍光強度を測定し、測定された蛍光強度に基づいて、第一の分子が第二の試料中の分子と結合したか否かを判定する過程を含んでいてよい。粒子を添加する前と後に於いて実行される蛍光分析の方法は、同一であってもよいが、別のものであってよい。即ち、粒子の添加前は、第一及び第二の分子の結合の有無を確認するための蛍光測定をFCSにより行い、粒子の添加後は、FIDAにより粒子と第一の分子との関係を確認するための測定をFIDAにより行うようにしてよい。また、第一の分子の第二の分子に対する結合は、或る程度、蛍光強度の測定・分析結果に反映されるはずであるので、全く、第一の分子を第二の試料に作用させた際に蛍光測定結果に全く変化が見られない場合(第一の分子の第二の分子に対する結合発生の可能性が殆どないと認められる場合)には、粒子の添加は省略されてよい(試料及び時間の節約)。 In the above-described configuration of the present invention, in order to compare with the result of fluorescence measurement / analysis after adding particles to the mixed sample solution, the particles in the mixed sample solution are added prior to the addition of the particles to the mixed sample solution. Measuring the fluorescence intensity of the fluorescent label of the first molecule and determining whether the first molecule is bound to the molecule in the second sample based on the measured fluorescence intensity. . The method of fluorescence analysis performed before and after the addition of the particles may be the same or different. That is, before adding the particles, fluorescence measurement is performed by FCS to confirm the presence or absence of binding between the first and second molecules, and after adding the particles, the relationship between the particles and the first molecules is confirmed by FIDA. Measurement for this purpose may be performed by FIDA. In addition, since the binding of the first molecule to the second molecule should be reflected to some extent in the fluorescence intensity measurement / analysis results, the first molecule was completely applied to the second sample. If there is no change in the fluorescence measurement result (when it is recognized that there is almost no possibility of the first molecule binding to the second molecule), the addition of particles may be omitted (sample) And time savings).
従来、多数の夾雑物を含む生体試料に於ける生体分子間の特異的な結合の検出は、例えば、ゲルろ過クロマトグラフィー、タンパク質・DNAの電気泳動法、ウエスタンブロッティング法、ELISA法といった多量又は高濃度の試料量と時間を要する生化学的な方法が必要であった。しかしながら、本発明によれば、高濃度若しくは多量の試料を必要とせず、簡便に且迅速に、生体分子間の特異的な結合の検出を行うことができる。上記の説明から理解される如く、第三の分子を固相化した粒子を用いて、第二の分子を特異的に収集することにより、或る程度の限界はあるが(例えば、励起光が透過できない場合)、蛍光測定される試料中に夾雑物が存在していても、第二の分子と(蛍光標識された)第一の分子との特異的な結合の有無を検出することができ、従って、種々の病気の臨床診断や生理活性物質のスクーリングに於ける応用も期待される Conventionally, detection of specific binding between biomolecules in a biological sample containing a large number of contaminants has been performed in a large amount or a high amount such as gel filtration chromatography, protein / DNA electrophoresis, Western blotting, and ELISA. A biochemical method requiring a sample amount of concentration and time was required. However, according to the present invention, specific binding between biomolecules can be detected easily and quickly without requiring a high concentration or a large amount of sample. As understood from the above description, there is a certain limit (for example, the excitation light is reduced) by specifically collecting the second molecule by using the particles in which the third molecule is immobilized. If there is a contaminant in the sample to be measured, the presence or absence of specific binding between the second molecule and the first molecule (fluorescently labeled) can be detected. Therefore, application in clinical diagnosis of various diseases and schooling of bioactive substances is also expected.
特記されるべきことは、第三の分子を固相化した粒子を用いて、第二の分子を特異的に収集するという構成によれば、第二の分子が第一の分子に特異的に結合した場合には、蛍光標識が粒子上に集められることにより、第一の分子が単独でいる場合又は別の第二の分子とのみ結合している場合に比して、一時に得られる蛍光標識からの蛍光光量が増大し、これにより、検出したい蛍光とそうでない蛍光との比、即ち、測定のS/N比が向上される点である。また、第二の分子が第一の分子に特異的に結合した場合には第一の分子の担体がナノメートルオーダーの粒子となるので、蛍光標識の運動の状態も顕著な変化として捉えることができる。総じて、従前の一分子蛍光分析による方法に比して、分子の特異的な結合の有無を顕著に正確に検出できることとなる。 It should be noted that according to the configuration in which the second molecule is specifically collected using the particles in which the third molecule is solid-phased, the second molecule is specific to the first molecule. When bound, the fluorescent label is collected on the particle, resulting in a fluorescence that is obtained at a time compared to when the first molecule is alone or bound only to another second molecule. The amount of fluorescent light from the label is increased, and this improves the ratio between the fluorescence desired to be detected and the fluorescence not desired, that is, the S / N ratio of the measurement. In addition, when the second molecule specifically binds to the first molecule, the carrier of the first molecule becomes a nanometer order particle, so that the state of movement of the fluorescent label can also be regarded as a significant change. it can. In general, the presence or absence of specific binding of molecules can be detected remarkably accurately as compared with the conventional method using single-molecule fluorescence analysis.
本発明のその他の目的及び利点は、以下の本発明の好ましい実施形態の説明により明らかになるであろう。 Other objects and advantages of the present invention will become apparent from the following description of preferred embodiments of the present invention.
以下に添付の図を参照しつつ、本発明を幾つかの好ましい実施形態について詳細に説明する。 The present invention will now be described in detail with reference to a few preferred embodiments with reference to the accompanying drawings.
