JP2010032966A - Vibration correction control circuit and imaging apparatus equipped therewith - Google Patents
Vibration correction control circuit and imaging apparatus equipped therewith Download PDFInfo
- Publication number
- JP2010032966A JP2010032966A JP2008197630A JP2008197630A JP2010032966A JP 2010032966 A JP2010032966 A JP 2010032966A JP 2008197630 A JP2008197630 A JP 2008197630A JP 2008197630 A JP2008197630 A JP 2008197630A JP 2010032966 A JP2010032966 A JP 2010032966A
- Authority
- JP
- Japan
- Prior art keywords
- phase
- stepping motor
- vibration
- signal
- stepping
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000003384 imaging method Methods 0.000 title claims abstract description 53
- 238000001514 detection method Methods 0.000 claims abstract description 28
- 230000003287 optical effect Effects 0.000 claims abstract description 20
- 238000006243 chemical reaction Methods 0.000 claims abstract description 14
- ORQBXQOJMQIAOY-UHFFFAOYSA-N nobelium Chemical compound [No] ORQBXQOJMQIAOY-UHFFFAOYSA-N 0.000 abstract description 8
- 230000001186 cumulative effect Effects 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000003111 delayed effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
Images
Landscapes
- Adjustment Of Camera Lenses (AREA)
- Studio Devices (AREA)
Abstract
【課題】振動補正制御回路においてステッピングモータによる振動の補正の精度を変更可能とする。
【解決手段】撮像装置の振動を検出する振動検出素子102から出力される振動検出信号をデジタル信号に変換するアナログ/デジタル変換手段20と、アナログ/デジタル変換手段20でデジタル化された振動検出信号に基づいて撮像装置の移動量を求めるジャイロフィルタ22と、光学部品又は撮像素子の現在の位置と移動量とに基づいてステッピングモータ104の回転駆動量を求める回転制御手段24と、回転駆動量に応じてステッピングモータ10を制御する制御信号を生成して出力するステッピング制御手段26とを備え、ステッピング制御手段26はステッピングモータ104を異なる位相分解能で駆動する制御信号を生成して出力する。
【選択図】図1In a vibration correction control circuit, the accuracy of vibration correction by a stepping motor can be changed.
An analog / digital conversion means 20 that converts a vibration detection signal output from a vibration detection element 102 that detects vibration of an imaging apparatus into a digital signal, and a vibration detection signal that is digitized by the analog / digital conversion means 20 is provided. Based on the gyro filter 22 for determining the amount of movement of the image pickup device, the rotation control means 24 for determining the amount of rotation of the stepping motor 104 based on the current position and amount of movement of the optical component or image sensor, and the amount of rotation drive In response to this, a stepping control means 26 for generating and outputting a control signal for controlling the stepping motor 10 is generated, and the stepping control means 26 generates and outputs a control signal for driving the stepping motor 104 with different phase resolutions.
[Selection] Figure 1
Description
本発明は、撮像装置に組み込まれる振動補正制御回路に関する。 The present invention relates to a vibration correction control circuit incorporated in an imaging apparatus.
近年、デジタルスチルカメラやデジタルビデオカメラ等の撮像装置は、それに備わる撮像素子の画素数を増加させることによって高画質化を実現している。その一方で、撮像装置の高画質化を実現する他の方法として、撮像装置を持つ手のぶれによって生じる被写体のぶれを防止するために、撮像装置は手振れ補正機能を備えることが望まれている。 In recent years, an image pickup apparatus such as a digital still camera or a digital video camera achieves high image quality by increasing the number of pixels of an image pickup element provided therein. On the other hand, as another method for realizing high image quality of the image pickup apparatus, it is desired that the image pickup apparatus has a camera shake correction function in order to prevent subject shake caused by hand shake with the image pickup apparatus. .
具体的には、撮像装置はジャイロセンサなどの検出素子を備え、撮像装置の振動によって生じる角速度成分に応じてレンズや撮像素子などの光学部品を駆動して被写体のぶれを防止する。これによって、撮像装置が振動しても、取得される映像信号に振動の成分が反映されることはなく、像ぶれのない高画質な映像信号を取得することができる。 Specifically, the imaging apparatus includes a detection element such as a gyro sensor, and drives an optical component such as a lens or an imaging element according to an angular velocity component generated by vibration of the imaging apparatus to prevent subject blurring. Accordingly, even when the imaging apparatus vibrates, the vibration component is not reflected in the acquired video signal, and a high-quality video signal without image blur can be acquired.
図10に、ステッピングモータを用いた手振れ補正駆動機構を備えた撮像装置の構成図を示す(特許文献1)。この構成では、Xジャイロ10、Yジャイロ12で検出された撮像装置の振動の角速度を受けて、CPU14が角速度を撮像装置の移動量を示す角度に変換し、その角度の情報に応じたモータ駆動パルス(ステッピングモータの制御信号)を生成してモータドライバ16に出力する。モータドライバ16は、モータ駆動パルスに応じたコイル電流を発生させてステッピングモータ18を駆動させる。ステッピングモータ18には光学部品又は撮像素子が連結されており、ステッピングモータ18の駆動により撮像装置の振動を補償するように光学部品又は撮像素子の位置が補正される。
FIG. 10 shows a configuration diagram of an imaging apparatus including a camera shake correction drive mechanism using a stepping motor (Patent Document 1). In this configuration, the
ステッピングモータを用いた手振れ補正機構は、ボイスコイルモータ等の他のモータを用いたものに比べて、撮像装置に設ける部品点数が少ない。ボイスコイルモータを用いる場合、撮像装置は、レンズ等の光学部品の位置を検出するためにホール素子と、ホール素子の出力する信号を処理する信号処理回路と、を備える。ステッピングモータを用いる場合は、上記のホール素子や信号処理回路が不要となり、撮像装置のコストを低下させることができる。また、ステッピングモータを用いた手振れ補正機構は、ボイスコイルモータを用いたものとは部品構成が異なるため、モータの駆動を制御する制御回路の構成も異なる。 The camera shake correction mechanism using the stepping motor has a smaller number of parts provided in the imaging device than that using another motor such as a voice coil motor. When a voice coil motor is used, the imaging apparatus includes a hall element and a signal processing circuit that processes a signal output from the hall element in order to detect the position of an optical component such as a lens. In the case of using a stepping motor, the Hall element and the signal processing circuit are not necessary, and the cost of the imaging apparatus can be reduced. In addition, since the shake correction mechanism using the stepping motor has a different component configuration from that using the voice coil motor, the configuration of the control circuit that controls the driving of the motor is also different.
