[go: up one dir, main page]

JP2010169586A - Torque amount converter - Google Patents

Torque amount converter Download PDF

Info

Publication number
JP2010169586A
JP2010169586A JP2009013387A JP2009013387A JP2010169586A JP 2010169586 A JP2010169586 A JP 2010169586A JP 2009013387 A JP2009013387 A JP 2009013387A JP 2009013387 A JP2009013387 A JP 2009013387A JP 2010169586 A JP2010169586 A JP 2010169586A
Authority
JP
Japan
Prior art keywords
side flange
strain
torque amount
torque
generating portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009013387A
Other languages
Japanese (ja)
Inventor
Ryotaro Seki
亮太郎 関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minebea Co Ltd
Original Assignee
Minebea Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minebea Co Ltd filed Critical Minebea Co Ltd
Priority to JP2009013387A priority Critical patent/JP2010169586A/en
Publication of JP2010169586A publication Critical patent/JP2010169586A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a torque amount converter capable of performing highly accurate measurement, without being influenced by the bending stress. <P>SOLUTION: This torque amount converter 10 includes in an integrated constitution, a driving side flange 11, a driven side flange 12 arranged oppositely to the driving side flange 11, and a strain generation section 13 arranged between the driving side flange 11 and the driven side flange 12. The torque amount converter 10, further, includes a plurality of pillar members 15 connected to the driving side flange 11 and the driven side flange 12, on the outside of the strain generating section 13. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、例えば高速で回転するエンジン等の出力部のトルクを測定するのに用いるトルク量変換器に関するものであり、特に曲げ応力の影響を受けずに正確な測定を行うことができるトルク量変換器の構造に関する。   The present invention relates to a torque amount converter used for measuring torque of an output part of an engine or the like that rotates at a high speed, for example, and in particular, a torque amount that enables accurate measurement without being affected by bending stress. It relates to the structure of the converter.

通常、自動車のエンジン等に生じるトルクを測定するトルク量変換器は、エンジン側に連結された動力導出用シャフトと、ダイナモメータとの間に接続される。トルク量変換器は、動力導出用シャフト側に結合された駆動側フランジと、ダイナモメータ側に結合された従動側フランジと、この駆動側フランジと従動側フランジとを連結する円筒状の起歪部によって構成されている。そして、動力導出用シャフトの回転力が駆動側フランジから従動側フランジに伝達されるときに生じるトルクに応じた起歪部の剪断歪量を起歪部に添着されている歪ゲージにより電気的に測定している。   Usually, a torque amount converter that measures torque generated in an automobile engine or the like is connected between a power derivation shaft connected to the engine side and a dynamometer. The torque converter includes a drive side flange coupled to the power derivation shaft side, a driven side flange coupled to the dynamometer side, and a cylindrical strain generating portion that connects the drive side flange and the driven side flange. It is constituted by. Then, the shear strain amount of the strain generating portion corresponding to the torque generated when the rotational force of the power derivation shaft is transmitted from the driving side flange to the driven side flange is electrically measured by the strain gauge attached to the strain generating portion. Measuring.

この起歪部によって精度よく歪量を測定するには、起歪部の外径を小さくするか、或いは起歪部の肉厚を薄くして大きな歪を生じさせる必要がある。しかし、自動車のエンジン等に生じるトルク量を測定する場合には、自動車の急発進や急停止時に急激なトルク変化が発生する。このような急激なトルク変化を測定するためには、起歪部は高い応答性を有する必要があり、高い捩り剛性が要求され、起歪部の外径を大きくするか、或いは起歪部の肉厚を厚くする必要があった。   In order to accurately measure the amount of strain by the strain generating portion, it is necessary to reduce the outer diameter of the strain generating portion or reduce the wall thickness of the strain generating portion to generate a large strain. However, when the amount of torque generated in an automobile engine or the like is measured, a sudden torque change occurs when the automobile suddenly starts or stops. In order to measure such a sudden torque change, the strain generating portion needs to have high responsiveness, and high torsional rigidity is required, and the outer diameter of the strain generating portion is increased, or It was necessary to increase the wall thickness.

このような難点を解決するものとして、円筒状の起歪部の回転方向に薄肉円筒部を設け、この薄肉円筒部の外径を大きくすることで、高い捩り剛性を備えたトルク量変換器が提案されている(例えば、特許文献1参照)。しかし、この構造では、捩れや軸の曲げ撓みを発生し易く、肉厚を厚くするか起歪部の外径を大きくする必要があり、トルク量を高精度に測定することに関し不利な構造であった。   In order to solve such difficulties, a torque amount converter having high torsional rigidity is provided by providing a thin cylindrical portion in the rotational direction of the cylindrical strain generating portion and increasing the outer diameter of the thin cylindrical portion. It has been proposed (see, for example, Patent Document 1). However, this structure is likely to cause torsion and bending of the shaft, and it is necessary to increase the wall thickness or increase the outer diameter of the strain generating part, which is disadvantageous in terms of measuring the torque amount with high accuracy. there were.

また、このような難点を解決するものとして、起歪部の外周面の円周方向に、中心軸に向かって断面が円弧形状の溝を形成し、起歪部の最薄肉部周辺に歪ゲージを等間隔に添着したトルク量変換器が提案されている(例えば、特許文献2参照)。   In order to solve such difficulties, a groove having an arc-shaped cross section toward the central axis is formed in the circumferential direction of the outer peripheral surface of the strain generating portion, and a strain gauge is formed around the thinnest portion of the strain generating portion. Has been proposed (see, for example, Patent Document 2).