測定試料の調製操作の手順
図1は、生体試料溶液A中に、或る塩基配列を有するDNAに対して特異的に結合するDNA結合タンパク質Pが存在するか否かを検出するために、蛍光標識されたDNA(第一の分子)とDNA結合タンパク質P(第二の分子)の一部をエピトープとするモノクローナル抗体(第三の分子)を表面に固相化したビーズとを用いて、本発明の方法を適用した場合の試料の調製操作と分子の状態の変化を模式的に示したものであり、図2(A)は、その場合の測定の手順をフローチャートの形式で示したものである。
Procedure for Preparation of Measurement Sample FIG. 1 shows how to detect whether or not a DNA binding protein P that specifically binds to DNA having a certain base sequence exists in a biological sample solution A. Using labeled DNA (first molecule) and beads on which a monoclonal antibody (third molecule) having a part of DNA-binding protein P (second molecule) as an epitope is immobilized on the surface, FIG. 2A schematically shows a sample preparation operation and a change in molecular state when the method of the invention is applied, and FIG. 2A shows a measurement procedure in the form of a flowchart. is there.
図1及び2を参照して、本発明の方法の実施を開始する当たり、予め、DNA結合タンパク質Pに特異的に結合する塩基配列を有する蛍光標識されたDNA(D)が準備される(ステップ10、図1(a))。DNAの長さは、合成のコスト及び検出の容易さから10〜100merが好ましく、20から40merが更に好ましい。蛍光標識のためにDNAに付加される蛍光色素Fとしては、この分野で通常使われる任意の蛍光色素、例えば、TAMRA(carboxymethylrhodamine)、TMR(tetramethylrhodamine)、Alexa647、Rhodamine
Green、Alexa488などであってよいが、これらに限定されない。後述の如く、蛍光分析法として、FCS、FIDA、蛍光偏光解消法を用いる場合には、蛍光標識は、1種類でよいが、2種類以上の蛍光標識を用いると(各DNA分子には、一種類の蛍光分子を付与する。)、FCCSでの計測が可能となる。DNAは、上記条件を満たす生物由来のDNAでもよいが、人工的に合成したDNAは、生物由来のものより安定性が高く、安価で大量生産ができるので、継続的に、病気の臨床診断や、多種類の被検試料にてDNA結合タンパク質Pの検出をする場合に適している。所望の塩基配列のDNAの調製と蛍光標識の付加は、当業者にとって任意の方法でなされてよい。DNAは、本実施形態の方法を実施する度に調製するのではなく、一度に量産した後、変性しない態様にて保存し、本実施形態の方法を実施する際に必要量ずつ使用するようにされてよい。
Referring to FIGS. 1 and 2, before starting the method of the present invention, fluorescently labeled DNA (D) having a base sequence that specifically binds to DNA binding protein P is prepared (step). 10, FIG. 1 (a)). The length of the DNA is preferably 10 to 100 mer, more preferably 20 to 40 mer, from the cost of synthesis and ease of detection. As fluorescent dye F added to DNA for fluorescent labeling, any fluorescent dye usually used in this field, for example, TAMRA (carboxymethylrhodamine), TMR (tetramethylrhodamine), Alexa647, Rhodamine
It may be Green, Alexa488, etc., but is not limited thereto. As will be described later, when FCS, FIDA, or fluorescence depolarization is used as the fluorescence analysis method, only one type of fluorescent label may be used, but when two or more types of fluorescent labels are used (one for each DNA molecule). A kind of fluorescent molecule is added), and measurement by FCCS becomes possible. DNA derived from organisms that satisfy the above conditions may be used, but artificially synthesized DNA is more stable than organisms and can be mass-produced at low cost. It is suitable for detecting the DNA binding protein P in many kinds of test samples. Preparation of DNA having a desired base sequence and addition of a fluorescent label may be performed by a person skilled in the art by any method. Rather than preparing DNA each time the method of this embodiment is performed, the DNA is mass-produced at a time and then stored in a non-denaturing manner so that it can be used in the required amount when performing the method of this embodiment. May be.
生体試料溶液Aは、励起光及び蛍光の透過を著しく低下させないものであれば、当業者に於いて使用されている任意の溶液であってよく、例えば、血清、血漿等であってよい(ステップ20、図1(b))。血清、血漿等の生体試料溶液の調製は、当業者にとって任意の方法にて、例えば、遠心分離、ろ過、超音波などの処理を経て為されてよい。光に対する試料の透過率が顕著に低い場合には、適宜、生理食塩水やリン酸緩衝液により(内部の分子の活性を損なわないように)希釈されてよい。 The biological sample solution A may be any solution used by those skilled in the art as long as it does not significantly reduce the transmission of excitation light and fluorescence, and may be, for example, serum, plasma, etc. (step 20, FIG. 1 (b)). Preparation of biological sample solutions such as serum and plasma may be performed by any method for those skilled in the art, for example, through treatment such as centrifugation, filtration, and ultrasonic waves. When the transmittance of the sample with respect to light is remarkably low, it may be appropriately diluted with physiological saline or a phosphate buffer (so as not to impair the activity of the internal molecules).
かくして、調製された生体試料溶液AとDNA(D)を含む溶液とが混合される(ステップ30)。この段階で、生体試料溶液Aにタンパク質Pが含まれていれば、DNAとタンパク質Pとが結合する(図1(c))。しかしながら、タンパク質Pが含まれていなくも、いずれかの生体分子(Q)がDNA(D)又は蛍光標識Fに非特異的に結合又は吸着する場合も有り得る(図1(d))。従って、もしこの段階で後述の蛍光測定を行ったとしても、DNA(D)とタンパク質Pとの複合体上の蛍光色素Fと、DNA(D)と生体分子(Q)とのの複合体上の蛍光色素Fとで、その運動状態又は分布状態は、殆ど区別がつかない場合がある。そこで、本発明に於いては、更に、生体試料溶液AとDNA(D)を含む溶液との混合試料溶液へ、更に、タンパク質Pに特異的に結合する抗体Xが表面に固相化されたビーズが添加される(ステップ40、図1(e)、(f))。 Thus, the prepared biological sample solution A and the solution containing DNA (D) are mixed (step 30). At this stage, if protein P is contained in biological sample solution A, DNA and protein P are bound (FIG. 1 (c)). However, even if the protein P is not contained, any biomolecule (Q) may bind or adsorb nonspecifically to the DNA (D) or the fluorescent label F (FIG. 1 (d)). Therefore, even if the fluorescence measurement described later is performed at this stage, the fluorescent dye F on the complex of DNA (D) and protein P and the complex of DNA (D) and biomolecule (Q) In some cases, the movement state or distribution state of the fluorescent dye F is almost indistinguishable. Therefore, in the present invention, the antibody X that specifically binds to the protein P is further immobilized on the surface of the mixed sample solution of the biological sample solution A and the solution containing DNA (D). Beads are added (step 40, FIGS. 1 (e), (f)).