ところで、撮像装置により撮像を行う際に被写体の種類等に応じて撮像のモードを変更し、撮像に適した条件で撮像を行うことが望まれている。例えば、高画質で撮像を行う場合には光学部品や撮像素子の位置を細かく制御し、手振れ等の撮像への影響をより高い精度で抑制し、低画質で撮像を行う場合には光学部品や撮像素子の位置を大まかに制御し、より高速な撮像を可能とすることが望まれる場合がある。 By the way, when imaging is performed by the imaging apparatus, it is desired to change the imaging mode according to the type of the subject and perform imaging under conditions suitable for imaging. For example, when imaging with high image quality, the positions of optical components and image sensors are finely controlled, and the influence on imaging such as camera shake is suppressed with higher accuracy. When imaging with low image quality, optical components and In some cases, it is desired to roughly control the position of the imaging element to enable higher-speed imaging.
本発明の1つの態様は、振動に応じて撮像装置の光学部品又は撮像素子をステッピングモータにより駆動して、振動による撮像への影響を低減させる振動補正制御回路であって、撮像装置の振動を検出する振動検出素子から出力される振動検出信号をデジタル信号に変換するアナログ/デジタル変換部と、前記アナログ/デジタル変換部でデジタル化された前記振動検出信号に基づいて撮像装置の移動量を求めるジャイロフィルタと、前記光学部品又は前記撮像素子の現在の位置と、前記移動量と、に基づいて、前記ステッピングモータの回転駆動量を求める回転制御部と、前記回転駆動量に応じて前記ステッピングモータを制御する制御信号を生成して出力するステッピング制御部と、を備え、前記ステッピング制御部は、前記ステッピングモータを異なる位相分解能で駆動する前記制御信号を生成して出力することを特徴とする。 One aspect of the present invention is a vibration correction control circuit that drives an optical component or an image sensor of an imaging device according to vibrations by a stepping motor to reduce the influence on the imaging due to vibrations. An analog / digital conversion unit that converts a vibration detection signal output from the vibration detection element to be detected into a digital signal, and a movement amount of the imaging device is obtained based on the vibration detection signal digitized by the analog / digital conversion unit. A gyro filter, a rotation control unit that obtains a rotation driving amount of the stepping motor based on a current position of the optical component or the image sensor, and the movement amount; and the stepping motor according to the rotation driving amount. A stepping control unit that generates and outputs a control signal for controlling the stepping control unit. And wherein the generating and outputting the control signal for driving the motor at different phase resolution.
また、本発明の別の態様は、光学部品と、撮像素子と、前記光学部品又は前記撮像素子を駆動するステッピングモータと、振動を検出する振動検出素子から出力される振動検出信号をデジタル信号に変換するアナログ/デジタル変換部と、前記アナログ/デジタル変換部でデジタル化された前記振動検出信号に基づいて撮像装置の移動量を求めるジャイロフィルタと、前記光学部品又は前記撮像素子の現在の位置と、前記移動量と、に基づいて、前記ステッピングモータの回転駆動量を求める回転制御部と、前記回転駆動量に応じて前記ステッピングモータを制御する制御信号を生成して出力するステッピング制御部と、を備え、前記ステッピング制御部は、前記ステッピングモータを異なる位相分解能で駆動する前記制御信号を生成して出力することを特徴とする撮像装置である。 According to another aspect of the present invention, an optical component, an image sensor, a stepping motor that drives the optical component or the image sensor, and a vibration detection signal output from a vibration detection element that detects vibration are converted into digital signals. An analog / digital conversion unit for conversion, a gyro filter for obtaining a movement amount of the imaging device based on the vibration detection signal digitized by the analog / digital conversion unit, and a current position of the optical component or the imaging device A rotation control unit for obtaining a rotational drive amount of the stepping motor based on the movement amount; a stepping control unit for generating and outputting a control signal for controlling the stepping motor according to the rotational drive amount; The stepping control unit generates and outputs the control signal for driving the stepping motor with different phase resolutions. An imaging device which is characterized in that.
ここで、前記ステッピング制御部は、前記ステッピングモータの位相分解能の切替信号に応じて、前記ステッピングモータの回転の各位相に対して複数の信号の組み合わせを変更した前記制御信号を生成して出力することが好適である。 Here, the stepping control unit generates and outputs the control signal in which a combination of a plurality of signals is changed for each phase of the rotation of the stepping motor in accordance with the phase resolution switching signal of the stepping motor. Is preferred.
例えば、前記ステッピング制御部は、パルス幅変調された信号を前記制御信号として生成して出力することが好適である。 For example, the stepping control unit preferably generates and outputs a pulse width modulated signal as the control signal.
本発明によれば、ステッピングモータにより光学部品又は撮像素子を駆動することによって振動を補正するための振動補正制御回路において、ステッピングモータによる振動の補正の精度を変更することができる。 According to the present invention, in the vibration correction control circuit for correcting vibration by driving an optical component or an image sensor with a stepping motor, the accuracy of vibration correction by the stepping motor can be changed.
