[go: up one dir, main page]

JP2010144131A - Method for decomposing plastic - Google Patents

Method for decomposing plastic Download PDF

Info

Publication number
JP2010144131A
JP2010144131A JP2008325775A JP2008325775A JP2010144131A JP 2010144131 A JP2010144131 A JP 2010144131A JP 2008325775 A JP2008325775 A JP 2008325775A JP 2008325775 A JP2008325775 A JP 2008325775A JP 2010144131 A JP2010144131 A JP 2010144131A
Authority
JP
Japan
Prior art keywords
decomposition
inorganic filler
water
dispersant
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008325775A
Other languages
Japanese (ja)
Inventor
Takaaki Izumitani
卓見 泉谷
Masaru Hidaka
優 日高
Naoharu Nakagawa
尚治 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Panasonic Electric Works Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Electric Works Co Ltd filed Critical Panasonic Electric Works Co Ltd
Priority to JP2008325775A priority Critical patent/JP2010144131A/en
Publication of JP2010144131A publication Critical patent/JP2010144131A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Landscapes

  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve decomposition efficiency together with an increase of processing amount of plastics to be decomposed in decomposition of plastics containing an inorganic filler. <P>SOLUTION: The plastics containing an inorganic filler is hydrothermally decomposed in a subcritical state with a process liquid in which a dispersant that disperses the inorganic filler is coexisted. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明はプラスチックの分解方法に関するものである。   The present invention relates to a method for decomposing plastics.

プラスチックの廃棄物は、これまでそのほとんどが埋め立て処分または廃棄処理されており、資源として有効利用されていなかった。だが、ここ数年各種リサイクル法の施工に伴い、プラスチックの回収リサイクルの流れは加速する傾向にある。その中で多価アルコール及び酸よりなるコポリマーを架橋材で架橋した熱硬化性樹脂を亜臨界水を用いて熱硬化性樹脂の熱分解温度以下で分解させる方法が検討されている。この分解方法については、熱硬化性樹脂の原料として再利用できるモノマーと共に架橋部と酸の共重合体(スチレンフマル酸共重合体:以下SFCとする。)を得るための方策が各種の工夫、改善策とともに提案されている(たとえば特許文献1および2)。   Until now, most plastic waste has been landfilled or disposed of, and has not been effectively used as a resource. However, with the implementation of various recycling laws over the past few years, the flow of plastic recycling has tended to accelerate. Among them, a method of decomposing a thermosetting resin obtained by cross-linking a copolymer of polyhydric alcohol and acid with a cross-linking material using subcritical water at a temperature lower than or equal to the thermal decomposition temperature of the thermosetting resin has been studied. Regarding this decomposition method, various measures have been taken to obtain a copolymer of a crosslinked part and an acid (styrene fumaric acid copolymer: hereinafter referred to as SFC) together with a monomer that can be reused as a raw material for the thermosetting resin. It has been proposed together with improvement measures (for example, Patent Documents 1 and 2).

だが、この方法では、熱硬化性樹脂を亜臨界水分解で分解させる際に溶媒である水が、分解対象物であるFRPなどの熱硬化性物質に対して、重量で数倍(2〜4倍)必要であり、溶媒量によって分解時の攪拌度に影響を及ぼす。溶媒量は効率、処理量、分解率を左右する大きな要因と考えられている。このため、分解反応の効率化を検討する際、溶媒量を多くすると分解率の向上が見込めるが、一方で、反応層の容量に対して分解できる熱硬化性樹脂の処理量が減少するという問題がある。   However, in this method, when the thermosetting resin is decomposed by subcritical water decomposition, water as a solvent is several times (by 2 to 4) by weight with respect to a thermosetting substance such as FRP as a decomposition target. Required), and the amount of solvent affects the degree of stirring during decomposition. The amount of solvent is considered to be a major factor affecting efficiency, throughput, and decomposition rate. For this reason, when considering the efficiency of the decomposition reaction, an increase in the amount of solvent can be expected to improve the decomposition rate, but on the other hand, the amount of thermosetting resin that can be decomposed relative to the capacity of the reaction layer decreases There is.

他方、処理量を増やすために、溶媒量を減らすと十分な攪拌が得られず、亜臨界水分解物が十分に分解されない、或いは、分解に長時間を要するという結果となる。結局のところ、反応の効率化には結びつかない。   On the other hand, if the amount of solvent is decreased in order to increase the processing amount, sufficient stirring cannot be obtained, and the subcritical water decomposition product is not sufficiently decomposed, or the decomposition takes a long time. After all, it does not lead to efficient reaction.

