[go: up one dir, main page]

JP2010188830A - Wheel bearing device - Google Patents

Wheel bearing device Download PDF

Info

Publication number
JP2010188830A
JP2010188830A JP2009034585A JP2009034585A JP2010188830A JP 2010188830 A JP2010188830 A JP 2010188830A JP 2009034585 A JP2009034585 A JP 2009034585A JP 2009034585 A JP2009034585 A JP 2009034585A JP 2010188830 A JP2010188830 A JP 2010188830A
Authority
JP
Japan
Prior art keywords
shaft portion
flange
shaft
wheel
bearing device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009034585A
Other languages
Japanese (ja)
Inventor
Yoshiaki Masuda
善紀 増田
Tatsuya Yokota
竜哉 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Corp
Original Assignee
JTEKT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEKT Corp filed Critical JTEKT Corp
Priority to JP2009034585A priority Critical patent/JP2010188830A/en
Priority to US12/704,279 priority patent/US20100210369A1/en
Priority to CN201010117768.9A priority patent/CN101804771B/en
Priority to EP10153657A priority patent/EP2221194B1/en
Publication of JP2010188830A publication Critical patent/JP2010188830A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/86Optimisation of rolling resistance, e.g. weight reduction 

Landscapes

  • Rolling Contact Bearings (AREA)

Abstract

【課題】重量軽減を図りながら製造コストの低減を図ることができる車輪用軸受装置を提供する。
【解決手段】転がり軸受41が組み付けられる軸部10と、この軸部10の一端側に形成されかつ車輪の中心孔が嵌込まれる嵌合軸部30と、軸部10と嵌合軸部30との間に位置する中間軸部20の外周面に放射状に延出された複数のフランジ部21とを有するフランジ付き軸部材1を備える。フランジ部21は、冷間鍛造によって嵌合軸部30の中心部端面に鍛造凹部33が形成される際の側方押出加工によって形成される。鍛造凹部33は、開口側から底部に向けて複数の湾曲面35、36、38が形成されて深底状に形成されている。
【選択図】図2
A wheel bearing device capable of reducing manufacturing cost while reducing weight is provided.
A shaft portion 10 to which a rolling bearing 41 is assembled, a fitting shaft portion 30 formed on one end side of the shaft portion 10 and into which a center hole of a wheel is fitted, and the shaft portion 10 and the fitting shaft portion 30. And a flanged shaft member 1 having a plurality of flange portions 21 extending radially on the outer peripheral surface of the intermediate shaft portion 20 positioned between them. The flange portion 21 is formed by side extrusion when the forged recess 33 is formed on the end surface of the center portion of the fitting shaft portion 30 by cold forging. The forged recess 33 is formed in a deep bottom shape by forming a plurality of curved surfaces 35, 36, and 38 from the opening side toward the bottom.
[Selection] Figure 2

Description

この発明は車輪用軸受装置に関する。   The present invention relates to a wheel bearing device.

車輪用軸受装置においては、転がり軸受が組み付けられる軸部と、この軸部の一端に形成されかつ前記軸部よりも大径で車輪の中心孔が嵌込まれる嵌合軸部と、軸部と嵌合軸部との間に位置する外周面に外径方向へ放射状に延出されかつ車輪を締め付けるハブボルトが配置されるボルト孔が貫設された複数のフランジ部とを有するフランジ付き軸部材(ハブホイールと呼ばれることもある)を備えた構造のものがある。
このような構造の車輪用軸受装置においては、例えば、特許文献1に開示されている。
これにおいては、フランジ付き軸部材(ハブホイール)が円筒管を母材として冷間鍛造により整形されると共に、この冷間鍛造した母材の一方の軸端部の円周方向複数箇所が径方向外向きに切り起こされることにより、複数のフランジ部(切り起こし片)が形成される。さらに、母材の一方の軸端部には、複数のフランジ部の間に軸方向に沿った形状で残存する複数の舌片よりなる嵌合軸部(車輪が嵌込まれて位置決めされる)が設けられる。
In the wheel bearing device, a shaft portion to which the rolling bearing is assembled, a fitting shaft portion formed at one end of the shaft portion and having a larger diameter than the shaft portion and into which the center hole of the wheel is fitted, a shaft portion, A flanged shaft member having a plurality of flange portions extending radially outwardly on the outer peripheral surface located between the fitting shaft portions and through which bolt holes in which hub bolts for tightening the wheels are arranged are penetrated ( Some have a structure with a hub wheel).
A wheel bearing device having such a structure is disclosed in Patent Document 1, for example.
In this, a flanged shaft member (hub wheel) is shaped by cold forging using a cylindrical tube as a base material, and a plurality of circumferential directions at one shaft end of the cold forged base material are in the radial direction. A plurality of flange portions (cut-and-raised pieces) are formed by being cut and raised outward. Further, a fitting shaft portion (a wheel is fitted and positioned) formed of a plurality of tongue pieces remaining in a shape along the axial direction between the plurality of flange portions at one shaft end portion of the base material. Is provided.

特開2003−25803号公報JP 2003-25803 A

ところで、特許文献1に開示されたような従来の車輪用軸受装置においては、円筒管を母材として冷間鍛造により整形された鍛造品の一方の軸端部に切り起こし片よりなる複数のフランジ部が形成されて、フランジ付き軸部材が構成される。
これによって、車輪用軸受装置(主にフランジ付き軸部材)の重量軽減を図ることが可能となる。
しかしながら、前記従来の車輪用軸受装置においては、冷間鍛造により鍛造品を製作した後、鍛造品の一方の軸端部に切り起こし片よりなる複数のフランジ部を形成しなければならず、製造コストが高くなる。
By the way, in the conventional wheel bearing device as disclosed in Patent Document 1, a plurality of flanges formed by cutting and raising pieces at one shaft end of a forged product shaped by cold forging using a cylindrical tube as a base material. A part is formed and a shaft member with a flange is constituted.
This makes it possible to reduce the weight of the wheel bearing device (mainly a shaft member with a flange).
However, in the conventional wheel bearing device, after producing a forged product by cold forging, it is necessary to form a plurality of flange portions made of cut and raised pieces at one shaft end portion of the forged product. Cost increases.