特開平7−229802号公報JP-A-7-229802 特開2001−330525号公報JP 2001-330525 A

ところが、上記特許文献2に開示されたトルク量変換器では、さらに高精度の測定結果が要求される場合、エンジン側の動力導出用シャフトから与えられる曲げ応力や、動力導出用シャフトの回転に伴い発生する曲げ応力を、歪ゲージが誤検出してしまい、エンジン単体のトルクを高精度に測定する上で障害となっていた。   However, in the torque amount converter disclosed in Patent Document 2, when a more accurate measurement result is required, the bending stress applied from the power derivation shaft on the engine side or the rotation of the power derivation shaft is accompanied. The strain stress is erroneously detected by the strain gauge, which has been an obstacle to measuring the torque of the engine alone with high accuracy.

本発明は、上記課題を解決するためになされたものであり、曲げ応力の影響を受けずに高精度な測定を行うことができるトルク量変換器を提供することにある。   The present invention has been made to solve the above-described problems, and it is an object of the present invention to provide a torque amount converter capable of performing highly accurate measurement without being affected by bending stress.

上記課題を解決するために本発明に係るトルク量変換器は、駆動側フランジと、前記駆動側フランジに対向配置された従動側フランジと、前記駆動側フランジおよび前記従動側フランジの間に配置された起歪部とを一体構成したトルク量変換器であって、
前記起歪部の外側に、前記駆動側フランジおよび前記従動側フランジに接続された複数の柱部材を備えたことを特徴としている。
In order to solve the above problems, a torque amount converter according to the present invention is disposed between a driving side flange, a driven side flange disposed opposite to the driving side flange, and between the driving side flange and the driven side flange. A torque amount converter integrally configured with the strain generating portion,
A plurality of column members connected to the driving side flange and the driven side flange are provided outside the strain generating portion.

上記構成のトルク量変換器によれば、起歪部の外側に駆動側フランジおよび従動側フランジに接続された複数の柱部材を備えているので、駆動側フランジに曲げ応力が与えられたとしても、複数の柱部材が曲げ応力を阻止して、起歪部に曲げ応力を伝えることはない。これにより、エンジンのトルクを測定する際に、エンジン側の動力導出用シャフトから与えられる曲げ応力および動力導出用シャフトの回転に伴い発生する曲げ応力が起歪部に伝わることが殆どないので、起歪部の歪ゲージは曲げ応力の影響を受けずに高精度なトルクの測定を行うことができる。   According to the torque amount converter having the above-described configuration, since the plurality of column members connected to the driving side flange and the driven side flange are provided outside the strain generating portion, even if bending stress is applied to the driving side flange. The plurality of column members prevent the bending stress and does not transmit the bending stress to the strain generating portion. As a result, when measuring the torque of the engine, the bending stress applied from the power deriving shaft on the engine side and the bending stress generated along with the rotation of the power deriving shaft are hardly transmitted to the strain generating portion. The strain gauge of the strain section can measure torque with high accuracy without being affected by bending stress.

また、本発明に係るトルク量変換器は、柱部材が前記起歪部に装備される歪検出素子から離れた前記駆動側フランジおよび前記従動側フランジの外周側に、放射状に等間隔で配置されていることが好ましい。   Further, the torque amount converter according to the present invention is arranged radially at equal intervals on the outer peripheral side of the driving side flange and the driven side flange, the column members being separated from the strain detecting element provided in the strain generating portion. It is preferable.

上記構成のトルク量変換器によれば、柱部材が起歪部の歪検出素子から離れた駆動側フランジおよび従動側フランジの外周側に放射状に等間隔で配置されていることにより、柱部材を駆動側フランジおよび従動側フランジと一体構成する場合、トルク量変換器の研削加工精度が向上し、さらに、高精度な測定を可能にする。   According to the torque amount converter having the above configuration, the column members are arranged radially at equal intervals on the outer peripheral side of the drive side flange and the driven side flange away from the strain detecting element of the strain generating portion. When the driving side flange and the driven side flange are integrated with each other, the grinding amount accuracy of the torque amount converter is improved, and more accurate measurement is possible.

本発明に係るトルク量変換器によれば、前述したように、エンジンのトルクを測定する際に、エンジン側の動力導出用シャフトから与えられる曲げ応力および動力導出用シャフトの回転に伴い発生する曲げ応力が起歪部に伝わることが殆どないので、曲げ応力の影響を受けずに高精度な測定を行うことができる。   According to the torque amount converter of the present invention, as described above, when measuring the torque of the engine, the bending stress generated from the power deriving shaft on the engine side and the bending generated with the rotation of the power deriving shaft. Since stress is hardly transmitted to the strain-generating portion, highly accurate measurement can be performed without being affected by bending stress.

本発明の第1実施形態に係るトルク量変換器の説明図であり、(A)はトルク量変換器の正面図、(B)は(A)のA−A線断面図である。It is explanatory drawing of the torque amount converter which concerns on 1st Embodiment of this invention, (A) is a front view of a torque amount converter, (B) is the sectional view on the AA line of (A). 図1のトルク量変換器の斜視図である。It is a perspective view of the torque amount converter of FIG. 図1のトルク量変換器の起歪部に取り付けられる歪検出素子を構成する各歪ゲージの配置を示す説明図である。It is explanatory drawing which shows arrangement | positioning of each strain gauge which comprises the strain detection element attached to the strain generation part of the torque amount converter of FIG. 図1のトルク量変換器の起歪部に取り付けられる歪ゲージの取り付け状態の一例を示す説明図である。It is explanatory drawing which shows an example of the attachment state of the strain gauge attached to the strain generation part of the torque amount converter of FIG. 歪ゲージによって構成されるホイートストンブリッジ回路を示す回路図である。It is a circuit diagram which shows the Wheatstone bridge circuit comprised by a strain gauge. 本発明の第2実施形態のトルク量変換器の断面図である。It is sectional drawing of the torque amount converter of 2nd Embodiment of this invention. 本発明の第3〜第5実施形態のトルク量変換器に適用される柱部材の単体断面図であり、(a)は第3実施形態に適用される柱部材、(b)は第4実施形態に適用される柱部材、(c)は第5実施形態に適用される柱部材である。It is a single-piece sectional view of the pillar member applied to the torque quantity converter of the 3rd-5th embodiment of the present invention, (a) is the pillar member applied to the 3rd embodiment, and (b) is the 4th embodiment. A column member applied to the form, (c) is a column member applied to the fifth embodiment.