またこの処理量を改善するために、亜臨界水分解の対象にならない熱硬化性樹脂に含まれる無機フィラーをあらかじめ除去するという検討もなされている。   In addition, in order to improve the treatment amount, studies have been made to remove in advance inorganic fillers contained in thermosetting resins that are not subject to subcritical water decomposition.

無機フィラーに酸を反応させて、水溶性物質に変化させて固液分離するという方法である。しかしながら、無機フィラーと酸の組み合わせが限定されているため、汎用的な方法ではない。また、酸との反応後に新たな生成物や塩が発生するため、溶媒の再利用や廃棄する際に中和などの処理が必要となってくることも懸念される。
特開2007−169524号公報 特開2006−247476号公報
This is a method in which an acid is reacted with an inorganic filler to change it into a water-soluble substance and solid-liquid separation is performed. However, since the combination of an inorganic filler and an acid is limited, it is not a general-purpose method. In addition, since new products and salts are generated after the reaction with the acid, there is a concern that treatment such as neutralization is required when the solvent is reused or discarded.
JP 2007-169524 A JP 2006-247476 A

本発明は、無機フィラーを含有するポリエステル部及び架橋部よりなる熱硬化性樹脂を亜臨界水で分解し、スチレン有機酸共重合体を回収するプラスチックの分解に際して、前記のとおりの弊害を取り除いて分解効率を向上させる方法、すなわち、処理量の増大と分解効率の向上という相反する要素を両立させることを可能とするプラスチックの分解方法を提供することを課題としている。   The present invention eliminates the above-mentioned adverse effects when decomposing a plastic that recovers a styrene organic acid copolymer by decomposing a thermosetting resin comprising a polyester part and a crosslinked part containing an inorganic filler with subcritical water. It is an object of the present invention to provide a method for improving the decomposition efficiency, that is, a method for decomposing a plastic that makes it possible to satisfy both conflicting factors of an increase in throughput and an improvement in decomposition efficiency.

本発明のプラスチックの分解方法は以下のことを特徴としている。   The plastic decomposition method of the present invention is characterized by the following.

第1:無機フィラー含有プラスチックを、無機フィラーを分散させる分散剤を共存させた処理液で亜臨界状態で水熱分解させる。   First: An inorganic filler-containing plastic is hydrothermally decomposed in a subcritical state with a treatment liquid in which a dispersant for dispersing the inorganic filler coexists.

第2:前記の分散剤を、アニオン界面活性剤とする。   Second: The dispersant is an anionic surfactant.

第3:前記の処理液にさらにアルカリを共存させて無機フィラー含有プラスチックを水熱分解させる。   Third: The inorganic filler-containing plastic is hydrothermally decomposed by further coexisting alkali in the treatment liquid.

前記第1の発明によれば、FRPなどの無機フィラー含有プラスチックに含まれる樹脂をリサイクルする際に、無機フィラーの種類を問わずに汎用的に分解率を向上させ、処理量を増やすことが可能となる。また、分解の短時間化が図られる。分散剤を添加することで、無機フィラーを含んだ処理溶液の粘度は下がり、攪拌に要するエネルギーも減少する。   According to the first aspect of the invention, when recycling a resin contained in an inorganic filler-containing plastic such as FRP, it is possible to improve the decomposition rate universally regardless of the type of the inorganic filler and increase the processing amount. It becomes. In addition, the decomposition time can be shortened. By adding the dispersant, the viscosity of the treatment solution containing the inorganic filler decreases, and the energy required for stirring also decreases.