この発明の目的は、前記問題点に鑑み、重量軽減を図りながら製造コストの低減を図ることができる車輪用軸受装置を提供することである。   In view of the above problems, an object of the present invention is to provide a wheel bearing device capable of reducing the manufacturing cost while reducing the weight.

前記課題を解決するために、この発明の請求項1に係る車輪用軸受装置は、転がり軸受が組み付けられる軸部と、この軸部の一端側に形成されかつ車輪の中心孔が嵌込まれる嵌合軸部と、前記軸部と前記嵌合軸部との間に位置する外周面に外径方向へ放射状に延出されかつ前記車輪を締め付けるハブボルトが配置されるボルト孔が貫設された複数のフランジ部とを有するフランジ付き軸部材を備えた車輪用軸受装置であって、
前記フランジ部は、冷間鍛造によって前記嵌合軸部の中心部端面に鍛造凹部が形成される際の側方押出加工によって形成され、
前記鍛造凹部は、開口側から底部に向けて複数の湾曲面が形成されて深底状に形成されていることを特徴とする。
In order to solve the above-described problem, a wheel bearing device according to claim 1 of the present invention includes a shaft portion on which a rolling bearing is assembled, and a fitting formed on one end side of the shaft portion and into which a center hole of the wheel is fitted. A plurality of bolt holes through which a hub bolt for extending radially outward and a hub bolt for fastening the wheel is disposed are provided on the outer peripheral surface located between the shaft portion and the shaft portion and the fitting shaft portion. A wheel bearing device comprising a flanged shaft member having a flange portion of
The flange portion is formed by side extrusion when a forged recess is formed on the end surface of the central portion of the fitting shaft portion by cold forging,
The forged recess is characterized in that a plurality of curved surfaces are formed from the opening side toward the bottom to form a deep bottom.

前記構成によると、冷間鍛造の側方押出加工によって軸部と嵌合軸部との間に位置する中間軸部の外周面に複数のフランジ部を放射状に形成することによって、重量軽減を図りながら製造コストの低減を図ることができる。
さらに、鍛造凹部は、開口側から底部に向けて複数の湾曲面(円弧面も含む)が形成されて深底状に形成されるため、軽量化に効果が大きい。
According to the above configuration, weight reduction is achieved by forming a plurality of flange portions radially on the outer peripheral surface of the intermediate shaft portion located between the shaft portion and the fitting shaft portion by side extrusion of cold forging. However, the manufacturing cost can be reduced.
Further, the forged recess is formed in a deep bottom shape by forming a plurality of curved surfaces (including an arcuate surface) from the opening side toward the bottom portion, and thus has a great effect on weight reduction.

請求項2に係る車輪用軸受装置は、請求項1に記載の車輪用軸受装置であって、
鍛造凹部は、浅底部と、この浅底部の中心部に凹設された深底部を有する段差状に形成されていることを特徴とする。
The wheel bearing device according to claim 2 is the wheel bearing device according to claim 1,
The forged recess is characterized in that it is formed in a stepped shape having a shallow bottom and a deep bottom recessed in the center of the shallow bottom.

前記構成によると、鍛造凹部が浅底部と、深底部を有する段差状に形成されることによって、強度、剛性を確保しながら軽量化を効率よく図ることが可能となる。   According to the said structure, it becomes possible to aim at weight reduction efficiently, ensuring intensity | strength and rigidity by forming a forge recessed part in the step shape which has a shallow bottom part and a deep bottom part.

請求項3に係る車輪用軸受装置は、鍛造凹部の深底部は、浅底部に中間湾曲面を介して連続すると共に、中心側に向かって漸次深くなる湾曲面をなしていることを特徴とする。   The wheel bearing device according to claim 3 is characterized in that the deep bottom portion of the forged recess is continuous with the shallow bottom portion via an intermediate curved surface and has a curved surface that gradually becomes deeper toward the center side. .

前記構成によると、鍛造凹部の深底部が浅底部に中間湾曲面を介して連続すると共に、中心側に向かって漸次深くなる湾曲面をなすことによって、強度、剛性を確保しながら軽量化をより一層効率よく図ることが可能となる。
例えば、フランジ付き軸部材の軸部のフランジ部寄り部分の外周面に転がり軸受の軌道面が形成される場合、軌道面と鍛造凹部との間の最小肉厚寸法を必要とする大きさに容易に確保することができる。
According to the above configuration, the deep bottom portion of the forged recess is continuous with the shallow bottom portion via the intermediate curved surface, and the curved surface gradually becomes deeper toward the center side, thereby further reducing the weight while ensuring strength and rigidity. It becomes possible to plan more efficiently.
For example, if the raceway surface of a rolling bearing is formed on the outer peripheral surface of the shaft portion of the flanged shaft member, the minimum thickness between the raceway surface and the forged recess is easily required. Can be secured.

この発明の実施例1に係る車輪用軸受装置を示す縦断面図である。It is a longitudinal cross-sectional view which shows the wheel bearing apparatus which concerns on Example 1 of this invention. 同じくフランジ付き軸部材を示す縦断面図である。It is a longitudinal section showing a shaft member with a flange similarly. 同じくフランジ付き軸部材を嵌合軸部側から示す平面図である。It is a top view which similarly shows the shaft member with a flange from the fitting shaft part side. 同じくフランジ付き軸部材の製造工程を示す説明図である。It is explanatory drawing which similarly shows the manufacturing process of a shaft member with a flange. 同じく冷間鍛造の第1、第2の両成形型のキャビティに一次成形品がセットされて型閉じした状態を示す縦断面図である。It is a longitudinal cross-sectional view which shows the state which the primary molded product was set in the cavity of both the 1st and 2nd shaping | molding die of a cold forging similarly, and the mold was closed. 同じくパンチによって一次成形品の嵌合軸部の端面に鍛造凹部を形成しながら複数のフランジ部を側方押出加工によって形成する状態を示す縦断面図である。It is a longitudinal cross-sectional view which shows the state which forms a some flange part by a side extrusion process, forming a forge recessed part in the end surface of the fitting shaft part of a primary molded product similarly. 同じく第1、第2の両成形型のキャビティのフランジ成形部を拡大して示す縦断面図である。It is the longitudinal cross-sectional view which expands and similarly shows the flange molding part of the cavity of both the 1st and 2nd shaping | molding die.