本発明の実施形態における振動補正制御回路100は、図1に示すように、アナログ/デジタル変換部(ADC)20、ジャイロフィルタ22、回転制御部24及びステッピング制御部26を含んで構成される。
As shown in FIG. 1, the vibration
振動補正制御回路100は、振動検出素子102及びステッピングモータ104に接続される。振動検出素子102は、ヨー方向及びピッチ方向の2軸に沿って振動の成分を直交変換可能なように少なくとも2軸以上に対して設けられる。振動検出素子102は、例えば、ジャイロセンサを含んで構成される。通常、撮像装置のヨー方向(X軸方向)及びピッチ方向(Y軸方向)について振動を検出できるように振動検出素子102を設置する。振動検出素子102の出力信号に基づいてヨー方向(X軸方向)及びピッチ方向(Y軸方向)にレンズ106の位置が制御される。
The vibration
なお、以下の説明では、撮像装置のレンズ106をX軸方向に駆動するための振動補正制御回路100について説明するが、振動補正制御回路100は、撮像装置の振動を補正するための光学部品又は撮像素子の駆動軸毎に設けられ、撮像装置のレンズ106をY軸方向等の他の軸方向に駆動するための振動補正制御回路も同様に構成することができる。
In the following description, the vibration
ADC20は、振動検出素子102、例えばジャイロセンサから出力されたアナログの角速度信号をデジタル信号に変換する。具体的には、振動検出素子102で検出される振動のX軸成分の信号(Gyro−X)をデジタル化して出力する。ADC20は、信号(Gyro−X)をジャイロフィルタ22へ出力する。
The ADC 20 converts an analog angular velocity signal output from the
ジャイロフィルタ22は、角速度信号(Gyro−X)に含まれる直流成分を除去し、撮像装置の振動が反映された角速度信号の交流成分を抽出する。この処理には、デジタルフィルタの一種であるタップフィルタを適用することができる。また、ジャイロフィルタ22は積分回路を備え、角速度信号(Gyro−X)を積分して、撮像装置の移動量を示す角度信号を生成する。積分回路は、デジタルフィルタを含んで構成することが好適であり、設定されたフィルタ係数に応じたフィルタ処理を行うことによって角速度信号を90°だけ遅延させて角度信号、つまり撮像装置の移動量を求める。角度信号は回転制御部24へ入力される。
The
回転制御部24は、図2に示すように、ステップ数換算手段24A、ステップ数管理手段24B、比較手段24C、移動ステップ決定手段24D及び基準点検出手段24Eを含んで構成される。回転制御部24は、撮像装置に組み込まれたCPUにより各手段における処理を行うことにより実現することができる。
As shown in FIG. 2, the
まず、撮像装置を起動した初期設定時について説明する。初期設定時には、基準点検出手段24Eは外部から基準点判別信号を受けて、ステップ数管理手段24B及び移動ステップ決定手段24Dへ基準点検出信号を出力する。移動ステップ決定手段24Dは、基準点検出信号に応じた初期駆動量を示す初期駆動ステップ数を出力する。初期駆動ステップ数はステッピング制御部26へ入力され、初期駆動ステップ数に応じたステップ数だけステッピングモータ104が回転させられ、レンズ106が初期位置、つまり、レンズ106の光学原点に移動させられる。ステッピング制御部26での処理については後述する。
First, the initial setting time when the imaging apparatus is activated will be described. At the initial setting, the reference
また、初期設定が完了した時には、ステップ数管理手段24Bは、現在のレンズ106の位置を示す累積ステップ数を0にリセットする。
When the initial setting is completed, the step
次に、撮像装置により撮像を行う際の振動補正制御時の処理について説明する。振動補正制御時には、ステップ数換算手段24Aは、ジャイロフィルタ22から角度信号を受けて、角度信号に応じて振動(手振れ)を補償するために必要なレンズ106の駆動量を示す目標ステップ数を求めて出力する。例えば、レンズ106の可動範囲が、ステッピングモータ104によって+Nmaxステップから−Nmaxステップまでレンズ106を可動させることが可能であって、ジャイロフィルタ22の出力値が+Imaxから−Imaxまで取り得る場合、目標ステップ数はジャイロフィルタ22の出力値Iより次の式で求めることができる。ただし、Nmax及びImaxはともに正の数とする。
目標ステップ数=I×(Nmax/Imax)
Next, processing during vibration correction control when imaging is performed by the imaging apparatus will be described. During vibration correction control, the step number conversion means 24A receives an angle signal from the
Target number of steps = I × (Nmax / Imax)
比較手段24Cは、ステップ数換算手段24Aから出力される目標ステップ数とステップ数管理手段24Bに保持されている累積ステップ数とを受けて、レンズ106の駆動限界位置との比較処理、及び、単位時間内でレンズ106を駆動できる位置範囲との比較処理を行う。
The
比較手段24Cは、目標ステップ数と累積ステップ数との差をとって、差分ステップ数を求める。差分ステップ数の絶対値が単位時間内でレンズ106を駆動できる位置範囲を示す駆動可能ステップ数を超えるか否かを判定する。駆動可能ステップ数は、比較手段24Cの内部レジスタに予め設定する。差分ステップ数の絶対値が駆動可能ステップ数を超える場合には差分ステップ数の絶対値を駆動可能ステップ数に置き換える。
The
また、比較手段24Cは、差分ステップ数と累積ステップ数とを加算し、その演算結果が予め内部レジスタに設定してあるレンズ106の駆動限界位置を示す上限ステップ数を超えるか否か、又は、下限ステップ数を下回るか否かを判定する。演算結果が上限ステップ数を超える場合には、上限ステップ数から累積ステップ数を引いた値に差分ステップ数を再設定する。演算結果が下限ステップ数を下回る場合には、下限ステップ数から累積ステップ数を引いた値に差分ステップ数を再設定する。
Further, the
比較手段24Cで処理された差分ステップ数は移動ステップ決定手段24Dへ出力される。
The number of difference steps processed by the
移動ステップ決定手段24Dは、差分ステップ数を受けて、その差分ステップ数を駆動ステップ数として出力する。さらに、ステップ数管理手段24Bは、駆動ステップ数を受けて、内部レジスタに保持されている累積ステップ数を読み出し、累積ステップ数に受信した駆動ステップ数を加えた値で内部レジスタの値を更新する。 The movement step determination means 24D receives the difference step number and outputs the difference step number as the drive step number. Further, the step number management means 24B receives the drive step number, reads the accumulated step number held in the internal register, and updates the value of the internal register with a value obtained by adding the received drive step number to the accumulated step number. .