無機フィラーは、成形体の増量、不燃性付与等の目的で、全体の50%近くの含有量をしめている。樹脂を再利用する際、成形体を亜臨界水分解させる方法が挙げられるが、この時、無機フィラーは分解の対象外であり、分解工程では不要物となる。また、分解中に攪拌が施されるが無機フィラーが存在することにより余分なエネルギーを要する。さらに溶媒の水を無機フィラーが吸い込むため、分解に必要な水も余分に必要となる。これらを解決するために、無機フィラーを取り除く手法が、たとえば前記のとおり、過去に検討されている。無機フィラーが炭酸カルシウムの場合では、前処理として塩酸処理し、固液分離して塩化カルシウム水溶液を取り除いて、残渣を亜臨界水分解するという方法である。この場合、処理量の大幅な減少が見込まれて、効率化の一手段となりうるが、無機フィラーや酸の種類が限定される。仮に炭酸カルシウムの場合でも塩酸が過剰に存在していると、塩化カルシウム水溶液は酸性を示し、その処理が必要になるという問題がある。これらの問題を回避して、幅広く対策できる方法として、本発明では、成形体粉砕物に無機フィラー用の分散剤をあらかじめ添加する。   The inorganic filler has a content of nearly 50% of the whole for the purpose of increasing the molded body and imparting incombustibility. When reusing the resin, there is a method of subcritical water decomposition of the molded body. At this time, the inorganic filler is not subject to decomposition, and becomes an unnecessary substance in the decomposition step. Moreover, although stirring is performed during decomposition, extra energy is required due to the presence of the inorganic filler. Furthermore, since the inorganic filler sucks in water as a solvent, extra water necessary for decomposition is also required. In order to solve these problems, methods for removing the inorganic filler have been studied in the past, for example, as described above. In the case where the inorganic filler is calcium carbonate, it is a method of treating with hydrochloric acid as a pretreatment, separating the solid and liquid, removing the aqueous calcium chloride solution, and subjecting the residue to subcritical water decomposition. In this case, a significant decrease in the amount of treatment is expected, which can be a means of efficiency, but the types of inorganic filler and acid are limited. Even in the case of calcium carbonate, if hydrochloric acid is excessively present, there is a problem that the aqueous calcium chloride solution exhibits acidity and requires treatment. In the present invention, a dispersant for inorganic filler is added in advance to the pulverized compact as a method that can avoid these problems and can take a wide range of measures.

これにより、攪拌に要するエネルギーが低減され、自由水が多くなり攪拌されやすくなる。また、分解及び攪拌に必要な水が減少するため、容量が決まった反応槽中に投入できる成形体粉砕物の量を増やすことが可能となる。このようにして反応の効率化が図れる。   As a result, the energy required for stirring is reduced, and free water is increased and stirring is facilitated. In addition, since the water required for decomposition and stirring is reduced, it is possible to increase the amount of the pulverized compact that can be charged into the reaction tank having a predetermined capacity. In this way, the efficiency of the reaction can be improved.

そして、前記第2の発明によれば、上記の効果はより確実に顕著なものとして実現される。この場合には、分散剤が粉体表面に吸着した際に、粉体の粒子同士の分子間力を弱めると同時に、陰イオンで覆い、粒子間に静電反発を促して分散させる。また、無機粉体はカチオンに帯電していることが多く、アニオン系の分散剤は、粉体粒子に比較的強固に早く結合する特徴がある。   And according to said 2nd invention, said effect is implement | achieved as a remarkable thing more reliably. In this case, when the dispersing agent is adsorbed on the surface of the powder, the intermolecular force between the particles of the powder is weakened, and at the same time, it is covered with an anion to promote electrostatic repulsion between the particles. In addition, inorganic powders are often charged with cations, and anionic dispersants have a characteristic of binding to powder particles relatively firmly and quickly.

処理液にアルカリを含む第3の発明によれば、前記効果がより顕著に実現されるとともに以下の効果も奏される。   According to the third invention in which the treatment liquid contains an alkali, the above-described effect is realized more remarkably and the following effect is also exhibited.

1)亜臨界水分解において、加水分解能力が向上する。   1) Hydrolysis ability is improved in subcritical water decomposition.

2)アルカリ溶媒において前記アニオン性分散剤の安定性が増し、分散効果が持続する。   2) The stability of the anionic dispersant is increased in an alkaline solvent, and the dispersion effect is maintained.

3)分解したスチレン有機酸共重合体の末端がアルカリの働きによりカルボン酸塩となり水溶性となって溶け出すため、反応対象物(成形体粉砕物)の比表面積が上がり、分解反応が促進する。   3) Since the terminal of the decomposed styrene organic acid copolymer becomes a carboxylate salt due to the action of alkali and becomes water-soluble and dissolves, the specific surface area of the reaction object (molded product pulverized product) increases and the decomposition reaction is accelerated. .