この発明を実施するための形態について実施例にしたがって説明する。   A mode for carrying out the present invention will be described in accordance with an embodiment.

先ず、この発明の実施例1に係る車輪用軸受装置を図1〜図3にしたがって説明する。
図1に示すように、車輪用軸受装置としての車輪用ハブユニットは、フランジ付き軸部材(ハブホイール)1と、転がり軸受としての複列のアンギュラ玉軸受41とを一体状に有してユニット化されている。
フランジ付き軸部材1は、外周面に転がり軸受としての複列のアンギュラ玉軸受41が組み付けられる軸部10と、この軸部10の一端側に形成されかつ軸部10よりも大径で車輪(図示しない)の中心孔が嵌込まれる嵌合軸部30と、軸部10と嵌合軸部30との間に位置するフランジ基部20aと、このフランジ基部20aの外周面に外径方向へ放射状に延出されかつ車輪を締め付けるハブボルト27が圧入によって配置されるボルト孔24が先端寄り部分に貫設された複数のフランジ部21とを一体に有する。
また、嵌合軸部30には、フランジ部21側にブレーキロータ用嵌合部31が形成され、先端側にブレーキロータ用嵌合部31よりも若干小径の車輪用嵌合部32が形成されている。
First, a wheel bearing device according to a first embodiment of the present invention will be described with reference to FIGS.
As shown in FIG. 1, a wheel hub unit as a wheel bearing device is a unit having a flanged shaft member (hub wheel) 1 and a double row angular ball bearing 41 as a rolling bearing. It has become.
The flanged shaft member 1 includes a shaft portion 10 on which a double-row angular ball bearing 41 as a rolling bearing is assembled on an outer peripheral surface, a wheel formed on one end side of the shaft portion 10 and having a larger diameter than the shaft portion 10 ( A fitting shaft portion 30 into which a center hole (not shown) is fitted, a flange base portion 20a positioned between the shaft portion 10 and the fitting shaft portion 30, and a radially outer surface on the outer peripheral surface of the flange base portion 20a. And a plurality of flange portions 21 each having a bolt hole 24 in which a hub bolt 27 for tightening a wheel is disposed by press-fitting.
Further, the fitting shaft portion 30 is formed with a brake rotor fitting portion 31 on the flange portion 21 side, and a wheel fitting portion 32 having a slightly smaller diameter than the brake rotor fitting portion 31 on the distal end side. ing.

この実施例1において、フランジ付き軸部材1の軸部10の外周面には環状の隙間を保って外輪部材45が配置され、この外輪部材45の内周面の軸方向に所定間隔を保って形成された両軌道面46、47と、軸部10側の両軌道面43、44との間に転動体としての複数個の玉50、51が保持器52、53によって保持されてそれぞれ組み込まれることで複列のアンギュラ玉軸受41が構成されている。
また、この実施例1においては、フランジ付き軸部材1の軸部10は、フランジ部21側が大径で先端側が小径に形成された段軸状に形成され、軸部10の大径部11の外周面に一方の軌道面43が形成されている。
また、軸部10の小径部12の外周面には内輪体42が嵌め込まれ、この内輪体42の外周面に他方の軌道面44が形成されている。
さらに、軸部10の先端部には、小径部12と同径の端軸部15が延出されている。この端軸部15の端面中心部には軸端凹部16が形成され、端軸部15の先端部が径方向外方へかしめられてかしめ部17が形成されることによって小径部12の外周面に内輪体42が固定される。
In the first embodiment, an outer ring member 45 is disposed on the outer peripheral surface of the shaft portion 10 of the flanged shaft member 1 while maintaining an annular gap, and a predetermined interval is maintained in the axial direction of the inner peripheral surface of the outer ring member 45. A plurality of balls 50 and 51 as rolling elements are held by the cages 52 and 53 between the formed raceway surfaces 46 and 47 and the raceway surfaces 43 and 44 on the shaft portion 10 side, respectively. Thus, the double-row angular ball bearing 41 is configured.
In the first embodiment, the shaft portion 10 of the shaft member 1 with the flange is formed in a stepped shaft shape in which the flange portion 21 side has a large diameter and the distal end side has a small diameter, and the shaft portion 10 has a large diameter portion 11. One raceway surface 43 is formed on the outer peripheral surface.
An inner ring body 42 is fitted on the outer peripheral surface of the small diameter portion 12 of the shaft portion 10, and the other raceway surface 44 is formed on the outer peripheral surface of the inner ring body 42.
Furthermore, an end shaft portion 15 having the same diameter as that of the small diameter portion 12 extends from the tip portion of the shaft portion 10. A shaft end concave portion 16 is formed in the center of the end surface of the end shaft portion 15, and a distal end portion of the end shaft portion 15 is caulked radially outward to form a caulking portion 17, thereby forming an outer peripheral surface of the small diameter portion 12. The inner ring body 42 is fixed to.

また、外輪部材45の外周面の軸方向中央部には車体側フランジ48が一体に形成され、車輪用ハブユニットは、車体側フランジ48において、車体側部材、例えば、車両の懸架装置(図示しない)に支持されたナックル、又はキャリアの取付面にボルトによって連結される。   A vehicle body side flange 48 is integrally formed at the axial center of the outer peripheral surface of the outer ring member 45, and the wheel hub unit includes a vehicle body side member such as a vehicle suspension device (not shown). The knuckle supported by (3) or the mounting surface of the carrier is connected by a bolt.