ステッピング制御部26は、図3に示すように、駆動量取得手段26A、位相管理・更新手段26B、波形レジスタセット26C、PWM用カウンタ26D、A相用パルス生成手段26E、B相用パルス生成手段26F及びモード設定部26Gを含んで構成される。なお、ステッピング制御部26はステッピングモータ104を駆動するための回路構成の例である。ステッピング制御部26は、X軸方向に駆動するためのものと、Y軸方向に駆動するためのものとが設けられる。X軸方向用、Y軸方向用のステッピング制御部26は、それぞれ独立に動作するよう構成される。
As shown in FIG. 3, the stepping
駆動量取得手段26Aは、回転制御部24から出力される駆動ステップ数を受信する手段である。駆動量取得手段26Aは、駆動ステップ数を受信すると位相管理・更新手段26Bへ出力する。
The drive
位相管理・更新手段26Bは、駆動ステップ数を受けて、ステッピングモータ104を駆動する際の位相(回転角)の制御を行う。位相管理・更新手段26Bは、現在のステッピングモータの位相(回転角)を保持する内部レジスタを備え、内部レジスタの位相(回転角)を増加・減少させつつ、その位相をA相用パルス生成手段26E及びB相用パルス生成手段26Fへ出力する。
The phase management / update means 26B receives the number of drive steps and controls the phase (rotation angle) when driving the stepping
本実施の形態では、位相管理・更新手段26Bは、モード設定部26Gに設定されたモードに応じて、駆動ステップ数を増減させて、その駆動ステップ数だけ順に内部レジスタの位相(回転角)を増加・減少させつつ、その位相をA相用パルス生成手段26E及びB相用パルス生成手段26Fへ出力する。駆動ステップ数は、現在設定されているモードにおけるステッピングモータ104の一回転の位相数と基準となるモードにおけるステッピングモータ104の一回転の位相数との比だけ増減させる。
In the present embodiment, the phase management /
例えば、ステッピングモータ104の一回転を1/8回転単位で制御するモード(位相数8)を基準とする場合、ステッピングモータ104の一回転を1/16回転単位で制御するモード(位相数16)では1/8回転単位で制御するモードに対して駆動ステップ数を倍にして制御を行う。
For example, when a mode in which one rotation of the stepping
PWM用カウンタ26Dは、ステッピングモータ104に対するパルス信号のパルス幅を変調する処理を行う際のパルス幅を制御するためのカウンタである。PWM用カウンタ26Dは、外部からのクロック信号を受けて、クロック信号に同期してカウンタ値を1ずつサイクリックに増加させると共に、そのカウンタ値を出力する。本実施の形態では、PWM用カウンタ26Dは、カウンタ値を0から255まで1ずつサイクリックに増加させると共に、そのカウンタ値を出力する。
The
モード設定部26Gは、ユーザから撮像装置に入力されるモード設定信号や撮像装置に組み込まれた自動のモード設定信号を受けて、ステッピングモータ104の位相分解能を示すモードを保持する。モード設定部26Gは、例えば、レジスタを含んだ回路として構成することができる。
The
ステッピングモータ104の位相分解能とは、ステッピングモータ104の一回転を何ステップで制御するかを意味する。例えば、図4に示すように、ステッピングモータ104の一回転を1/8回転(45°)単位で制御するモードでは、ステッピングモータ104の位相分解能は8位相となる。また、図5に示すように、ステッピングモータ104の一回転を1/16回転(22.5°)単位で制御するモードでは、ステッピングモータ104の位相分解能は16位相となる。
The phase resolution of the stepping
A相用パルス生成手段26Eは、位相管理・更新手段26Bから出力される位相、PWMカウンタ26Dから出力されるカウンタ値及びモード設定部26Gに設定されたモードを受けて、ステッピングモータ104のA相に対するパルス信号を生成して出力する。また、B相用パルス生成手段26Fは、位相管理・更新手段26Bから出力される位相、PWMカウンタ26Dから出力されるカウンタ値及びモード設定部26Gに設定されたモードを受けて、ステッピングモータ104のB相に対するパルス信号を生成して出力する。
The A-phase pulse generation means 26E receives the phase output from the phase management / update means 26B, the counter value output from the
A相及びB相に対してそれぞれ1組のパルス信号を出力することによってステッピングモータ104の位相(回転角)を制御する場合、A相用パルス生成手段26E及びB相用パルス生成手段26Fは位相管理・更新手段26Bから入力された位相に対応するパルス信号を生成して出力する。ステッピングモータ104のA相のコイルに供給される電流は(A相−1)−(A相−2)で表される。また、ステッピングモータ104のB相のコイルに供給される電流は(B相−1)−(B相−2)で表される。
When the phase (rotation angle) of the stepping
本実施の形態では、モード設定部26Gに設定されているモードに応じて、A相用パルス生成手段26E及びB相用パルス生成手段26Fで生成するパルス信号をパルス幅変調することができる。
In the present embodiment, the pulse signals generated by the A-phase pulse generating means 26E and the B-phase pulse generating means 26F can be subjected to pulse width modulation according to the mode set in the
まず、ステッピングモータ104の一回転を1/8回転(45°)単位で制御するモードについて説明する。A相用パルス生成手段26E及びB相用パルス生成手段26Fは、モード設定部26Gに設定されているモードがステッピングモータ104を8位相で制御するモードである場合には以下の処理を行う。
First, a mode in which one rotation of the stepping
図4に示すようにステッピングモータ104の一回転を8つの位相(0°、+45°、+90°、+135°、+180°、+225°、+270°、+315°)で制御する場合、図6に示すステッピングモータの位相(回転角)とA相−1,A相−2,B相−1,B相−2のパルス信号の組み合わせに基づいて、ステッピングモータ104のA相及びB相の電流を制御する。図6に示すステッピングモータの位相(回転角)とA相−1,A相−2,B相−1,B相−2のパルス信号の組み合わせは予め波形レジスタセット26Cに格納及び保持されている。図6の横軸は位相(回転角)を示し、縦軸は各相のパルスの強度を示す。
As shown in FIG. 4, when one rotation of the stepping