以下、図を参照して本発明の複数の好適な実施形態を説明する。   Hereinafter, a plurality of preferred embodiments of the present invention will be described with reference to the drawings.

(第1実施形態)
図1は本発明の第1実施形態に係るトルク量変換器の説明図であり、(A)はトルク量変換器の正面図、(B)は(A)のA−A線断面図である。図2は図1のトルク量変換器の斜視図である。図3は図1のトルク量変換器の起歪部に取り付けられる歪検出素子を構成する各歪ゲージの配置を示す説明図、図4は図1のトルク量変換器の起歪部に取り付けられる歪ゲージの取り付け状態の一例を示す説明図である。
(First embodiment)
1A and 1B are explanatory views of a torque amount converter according to a first embodiment of the present invention, in which FIG. 1A is a front view of the torque amount converter, and FIG. 1B is a cross-sectional view taken along line AA in FIG. . FIG. 2 is a perspective view of the torque amount converter of FIG. 3 is an explanatory view showing the arrangement of each strain gauge constituting the strain detecting element attached to the strain generating portion of the torque amount converter of FIG. 1, and FIG. 4 is attached to the strain generating portion of the torque amount converter of FIG. It is explanatory drawing which shows an example of the attachment state of a strain gauge.

本発明の第1実施形態であるトルク量変換器10は、図1(A)に図示するように、駆動側フランジ11と、駆動側フランジ11に対向配置された従動側フランジ12と、駆動側フランジ11および従動側フランジ12の間に配置された起歪部13とが、鉄、合金鋼、ステンレス、アルミニウム、チタニウム等の金属材料により一体構成されている。
また、トルク量変換器10は、図1(B)および図2に図示するように、中空円筒状で外形八角形状に形成された起歪部13の内周の薄肉部に取り付けられた4個の歪検出素子14と、起歪部13の外側で起歪部13から離れた駆動側フランジ11および従動側フランジ12の外周側に放射状に等間隔で八角形の各頂点に対応して配置され、駆動側フランジ11および従動側フランジ12と一体構成されて起歪部13側がテーパ状に形成され、外周側が円弧状に形成された8個の柱部材15と、を備えている。
As shown in FIG. 1A, a torque amount converter 10 according to the first embodiment of the present invention includes a drive side flange 11, a driven side flange 12 disposed opposite to the drive side flange 11, and a drive side. The strain generating portion 13 disposed between the flange 11 and the driven side flange 12 is integrally formed of a metal material such as iron, alloy steel, stainless steel, aluminum, or titanium.
Further, as shown in FIGS. 1B and 2, the torque amount converter 10 includes four pieces attached to the thin wall portion on the inner periphery of the strain generating portion 13 formed in a hollow cylindrical shape with an outer octagonal shape. Are arranged on the outer peripheral side of the drive side flange 11 and the driven side flange 12 that are separated from the strain generation part 13 outside the strain generation part 13 and corresponding to the respective apexes of the octagons radially at equal intervals. And eight pillar members 15 which are integrally formed with the drive side flange 11 and the driven side flange 12 and are formed in a tapered shape on the strain generating portion 13 side and in an arc shape on the outer peripheral side.

図1(A)に示すように、駆動側フランジ11は、予め定められた厚み寸法T1を有する円板形状に形成されている。駆動側フランジ11は、不図示のエンジン側の動力導出用シャフトに不図示の連結部材を介して接続されている。
また、従動側フランジ12は、駆動側フランジ11とほぼ同一形状に形成されており、不図示の連結部材を介してダイナモメータに接続される。
As shown in FIG. 1A, the drive side flange 11 is formed in a disc shape having a predetermined thickness dimension T1. The drive side flange 11 is connected to a power derivation shaft on the engine side (not shown) via a coupling member (not shown).
The driven flange 12 is formed in substantially the same shape as the drive flange 11 and is connected to a dynamometer via a connecting member (not shown).

図1(B)および図2に示すように、起歪部13は、外周が8角形であり、内周が円形の筒形状に形成されて駆動側フランジ11および従動側フランジ12間の同軸上に駆動側フランジ11および従動側フランジ12と一体構成されている。起歪部13は、その内周面16の薄肉部で円周方向に等間隔、即ち円周方向に90度間隔の4カ所に歪検出素子14をそれぞれ取り付けている。   As shown in FIGS. 1B and 2, the strain generating portion 13 has an octagonal outer periphery and a cylindrical shape with an inner periphery that is coaxial with the drive side flange 11 and the driven side flange 12. The driving side flange 11 and the driven side flange 12 are integrally formed. The strain generating portion 13 is provided with strain detecting elements 14 at four locations at equal intervals in the circumferential direction, that is, at intervals of 90 degrees in the circumferential direction, at the thin portion of the inner peripheral surface 16 thereof.