タンパク質Pに特異的に結合する抗体Xは、タンパク質Pの一部をエピトープとするモノクローナル抗体であってよい。本発明の実験に於いては、タンパク質Pは、DNAに結合された状態となるので、好ましくは、抗体Xのエピトープは、産生された抗体Xがタンパク質PとDNAとの結合を阻害せずにタンパク質Pと結合するよう選択される。そのような抗体の調製は、当業者にとって公知の任意の方法により調製されたものであってよい。ビーズは、好ましくは、直径数nm程度から1000nm未満のこの分野で通常使用されているプラスチック、ラテックス、金コロイド、磁性粒子、ガラスなどからなる任意のものであってよい。調製された抗体Xをビーズに固相化するために、ELISAやアフィニティクロマトグラフィー等で担体に抗体を固定する手法が採用されてよい。また、ビーズの表面に抗体と共有結合する官能基を修飾したものを用い、抗体Xが確実にビーズ表面へ固定されるようにされてもよい。なお、ビーズ上に抗体Xが付加された後、結合反応に関与しない任意のタンパク質(スキムミルク、牛血清アルブミンなど)をビーズ表面に吸着させ(ブロッキング)、更に生体分子等が吸着することを回避できるようになっていることが好ましい。 The antibody X that specifically binds to the protein P may be a monoclonal antibody having a part of the protein P as an epitope. In the experiment of the present invention, since protein P is in a state of being bound to DNA, preferably, the epitope of antibody X is such that the produced antibody X does not inhibit the binding between protein P and DNA. Selected to bind to protein P. Such an antibody may be prepared by any method known to those skilled in the art. The beads may be any of plastic, latex, colloidal gold, magnetic particles, glass and the like that are commonly used in this field, preferably having a diameter of about several nm to less than 1000 nm. In order to immobilize the prepared antibody X on the beads, a method of immobilizing the antibody on a carrier by ELISA, affinity chromatography or the like may be employed. Alternatively, the antibody X may be reliably fixed to the bead surface by using a functional group that is covalently bonded to the antibody on the bead surface. In addition, after the antibody X is added to the beads, any protein (skimmed milk, bovine serum albumin, etc.) that is not involved in the binding reaction can be adsorbed (blocking) on the bead surface, and further adsorption of biomolecules can be avoided. It is preferable that it is such.
かくして、タンパク質Pに特異的に結合する抗体Xが表面に固相化されたビーズが混合溶液に添加されたとき、混合溶液中にタンパク質Pが含まれていれば、ビーズ表面上の抗体Xに結合する。従って、その場合、タンパク質Pに結合した蛍光色素Fを担持するDNA(D)もビーズ上に吸着することとなる(図1(e))。他方、タンパク質Pが存在していなければ、仮に生体分子(Q)がDNA(D)に非特異的に吸着していたとしても、DNAは、ビーズ上に吸着されない(図1(f))。この段階で、後述の蛍光分析法により蛍光測定・解析を実行すると(ステップ50)、図1(e)及び(f)の示されている如きDNA及び蛍光色素Fの状態の差が、蛍光分析法の測定・解析結果に於いて顕著に表れることとなり、これにより、DNAとタンパク質Pとの特異的な結合の有無が検出され、タンパク質Pが生体試料中に存在するか否かが特定されることとなる。 Thus, when a bead having antibody X that specifically binds to protein P immobilized on its surface is added to the mixed solution, if protein P is contained in the mixed solution, antibody X on the bead surface will Join. Therefore, in that case, DNA (D) carrying the fluorescent dye F bound to the protein P is also adsorbed on the beads (FIG. 1 (e)). On the other hand, if the protein P does not exist, even if the biomolecule (Q) is adsorbed nonspecifically to the DNA (D), the DNA is not adsorbed on the beads (FIG. 1 (f)). At this stage, when fluorescence measurement / analysis is executed by the fluorescence analysis method described later (step 50), the difference in the state of the DNA and the fluorescent dye F as shown in FIGS. It will appear prominently in the measurement and analysis results of the method, thereby detecting the presence or absence of specific binding between DNA and protein P and specifying whether protein P is present in the biological sample. It will be.
蛍光分析
上記の本発明の実施形態では、上記の如く調製された混合試料溶液に於けるDNAとタンパク質Pとの特異的な結合の有無の検出のために、レーザー共焦点顕微鏡の光学系に超高感度光検出装置を組み合わせた蛍光測定装置を用いて、一分子蛍光分析法により、混合試料溶液中の蛍光色素Fの蛍光強度が計測され、解析される。蛍光測定には、典型的には、1分子蛍光分析システム MF20(オリンパス)が用いられてよい。かかるシステムに於いては、FCS、FIDA、FDS、FCCSが実行され、蛍光色素Fがビーズ上に固定されているか否かが判定される。以下、各分析方法に於いて、蛍光色素Fがビーズ上に固定されているか否かが計測結果に如何に反映されるかについて説明する。
Fluorescence analysis In the above-described embodiment of the present invention, in order to detect the presence or absence of specific binding between DNA and protein P in the mixed sample solution prepared as described above, an optical system of a laser confocal microscope is used. The fluorescence intensity of the fluorescent dye F in the mixed sample solution is measured and analyzed by single molecule fluorescence analysis using a fluorescence measurement device combined with a high-sensitivity photodetector. For the fluorescence measurement, typically, a single molecule fluorescence analysis system MF20 (Olympus) may be used. In such a system, FCS, FIDA, FDS, and FCCS are executed to determine whether or not the fluorescent dye F is immobilized on the beads. Hereinafter, it will be described how the measurement results reflect whether or not the fluorescent dye F is immobilized on the beads in each analysis method.