図2と図3に示すように、フランジ付き軸部材1の複数のフランジ部21は、冷間鍛造によって嵌合軸部30の中心部端面に鍛造凹部33が形成される際の側方押出加工によって形成される。また、フランジ部21の根元部(基部)及びその近傍(以下、単に根元部近傍という)の一側(フランジ部21のローター支持面22を車外側面としたときに車内側面をなる側)には車内側に向けて突出された厚肉部23が形成されている。
さらに、厚肉部23はフランジ部21の根元部(基部)側から同フランジ部21のボルト孔24側に向かって漸次減少する傾斜状に形成されている。この厚肉部23の傾斜面23aの傾斜角度(フランジ付き軸部材1の回転中心軸線Sと直交する円環状平坦面23cに対する角度)θ1は、冷間鍛造時の材料流れや成形後の脱型を考慮すると、「20°≦θ1≦45°」の関係に設定されることが望ましい。
As shown in FIG. 2 and FIG. 3, the plurality of flange portions 21 of the shaft member 1 with flange are laterally extruded when a forged recess 33 is formed on the end face of the center portion of the fitting shaft portion 30 by cold forging. Formed by. In addition, on the base portion (base portion) of the flange portion 21 and one side thereof (hereinafter simply referred to as the vicinity of the root portion) (on the side that forms the vehicle inner surface when the rotor support surface 22 of the flange portion 21 is the vehicle outer surface). A thick portion 23 is formed that protrudes toward the inside of the vehicle.
Further, the thick portion 23 is formed in an inclined shape that gradually decreases from the base portion (base portion) side of the flange portion 21 toward the bolt hole 24 side of the flange portion 21. The inclination angle of the inclined surface 23a of the thick wall portion 23 (the angle with respect to the annular flat surface 23c orthogonal to the rotation center axis S of the flanged shaft member 1) θ1 is the material flow during cold forging and demolding after forming. Is preferably set to a relationship of “20 ° ≦ θ1 ≦ 45 °”.

また、図3に示すように、各フランジ部21の幅方向両側面の根元部に応力が集中して作用することがないように、各フランジ部21の幅方向両側面の根元部は中間軸部20の外周面に向かってしだいに幅広となる湾曲面(円弧面も含む)21bをなすと共に、隣接する各フランジ部21の湾曲面21bは中間軸部20の外周面から突出された部分20aに連続している。
また、図3に示すように、各フランジ部21の先端面は、中間軸部20の直径寸法の約半分の半径をもつ円弧面21aに形成されている。すなわち、中間軸部20の直径寸法をφPとし、フランジ部21の先端の円弧面21aの半径寸法をrQとしたときに、φP/2≒rQとなるように形成されている。
Further, as shown in FIG. 3, the root portions on both side surfaces in the width direction of each flange portion 21 are intermediate shafts so that stress does not concentrate on the root portions on both side surfaces in the width direction of each flange portion 21. A curved surface (including a circular arc surface) 21b that gradually becomes wider toward the outer peripheral surface of the portion 20 and a curved surface 21b of each adjacent flange portion 21 protrude from the outer peripheral surface of the intermediate shaft portion 20. It is continuous.
As shown in FIG. 3, the front end surface of each flange portion 21 is formed as an arc surface 21 a having a radius that is approximately half the diameter dimension of the intermediate shaft portion 20. That is, when the diameter dimension of the intermediate shaft portion 20 is φP and the radial dimension of the arcuate surface 21a at the tip of the flange portion 21 is rQ, φP / 2≈rQ.

また、フランジ基部20aの体積をVjとし、軸部10の中心と同心上の中心からフランジ部21の先端までの距離に相当する半径φZ/2としかつフランジ部21の板厚H1に相当する厚さをもつ円板部(仮想円板部)の体積をVkとしたときに、「2.5×Vj≦Vk≦3.5×Vj」の関係になるように設定されている。
なお、フランジ基部20aの体積Vjは、フランジ基部20aの直径寸法をφYとし、軸長さをH2としたときに、「Vj=(φY/2)×π×H2」となる。円板部(仮想円板部)の体積Vkは、「Vk=(φZ/2)×π×H1)」となる。
Further, the volume of the flange base portion 20a is Vj, a radius φZ / 2 corresponding to the distance from the center concentric with the center of the shaft portion 10 to the tip of the flange portion 21, and a thickness corresponding to the plate thickness H1 of the flange portion 21. When the volume of the circular disk portion (virtual disk portion) having a thickness is Vk, the relationship of “2.5 × Vj ≦ Vk ≦ 3.5 × Vj” is set.
The volume Vj of the flange base 20a is “Vj = (φY / 2) 2 × π × H2”, where the diameter of the flange base 20a is φY and the shaft length is H2. The volume Vk of the disk part (virtual disk part) is “Vk = (φZ / 2) 2 × π × H1)”.