例えば、位相管理・更新手段26Bが受けた駆動ステップ数が1であり、内部レジスタに保持されている現在の位相が+90°であるとする。はじめに、まず位相管理・更新手段26Bは内部レジスタの値を+135°としてA相用パルス生成手段26E及びB相用パルス生成手段26Fへ出力する。これに応じて、A相用パルス生成手段26Eは、波形レジスタセット26Cに格納されている位相とパルス信号の組み合わせとの関係に基づいて、A相の1組のパルスを生成して出力する。この場合、A相用パルス生成手段26Eは、PWMカウンタ26Dから出力されるカウンタ値が0から255になるまでA相−1に対してローレベルのパルス信号を生成して出力する。また、PWMカウンタ26Dから出力されるカウンタ値が0から255になるまでA相−2に対してハイレベルのパルス信号を生成して出力する。また、B相用パルス生成手段26Fは、PWMカウンタ26Dから出力されるカウンタ値が0から255になるまでB相−1に対してハイレベルのパルス信号を生成して出力する。また、PWMカウンタ26Dから出力されるカウンタ値が0から255になるまでB相−2に対してローレベルのパルス信号を生成して出力する。A相用パルス生成手段26E及びB相用パルス生成手段26Fはステッピングモータ104の駆動が終了するまでパルス信号の出力を繰返す。
For example, it is assumed that the number of drive steps received by the phase management / update means 26B is 1, and the current phase held in the internal register is + 90 °. First, the phase management /
このようにして、+90°から+135°まで1ステップだけステッピングモータ104の位相が進められる。他の位相が設定された場合にも波形レジスタセット26Cに格納されている位相とパルス信号の組み合わせとの関係に基づいてパルス信号を生成して出力することができる。
In this way, the phase of the stepping
次に、ステッピングモータ104の一回転を1/16回転(22.5°)単位で制御するモードについて説明する。A相用パルス生成手段26E及びB相用パルス生成手段26Fは、モード設定部26Gに設定されているモードがステッピングモータ104を16位相で制御するモードである場合には以下の処理を行う。
Next, a mode in which one rotation of the stepping
図5に示すようにステッピングモータ104の一回転を16の位相(0°、+22.5°、+45°、+67.5°、+90°、+112.5°、+135°、+157.5°、+180°、+202.5°、+225°、+247.5°、+270°、+292.5°、+315°、+337.5°)で制御する場合、図7に示すステッピングモータの位相(回転角)とA相−1,A相−2,B相−1,B相−2のパルス信号の組み合わせに基づいて、ステッピングモータ104のA相及びB相の電流を制御する。図7に示すステッピングモータの位相(回転角)とA相−1,A相−2,B相−1,B相−2のパルス信号の組み合わせは予め波形レジスタセット26Cに格納及び保持されている。図7の横軸は位相(回転角)を示し、縦軸は各相のパルスの強度を示す。
As shown in FIG. 5, one rotation of the stepping
図8は、各位相に対するA相及びB相の電流値(割合)と、それを実現するためのA相−1,A相−2,B相−1,B相−2の組み合わせの例を示す。例えば、ステッピングモータ104の位相を0°に制御する場合、A相のコイルに流すA相電流を正に100%、B相のコイルに流すB相電流は0%に制御する。すなわち、A相−1を100%、A相−2を0%の組み合わせと、B相−1を0%、B相−2を0%の組み合わせにする。また、ステッピングモータ104の位相を+22.5°に制御する場合、A相のコイルに流すA相電流を正に92%、B相のコイルに流すB相電流を正に38%に制御する。すなわち、A相−1を100%、A相−2を8%の組み合わせと、B相−1を100%、B相−2を62%の組み合わせにする。他の位相についても同様である。A相−1,A相−2,B相−1,B相−2は、パルス幅変調により、ハイレベルである期間とローレベルである期間との比(オンデューティ)が調整され、平均的なパルスの強度が制御される。
FIG. 8 shows an example of current values (ratio) of A phase and B phase for each phase and combinations of A phase-1, A phase-2, B phase-1, and B phase-2 to realize it. Show. For example, when the phase of the stepping
具体的には、位相管理・更新手段26Bが受けた駆動ステップ数が2であり、内部レジスタに保持されている現在の位相が+90°であるとする。はじめに、位相管理・更新手段26Bは内部レジスタの値を+112.5°としてA相用パルス生成手段26E及びB相用パルス生成手段26Fへ出力する。これに応じて、A相用パルス生成手段26Eは、波形レジスタセット26Cに格納されている位相とパルス信号の組み合わせとの関係に基づいて、A相の1組のパルスを生成して出力する。この場合、A相用パルス生成手段26Eは、PWMカウンタ26Dから出力されるカウンタ値が0から158になるまでハイレベルであり、158から255になるまでローレベルのパルス幅変調されたパルス信号を生成してA相−1に対して出力する。このパルス信号はオンデューティが62%のパルス信号である。また、PWMカウンタ26Dから出力されるカウンタ値が0から255になるまでハイレベルのパルス信号を生成してA相−2に対して出力する。これにより、ステッピングモータ104のA相のコイルに流れる電流は負に38%(=62%−100%)となる。また、B相用パルス生成手段26Fは、PWMカウンタ26Dから出力されるカウンタ値が0から255になるまでハイレベルのパルス信号を生成してB相−1に対して出力する。また、PWMカウンタ26Dから出力されるカウンタ値が0から20になるまでハイレベルであり、21から255になるまでローレベルのパルス幅変調されたパルス信号を生成してB相−2に対して出力する。このパルス信号はオンデューティが8%のパルス信号である。これにより、ステッピングモータ104のB相のコイルに流れる電流は正に92%(=100%−8%)となる。この状態において、ステッピングモータ104は位相(回転角)+112.5°に制御される。A相用パルス生成手段26E及びB相用パルス生成手段26Fはステッピングモータ104の駆動が終了するまでパルス信号の出力を繰返す。
Specifically, it is assumed that the number of drive steps received by the phase management / update means 26B is 2, and the current phase held in the internal register is + 90 °. First, the phase management / update means 26B sets the value of the internal register to + 112.5 ° and outputs it to the A-phase pulse generation means 26E and the B-phase pulse generation means 26F. In response to this, the A-phase pulse generating means 26E generates and outputs a set of A-phase pulses based on the relationship between the phase stored in the waveform register set 26C and the combination of the pulse signals. In this case, the A-phase pulse generation means 26E outputs a pulse signal whose pulse width is modulated at a high level until the counter value output from the