FCS(蛍光相関分光法)では、微小の蛍光観察領域をブラウン運動により通過する分子の移動(並進運動)の速さが観測される。分子の並進運動の速さは、測定された蛍光強度の時間を変数とした自己相関関数の形状に反映される。分子の並進運動の速さの指標としては、測定開始時から自己相関関数の値が半分になるまでの時間の長さ(並進拡散時間)が用いられる。分子の移動は、分子の大きさが大きいほど、遅くなるので、並進拡散時間が長くなる。本発明の場合、図1(e)の如く、タンパク質Pに結合したDNAがビーズ上に固定されると、蛍光色素Fがビーズに拘束され、従って、図1(f)の場合に比して、蛍光色素Fの運動の速さが顕著に低減し、並進拡散時間の長さが顕著に長くなり、タンパク質Pに結合したDNAがビーズ上に固定された否かが検出される。更に特記すべきことは、ビーズ上に複数の蛍光色素が拘束されている場合には、それらの色素が一体的に蛍光観察領域を通過するので、蛍光強度が増大し、従って、蛍光色素一分子が通過するときに比して、蛍光強度(シグナル)の背景光(ノイズ)に対する比がよくなり、良好なS/N比にて蛍光強度の測定がなされることとなる。 In FCS (fluorescence correlation spectroscopy), the speed of movement (translational movement) of molecules passing through a minute fluorescence observation region by Brownian motion is observed. The speed of the translational movement of the molecule is reflected in the shape of the autocorrelation function with the time of the measured fluorescence intensity as a variable. As an index of the translational speed of the molecule, the length of time (translational diffusion time) from the start of measurement until the autocorrelation function value is halved is used. Since the movement of the molecule becomes slower as the size of the molecule becomes larger, the translational diffusion time becomes longer. In the case of the present invention, as shown in FIG. 1 (e), when the DNA bound to the protein P is immobilized on the beads, the fluorescent dye F is bound to the beads. Therefore, compared with the case of FIG. 1 (f). The speed of the movement of the fluorescent dye F is remarkably reduced, the length of the translational diffusion time is remarkably increased, and it is detected whether or not the DNA bound to the protein P is immobilized on the beads. Further, it should be noted that when a plurality of fluorescent dyes are constrained on the beads, the dyes pass through the fluorescence observation region as a whole, so that the fluorescence intensity increases. The ratio of the fluorescence intensity (signal) to the background light (noise) is improved compared to when the light passes, and the fluorescence intensity is measured with a good S / N ratio.
FDS(蛍光偏光解消法)では、この分野に於いて知られている如く、分子の回転ブラウン運動(自転)の速さが観測される。分子の回転運動の速さは、測定された蛍光の縦偏光と横偏光の強度の割合又は偏光度に反映される(1分子蛍光分析システムで実行される場合には、FIDAに於いて蛍光を縦偏光及び横偏光に分けて検出し偏光度が算出される。その場合、FIDA−polと称する。)。分子の回転は、分子の大きさが大きいほど、遅くなるので、偏光度が大きくなる。本発明の場合、前記のFCSと同様に、図1(e)の如く、タンパク質Pに結合したDNAがビーズ上に固定されると、蛍光色素Fがビーズに拘束され、従って、図1(f)の場合に比して、蛍光色素Fの回転運動の速さが顕著に低減し、偏光度が長くなり、タンパク質Pに結合したDNAがビーズ上に固定された否かが検出される。また、1分子蛍光分析システムにて測定する場合には、ビーズ上に複数の蛍光色素が拘束されている場合には、それらの色素が一体的に蛍光観察領域を通過するので、蛍光強度が増大し、測定のS/N比が向上する。 In FDS (fluorescence depolarization), as is known in this field, the speed of rotational Brownian motion (rotation) of molecules is observed. The speed of the rotational movement of the molecule is reflected in the ratio of the intensity of the longitudinal and transverse polarization of the measured fluorescence or the degree of polarization (if implemented in a single molecule fluorescence analysis system, the fluorescence is measured in FIDA. Detection is performed separately for longitudinally polarized light and transversely polarized light, and the degree of polarization is calculated (in this case, referred to as FIDA-pol). Since the rotation of the molecule becomes slower as the size of the molecule increases, the degree of polarization increases. In the case of the present invention, as in the FCS described above, as shown in FIG. 1 (e), when DNA bound to the protein P is immobilized on the beads, the fluorescent dye F is bound to the beads, and accordingly, FIG. ), The speed of the rotational movement of the fluorescent dye F is significantly reduced, the degree of polarization is increased, and it is detected whether the DNA bound to the protein P is immobilized on the beads. Also, when measuring with a single molecule fluorescence analysis system, if multiple fluorescent dyes are constrained on the beads, the fluorescence intensity increases because these dyes pass through the fluorescence observation region as a whole. In addition, the S / N ratio of the measurement is improved.
FIDA(蛍光強度分布解析法)では、微小の蛍光観察領域内から発せられる光子の検出(フォトンカウンティング)を行い、単位時間当たりの光子が検出された頻度を統計的に処理することによって、微小の蛍光観察領域内の蛍光粒子の数密度と、一蛍光粒子当たりの蛍光強度が算出される。本発明の場合、タンパク質Pに結合したDNAがビーズ上に固定されると、蛍光色素Fがビーズに拘束され一つの蛍光粒子として運動することになるので、蛍光粒子の数密度が低減する一方、ビーズに複数の蛍光色素分子Fが存在することにより一蛍光粒子当たりの蛍光強度が増大する。従って、蛍光粒子の数密度の低減と一蛍光粒子当たりの蛍光強度の増大からタンパク質Pに結合したDNAがビーズ上に固定された否かが検出される。また、一蛍光粒子当たりの蛍光強度が増大すると、一時に計測される蛍光強度(検出光子数)が増大し、測定のS/N比が向上する。 In FIDA (fluorescence intensity distribution analysis method), photons emitted from a minute fluorescence observation region are detected (photon counting), and the frequency of detection of photons per unit time is statistically processed, thereby obtaining minute amounts. The number density of fluorescent particles in the fluorescent observation region and the fluorescent intensity per fluorescent particle are calculated. In the case of the present invention, when the DNA bound to the protein P is fixed on the beads, the fluorescent dye F is bound to the beads and moves as one fluorescent particle, so that the number density of the fluorescent particles is reduced. The presence of a plurality of fluorescent dye molecules F on the beads increases the fluorescence intensity per fluorescent particle. Therefore, it is detected from the decrease in the number density of the fluorescent particles and the increase in the fluorescence intensity per fluorescent particle whether the DNA bound to the protein P is immobilized on the beads. Further, when the fluorescence intensity per fluorescent particle increases, the fluorescence intensity (number of detected photons) measured at a time increases, and the S / N ratio of measurement improves.