4)分解反応で溶解したスチレン有機酸共重合体塩自身が界面活性剤となり、無機フィラー表面に吸着して、分散を促し、処理液の攪拌均一度が向上する。   4) The styrene organic acid copolymer salt dissolved in the decomposition reaction itself becomes a surfactant, adsorbs on the surface of the inorganic filler, promotes dispersion, and improves the stirring uniformity of the treatment liquid.

以上の連鎖的な作用が期待でき、少量の分散剤で大きな分散効果を得ることができる。   The above chain action can be expected, and a large dispersion effect can be obtained with a small amount of dispersant.

本発明においては、無機フィラーを含有するポリエステル部及び架橋部によりなる熱硬化性樹脂を分解してスチレン有機酸共重合体を回収する無機フィラー含有プラスチックの分解に際し、その溶媒として無機フィラー重量に対し、所定量の分散剤を添加する。まず、分解の対象となっている樹脂は、多価アルコールと有機酸よりなるコポリマーを架橋材で架橋した熱硬化性樹脂であり、間隙物として補強繊維と増量材(無機フィラー)を含有している。   In the present invention, when decomposing the inorganic filler-containing plastic that decomposes the thermosetting resin composed of the polyester part containing the inorganic filler and the crosslinked part to recover the styrene organic acid copolymer, the solvent is used as the solvent with respect to the weight of the inorganic filler. A predetermined amount of dispersant is added. First, the resin to be decomposed is a thermosetting resin obtained by crosslinking a copolymer of a polyhydric alcohol and an organic acid with a crosslinking material, and contains reinforcing fibers and a filler (inorganic filler) as a gap. Yes.

このような熱硬化性樹脂としては、ポリエステル樹脂を例示する事ができ、特に不飽和ポリエステル樹脂等の熱硬化性樹脂を例示することができる。また多価アルコールとしては、エチレングリコール、ジエチレングリコール、プロピレングリコール、ジプロピレングリコール等のグリコール類を例示することができるが、これに限定されるものではない。また上記有機酸としては、無水マレイン酸やフマル酸、マレイン酸などが例示されるが、これに限定されるものではない。補強繊維としても、ガラス繊維、炭素繊維等が例示されるが、これに限定されない。   As such a thermosetting resin, a polyester resin can be exemplified, and in particular, a thermosetting resin such as an unsaturated polyester resin can be exemplified. Examples of the polyhydric alcohol include glycols such as ethylene glycol, diethylene glycol, propylene glycol, and dipropylene glycol, but are not limited thereto. Examples of the organic acid include maleic anhydride, fumaric acid, and maleic acid, but are not limited thereto. Examples of the reinforcing fiber include glass fiber and carbon fiber, but are not limited thereto.

本発明方法では、無機フィラー含有成形体粉砕物に対し、水と分散剤を加え、温度及び圧力を上昇させて水を臨界点(臨界温度374.4℃、臨界圧力22.1MPa)以下の亜臨界状態にして熱硬化性樹脂を分解し、モノマー(多価アルコールと有機酸)を水溶液中で回収する。また、それと共に固体としてスチレン有機酸共重合体をガラス繊維と共に得る。   In the method of the present invention, water and a dispersant are added to the pulverized product containing an inorganic filler, and the temperature and pressure are increased to bring water to a sub-critical point (critical temperature 374.4 ° C., critical pressure 22.1 MPa) or less. The thermosetting resin is decomposed in a critical state, and monomers (polyhydric alcohol and organic acid) are recovered in an aqueous solution. Moreover, a styrene organic acid copolymer is obtained with glass fiber as a solid with it.

分解温度は、熱硬化性樹脂は加水分解されるが、スチレン有機酸共重合体が熱分解によって低分子化され、種々のスチレン誘導体が生成する温度以下であることが望ましく180〜300℃の範囲にすることが好ましい。180℃未満であると、分解時間が長時間となりコストの問題と共にスチレン有機酸共重合体の収率が低くなる恐れがある。また300℃を超えるとスチレン有機酸共重合体の熱分解が著しくなり、低分子化されてスチレン誘導体にまで分解され、スチレン有機酸共重合体として回収することが困難になる恐れがある。分解時間は温度との兼ね合いとなるが、1〜8時間程度が好ましい。もちろん、特にこの範囲に限定されるものではない。   The decomposition temperature is preferably below the temperature at which various thermosetting resins are hydrolyzed but the styrene organic acid copolymer is reduced in molecular weight by thermal decomposition and various styrene derivatives are formed. It is preferable to make it. If it is lower than 180 ° C., the decomposition time becomes long, and there is a risk that the yield of the styrene organic acid copolymer may be lowered along with cost problems. On the other hand, if the temperature exceeds 300 ° C., the thermal decomposition of the styrene organic acid copolymer becomes remarkable, the molecular weight is lowered and the styrene derivative is decomposed, and it may be difficult to recover the styrene organic acid copolymer. The decomposition time takes into account the temperature, but is preferably about 1 to 8 hours. Of course, it is not particularly limited to this range.