次に、位相管理・更新手段26Bは位相を1ステップ進めて内部レジスタの値を+135°とし、その値をA相用パルス生成手段26E及びB相用パルス生成手段26Fへ出力する。 Next, the phase management / update means 26B advances the phase by one step to set the value of the internal register to + 135 °, and outputs the value to the A-phase pulse generation means 26E and the B-phase pulse generation means 26F.
これに応じて、A相用パルス生成手段26Eは、PWMカウンタ26Dから出力されるカウンタ値が0から74になるまでハイレベルであり、75から255になるまでローレベルのパルス幅変調されたパルス信号を生成してA相−1に対して出力する。このパルス信号はオンデューティが29%のパルス信号である。また、PWMカウンタ26Dから出力されるカウンタ値が0から255になるまでハイレベルのパルス信号を生成してA相−2に対して出力する。これにより、ステッピングモータ104のA相のコイルに流れる電流は負に71%(=29%−100%)となる。また、B相用パルス生成手段26Fは、PWMカウンタ26Dから出力されるカウンタ値が0から255になるまでハイレベルのパルス信号を生成してB相−1に対して出力する。また、PWMカウンタ26Dから出力されるカウンタ値が0から74になるまでハイレベルであり、75から255になるまでローレベルのパルス幅変調されたパルス信号を生成してB相−2に対して出力する。このパルス信号はオンデューティが29%のパルス信号である。これにより、ステッピングモータ104のB相のコイルに流れる電流は正に71%(=100%−29%)となる。この状態において、ステッピングモータ104は位相(回転角)+135°に制御される。A相用パルス生成手段26E及びB相用パルス生成手段26Fはステッピングモータ104の駆動が終了するまでパルス信号の出力を繰返す。
In response to this, the A-phase pulse generating means 26E is at a high level until the counter value output from the
このようにして、ステッピングモータ104の位相を制御する。同様に、他の位相についてもA相用パルス生成手段26E及びB相用パルス生成手段26FでA相−1,A相−2,B相−1,B相−2をパルス幅変調することによって、図8に示した各位相に対するA相−1,A相−2,B相−1,B相−2の組み合わせとなるパルス信号を生成して出力する。
In this way, the phase of the stepping
ステッピングモータ104は、ステッピング制御部26から出力されるパルス信号を受けて、パルス信号に対応する位相(回転角)となるようにロータを回転させる。ステッピングモータ104のロータにはボールネジ等のレンズ106の駆動手段が連結されており、ステッピングモータ104の回転によりレンズ106の位置が変更される。これにより、撮像装置の振動による撮像への影響を低減することができる。
The stepping
また、ADC20、ジャイロフィルタ22及びステッピング制御部26をロジック回路で構成することにより、振動補正制御回路100をより小型化及び高速化することができる。さらに、撮像装置に組み込まれているCPUの処理負担を軽減することができる。
Further, by configuring the
位相管理・更新手段26Bが受け取った駆動ステップ数が2以上である場合、1ステップ刻みでパルス信号を変化させることが好適である。具体的には、ステッピングモータ104を1/8回転単位で制御する場合に示したように、ステッピングモータ104の現在の位相が+90°で3ステップ分回転させる場合、+90°のA相、B相のパルスから+135°、+180°のA相、B相のパルスを経て、+225°のA相、B相のパルスに変化させる。+90°のA相、B相のパルスから+225°のA相、B相のパルスに直接変化させる場合に比べ、1ステップ刻みで変化させる方がステッピングモータ104の駆動音が小さくなる。手振れ補正機能を備えた撮像装置について、手振れ補正動作時にステッピングモータ104の駆動音が大きいと、ユーザは撮像装置が故障したと誤解するおそれがある。ステッピングモータ104の駆動音を小さくすることで、撮像装置のユーザに誤解を与えることなく、手振れ補正機能を提供することができる。
When the number of drive steps received by the phase management / update means 26B is 2 or more, it is preferable to change the pulse signal in increments of one step. Specifically, as shown in the case where the stepping
なお、本実施の形態では、レンズ106を一軸(X軸)方向に駆動する構成について説明したが、レンズ106を他軸(例えば、X軸に直交するY軸)方向に駆動する場合にも同様の構成を適用することができる。
In the present embodiment, the configuration in which the
また、撮像装置の振動を補正するためにレンズ106以外を駆動する場合にも本実施の形態の構成を適用することができる。例えば、レンズ106の位置を移動させる代わりに、CCDやCMOS等の撮像素子の位置を移動させて撮像装置の振動を補償する構成としてもよい。
The configuration of the present embodiment can also be applied when driving other than the
また、ステッピングモータ104の位相はA相及びB相のコイルに流れる電流の比で決まるので、A相−1,A相−2,B相−1,B相−2へのパルス信号のデューティは図8に示すものでなくてもよい。例えば、位相0°に制御する場合にはB相に流れる電流が0であれば、A相には十分なトルクを発生させる程度の電流が流れていればよい。位相+22.5°に制御する場合には、A相に流れる電流とB相に流れる電流との比が92:38となっていればよい。同様に他の位相についても、A相に流れる電流とB相に流れる電流との比が図5及び図8に示すものであればよい。
Further, since the phase of the stepping
また、本実施の形態では、ステッピングモータ104の一回転を1/8回転単位及び1/16回転単位で制御するモードについて説明したが、これに限定されるものではなく、他の位相数の制御も同様に行うことができる。