また、円板部(仮想円板部)の平面投影面積をM1とし、複数のフランジ部21及びフランジ基部20aの平面投影面積をM2としたときに、「0.50≦M2/M1≦0.60」の関係となるように設定されることが望ましい。
この場合、図5と図6に示すように、成形型としての第1、第2成形型71、72の型合わせ面71a、72aの面積が充分に確保される。このため、第1、第2成形型71、72の型閉じ状態において、第1、第2成形型71、72の型合わせ面71a、72aに過大な圧力が作用することを回避することができ、成形型の型寿命が向上する。
なお、円板部(仮想円板部)の平面投影面積M1は、「M1=(φZ/2)×π」となる。複数のフランジ部21及び中間軸部20の平面投影面積をM2は、フランジ部21の個数をNとし、フランジ部21の幅寸法をLとしたときに、「M2=N×L×1/2(φZ−φY)+(φY/2)×π」となる。
Further, when the plane projection area of the disk portion (virtual disk portion) is M1, and the plane projection areas of the plurality of flange portions 21 and the flange base portion 20a are M2, “0.50 ≦ M2 / M1 ≦ 0. It is desirable to set so as to have a relationship of “60”.
In this case, as shown in FIGS. 5 and 6, the areas of the mold fitting surfaces 71a and 72a of the first and second molding dies 71 and 72 as the molding dies are sufficiently secured. For this reason, when the first and second molding dies 71 and 72 are closed, it is possible to avoid an excessive pressure from acting on the mold mating surfaces 71a and 72a of the first and second molding dies 71 and 72. The mold life of the mold is improved.
The planar projection area M1 of the disk part (virtual disk part) is “M1 = (φZ / 2) 2 × π”. The plane projection area of the plurality of flange portions 21 and the intermediate shaft portion 20 is M2, where the number of the flange portions 21 is N and the width dimension of the flange portion 21 is L, “M2 = N × L × 1/2 (ΦZ−φY) + (φY / 2) 2 × π ”.

また、フランジ付き軸部材1の各部の強度、剛性を確保しながら軽量化を図るために、図2に示すように、嵌合軸部30の端面に凹設される鍛造凹部33は、開口側から底部に向けて複数の湾曲面が連続して形成されて深底状に形成されている。
この実施例1において、鍛造凹部33は、嵌合軸部30の車輪用嵌合部32の先端面からフランジ部21のローター支持面22までの距離と略同じ深さで湾曲面(凹湾曲面)35をなす浅底部34と、この浅底部34の中心部に凹設されたかつ浅底部34と中間湾曲面(凸湾曲面)36をもって連続する深底部37とを有する段差状に形成されている。
さらに、鍛造凹部33の深底部37は、中心側に向かって漸次深くなる湾曲面(凹湾曲面)38をなしている。
なお、湾曲面(凹湾曲面)35、中間湾曲面(凸湾曲面)36及び湾曲面(凹湾曲面)38は、円弧面も含む。
In addition, in order to reduce the weight while ensuring the strength and rigidity of each part of the shaft member 1 with the flange, as shown in FIG. A plurality of curved surfaces are formed continuously from the bottom toward the bottom to form a deep bottom.
In the first embodiment, the forged concave portion 33 is a curved surface (concave curved surface) having a depth substantially the same as the distance from the distal end surface of the wheel fitting portion 32 of the fitting shaft portion 30 to the rotor support surface 22 of the flange portion 21. ) 35, and a stepped portion having a shallow bottom portion 34 that is recessed at the center of the shallow bottom portion 34 and is continuous with a shallow bottom portion 34 and an intermediate curved surface (convex curved surface) 36. Yes.
Furthermore, the deep bottom portion 37 of the forged recess 33 forms a curved surface (concave curved surface) 38 that gradually becomes deeper toward the center side.
The curved surface (concave curved surface) 35, the intermediate curved surface (convex curved surface) 36, and the curved surface (concave curved surface) 38 also include arc surfaces.

図2に示すように、フランジ部21の板厚寸法をH1とし、鍛造凹部33と軸部10のシール部材に対応するリップ摺接面18との間の最小肉厚寸法をH3とし、鍛造凹部33と軸部10の軌道面43との間の最小肉厚寸法をH4としたときに、「H1≦H3≦H4」、「H4≧4.5mm」の関係となるようにフランジ付き軸部材1が形成されることが望ましい。   As shown in FIG. 2, the plate thickness dimension of the flange portion 21 is H1, and the minimum wall thickness dimension between the forged recess 33 and the lip sliding contact surface 18 corresponding to the seal member of the shaft portion 10 is H3. The flanged shaft member 1 has a relationship of “H1 ≦ H3 ≦ H4” and “H4 ≧ 4.5 mm”, where H4 is the minimum thickness between the shaft 33 and the raceway surface 43 of the shaft portion 10. Is preferably formed.

上述したように構成されるこの発明の実施例1に係る車輪用軸受装置において、冷間鍛造の側方押出加工によって軸部10と嵌合軸部30との間に位置するフランジ基部20aの外周面に複数のフランジ部21を放射状に形成することによって、重量軽減を図りながら製造コストの低減を図ることができる。
さらに、嵌合軸部30の端面の鍛造凹部33が開口側から底部に向けて複数の湾曲面(円弧面も含む)が形成されて深底状に形成されるため、軽量化に効果が大きい。
この実施例1において、鍛造凹部33は、浅底部34と、深底部37とを有する段差状に形成されるため、強度、剛性を確保しながら軽量化を効率よく図ることができる。
In the wheel bearing device according to the first embodiment of the present invention configured as described above, the outer periphery of the flange base portion 20a positioned between the shaft portion 10 and the fitting shaft portion 30 by the side extrusion process of cold forging. By forming the plurality of flange portions 21 radially on the surface, it is possible to reduce the manufacturing cost while reducing the weight.
Further, the forged recess 33 on the end surface of the fitting shaft portion 30 is formed in a deep bottom shape by forming a plurality of curved surfaces (including arcuate surfaces) from the opening side toward the bottom portion, so that the effect of weight reduction is great. .
In the first embodiment, the forged concave portion 33 is formed in a stepped shape having a shallow bottom portion 34 and a deep bottom portion 37, so that weight reduction can be efficiently achieved while ensuring strength and rigidity.