具体的には、各歪検出素子14は、図4に図示するように透明樹脂シート上に2つの抵抗パターンが設けられて構成される。すなわち、図3に図示するように、歪ゲージA1と歪ゲージB1、歪ゲージA2と歪ゲージB2、歪ゲージA3と歪ゲージB3、歪ゲージA4と歪ゲージB4でそれぞれ構成される。そして、図4に図示するように、複数回折り返す抵抗パターンを有する歪ゲージA1は、その抵抗パターンが軸方向Yに対して45°になるように取り付けられている。また、歪ゲージB1は、その抵抗パターンが歪ゲージA1の抵抗パターンと軸方向Yに対して線対称になるように起歪部13に取り付けられている。
同様にして、歪ゲージA2と歪ゲージB2、歪ゲージA3と歪ゲージB3、歪ゲージA4と歪ゲージB4とはそれぞれの抵抗パターンが軸方向Yに対して線対称になるように起歪部13に取り付けられている。なお、第1実施形態では各歪検出素子14は、2つの歪ゲージで構成されているが、これに限定されることはなく、要求される検出精度やコストに応じて1つ又は3つ以上の歪ゲージでの構成も可能である。
Specifically, each strain detection element 14 is configured by providing two resistance patterns on a transparent resin sheet as shown in FIG. That is, as shown in FIG. 3, the strain gauge A1 and the strain gauge B1, the strain gauge A2 and the strain gauge B2, the strain gauge A3 and the strain gauge B3, and the strain gauge A4 and the strain gauge B4, respectively. As shown in FIG. 4, the strain gauge A <b> 1 having a plurality of resistance patterns that are folded back is attached so that the resistance pattern is 45 ° with respect to the axial direction Y. The strain gauge B1 is attached to the strain generating portion 13 so that the resistance pattern thereof is line symmetric with respect to the resistance pattern of the strain gauge A1 and the axial direction Y.
Similarly, the strain gauge A2 and the strain gauge B2, the strain gauge A3 and the strain gauge B3, and the strain gauge A4 and the strain gauge B4 are distorted so that their resistance patterns are line symmetric with respect to the axial direction Y. Is attached. In the first embodiment, each strain detection element 14 includes two strain gauges. However, the present invention is not limited to this, and one or three or more are provided according to required detection accuracy and cost. It is also possible to use a strain gauge.

8個の柱部材15は、鉄、合金鋼、ステンレス、アルミニウム、チタニウム等の金属材料を素材として、起歪部13の外側に、駆動側フランジ11および従動側フランジ12と一体に、厚み寸法T2、長さ寸法L1、幅寸法Wの直方体形状で、外側は駆動側フランジ11または従動側フランジ12の半径以下の同心円弧で、起歪部13側がテーパ状に形成されている。
この柱部材15は、駆動側フランジ11および従動側フランジ12の外周側に、円周方向に等間隔、即ち円周方向に45度間隔で、八角形状の起歪部13の角部(各頂点)にそれぞれ対応して放射状に配置されている。
The eight column members 15 are made of a metal material such as iron, alloy steel, stainless steel, aluminum, and titanium, and are integrally formed with the driving side flange 11 and the driven side flange 12 on the outside of the strain-generating portion 13. A rectangular parallelepiped shape having a length dimension L1 and a width dimension W, the outer side being a concentric arc having a radius equal to or less than the radius of the driving side flange 11 or the driven side flange 12, and the strain generating portion 13 side being tapered.
The column members 15 are arranged on the outer peripheral sides of the drive side flange 11 and the driven side flange 12 at equal intervals in the circumferential direction, that is, at 45 ° intervals in the circumferential direction. ) Are arranged radially corresponding to each.

ここで、起歪部13の4ヶ所に取り付けられた歪検出素子14を構成する各歪ゲージは、図5に示すように、歪ゲージA1と歪ゲージA3、歪ゲージA2と歪ゲージA4、歪ゲージB1と歪ゲージB3、歪ゲージB2と歪ゲージB4の2素子1対の歪ゲージがホイートストンブリッジ回路17の各一辺を構成するように接続されている。また、各歪検出素子14は、起歪部13に生じるトルク量に比例した剪断力によって、例えば、圧縮歪となる歪ゲージB1と、引張り歪となる歪ゲージA1とに区別されている。
このような構成にすることで、フランジの曲げに対する応力の影響を互いに打ち消し合うようになり、1つの歪ゲージで歪検出素子14を構成するものに比べて検出精度を大幅に向上させることができる。なお、両者の歪ゲージの抵抗変動は、出力端子18がそれぞれ接続されている測定回路19に加算されて測定データを算出するようになっている。
Here, as shown in FIG. 5, the strain gauges constituting the strain sensing elements 14 attached to the four portions of the strain generating portion 13 are the strain gauge A1, the strain gauge A3, the strain gauge A2, the strain gauge A4, and the strain gauge. Two pairs of strain gauges, that is, a gauge B 1 and a strain gauge B 3, and a strain gauge B 2 and a strain gauge B 4 are connected so as to constitute one side of the Wheatstone bridge circuit 17. Each strain detection element 14 is distinguished, for example, from a strain gauge B1 that is a compressive strain and a strain gauge A1 that is a tensile strain by a shear force proportional to the amount of torque generated in the strain generating portion 13.
By adopting such a configuration, the influence of stress on the bending of the flanges cancels each other, and the detection accuracy can be greatly improved as compared with the case where the strain detection element 14 is configured by one strain gauge. . Note that the resistance fluctuations of both strain gauges are added to the measurement circuit 19 to which the output terminal 18 is connected, and the measurement data is calculated.