分散剤としては、水系分散剤、非水系分散剤、イオン性、非イオン性を問わない。粉体粒子が持つ構造に近い構造、或いは顔料が示す極性と近い極性を示す構造を分子鎖中にもつことが望ましい。   The dispersant may be an aqueous dispersant, a non-aqueous dispersant, ionic or nonionic. It is desirable that the molecular chain has a structure close to the structure of the powder particles or a structure close to that of the pigment.

すなわち親水性の顔料に親水性のOH基やカルボン酸基を含むものなどが粉体表面に吸着しやすいなどの現象が例示され、成形体の無機フィラーの種類に応じた分散剤が適応できる。   That is, a phenomenon in which a hydrophilic pigment containing a hydrophilic OH group or carboxylic acid group is easily adsorbed on the powder surface is exemplified, and a dispersant according to the type of inorganic filler of the molded body can be applied.

これにより、無機フィラーになじんで吸着した分散剤は、粒子間に距離を生み、分子間力が弱まると同時に二次凝集粒子の分散を促す。   As a result, the dispersant adsorbed by adhering to the inorganic filler creates a distance between the particles, weakens the intermolecular force, and simultaneously promotes the dispersion of the secondary aggregated particles.

成形体粉砕物と水との割合は特に限定されるものではないが、成形体100重量部に対し、200〜500にすることが望ましい。また分散剤量は、成形体粉砕物(熱硬化性樹脂と無機フィラー)の重量に対して、0.1%〜3.0%にするのが望ましい。0.1%未満となると、分散効果が少なく効果が見込まれにくくなる。一方、3.0%を超えると固形物に対し、過剰量となり、効果の上積みは見込まれにくくなる。   The ratio of the pulverized compact and water is not particularly limited, but is preferably 200 to 500 with respect to 100 parts by weight of the compact. The amount of the dispersant is desirably 0.1% to 3.0% with respect to the weight of the pulverized product (thermosetting resin and inorganic filler). If it is less than 0.1%, the dispersion effect is small and the effect is hardly expected. On the other hand, when it exceeds 3.0%, it becomes an excessive amount with respect to a solid substance, and the accumulation of an effect becomes difficult to be anticipated.

アニオン界面活性剤を用いることがより好ましいが、これらは、カルボン酸、スルホン酸、リン酸などの末端構造を有するもので、水中で解離して陰イオンとなるものであれば各種のものとすることができる。   It is more preferable to use an anionic surfactant, but these have a terminal structure such as carboxylic acid, sulfonic acid, phosphoric acid, etc. be able to.

前記処理液にアルカリを含有させることが有効であるが、アルカリについては、特に限定はしないが、アルカリ金属の水酸化物の水溶液として用いることができる。このアルカリ金属としては、水酸化カリウムや水酸化ナトリウムなどを使用する事ができる。アルカリ金属の水酸化物はプラスチック100質量部に対して、5〜20質量部の範囲で添加するのが好ましい。   Although it is effective to contain an alkali in the treatment liquid, the alkali is not particularly limited, but can be used as an aqueous solution of an alkali metal hydroxide. As the alkali metal, potassium hydroxide, sodium hydroxide, or the like can be used. The alkali metal hydroxide is preferably added in the range of 5 to 20 parts by mass with respect to 100 parts by mass of the plastic.

そこで以下に実施例を示し、さらに詳しく説明する。もちろん、本発明は以下の例によって限定されることはない。   Therefore, an example will be shown below and will be described in more detail. Of course, the present invention is not limited by the following examples.