さらに、鍛造凹部33の深底部37は、浅底部34に中間湾曲面36を介して連続すると共に、中心側に向かって漸次深くなる湾曲面38をなすことによって、強度、剛性を確保しながら軽量化をより一層効率よく図ることができる。
例えば、フランジ付き軸部材1の軸部10のフランジ部21寄り部分の外周面にアンギュラ玉軸受41の一方の軌道面43が形成される場合、軌道面43と鍛造凹部33との間の最小肉厚寸法H4を必要とする大きさに容易に確保することができる。例えば、嵌合軸部30の鍛造凹部33の開口部から底部にわたって同一径の円筒状に形成されると、嵌合軸部30の肉厚が必要以上に厚くなったり、あるいは、フランジ付き軸部材1の各部の肉厚が必要以下に薄くなる不具合が生じやすいが、鍛造凹部33を、浅底部34と、深底部37とを有する段差状に形成することによってこのような不具合が生じない。
Further, the deep bottom portion 37 of the forged recess 33 is continuous with the shallow bottom portion 34 via the intermediate curved surface 36, and is formed with a curved surface 38 that becomes gradually deeper toward the center, thereby ensuring strength and rigidity while being lightweight. Can be achieved more efficiently.
For example, when one raceway surface 43 of the angular ball bearing 41 is formed on the outer peripheral surface of the shaft portion 10 of the flanged shaft member 1 near the flange portion 21, the minimum thickness between the raceway surface 43 and the forged recess 33 is formed. The thickness H4 can be easily secured to a required size. For example, when the fitting shaft portion 30 is formed in a cylindrical shape with the same diameter from the opening portion to the bottom portion of the forging recess portion 33, the fitting shaft portion 30 becomes thicker than necessary, or a flanged shaft member. However, when the forged recess 33 is formed in a stepped shape having a shallow bottom portion 34 and a deep bottom portion 37, such a disadvantage does not occur.

この実施例1において、フランジ部21の板厚寸法をH1とし、鍛造凹部33と軸部10のシール部材に対応するリップ摺接面18との間の最小肉厚寸法をH3とし、鍛造凹部33と軸部10の軌道面43との間の最小肉厚寸法をH4としたときに、「H1≦H3≦H4」、「H4≧4.5mm」の関係となるようにフランジ付き軸部材1が形成される。
これによって、ランジ付き軸部材1の各部の強度、剛性を充分に確保しながら軽量化を効率よく図ることができる。
In the first embodiment, the plate thickness dimension of the flange portion 21 is H1, and the minimum wall thickness dimension between the forged recess portion 33 and the lip sliding contact surface 18 corresponding to the seal member of the shaft portion 10 is H3. The flanged shaft member 1 has a relationship of “H1 ≦ H3 ≦ H4” and “H4 ≧ 4.5 mm”, where H4 is the minimum thickness dimension between the shaft portion 10 and the raceway surface 43 of the shaft portion 10. It is formed.
This makes it possible to efficiently reduce the weight while sufficiently securing the strength and rigidity of each part of the shaft member 1 with the lunge.

また、この実施例1において、図2に示すように、フランジ部21の根元部近傍の一側に厚肉部23を形成することによって、フランジ部21の根元部近傍の強度を良好に高めることができ、耐久性に優れる。   Further, in the first embodiment, as shown in FIG. 2, the strength of the vicinity of the root portion of the flange portion 21 is favorably increased by forming the thick portion 23 on one side of the flange portion 21 near the root portion. It has excellent durability.

次ぎに、前記実施例1に係る車輪用軸受装置の製造方法を図4〜図7にしたがって説明する。
図4に示すように、構造用炭素鋼(例えば、S45C、S50C、S55C等の炭素量0.5%前後の炭素鋼が望ましい)の丸棒材を所要長さに切断して軸状素材60を形成する。
次ぎに、軸状素材60を、例えば800℃前後に加熱した後、冷却し焼鈍する。
その後、冷間鍛造の前方押出加工の鍛造型装置(図示しない)を用いて軸状素材60を前方押出加工し、これによって、軸部(大径部11、小径部12及び端軸部(この状態では軸端凹部16が形成されていない)15を含む)10と、中間軸部20と、嵌合軸部(この状態では鍛造凹部33やブレーキロータ用嵌合部31が形成されていない)30を形成し、冷間鍛造の前方押出加工による一次成形品61を製作する。
Next, a method for manufacturing the wheel bearing device according to the first embodiment will be described with reference to FIGS.
As shown in FIG. 4, a round bar of structural carbon steel (for example, carbon steel having a carbon content of about 0.5% such as S45C, S50C, S55C, etc.) is cut to a required length to obtain a shaft-shaped material 60. Form.
Next, after heating the shaft-shaped raw material 60 to around 800 ° C., for example, it is cooled and annealed.
Thereafter, the shaft-shaped material 60 is forward-extruded using a forging die device (not shown) for cold forging forward extrusion, whereby the shaft portion (large diameter portion 11, small diameter portion 12 and end shaft portion (this shaft portion) (In this state, the shaft end recess 16 is not formed) 15)), the intermediate shaft portion 20, and the fitting shaft portion (in this state, the forging recess 33 and the brake rotor fitting portion 31 are not formed) 30 is formed, and a primary molded product 61 is manufactured by forward extrusion of cold forging.

次ぎに、図4〜図7に示すように、冷間鍛造の側方押出加工の鍛造型装置70によって嵌合軸部30の中心部端面に鍛造凹部33を形成しながら一次成形品61の軸部10と嵌合軸部30との間に位置する中間軸部20の外周面に複数のフランジ部21を放射状に形成し、二次成形品62を製作する。   Next, as shown in FIG. 4 to FIG. 7, the shaft of the primary molded product 61 is formed while forming a forged recess 33 on the end face of the central portion of the fitting shaft portion 30 by a forging die device 70 for side extrusion of cold forging. A plurality of flange portions 21 are formed radially on the outer peripheral surface of the intermediate shaft portion 20 located between the portion 10 and the fitting shaft portion 30 to produce a secondary molded product 62.