このようなトルク量変換器10は、エンジンのトルク測定を行う際に、駆動側フランジ11を貫通して同心円上に複数個設けられたネジ穴20と不図示の連結部材を用いて、駆動側フランジ11をエンジン側の動力導出用シャフトに連結させる。また、従動側フランジ12を貫通して同心円上に複数個設けられたネジ穴20と不図示の連結部材を用いて、従動側フランジ12をダイナモメータに接続するように構成されている。即ち、トルク測定を行いたい装置の駆動側に駆動側フランジ11を連結し、従動側に従動側フランジ12を連結することでトルク測定が行われる。   Such a torque amount converter 10 uses a plurality of screw holes 20 provided on a concentric circle through the drive side flange 11 and a connecting member (not shown) when measuring the torque of the engine. The flange 11 is connected to a power derivation shaft on the engine side. Further, the driven flange 12 is configured to be connected to the dynamometer by using a plurality of screw holes 20 that are provided concentrically through the driven flange 12 and a connecting member (not shown). That is, torque measurement is performed by connecting the drive side flange 11 to the drive side of the device for which torque measurement is desired and connecting the driven side follower flange 12.

エンジンを始動することにより、エンジン側の動力導出用シャフトのトルクに応じたねじれ量(表面せん断応力)を起歪部13の各歪検出素子14により電圧に変換し、出力端子18を通じて測定回路19に取り込む。そして、測定回路19により、歪検出素子14で圧縮歪となる歪ゲージと、引張り歪となる歪ゲージとの抵抗変動を算出して伝達されるトルクを測定する。   By starting the engine, a torsion amount (surface shear stress) corresponding to the torque of the engine power derivation shaft is converted into a voltage by each strain detecting element 14 of the strain generating portion 13, and a measurement circuit 19 is connected through an output terminal 18. Into. Then, the measurement circuit 19 calculates the resistance variation between the strain gauge that becomes the compressive strain and the strain gauge that becomes the tensile strain in the strain detecting element 14 and measures the transmitted torque.

このとき、エンジンの回転によって駆動側フランジ11に曲げ応力が与えられたとしても、前述したように柱部材15が曲げ応力を阻止して、起歪部13には曲げ応力が殆ど伝わらない。この結果、起歪部の歪ゲージは、曲げ応力の影響を受けずに高精度なトルクの測定を行うことができる。   At this time, even if a bending stress is applied to the drive side flange 11 by the rotation of the engine, the column member 15 prevents the bending stress as described above, and the bending stress is hardly transmitted to the strain generating portion 13. As a result, the strain gauge of the strain generating portion can perform highly accurate torque measurement without being affected by bending stress.

以上説明したように、本発明の第1実施形態のトルク量変換器10によれば、駆動側フランジ11に曲げ応力が与えられたとしても、柱部材15が曲げ応力を阻止して、起歪部13には曲げ応力が殆ど伝わらない。
これにより、エンジンのトルクを測定する際に、エンジン側の動力導出用シャフトから与えられる曲げ応力および動力導出用シャフトの回転に伴い発生する曲げ応力が起歪部15には殆ど伝わらないので、曲げ応力の影響を受けずに高精度なトルク測定を行うことができる。
As described above, according to the torque amount converter 10 of the first embodiment of the present invention, even if a bending stress is applied to the drive-side flange 11, the column member 15 prevents the bending stress and causes strain. The bending stress is hardly transmitted to the portion 13.
As a result, when measuring the torque of the engine, the bending stress applied from the power deriving shaft on the engine side and the bending stress generated with the rotation of the power deriving shaft are hardly transmitted to the strain-generating portion 15. High-accuracy torque measurement can be performed without being affected by stress.

また、本発明のトルク量変換器10によれば、柱部材15が起歪部13の歪検出素子14から離れた位置で、駆動側フランジ11および従動側フランジ12の外周側に放射状に配置されている。そして、柱部材15の断面形状は、トルク量変換器10の外周側が円弧状で、内周側が鋭角状になっている。これにより、一つの素材から旋盤加工とエンドミル加工を用いてトルク量変換器10の形状を一体物として削り出すことが可能になる。このように、トルク量変換器10を一体物とすることで、トルク量変換器10の寸法精度と剛性が向上するので高精度なトルク検出が可能になる。また、トルク量変換器10を駆動側フランジ11、従動側フランジ12、起歪部13および柱部材15が一体物であることにより、製造する際の研削加工精度をさらに向上させることができる。   Further, according to the torque amount converter 10 of the present invention, the column member 15 is radially disposed on the outer peripheral side of the driving side flange 11 and the driven side flange 12 at a position away from the strain detecting element 14 of the strain generating portion 13. ing. The cross-sectional shape of the column member 15 is such that the outer circumference side of the torque converter 10 has an arc shape and the inner circumference side has an acute angle. As a result, the shape of the torque converter 10 can be cut out as a single piece from one material using lathe processing and end milling. As described above, by integrating the torque amount converter 10 into an integrated body, the dimensional accuracy and rigidity of the torque amount converter 10 are improved, so that highly accurate torque detection is possible. Further, since the drive side flange 11, the driven side flange 12, the strain generating portion 13 and the column member 15 are integrated into the torque amount converter 10, the grinding accuracy during manufacturing can be further improved.