まず、熱硬化性樹脂の硬化物として、多価グリコールであるグリコール類のプロピレングリコール、ネオペンチルグリコール、ジプロピレングリコールと不飽和有機酸である無水マレイン酸をグリコール類と当量配合したワニスに対し、架橋剤としてスチレンを当量配合した熱硬化性樹脂100重量部に炭酸カルシウム165重量部とガラス繊維90重量部を配合した硬化物を用意する。さらに計量しやすいようにあらかじめ2mmアンダー程度に粉砕しておく。尚、実施例及び比較例において、硬化物のグリコール回収率、SFC(スチレンフマル酸共重合体)回収率を以下のように求めた。
〔グリコール回収率〕
グリコールの回収率は、亜臨界水分解後に水可溶分を固液分離することにより回収し、水可溶分からガスクロマトグラフィー分析(GC分析)により、グリコール成分を定量し、以下の式より求めた。
First, as a cured product of a thermosetting resin, a varnish in which a polyhydric glycol such as propylene glycol, neopentyl glycol, dipropylene glycol and an unsaturated organic acid, maleic anhydride, are blended with an equivalent amount of glycol. A cured product is prepared by blending 165 parts by weight of calcium carbonate and 90 parts by weight of glass fiber with 100 parts by weight of thermosetting resin in which styrene is blended in an equivalent amount as a crosslinking agent. Further, it is pulverized to about 2 mm in advance so that it can be easily measured. In Examples and Comparative Examples, the glycol recovery rate and SFC (styrene fumaric acid copolymer) recovery rate of the cured product were determined as follows.
[Glycol recovery rate]
The recovery rate of glycol is recovered by solid-liquid separation of water-soluble components after subcritical water decomposition, and the glycol component is quantified from the water-soluble components by gas chromatography analysis (GC analysis). It was.

グリコール回収率(%)=グリコールモノマー成分の定量結果/硬化体のグリコールモノマーの推定含有量×100
グリコールモノマーの推定含有量:ワニス成形時の原料配合量から割合計算して算出
〔SFC回収率〕
亜臨界水分解後に水可溶成分中に含まれるSFC量をSFC回収率として以下のように求める。
Glycol recovery rate (%) = quantification result of glycol monomer component / estimated content of glycol monomer in cured product × 100
Estimated content of glycol monomer: Calculated by ratio calculation from raw material blending amount during varnish molding [SFC recovery rate]
The amount of SFC contained in the water-soluble component after subcritical water decomposition is determined as the SFC recovery rate as follows.

分解処理後の可溶成分を固液分離により分離後、pHが2になるように調製して生じた沈殿物を乾燥させて重量を計測し、以下の式より求めた。   After separating the soluble component after the decomposition treatment by solid-liquid separation, the precipitate formed by adjusting the pH to 2 was dried, and the weight was measured.

SFC回収率(%)=水可溶分に酸添加して得られた沈殿物の乾燥重量/硬化体のSFCの推定含有量×100
硬化体中のSFC推定重量:NMRによってカルボン酸とスチレンの構造体の結合比率を求め、配合したスチレン量との対比でSFCの総重量を推定。
<比較例1>
比較例1では、硬化物4gに対し純水16gとをとり、これらを図1に示すように反応管1に仕込み、230℃の恒温槽2に浸漬し反応管1内で純水の亜臨界状態にして2時間浸漬したまま放置し、熱硬化性樹脂硬化物の分解処理を行った。この後、反応管1を恒温槽2から取り出して冷却槽3に浸漬し、反応管1を急冷して室温まで戻した。
SFC recovery rate (%) = dry weight of precipitate obtained by acid addition to water-soluble matter / estimated SFC content of cured product × 100
Estimated weight of SFC in the cured product: The binding ratio of the structure of carboxylic acid and styrene is obtained by NMR, and the total weight of SFC is estimated by comparison with the amount of styrene blended.
<Comparative Example 1>
In Comparative Example 1, 16 g of pure water is taken with respect to 4 g of the cured product, and these are charged into the reaction tube 1 as shown in FIG. 1 and immersed in a constant temperature bath 2 at 230 ° C. to be subcritical in the reaction tube 1. In this state, the thermosetting resin cured product was decomposed by leaving it immersed for 2 hours. Thereafter, the reaction tube 1 was taken out from the thermostatic bath 2 and immersed in the cooling bath 3, and the reaction tube 1 was rapidly cooled to room temperature.