図5〜図7に示すように、冷間鍛造の側方押出加工の鍛造型装置70において、第1、第2の両成形型71、72の間には、一次成形品61がセットされかつ複数のフランジ部21を側方押出加工によって形成するための複数のフランジ成形部78を放射状に有するキャビティ75が形成される。
このフランジ成形部78は、第1、第2の両成形型71、72にそれぞれ形成された成型溝部76、77によって構成されている。
すなわち、第1、第2の両成形型71、72の成型溝部76、77の上下両壁面の案内面80、81の対向間隔がフランジ部21の板厚寸法と同等の大きさに設定され、両側壁面の案内面(図示しない)の対向間隔がフランジ部21の幅寸法と同等の大きさに設定されている。そして、フランジ成形部78の横断面形状は、フランジ部21の横断面形状と同じ形状に形成されている。
As shown in FIGS. 5 to 7, in the forging die apparatus 70 for cold forging side extrusion, a primary molded product 61 is set between the first and second forming dies 71 and 72. A cavity 75 having a plurality of flange forming portions 78 for forming the plurality of flange portions 21 by lateral extrusion is formed.
The flange forming portion 78 is constituted by forming groove portions 76 and 77 formed in both the first and second forming dies 71 and 72, respectively.
That is, the facing distance between the guide surfaces 80 and 81 of the upper and lower wall surfaces of the molding grooves 76 and 77 of both the first and second molding dies 71 and 72 is set to a size equivalent to the plate thickness dimension of the flange portion 21. The facing interval between the guide surfaces (not shown) on both side wall surfaces is set to a size equivalent to the width dimension of the flange portion 21. And the cross-sectional shape of the flange forming part 78 is formed in the same shape as the cross-sectional shape of the flange part 21.

また、フランジ部21の根元部近傍の厚肉部23と反対側の第2成形型72の成型溝部77において、その案内面81の材料流入側近傍を除く奥側には、フランジ部21との間に隙間S2を保持する逃がし部84が形成されている。
一方、この実施例1において、フランジ部21の根元部近傍の厚肉部23側を形成する第1成形型71の成型溝部76の案内面80は、逃がし部がない型構造に形成されている。
Further, in the molding groove portion 77 of the second molding die 72 on the opposite side to the thick wall portion 23 in the vicinity of the base portion of the flange portion 21, the back side of the guide surface 81 excluding the vicinity of the material inflow side is connected to the flange portion 21. An escape portion 84 that holds the gap S2 is formed therebetween.
On the other hand, in the first embodiment, the guide surface 80 of the molding groove portion 76 of the first molding die 71 that forms the thick portion 23 side near the base portion of the flange portion 21 is formed in a mold structure that does not have a relief portion. .

また、この実施例1において、第1成形型71の成型溝部76の材料流入側には、フランジ部21の厚肉部23を形成するための厚肉部成形用溝部82が形成されている。この厚肉部成形用溝部82の底面は、フランジ部21の根元部側からボルト孔24側に向かって漸次減少する傾斜面82aに形成されて案内面80に連続している(図7参照)。
また、厚肉部成形用溝部82底面の傾斜面82aの傾斜角度θ2は、「35°≦θ2≦45°」の関係に設定されることが望ましい。
また、成型溝部76、77によって構成されるフランジ成形部78の径方向の長さ寸法は、フランジ部21の先端の円弧面21aが当たらない長さ寸法をもって設定されている(図6及び図7参照)。
In the first embodiment, a thick portion forming groove portion 82 for forming the thick portion 23 of the flange portion 21 is formed on the material inflow side of the forming groove portion 76 of the first mold 71. The bottom surface of the thick-wall forming groove 82 is formed on an inclined surface 82a that gradually decreases from the base portion side of the flange portion 21 toward the bolt hole 24 side, and continues to the guide surface 80 (see FIG. 7). .
Further, it is desirable that the inclination angle θ2 of the inclined surface 82a of the bottom surface of the thick-wall-forming groove 82 is set to a relationship of “35 ° ≦ θ2 ≦ 45 °”.
Moreover, the length dimension in the radial direction of the flange molding part 78 constituted by the molding groove parts 76 and 77 is set with a length dimension that does not contact the arc surface 21a at the tip of the flange part 21 (FIGS. 6 and 7). reference).

そして、先ず、図5に示すように、鍛造型装置70の第1成形型(下型)71と第2成形型(上型)72のうち、第1成形型71に一次成形品61をセットし、第1成形型71に対し第2成形型72を型閉じする。
その後、図6と図7に示すように、パンチ73を一次成形品61の嵌合軸部30の中心部端面に向けて下降し、パンチ73の先端部74によって嵌合軸部30の中心部端面に鍛造凹部33を形成しながら一次成形品61の軸部10と嵌合軸部30との間に位置する中間軸部20の外周面を、第1、第2の両成形型71、72に形成されたキャビティ75のフランジ成形部78に側方押出することによって複数のフランジ部21を形成すると共に、フランジ部21の根元部近傍の一側に厚肉部23を形成し、これによって側方押出加工による二次成形品62を製作する。なお、中間軸部20は冷間鍛造の変形によってフランジ基部20a及び嵌合軸部30の一部をなす。
First, as shown in FIG. 5, the primary molded product 61 is set in the first mold 71 of the first mold (lower mold) 71 and the second mold (upper mold) 72 of the forging die apparatus 70. Then, the second mold 72 is closed with respect to the first mold 71.
Thereafter, as shown in FIGS. 6 and 7, the punch 73 is lowered toward the center end face of the fitting shaft portion 30 of the primary molded product 61, and the center portion of the fitting shaft portion 30 is formed by the tip portion 74 of the punch 73. Both the first and second molding dies 71 and 72 are formed on the outer peripheral surface of the intermediate shaft portion 20 located between the shaft portion 10 of the primary molded product 61 and the fitting shaft portion 30 while forming the forged recess 33 on the end surface. A plurality of flange portions 21 are formed by laterally extruding to a flange forming portion 78 of the cavity 75 formed in the side wall, and a thick portion 23 is formed on one side in the vicinity of the root portion of the flange portion 21. A secondary molded product 62 is manufactured by the side extrusion process. The intermediate shaft portion 20 forms part of the flange base portion 20a and the fitting shaft portion 30 by cold forging deformation.