In the present embodiment, the mode in which one rotation of the stepping
また、ステッピングモータ104は、図4に示すようにA相電流、B相電流、A相電流の反転、B相電流の反転がそれぞれ90°の関係で配置されるものに限られない。例えば、ステッピングモータ104は、図9に示すように、A相電流、B相電流、A相電流の反転、B相電流の反転がそれぞれ18°の関係で繰り返し配置されるものとすることができる。これによって、ステッピングモータ104の回転角度をより細かく制御することができる。
Further, as shown in FIG. 4, the stepping
10 Xジャイロ、12 Yジャイロ、14 CPU、16 モータドライバ、18 ステッピングモータ、20 ADC、22 ジャイロフィルタ、24 回転制御部、24A ステップ数換算手段、24B ステップ数管理手段、24C 比較手段、24D 移動ステップ決定手段、24E 基準点検出手段、26 ステッピング制御部、26A 駆動量取得手段、26B 位相管理・更新手段、26C 波形レジスタセット、26D PWM用カウンタ、26E A相用パルス生成手段、26F B相用パルス生成手段、26G モード設定部、100 振動補正制御回路、102 振動検出素子、104 ステッピングモータ、106 レンズ。 10 X gyro, 12 Y gyro, 14 CPU, 16 motor driver, 18 stepping motor, 20 ADC, 22 gyro filter, 24 rotation control unit, 24A step number conversion means, 24B step number management means, 24C comparison means, 24D moving step Determination means, 24E reference point detection means, 26 stepping control section, 26A drive amount acquisition means, 26B phase management / update means, 26C waveform register set, 26D PWM counter, 26E A phase pulse generation means, 26F B phase pulse Generation means, 26G mode setting unit, 100 vibration correction control circuit, 102 vibration detection element, 104 stepping motor, 106 lens.
Claims (4)
撮像装置の振動を検出する振動検出素子から出力される振動検出信号をデジタル信号に変換するアナログ/デジタル変換部と、
前記アナログ/デジタル変換部でデジタル化された前記振動検出信号に基づいて撮像装置の移動量を求めるジャイロフィルタと、
前記光学部品又は前記撮像素子の現在の位置と、前記移動量と、に基づいて、前記ステッピングモータの回転駆動量を求める回転制御部と、
前記回転駆動量に応じて前記ステッピングモータを制御する制御信号を生成して出力するステッピング制御部と、を備え、
前記ステッピング制御部は、前記ステッピングモータを異なる位相分解能で駆動する前記制御信号を生成して出力することを特徴とする振動補正制御回路。 A vibration correction control circuit that drives an optical component or an image sensor of an image pickup device according to vibration by a stepping motor to reduce the influence of vibration on image pickup,
An analog / digital converter that converts a vibration detection signal output from a vibration detection element that detects vibration of the imaging device into a digital signal;
A gyro filter for obtaining a movement amount of the imaging device based on the vibration detection signal digitized by the analog / digital conversion unit;
A rotation control unit for obtaining a rotational drive amount of the stepping motor based on the current position of the optical component or the image sensor and the movement amount;
A stepping control unit that generates and outputs a control signal for controlling the stepping motor according to the rotational drive amount, and
The vibration correction control circuit, wherein the stepping control unit generates and outputs the control signal for driving the stepping motor with different phase resolutions.
前記ステッピング制御部は、前記ステッピングモータの位相分解能の切替信号に応じて、前記ステッピングモータの回転の各位相に対して複数の信号の組み合わせを変更した前記制御信号を生成して出力することを特徴とする振動補正制御回路。 The vibration correction control circuit according to claim 1,
The stepping control unit generates and outputs the control signal in which a combination of a plurality of signals is changed for each phase of rotation of the stepping motor in accordance with a phase resolution switching signal of the stepping motor. Vibration correction control circuit.
前記ステッピング制御部は、パルス幅変調された信号を前記制御信号として生成して出力することを特徴とする振動補正制御回路。 The vibration correction control circuit according to claim 1 or 2,
The vibration correction control circuit, wherein the stepping control unit generates and outputs a pulse width modulated signal as the control signal.