FCCS(蛍光相互相関分光法)では、二つの発光波長の異なる蛍光標識が微小の蛍光観察領域をブラウン運動により通過する際に、各々の標識の蛍光強度の変化から二つの蛍光標識の運動に相関があるか否かを判定することができる。もし蛍光標識が一つの担体(分子)に存在する場合には、二つの蛍光強度の変化が一体的に変化するが、蛍光標識が別々の担体に存在する場合には、二つの蛍光強度の変化は、独立に変化することとなる。蛍光標識が一つの担体に乗っているか否かは、二つの蛍光強度の相互相関関数から判定することができる。本発明の場合、互いに異なる蛍光色素にて標識されたDNAを用いれば、別々の蛍光色素を担持するDNAがタンパク質Pを介してビーズ上に固定されることにより、二つの色素からの蛍光色素に相関があることが検出され、各DNAが自由に運動している場合(ビーズに固定されていない場合)に比して、相互相関関数が高くなるので、タンパク質Pに結合したDNAがビーズ上に固定された否かが検出される。また、前記の蛍光分析法と同様に、一つのビーズから複数の色素による蛍光が発せられることにより、一時に計測される蛍光強度が増大し、測定のS/N比が向上する。 In FCCS (fluorescence cross-correlation spectroscopy), when two fluorescent labels with different emission wavelengths pass through a minute fluorescence observation region by Brownian motion, the change in fluorescence intensity of each label correlates with the movement of the two fluorescent labels. It can be determined whether or not there is. If the fluorescent label is present on one carrier (molecule), the change in the two fluorescent intensities changes together, but if the fluorescent label is present on a separate carrier, the two fluorescent intensity changes Will change independently. Whether or not the fluorescent label is on one carrier can be determined from the cross-correlation function of the two fluorescent intensities. In the case of the present invention, if DNAs labeled with different fluorescent dyes are used, DNAs carrying different fluorescent dyes are immobilized on the beads via the protein P, so that the fluorescent dyes from the two dyes are converted into the fluorescent dyes. Since the correlation is detected and the cross-correlation function is higher than when each DNA is freely moving (not fixed to the beads), the DNA bound to the protein P is present on the beads. Whether it is fixed or not is detected. Similarly to the fluorescence analysis method described above, fluorescence from a plurality of dyes is emitted from a single bead, thereby increasing the fluorescence intensity measured at a time and improving the S / N ratio of the measurement.
上記の一連の蛍光分析法に於いて、特記されるべきことは、一つの結果を検出するために要する試料量は、数十μl程度でよく、また、測定時間は、5−15秒程度の測定を数回繰り返す程度よく、従って、従前の生化学的な手法に比べ、試料量と時間を大幅に低減することができる。しかも、従前の一分子蛍光分析の手法に比較すると、測定される蛍光強度が数倍程度大きくなるので、S/N比が向上し、試料に夾雑物が在っても、特異的な結合反応のみを良好に検出できることとなる。 In the above-mentioned series of fluorescence analysis methods, it should be noted that the sample amount required to detect one result may be about several tens of μl, and the measurement time is about 5-15 seconds. The measurement is repeated several times. Therefore, the sample amount and time can be greatly reduced as compared with the conventional biochemical method. Moreover, compared to the conventional single-molecule fluorescence analysis method, the measured fluorescence intensity is several times larger, so that the S / N ratio is improved and a specific binding reaction can be achieved even if there are impurities in the sample. Only can be detected satisfactorily.
ところで、上記の方法に於いて、ビーズを添加した段階でのみ蛍光測定・分析を実行しても、その結果の数値から蛍光色素がビーズ上にあるか否かを推定することができるが、図2(B)に例示されている如く、蛍光標識されたDNAのみの段階(ステップ10)、生体試料溶液とDNA溶液を混合した状態(ステップ30)で、比較のために蛍光測定・解析を実行してもよい(ステップ15、35)。ステップ35の段階で、ステップ15の場合と蛍光測定・解析の結果に有意な差、即ち、特異・非特異によらず、第一の分子が関与する結合反応の発生が認められないと考える場合には、ビーズの添加及びその後の蛍光測定を実施しなくてもよいであろう。この点に関し、ステップ35とステップ50とで実行する蛍光測定の方法は、別々であってもよい。例えば、ステップ30に於いては、FCSを実行し、ステップ50では、ステップ35のFCSの変化を裏付ける目的でFIDAを実行するようにしてもよい。(FCSの場合、添加されるビーズ径が大き過ぎる場合、並進ブラウン運動が小さくなり、測定時間中に殆ど移動しないといったことが起き得る。他方、FIDAの場合、ビーズを添加しない場合には、蛍光色素を有するDNAは、DNA結合タンパク質に一対一に結合するのみなので、蛍光粒子数は変化せず、結合により色素の蛍光強度が何らかの理由で変化しない限り、FIDAの結果は変化しない。)。ステップ35とステップ50とで別々の蛍光分析法を用いる場合、比較のためには、ステップ15に於いて両方の分析法による測定を行っておくことが望ましい。 By the way, in the above method, even if the fluorescence measurement / analysis is executed only at the stage where the beads are added, it can be estimated from the numerical value of the result whether the fluorescent dye is on the beads. As illustrated in 2 (B), fluorescence measurement / analysis is performed for comparison in the stage where only the fluorescently labeled DNA is present (step 10) and the biological sample solution and the DNA solution are mixed (step 30). (Steps 15 and 35). At the stage of step 35, when it is considered that there is no significant difference between the result of fluorescence measurement / analysis in the case of step 15, that is, the occurrence of the binding reaction involving the first molecule irrespective of specific / non-specific. In some cases, the addition of beads and subsequent fluorescence measurements may not be performed. In this regard, the fluorescence measurement methods executed in step 35 and step 50 may be different. For example, FCS may be executed in step 30, and FIDA may be executed in step 50 for the purpose of supporting the change in FCS in step 35. (In the case of FCS, if the added bead diameter is too large, the translational Brownian motion will be small and may hardly move during the measurement time. On the other hand, in the case of FIDA, if no beads are added, fluorescence Since DNA having a dye only binds to a DNA binding protein on a one-to-one basis, the number of fluorescent particles does not change, and the result of FIDA does not change unless the fluorescence intensity of the dye changes due to binding for some reason. When separate fluorescence analysis methods are used in step 35 and step 50, it is desirable to perform measurement by both analysis methods in step 15 for comparison.