上記分解処理後の反応管1の内容物は、水可溶成分と無機フィラー(炭酸カルシウムとガラス繊維が主成分)であり、この内容物をろ過することにより水可溶分を分離して反応管1から回収した。
<比較例2>
比較例2では、上記比較例1に対し、溶媒の純水16g中に、0.4gのNaOHを溶解させて同条件で亜臨界水分解処理を行い、分解後得られた水可溶分を同様に固液分離して回収した。
<比較例3>
比較例3については、比較例2において、硬化物量を1.5倍とし、固形分が増加した分、溶媒量を減少させることにより合計量を調整した。亜臨界水分解条件については、同様とし、分解後に水可溶分を回収した。
<実施例1−5>
それぞれの比較例に対し、実施例1−3として、アニオン性分散剤(A:ポリアクリル酸ナトリウム塩)を固形分に対し、0.4%(0.016g)添加して、亜臨界水分解を行い、分解後に水可溶分を回収した。
The content of the reaction tube 1 after the decomposition treatment is a water-soluble component and an inorganic filler (mainly composed of calcium carbonate and glass fiber). By filtering the content, the water-soluble component is separated and reacted. Recovered from tube 1.
<Comparative example 2>
In Comparative Example 2, 0.4 g of NaOH was dissolved in 16 g of pure water as a solvent, and subcritical water decomposition treatment was performed under the same conditions as in Comparative Example 1, and the water-soluble content obtained after decomposition was determined. Similarly, it was recovered by solid-liquid separation.
<Comparative Example 3>
For Comparative Example 3, the total amount was adjusted by increasing the amount of the cured product by 1.5 times in Comparative Example 2 and decreasing the amount of solvent by the amount of increased solid content. The subcritical water decomposition conditions were the same, and the water-soluble component was recovered after decomposition.
<Example 1-5>
For each comparative example, as Example 1-3, 0.4% (0.016 g) of an anionic dispersant (A: polyacrylic acid sodium salt) was added to the solid content, and subcritical water decomposition was performed. The water-soluble component was recovered after decomposition.

また、実施例4−5として、同一のアニオン性分散剤を固形分に対し、0.1%、3.0%の各々を添加して亜臨界水分解を行い、分解後に水可溶分を回収した。
<実施例6−7>
前記実施例2−3において、アニオン性分散剤をナフタリンスルホン酸ホルマリン縮合物ナトリウム塩に変更して亜臨界水分解を行い、分解後の水可溶分を回収した。
Further, as Example 4-5, 0.1% and 3.0% of the same anionic dispersant was added to the solid content to perform subcritical water decomposition, and the water-soluble content was determined after decomposition. It was collected.
<Example 6-7>
In Example 2-3, the anionic dispersant was changed to naphthalenesulfonic acid formalin condensate sodium salt, subcritical water decomposition was performed, and the water-soluble component after decomposition was recovered.

以上の比較例、実施例に対して、上記のグリコール回収率、SFC回収率を求めた結果を表1に示す。   Table 1 shows the results of determining the glycol recovery rate and the SFC recovery rate for the above comparative examples and examples.

Figure 2010144131
Figure 2010144131

実施例1−2、4−6に示すとおり、比較例1及び2と比較して、分散剤を添加することにより、アルカリの有無に関わらず、より大きな分散効果を得ることにより、グリコール回収率が向上し、主鎖が切れた結果、架橋部を含むSFCの回収率も向上した。なお、実施例1では、SFCは、分解後水可溶物質とならずに固形分の方でも回収されている。   As shown in Examples 1-2 and 4-6, in comparison with Comparative Examples 1 and 2, by adding a dispersant, a greater dispersion effect can be obtained regardless of the presence or absence of alkali, thereby obtaining a glycol recovery rate. As a result, the main chain was cut, and as a result, the recovery rate of SFC including the cross-linked portion was improved. In Example 1, SFC is recovered not only as a water-soluble substance after decomposition but also as a solid content.

実施例3および7については、比較例3と比較して、分解前の固形分に対して、水量が少ない場合においても、攪拌が十分に行われ、亜臨界水中において加水分解反応が効率的に行われたことを意味する。   For Examples 3 and 7, compared with Comparative Example 3, even when the amount of water was small relative to the solid content before decomposition, stirring was sufficiently performed, and the hydrolysis reaction was efficiently performed in subcritical water. It means that it was done.