(第2実施形態)
次に、本発明の第2実施形態のトルク量変換器について説明する。図6は本発明の第2実施形態のトルク量変換器の要部構成を示す断面図である。なお、以下の各実施形態において、上述した第1実施形態と重複する構成要素や機能的に同様な構成要素については、図中に同一符号を付することによって説明を簡略化あるいは省略する。
(Second Embodiment)
Next, the torque amount converter according to the second embodiment of the present invention will be described. FIG. 6 is a cross-sectional view showing a main configuration of a torque converter according to the second embodiment of the present invention. In the following embodiments, the same or functionally similar components as those in the first embodiment described above are denoted by the same reference numerals in the drawings, and the description thereof is simplified or omitted.

図6に示すように、本発明の第2実施形態のトルク量変換器30は、外周が8角形の中実形状に形成された八角柱状の起歪部31を備えており、起歪部31の外周面の円周方向に等間隔、即ち円周方向に90度間隔の4カ所に第1実施形態と同様に歪検出素子14をそれぞれ取り付けている。ここで、起歪部31に取り付けられる歪ゲージの配置や取り付け状態は、第1実施形態と全く同じである。   As shown in FIG. 6, the torque amount converter 30 according to the second embodiment of the present invention includes an octagonal column-shaped strain generating portion 31 whose outer periphery is formed in an octagonal solid shape. Similar to the first embodiment, the strain detection elements 14 are respectively attached to four locations on the outer circumferential surface of the outer peripheral surface at four locations at equal intervals in the circumferential direction, that is, at intervals of 90 degrees in the circumferential direction. Here, the arrangement and attachment state of the strain gauges attached to the strain generating portion 31 are exactly the same as in the first embodiment.

本実施形態のトルク量変換器30によれば、中実形状の起歪部31を適用したことにより、第1実施形態と比べて起歪部31の成形を簡単に行うことができる。また、起歪部31の外周面に歪検出素子14を取り付けるので、第1実施形態と比べて起歪部31への歪検出素子14の取り付け作業性が向上する。なお、起歪部31を中空円筒状にしてもよいことは言うまでもない。   According to the torque amount converter 30 of the present embodiment, by applying the solid-shaped strain generating portion 31, the strain generating portion 31 can be easily formed as compared with the first embodiment. Further, since the strain detecting element 14 is attached to the outer peripheral surface of the strain generating portion 31, the workability of attaching the strain detecting element 14 to the strain generating portion 31 is improved as compared with the first embodiment. Needless to say, the strain-generating part 31 may have a hollow cylindrical shape.

次に、本発明の第3〜第5実施形態のトルク量変換器について説明する。図7(a)〜(c)は本発明のトルク量変換器に適用される別形態の柱部材の単体断面図である。なお、以下の各実施形態において、基本的な構造は上述した第1実施形態と同一であるために、それらの説明は省略し、柱部材の構造のみについて説明する。   Next, torque amount converters according to third to fifth embodiments of the present invention will be described. FIGS. 7A to 7C are sectional views of a single column member according to another embodiment applied to the torque converter according to the present invention. In each of the following embodiments, the basic structure is the same as that of the first embodiment described above. Therefore, the description thereof is omitted, and only the structure of the column member is described.

(第3実施形態)
図7(a)に示すように、本発明の第3実施形態のトルク量変換器40に適用される柱部材41は、厚み寸法T2、長さ寸法L1、不図示の幅Wを有し、外周側に円弧部42を形成し、内周側に鋭角部43を形成している。
このトルク量変換器40によれば、外周側に円弧部42を形成しているとともに、内周側に鋭角部43を形成している柱部材41を適用したことにより、トルク量変換器を駆動側フランジ、従動側フランジ、起歪部および柱部材の一体物として削り出すことが容易になるので、仕上げの際の研削加工精度がさらに向上する。
(Third embodiment)
As shown in FIG. 7A, the column member 41 applied to the torque amount converter 40 of the third embodiment of the present invention has a thickness dimension T2, a length dimension L1, and a width W (not shown). An arc portion 42 is formed on the outer peripheral side, and an acute angle portion 43 is formed on the inner peripheral side.
According to the torque amount converter 40, the torque amount converter is driven by applying the column member 41 having the arc portion 42 formed on the outer peripheral side and the acute angle portion 43 formed on the inner peripheral side. Since it becomes easy to cut out as an integrated body of the side flange, the driven side flange, the strain generating portion, and the column member, the grinding accuracy in finishing is further improved.

(第4実施形態)
図7(b)に示すように、本発明の第4実施形態のトルク量変換器50に適用される柱部材51は、厚み寸法T2、長さ寸法L1、幅Wを有し、外周側に円弧部52を形成し、内周側に円弧部53を形成している。
このトルク量変換器50によれば、外周側に円弧部52を形成しているとともに、内周側に円弧部53を形成している柱部材51を適用したことにより、研削加工性よくトルク量変換器を駆動側フランジ、従動側フランジ、起歪部および柱部材の一体構成とすることができる。
(Fourth embodiment)
As shown in FIG. 7B, the column member 51 applied to the torque amount converter 50 according to the fourth embodiment of the present invention has a thickness dimension T2, a length dimension L1, and a width W, and is arranged on the outer peripheral side. An arc portion 52 is formed, and an arc portion 53 is formed on the inner peripheral side.
According to the torque amount converter 50, the columnar member 51 in which the arc portion 52 is formed on the outer peripheral side and the arc portion 53 is formed on the inner peripheral side is used. A converter can be made into the integral structure of a drive side flange, a driven side flange, a strain generating part, and a column member.