その他の実施形態について
上記の手順は、生体試料に含まれるDNA結合タンパク質Pに特異的に結合するDNAの塩基配列を検出するために用いることもできる。その場合、DNA結合タンパク質Pに結合すると思われる塩基配列を有するDNAを蛍光標識したものが用いられる。DNAがビーズ上に固定されたことが検出されれば、そのDNAの塩基配列にDNA結合タンパク質Pと特異的に結合する部位が存在することが特定される。
The above procedure for other embodiments can also be used to detect the base sequence of DNA that specifically binds to the DNA binding protein P contained in the biological sample. In that case, a fluorescently labeled DNA having a base sequence that is supposed to bind to the DNA binding protein P is used. If it is detected that the DNA is immobilized on the beads, it is specified that a site that specifically binds to the DNA binding protein P exists in the base sequence of the DNA.
また、上記の方法に於いて、蛍光標識される第一の分子、第二の分子は、任意のDNA、タンパク質、その他の生体分子であってよいことは理解されるべきである。例えば、蛍光標識される第一の分子を生体試料中に含まれるか否かが検出される分子の抗体とし、第三の分子をその検出対象の分子の別の部分のエピトープに対する抗体としてもよい。蛍光標識された抗体がビーズ上に固定されれば、生体試料中に第一及び第三の分子である抗体に対する抗原が存在することが検出される。 In the above method, it should be understood that the first molecule and the second molecule to be fluorescently labeled may be any DNA, protein, or other biomolecule. For example, the first molecule to be fluorescently labeled may be an antibody for a molecule to be detected whether it is contained in a biological sample, and the third molecule may be an antibody against an epitope of another part of the molecule to be detected. . When the fluorescently labeled antibody is immobilized on the beads, it is detected that an antigen against the antibody as the first and third molecules is present in the biological sample.
本発明の方法は、試料中に夾雑物が存在していても、有利に特定の分子の特異的結合を非特異的な結合と見分けた態様にて検出可能なので、病気の臨床診断、生理活性物質のスクリーニングのツールとして利用可能である。生体試料中の任意の分子を特異的に化学的又は遺伝子工学的に(GFPなど蛍光タンパク質の発現により)蛍光標識することが可能であれば、第一の分子を含む第一の試料が生体試料であってもよく、また、第二の試料が、任意の態様にて調製された又は物質であってもよいことは理解されるべきであり、そのような場合も本発明の範囲に属する。 In the method of the present invention, even when contaminants are present in the sample, it is possible to detect the specific binding of a specific molecule in a mode that is advantageously distinguished from non-specific binding. It can be used as a screening tool for substances. If any molecule in a biological sample can be fluorescently labeled specifically or chemically (by the expression of a fluorescent protein such as GFP), the first sample containing the first molecule is the biological sample. It should also be understood that the second sample may be prepared or material in any manner and such cases are within the scope of the present invention.
Claims (11)
蛍光標識された第一の分子を含む第一の試料と、前記蛍光標識された第一の分子と特異的に結合するか否かが判定される第二の分子を含む第二の試料とを混合し混合試料溶液を調製する過程と、
前記第二の分子に特異的に結合する第三の分子が表面に固相化された外径1μm以下の粒子を前記第一及び第二の試料の混合試料溶液へ添加する過程と、
前記粒子が添加された前記混合試料溶液中の前記第一の分子の蛍光標識の蛍光強度を測定する過程と、
前記蛍光強度に基づいて、前記第一の分子が前記粒子上に固定されているか否かを判定する過程と
を含み、前記第一の分子が前記粒子上に固定されている判定された場合には、前記第一の分子が前記第二の分子に特異的に結合したと判定することを特徴とする方法。 A method for detecting specific binding of a specific molecule, comprising:
A first sample containing a fluorescently labeled first molecule and a second sample containing a second molecule to be determined whether or not it specifically binds to the fluorescently labeled first molecule Mixing and preparing a mixed sample solution;
Adding a particle having an outer diameter of 1 μm or less in which a third molecule that specifically binds to the second molecule is immobilized on the surface thereof, to the mixed sample solution of the first and second samples;
Measuring the fluorescence intensity of the fluorescent label of the first molecule in the mixed sample solution to which the particles are added;
Determining whether the first molecule is immobilized on the particle based on the fluorescence intensity, and when determining that the first molecule is immobilized on the particle Determining that the first molecule is specifically bound to the second molecule.