すなわち、分散剤を加えることにおいて、同等の分解率で処理量を1.5倍(4g→6g)にできることが確認できた。   That is, it was confirmed that the amount of treatment could be increased 1.5 times (4 g → 6 g) with the same decomposition rate by adding a dispersant.

実施例および比較例での分解反応の手順について示した概要図である。It is the schematic which showed about the procedure of the decomposition reaction in an Example and a comparative example.

符号の説明Explanation of symbols

1 反応管
2 恒温槽
3 冷却槽
1 Reaction tube 2 Thermostatic bath 3 Cooling bath

Claims (3)

無機フィラー含有プラスチックを、無機フィラーを分散させる分散剤を共存させた処理液で亜臨界状態で水熱分解させることを特徴とするプラスチックの分解方法。   A method for decomposing a plastic, characterized in that an inorganic filler-containing plastic is hydrothermally decomposed in a subcritical state with a treatment liquid in which a dispersant for dispersing the inorganic filler coexists. 分散剤が、アニオン界面活性剤であることを特徴とする請求項1に記載のプラスチックの分解方法。   The method for decomposing a plastic according to claim 1, wherein the dispersant is an anionic surfactant. 処理液にさらにアルカリを共存させて無機フィラー含有プラスチックを水熱分解させることを特徴とする請求項1または2に記載のプラスチックの分解方法。   The method for decomposing a plastic according to claim 1 or 2, wherein an alkali filler is further allowed to coexist in the treatment solution to hydrothermally decompose the plastic containing the inorganic filler.
JP2008325775A 2008-12-22 2008-12-22 Method for decomposing plastic Pending JP2010144131A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008325775A JP2010144131A (en) 2008-12-22 2008-12-22 Method for decomposing plastic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008325775A JP2010144131A (en) 2008-12-22 2008-12-22 Method for decomposing plastic

Publications (1)

Publication Number Publication Date
JP2010144131A true JP2010144131A (en) 2010-07-01

Family

ID=42564873

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008325775A Pending JP2010144131A (en) 2008-12-22 2008-12-22 Method for decomposing plastic

Country Status (1)

Country Link
JP (1) JP2010144131A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109053427A (en) * 2018-09-13 2018-12-21 天津市安凯特科技发展有限公司 A kind of recoverying and utilizing method of astrotone depolymerization residue

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109053427A (en) * 2018-09-13 2018-12-21 天津市安凯特科技发展有限公司 A kind of recoverying and utilizing method of astrotone depolymerization residue

Similar Documents

Publication Publication Date Title
EP3153543B1 (en) Method and composition for swelling pretreatment before decomposition of cured thermosetting resin materials
WO2005092962A1 (en) Method of decomposing plastic
JP4440337B2 (en) Decomposition of thermosetting resin and recovery method of decomposition product
JP2010168560A (en) Method for decomposing composite material
JP5148617B2 (en) Decomposition of thermosetting resin and recovery method of decomposition product
JP2003055475A (en) Reclaimed fiber-reinforced plastic
JP2010144131A (en) Method for decomposing plastic
JP4806758B2 (en) Decomposition and recovery method of thermosetting resin
CN107880308B (en) Recovery of fibers from fiber reinforced polymers with lewis bases
JP2009227980A (en) Method for decomposition and recovery of plastic
JP5519265B2 (en) Detergent builder
JP5508025B2 (en) Decomposition of thermosetting resin and recovery method of decomposition product
JP4806757B2 (en) Decomposition and recovery method of thermosetting resin
JP4720739B2 (en) Recovery and reuse of aluminum hydroxide from plastic
JP2011111502A (en) Method for decomposing plastic
WO2010110434A1 (en) Method for decomposing and recovering thermoset resin
JP4979568B2 (en) Decomposition and recovery method of thermosetting resin
JP2005126667A (en) Method for treating and recycling plastic, treated and recovered plastic material, and recycled plastic
JP4971124B2 (en) Decomposition and recovery method of thermosetting resin
JP2011006580A (en) Method for decomposition and recovery of plastics
JP2005113096A (en) Method for solubilization-treating plastic material, method of recycling and plastic-forming material
WO2025120155A1 (en) Process for providing a purified polyvinyl chloride (pvc) polymer
JP5243464B2 (en) Plastic disassembly / recovery method
JP2011202102A (en) Method for separating polybasic acid vinyl monomer copolymer salt
JP2011184607A (en) Decomposing treatment method for polymeric material, and the resultant reclaimed resin