(第5実施形態)
図7(c)に示すように、本発明の第5実施形態のトルク量変換器60に適用される柱部材61は、厚み寸法T2、長さ寸法L1、幅Wを有し、外周側に円弧部62を形成し、内周側にテーパ部63を形成している。
このトルク量変換器60によれば、外周側に円弧部62を形成しているとともに、内周側にテーパ部63を形成している柱部材61を適用したことにより、トルク量変換器を駆動側フランジ、従動側フランジ、起歪部および柱部材の一体物として削り出すことが容易になるので、仕上げの際の研削加工性が一段と向上する。
(Fifth embodiment)
As shown in FIG.7 (c), the column member 61 applied to the torque amount converter 60 of the fifth embodiment of the present invention has a thickness dimension T2, a length dimension L1, and a width W, on the outer peripheral side. An arc portion 62 is formed, and a tapered portion 63 is formed on the inner peripheral side.
According to this torque amount converter 60, the torque amount converter is driven by applying the column member 61 having the circular arc part 62 formed on the outer peripheral side and the tapered part 63 formed on the inner peripheral side. Since it becomes easy to cut out as an integrated body of the side flange, the driven side flange, the strain-generating portion, and the column member, the grindability during finishing is further improved.

尚、本発明は、上述した実施形態に限定されるものではなく、適宜、変形、改良等が自在である。その他、上述した実施形態における各構成要素の材質、形状、寸法、数値、形態、数、配置場所、等は本発明を達成できるものであれば任意であり、限定されない。
例えば、起歪部の断面形状は、丸形状、三角形状、四角形状や多角形状も可能である。
また、図7において、柱部材の断面は、トルクの伝達を阻害しない断面形状であれば良く、さらに柱部材断面の外周側、内周側に直線部を設けても良い。
In addition, this invention is not limited to embodiment mentioned above, A deformation | transformation, improvement, etc. are possible suitably. In addition, the material, shape, dimension, numerical value, form, number, arrangement location, and the like of each component in the above-described embodiment are arbitrary and are not limited as long as the present invention can be achieved.
For example, the cross-sectional shape of the strain generating portion may be a round shape, a triangular shape, a quadrangular shape, or a polygonal shape.
In FIG. 7, the cross section of the column member may be a cross sectional shape that does not hinder the transmission of torque, and linear portions may be provided on the outer peripheral side and the inner peripheral side of the column member cross section.

10、30 トルク量変換器
11 駆動側フランジ
12 従動側フランジ
13、31 起歪部
14 歪検出素子
15 柱部材
40、50、60 トルク量変換器
41、51、61 柱部材
DESCRIPTION OF SYMBOLS 10, 30 Torque amount converter 11 Drive side flange 12 Driven side flange 13, 31 Strain generation part 14 Strain detection element 15 Column member 40, 50, 60 Torque amount converter 41, 51, 61 Column member

Claims (2)

駆動側フランジと、
前記駆動側フランジに対向配置された従動側フランジと、
前記駆動側フランジおよび前記従動側フランジの間に配置された起歪部とを一体構成したトルク量変換器であって、
前記起歪部の外側に、前記駆動側フランジおよび前記従動側フランジに接続された複数の柱部材を備えたことを特徴とするトルク量変換器。
A drive side flange;
A driven-side flange disposed opposite to the drive-side flange;
A torque amount converter integrally configured with a strain generating portion disposed between the driving side flange and the driven side flange,
A torque amount converter comprising a plurality of column members connected to the driving side flange and the driven side flange outside the strain generating portion.
前記柱部材は、前記起歪部に装備される歪検出素子から離れた前記駆動側フランジおよび前記従動側フランジの外周側に、放射状に等間隔で配置されていることを特徴とする請求項1記載のトルク量変換器。
2. The column members are arranged radially at equal intervals on the outer peripheral side of the drive side flange and the driven side flange, which are separated from a strain detection element provided in the strain generating portion. The torque amount converter described.
JP2009013387A 2009-01-23 2009-01-23 Torque amount converter Pending JP2010169586A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009013387A JP2010169586A (en) 2009-01-23 2009-01-23 Torque amount converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009013387A JP2010169586A (en) 2009-01-23 2009-01-23 Torque amount converter

Publications (1)

Publication Number Publication Date
JP2010169586A true JP2010169586A (en) 2010-08-05

Family

ID=42701868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009013387A Pending JP2010169586A (en) 2009-01-23 2009-01-23 Torque amount converter

Country Status (1)

Country Link
JP (1) JP2010169586A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017096929A (en) * 2015-11-18 2017-06-01 キヤノン株式会社 Sensor, drive mechanism, and robot
JP2018132498A (en) * 2017-02-17 2018-08-23 キヤノン株式会社 Sensor, robot, and article manufacturing method
WO2018210365A1 (en) * 2017-05-16 2018-11-22 Hottinger Baldwin Messtechnik Gmbh Double-flange torque sensor with correction sensor system
WO2020008717A1 (en) 2018-07-02 2020-01-09 日本電産コパル電子株式会社 Torque sensor support device
WO2020008718A1 (en) 2018-07-02 2020-01-09 日本電産コパル電子株式会社 Torque sensor support device
WO2020012764A1 (en) 2018-07-13 2020-01-16 日本電産コパル電子株式会社 Torque sensor
WO2020013201A1 (en) 2018-07-13 2020-01-16 日本電産コパル電子株式会社 Torque sensor attachment structure
WO2020012762A1 (en) 2018-07-13 2020-01-16 日本電産コパル電子株式会社 Mounting structure for torque sensor
US11220010B2 (en) 2017-08-30 2022-01-11 Canon Kabushiki Kaisha Force sensor, torque sensor, force-sense sensor, fingertip-force sensor, and method of manufacturing the same
JP7323970B1 (en) * 2022-11-04 2023-08-09 株式会社トライフォース・マネジメント torque sensor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6348131U (en) * 1986-09-16 1988-04-01
JP2001330525A (en) * 2000-05-22 2001-11-30 Minebea Co Ltd Torque amount converter
JP2002139391A (en) * 2000-11-02 2002-05-17 Exedy Corp Torque-detecting device
JP2007040774A (en) * 2005-08-02 2007-02-15 Ono Sokki Co Ltd Torque meter