蛍光標識された第一の分子を含む第一の試料と、前記蛍光標識された第一の分子と特異的に結合する第二の分子が存在するか否かが判定される第二の試料とを混合し混合試料溶液を調製する過程と、
前記第二の分子に特異的に結合する第三の分子が表面に固相化された外径1μm以下の粒子を前記第一及び第二の試料の混合試料溶液へ添加する過程と、
前記粒子が添加された前記混合試料溶液中の前記第一の分子の蛍光標識の蛍光強度を測定する過程と、
前記蛍光強度に基づいて、前記第一の分子が前記粒子上に固定されているか否かを判定する過程と
を含み、前記第一の分子が前記粒子上に固定されている判定された場合には、前記第二の分子が前記第二の試料に存在していると判定することを特徴とする方法。 A method for detecting specific binding of a specific molecule, comprising:
A first sample containing a fluorescently labeled first molecule; a second sample to determine whether there is a second molecule that specifically binds to the fluorescently labeled first molecule; Mixing the sample solution to prepare a mixed sample solution,
Adding a particle having an outer diameter of 1 μm or less in which a third molecule that specifically binds to the second molecule is immobilized on the surface thereof, to the mixed sample solution of the first and second samples;
Measuring the fluorescence intensity of the fluorescent label of the first molecule in the mixed sample solution to which the particles are added;
Determining whether the first molecule is immobilized on the particle based on the fluorescence intensity, and when determining that the first molecule is immobilized on the particle Determining that the second molecule is present in the second sample.
4. The method according to claim 1, wherein the surface of the particle prevents adsorption or binding of molecules present in the mixed solution excluding specific binding between the second molecule and the third molecule. A method characterized in that an anti-adsorption treatment is applied.
Priority Applications (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2006299696A JP2010019553A (en) | 2006-11-02 | 2006-11-02 | Specific bonding riaction detecting method of molecule by monomolecular fluorometric analysis |
| PCT/JP2007/071002 WO2008053822A1 (en) | 2006-11-02 | 2007-10-29 | Method of detecting specific bond reaction of molecule by single molecule fluorometry |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2006299696A JP2010019553A (en) | 2006-11-02 | 2006-11-02 | Specific bonding riaction detecting method of molecule by monomolecular fluorometric analysis |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JP2010019553A true JP2010019553A (en) | 2010-01-28 |
Family
ID=39344163
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2006299696A Withdrawn JP2010019553A (en) | 2006-11-02 | 2006-11-02 | Specific bonding riaction detecting method of molecule by monomolecular fluorometric analysis |
Country Status (2)
| Country | Link |
|---|---|
| JP (1) | JP2010019553A (en) |
| WO (1) | WO2008053822A1 (en) |
Cited By (16)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2012026929A (en) * | 2010-07-26 | 2012-02-09 | Ooyashiki Kazuma | Method for determining dna methylation degree by single-molecule fluorescence analysis method |
| WO2013125124A1 (en) * | 2012-02-22 | 2013-08-29 | オリンパス株式会社 | Method for detecting target particles |
| EP2784507A1 (en) | 2013-03-29 | 2014-10-01 | FUJIFILM Corporation | Test substance assay method, test substance assay kit, and test substance assay reagent |
| EP2952880A1 (en) | 2014-06-05 | 2015-12-09 | Fujifilm Corporation | Test substance measurement kit and test substance measurement method |
| US9354176B2 (en) | 2011-08-11 | 2016-05-31 | Olympus Corporation | Method for detecting a target particle |
| US9771612B2 (en) | 2012-03-21 | 2017-09-26 | Olympus Corporation | Method for detecting a target nucleic acid molecule |
| US9841418B2 (en) | 2011-08-30 | 2017-12-12 | Olympus Corporation | Method for detecting target particle |
| WO2018181799A1 (en) | 2017-03-30 | 2018-10-04 | 富士フイルム株式会社 | Kit, method and reagent for measuring measurement target substance |
| WO2018181798A1 (en) | 2017-03-30 | 2018-10-04 | 富士フイルム株式会社 | Kit, method and reagent for measuring measurement target substance |
| WO2019163929A1 (en) | 2018-02-22 | 2019-08-29 | 富士フイルム株式会社 | Progesterone measurement kit, progesterone measurement method, and progesterone measurement reagent |
| US11486879B2 (en) | 2017-03-30 | 2022-11-01 | Fujifilm Corporation | Kit and method for measuring measurement target substance in biological sample |
| US11674966B2 (en) | 2017-03-30 | 2023-06-13 | Fujifilm Corporation | Kit and method for measuring measurement target substance in biological sample |
| US11674954B2 (en) | 2017-03-30 | 2023-06-13 | Fujifilm Corporation | Kit and method for measuring measurement target substance in biological sample |
| US11821896B2 (en) | 2017-03-30 | 2023-11-21 | Fujifilm Corporation | Kit and method for measuring measurement target substance in biological sample |
| US12195654B2 (en) | 2016-08-23 | 2025-01-14 | Fujifilm Corporation | Luminescent particle and compound |
| US12352753B2 (en) | 2019-02-06 | 2025-07-08 | Fujifilm Corporation | Kit for measuring measurement target substance and method for measuring measurement target substance |
Families Citing this family (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CA2759211C (en) * | 2009-04-24 | 2017-02-28 | Daniel Kelly Treiber | Assay for detecting protein by a cellular process |
| CN104977277B (en) * | 2015-07-17 | 2017-08-04 | 华东理工大学 | A nanovesicle capable of simultaneously detecting wild-type and mutant p53 proteins in cells |
| CN108195801B (en) * | 2017-11-17 | 2020-11-24 | 北京林业大学 | A single-molecule method to observe the distribution and dynamics of stomatal guard cell membrane proteins |
Family Cites Families (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2001272404A (en) * | 2000-03-27 | 2001-10-05 | Olympus Optical Co Ltd | Antigen/antibody reaction by fluorescent correlation spectroscopy |
| JP2005308412A (en) * | 2004-04-16 | 2005-11-04 | Olympus Corp | Efficient function analyzing screening method of protein using fluorescence made in acellular protein synthesizing system |
| JP4338590B2 (en) * | 2004-06-03 | 2009-10-07 | 独立行政法人科学技術振興機構 | Rapid detection and / or measurement of antigen by fluorescence correlation spectroscopy. |
-
2006
- 2006-11-02 JP JP2006299696A patent/JP2010019553A/en not_active Withdrawn