前記光学部品又は前記撮像素子を駆動するステッピングモータと、
振動を検出する振動検出素子から出力される振動検出信号をデジタル信号に変換するアナログ/デジタル変換部と、
前記アナログ/デジタル変換部でデジタル化された前記振動検出信号に基づいて撮像装置の移動量を求めるジャイロフィルタと、
前記光学部品又は前記撮像素子の現在の位置と、前記移動量と、に基づいて、前記ステッピングモータの回転駆動量を求める回転制御部と、
前記回転駆動量に応じて前記ステッピングモータを制御する制御信号を生成して出力するステッピング制御部と、を備え、
前記ステッピング制御部は、前記ステッピングモータを異なる位相分解能で駆動する前記制御信号を生成して出力することを特徴とする撮像装置。 An optical component, an image sensor,
A stepping motor for driving the optical component or the image sensor;
An analog / digital converter that converts a vibration detection signal output from a vibration detection element that detects vibration into a digital signal;
A gyro filter for obtaining a movement amount of the imaging device based on the vibration detection signal digitized by the analog / digital conversion unit;
A rotation control unit for obtaining a rotational drive amount of the stepping motor based on the current position of the optical component or the image sensor and the movement amount;
A stepping control unit that generates and outputs a control signal for controlling the stepping motor according to the rotational drive amount, and
The imaging apparatus, wherein the stepping control unit generates and outputs the control signal for driving the stepping motor with different phase resolutions.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2008197630A JP2010032966A (en) | 2008-07-31 | 2008-07-31 | Vibration correction control circuit and imaging apparatus equipped therewith |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2008197630A JP2010032966A (en) | 2008-07-31 | 2008-07-31 | Vibration correction control circuit and imaging apparatus equipped therewith |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JP2010032966A true JP2010032966A (en) | 2010-02-12 |
Family
ID=41737481
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2008197630A Pending JP2010032966A (en) | 2008-07-31 | 2008-07-31 | Vibration correction control circuit and imaging apparatus equipped therewith |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP2010032966A (en) |
Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH11119280A (en) * | 1997-10-17 | 1999-04-30 | Canon Inc | Position control device and correction optical device |
| JP2000105343A (en) * | 1998-09-30 | 2000-04-11 | Asahi Optical Co Ltd | Image blur correction device |
| JP2004004362A (en) * | 2002-05-31 | 2004-01-08 | Fuji Photo Film Co Ltd | Digital camera |
| JP2006149106A (en) * | 2004-11-19 | 2006-06-08 | Konica Minolta Photo Imaging Inc | Servo drive method for stepping motor, drive mechanism, and imaging device |
| JP2007006305A (en) * | 2005-06-27 | 2007-01-11 | Canon Inc | Imaging device and interchangeable lens |
| JP2007133277A (en) * | 2005-11-14 | 2007-05-31 | Nidec Copal Corp | Autofocusing device for digital camera |
-
2008
- 2008-07-31 JP JP2008197630A patent/JP2010032966A/en active Pending
Patent Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH11119280A (en) * | 1997-10-17 | 1999-04-30 | Canon Inc | Position control device and correction optical device |
| JP2000105343A (en) * | 1998-09-30 | 2000-04-11 | Asahi Optical Co Ltd | Image blur correction device |
| JP2004004362A (en) * | 2002-05-31 | 2004-01-08 | Fuji Photo Film Co Ltd | Digital camera |
| JP2006149106A (en) * | 2004-11-19 | 2006-06-08 | Konica Minolta Photo Imaging Inc | Servo drive method for stepping motor, drive mechanism, and imaging device |
| JP2007006305A (en) * | 2005-06-27 | 2007-01-11 | Canon Inc | Imaging device and interchangeable lens |
| JP2007133277A (en) * | 2005-11-14 | 2007-05-31 | Nidec Copal Corp | Autofocusing device for digital camera |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP5544072B2 (en) | Vibration correction control circuit and imaging apparatus including the same | |
| JP5106021B2 (en) | Anti-vibration control circuit and imaging apparatus | |
| US7868918B2 (en) | Image stabilization control circuit of image pickup apparatus | |
| US20080037970A1 (en) | Camera body and camera system including the same | |
| JP5378807B2 (en) | Anti-vibration control circuit | |
| JP5237621B2 (en) | Anti-vibration control circuit for imaging device | |
| US8451337B2 (en) | Image stabilization control circuit | |
| JP4827687B2 (en) | Step motor driving device, lens driving device and camera | |
| JP2009151202A (en) | Vibration correction control circuit and imaging apparatus including the same | |
| JP2010032965A (en) | Vibration correction control circuit and imaging apparatus equipped therewith | |
| US8588601B2 (en) | Drive control apparatus, image pickup apparatus, and drive control method which perform micro step drive of stepping motor | |
| US9110227B2 (en) | Motor drive apparatus and optical apparatus | |
| JP5237620B2 (en) | Anti-vibration control circuit for imaging device | |
| JP2010072155A (en) | Vibration compensation control circuit | |
| JP2010032966A (en) | Vibration correction control circuit and imaging apparatus equipped therewith | |
| JP2009156945A (en) | Anti-vibration control circuit for imaging device | |
| JP5123606B2 (en) | Anti-vibration control circuit | |
| JP2009267894A (en) | Camera shake detecting apparatus, imaging apparatus, and program | |
| JP2005258034A (en) | Electric head | |
| JP5159286B2 (en) | Image shake correction apparatus and imaging apparatus | |
| JP2009042544A (en) | Anti-vibration control circuit | |
| JP6584117B2 (en) | LENS DEVICE, IMAGING DEVICE, AND CONTROL PROGRAM | |
| JP2009134070A (en) | Anti-vibration control circuit for imaging device | |
| JP2012050171A (en) | Stepping motor driving device | |
| JP2014059493A (en) | Imaging device, camera shake correcting method, and program |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20110607 |
|
| A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110623 |
|
| A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120731 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120821 |
|
| A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20130205 |