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6348131U (en) * 1986-09-16 1988-04-01
JP2001330525A (en) * 2000-05-22 2001-11-30 Minebea Co Ltd Torque amount converter
JP2002139391A (en) * 2000-11-02 2002-05-17 Exedy Corp Torque-detecting device
JP2007040774A (en) * 2005-08-02 2007-02-15 Ono Sokki Co Ltd Torque meter

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017096929A (en) * 2015-11-18 2017-06-01 キヤノン株式会社 Sensor, drive mechanism, and robot
JP2019132857A (en) * 2015-11-18 2019-08-08 キヤノン株式会社 Sensor, drive mechanism, and robot
JP2018132498A (en) * 2017-02-17 2018-08-23 キヤノン株式会社 Sensor, robot, and article manufacturing method
WO2018210365A1 (en) * 2017-05-16 2018-11-22 Hottinger Baldwin Messtechnik Gmbh Double-flange torque sensor with correction sensor system
EP3625530A1 (en) * 2017-05-16 2020-03-25 Hottinger Baldwin Messtechnik GmbH Double-flange torque sensor with correction sensor system
US11220010B2 (en) 2017-08-30 2022-01-11 Canon Kabushiki Kaisha Force sensor, torque sensor, force-sense sensor, fingertip-force sensor, and method of manufacturing the same
JP2020003459A (en) * 2018-07-02 2020-01-09 日本電産コパル電子株式会社 Support device for torque sensor
CN112352144B (en) * 2018-07-02 2022-12-30 日本电产科宝电子株式会社 Mounting device for torque sensor
US11345044B2 (en) 2018-07-02 2022-05-31 Nidec Copal Electronics Corporation Torque sensor supporting device
EP3819618A4 (en) * 2018-07-02 2022-03-16 Nidec Copal Electronics Corporation DEVICE FOR SUPPORTING A TORQUE SENSOR
WO2020008718A1 (en) 2018-07-02 2020-01-09 日本電産コパル電子株式会社 Torque sensor support device
CN112352144A (en) * 2018-07-02 2021-02-09 日本电产科宝电子株式会社 Support device for torque sensor
WO2020008717A1 (en) 2018-07-02 2020-01-09 日本電産コパル電子株式会社 Torque sensor support device
WO2020012762A1 (en) 2018-07-13 2020-01-16 日本電産コパル電子株式会社 Mounting structure for torque sensor
WO2020013201A1 (en) 2018-07-13 2020-01-16 日本電産コパル電子株式会社 Torque sensor attachment structure
WO2020012764A1 (en) 2018-07-13 2020-01-16 日本電産コパル電子株式会社 Torque sensor
US11761835B2 (en) 2018-07-13 2023-09-19 Nidec Copal Electronics Corporation Mounting structure for torque sensor
US11781927B2 (en) 2018-07-13 2023-10-10 Nidec Copal Electronics Corporation Torque sensor
US11781928B2 (en) 2018-07-13 2023-10-10 Nidec Copal Electronics Corporation Torque sensor attachment structure
JP7323970B1 (en) * 2022-11-04 2023-08-09 株式会社トライフォース・マネジメント torque sensor
JP7353004B1 (en) 2022-11-04 2023-09-29 株式会社トライフォース・マネジメント torque sensor
JP7370114B1 (en) 2022-11-04 2023-10-27 株式会社トライフォース・マネジメント Individual force sensors and force sensors
WO2024095460A1 (en) * 2022-11-04 2024-05-10 株式会社 トライフォース・マネジメント Individual force sensor and force sensor
JP2024068092A (en) * 2022-11-04 2024-05-17 株式会社トライフォース・マネジメント Torque Sensor
JP2024068065A (en) * 2022-11-04 2024-05-17 株式会社トライフォース・マネジメント Individual force sensor and force sensor

Similar Documents

Publication Publication Date Title
JP2010169586A (en) Torque amount converter
JP4368353B2 (en) Torque meter
KR102353857B1 (en) Torque sensor with shunt spokes
US10739216B2 (en) Torque sensor with a radially elastic torque transfer
JP5606662B2 (en) Torque sensor and motor with torque sensor
US11105694B2 (en) Torque sensor having a sealing membrane
US8776616B2 (en) Multiaxial force-torque sensors
US20100162830A1 (en) Torque-measuring flange
JP6029656B2 (en) Power wrench with torque detection unit
US8250935B2 (en) Torque measurement device and arrangement composed of a torque measurement device and a drive shaft
US20110303020A1 (en) Torque sensor with u-profile web
JP2012521547A (en) Torque sensor
CN108120532A (en) Axial rotation type torque sensor
US20170102281A1 (en) Torque-measuring shaft
JP5564711B2 (en) Impact fastening tool with angle detection
US20020050177A1 (en) Torque detector
JP6162080B2 (en) Torque detector
JP2004077172A (en) Torque measuring device
TWI708930B (en) Transmission device for small and micro drive device with torque measuring member
JP2023035339A (en) torque sensor
JP2018004290A (en) Thrust load measurement device
WO2019220516A1 (en) Actuator and torque sensor unit
CN112313490B (en) torque sensor
JP2009083024A (en) Impact fastening tool with angle detection
KR20230038414A (en) Torque sensor with elastic material section in radial direction

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120425

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120814