-
2007
- 2007-10-29 WO PCT/JP2007/071002 patent/WO2008053822A1/en active Application Filing
Cited By (25)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2012026929A (en) * | 2010-07-26 | 2012-02-09 | Ooyashiki Kazuma | Method for determining dna methylation degree by single-molecule fluorescence analysis method |
| US9354176B2 (en) | 2011-08-11 | 2016-05-31 | Olympus Corporation | Method for detecting a target particle |
| US9841418B2 (en) | 2011-08-30 | 2017-12-12 | Olympus Corporation | Method for detecting target particle |
| WO2013125124A1 (en) * | 2012-02-22 | 2013-08-29 | オリンパス株式会社 | Method for detecting target particles |
| CN104115003A (en) * | 2012-02-22 | 2014-10-22 | 奥林巴斯株式会社 | Method for detecting target particles |
| JPWO2013125124A1 (en) * | 2012-02-22 | 2015-07-30 | オリンパス株式会社 | Target particle detection method |
| US9428796B2 (en) | 2012-02-22 | 2016-08-30 | Olympus Corporation | Method for detecting a target particle |
| US9771612B2 (en) | 2012-03-21 | 2017-09-26 | Olympus Corporation | Method for detecting a target nucleic acid molecule |
| EP2784507A1 (en) | 2013-03-29 | 2014-10-01 | FUJIFILM Corporation | Test substance assay method, test substance assay kit, and test substance assay reagent |
| US10161935B2 (en) | 2014-06-05 | 2018-12-25 | Fujifilm Corporation | Test substance measurement kit and test substance measurement method |
| EP2952880A1 (en) | 2014-06-05 | 2015-12-09 | Fujifilm Corporation | Test substance measurement kit and test substance measurement method |
| US12195654B2 (en) | 2016-08-23 | 2025-01-14 | Fujifilm Corporation | Luminescent particle and compound |
| US11674954B2 (en) | 2017-03-30 | 2023-06-13 | Fujifilm Corporation | Kit and method for measuring measurement target substance in biological sample |
| KR20190120330A (en) | 2017-03-30 | 2019-10-23 | 후지필름 가부시키가이샤 | Kits, Methods and Reagents for Measuring the Subject Material |
| KR20190120328A (en) | 2017-03-30 | 2019-10-23 | 후지필름 가부시키가이샤 | Kits, Methods and Reagents for Measuring the Subject Material |
| US11486879B2 (en) | 2017-03-30 | 2022-11-01 | Fujifilm Corporation | Kit and method for measuring measurement target substance in biological sample |
| US11519860B2 (en) | 2017-03-30 | 2022-12-06 | Fujifilm Corporation | Kit, method and reagent for measuring measurement target substance |
| US11674966B2 (en) | 2017-03-30 | 2023-06-13 | Fujifilm Corporation | Kit and method for measuring measurement target substance in biological sample |
| WO2018181799A1 (en) | 2017-03-30 | 2018-10-04 | 富士フイルム株式会社 | Kit, method and reagent for measuring measurement target substance |
| US11733244B2 (en) | 2017-03-30 | 2023-08-22 | Fujifilm Corporation | Kit, method, and reagent for measuring measurement target substance |
| US11821896B2 (en) | 2017-03-30 | 2023-11-21 | Fujifilm Corporation | Kit and method for measuring measurement target substance in biological sample |
| WO2018181798A1 (en) | 2017-03-30 | 2018-10-04 | 富士フイルム株式会社 | Kit, method and reagent for measuring measurement target substance |
| WO2019163929A1 (en) | 2018-02-22 | 2019-08-29 | 富士フイルム株式会社 | Progesterone measurement kit, progesterone measurement method, and progesterone measurement reagent |
| US12235263B2 (en) | 2018-02-22 | 2025-02-25 | Fujifilm Corporation | Progesterone measuring kit, progesterone measuring method, and progesterone measuring reagent |
| US12352753B2 (en) | 2019-02-06 | 2025-07-08 | Fujifilm Corporation | Kit for measuring measurement target substance and method for measuring measurement target substance |
Also Published As
| Publication number | Publication date |
|---|---|
| WO2008053822A1 (en) | 2008-05-08 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP2010019553A (en) | Specific bonding riaction detecting method of molecule by monomolecular fluorometric analysis | |
| JP6013328B2 (en) | Target particle quantification method | |
| US10379119B2 (en) | Synthetic thread based lateral flow immunoassay | |
| US10620196B2 (en) | Assays for detecting analytes in samples and kits and compositions related thereto | |
| CN1735808A (en) | FRET probes and methods for detecting interacting molecules | |
| JP5428322B2 (en) | Assay method using plasmon excitation sensor | |
| KR101483725B1 (en) | Analysis and analysis of specific materials in samples using surface enhanced Raman spectroscopy | |
| JP2009540326A (en) | Increased specificity of analyte detection by measuring bound and unbound labels | |
| Hasanzadeh et al. | Optical immunosensing of effective cardiac biomarkers on acute myocardial infarction | |
| Peoples et al. | Microfluidic immunoaffinity separations for bioanalysis | |
| WO2013031365A1 (en) | Method for detecting target particles | |
| KR20230121123A (en) | Analyte detection method | |
| JP6013332B2 (en) | Target particle counting method | |
| KR101521565B1 (en) | Biomolecules analysis kit and analysis method using the same | |
| US20200256790A1 (en) | Uv solid state detection and methods therefor | |
| JP2011047802A (en) | Concentration measuring method of target material | |
| WO2012102681A1 (en) | A sensing platform and method for detecting an analyte | |
| CN118891510A (en) | Analyte detection methods | |
| JP2007225348A (en) | Method for detecting a plurality of adjacent fine particles and method for detecting a test substance using the same | |
| JP2009288069A (en) | Target substance detection method | |
| RU2339953C1 (en) | Method of multyanalite immunoassay with use of microparticles | |
| WO2003081243A1 (en) | Fluorescent polarization method, kit used therefor and biosensor | |
| Nie et al. | Multiplexed fluorescent microarray for human salivary protein analysis using polymer microspheres and fiber-optic bundles | |
| JP2010256010A (en) | Method of fluorometrically detecting antigen-antibody reaction | |
| EP3797867B1 (en) | Evanescence biosensor for blood |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A300 | Application deemed to be withdrawn because no request for examination was validly filed |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20100202 |