次ぎに、二次成形品62の旋削が必要な各部を旋削加工する。例えば、軸部10の小径部12の外周面、大径部11の軌道面43と、シール部材に対応するリップ摺接面18と、フランジ部21のローター支持面22と、嵌合軸部30のブレーキロータ用嵌合部31と、車輪用嵌合部32とを旋削加工すると共に、各フランジ部21のボルト孔24を形成し、このボルト孔24の両端開口部に第1、第2の両面取り部25、26とを形成する。さらに、軸部10の端軸部15に軸端凹部16を形成する。
その後、二次成形品62を焼き入れした後、軸部10の大径部11の軌道面43やフランジ部21のローター支持面22等を旋削加工または研磨加工することで完成品となるフランジ付き軸部材1を製作する。
また、軸状素材60の重量をN1とし、二次成形品62の重量をN2とし、フランジ付き軸部材1の重量をN3としたときに、「N1≒N2」、「0.93×N1≧N3≧0.86×N1」の関係となるように設定されることが望ましい。この場合には、軸状素材60から材料歩留まりよくフランジ付き軸部材1を製造することができる。
Next, each part that requires turning of the secondary molded product 62 is turned. For example, the outer peripheral surface of the small diameter portion 12 of the shaft portion 10, the raceway surface 43 of the large diameter portion 11, the lip sliding contact surface 18 corresponding to the seal member, the rotor support surface 22 of the flange portion 21, and the fitting shaft portion 30. The brake rotor fitting portion 31 and the wheel fitting portion 32 are turned, and the bolt holes 24 of the flange portions 21 are formed. The first and second opening portions of the bolt holes 24 have first and second ends. Double-sided chamfers 25 and 26 are formed. Further, a shaft end recess 16 is formed in the end shaft portion 15 of the shaft portion 10.
After that, after the secondary molded product 62 is quenched, the raceway surface 43 of the large-diameter portion 11 of the shaft portion 10, the rotor support surface 22 of the flange portion 21 and the like are turned or polished to have a finished product. The shaft member 1 is manufactured.
Further, when the weight of the shaft material 60 is N1, the weight of the secondary molded product 62 is N2, and the weight of the flanged shaft member 1 is N3, “N1≈N2”, “0.93 × N1 ≧ It is desirable to set so that the relationship of “N3 ≧ 0.86 × N1” is satisfied. In this case, the flanged shaft member 1 can be manufactured from the shaft-shaped material 60 with a high material yield.

また、この実施例1において、図2に示すように、フランジ部21にボルト孔24の両端開口部に形成される第1、第2の両面取り部25、26において、フランジ部21の厚肉部23側に位置する第1面取り部25の深さ寸法をT1とし、反対側の第2面取り部26の深さ寸法をT2としたときに、「T1<T2」の関係となるように設定されることが望ましい。
すなわち、フランジ部21のボルト孔24に、ハブボルト27のセレーション軸部(軸部29の根元部に形成される)29aを圧入した後の状態において、面取り部の深さ寸法が大きい側にフランジ部21が微量ではあるがそり変形する特性をもつ。
このため、仮に、側方押出加工によってフランジ部21の厚肉部23側へ向かって「そり」が発生したとしも、フランジ部21のボルト孔24にハブボルト27が圧入されることで、前記したフランジ部21の厚肉部23側への「そり」が軽減される。
Further, in the first embodiment, as shown in FIG. 2, in the first and second double-sided chamfers 25 and 26 formed at both ends of the bolt hole 24 in the flange portion 21, the flange portion 21 is thick. When the depth dimension of the first chamfered portion 25 located on the side of the portion 23 is T1, and the depth dimension of the second chamfered portion 26 on the opposite side is T2, the relationship is set so that “T1 <T2”. It is desirable that
That is, in a state after the serration shaft portion 29a (formed at the root portion of the shaft portion 29) 29a of the hub bolt 27 is press-fitted into the bolt hole 24 of the flange portion 21, the flange portion on the side where the depth dimension of the chamfered portion is large. Although 21 is a trace amount, it has a characteristic of warping deformation.
For this reason, even if “warping” occurs toward the thick portion 23 side of the flange portion 21 by the side extrusion, the hub bolt 27 is press-fitted into the bolt hole 24 of the flange portion 21 as described above. “Warpage” of the flange portion 21 toward the thick portion 23 is reduced.

また、この実施例1において、図2に示すように、フランジ部21の厚肉部23が形成される一側面(ローター支持面22と反対側の面)のハブボルト27の頭部27下面に接するボルト座面21cはコイニング加工によって表面仕上げされ、これによってフランジ部21の必要平面精度(例えば、直角度0.1以下)を確保しかつ強度を高めることが望ましい。
さらに、ボルト座面21cの領域を越えかつフランジ部21の厚肉部23の傾斜面23aの境界R面23b又は、境界R面23b及び傾斜面23aにわたる範囲(図2のコイニング加工範囲W)にわたってコイニング加工によって表面仕上げすることでフランジ部21の強度をより一層高めことが望ましい。
また、コイニング加工による表面硬さはHRC25以上、表面粗さがRa6.3以下に仕上げられることが望ましい。
Moreover, in this Example 1, as shown in FIG. 2, it contacts the lower surface of the head 27 of the hub bolt 27 on one side surface (surface opposite to the rotor support surface 22) where the thick portion 23 of the flange portion 21 is formed. It is desirable that the bolt seat surface 21c be surface-finished by coining, thereby ensuring the necessary plane accuracy (for example, perpendicularity 0.1 or less) of the flange portion 21 and increasing the strength.
Further, the boundary R surface 23b of the inclined surface 23a of the thick portion 23 of the flange portion 21 or the range extending over the boundary R surface 23b and the inclined surface 23a (coining processing range W in FIG. 2) is exceeded. It is desirable to further increase the strength of the flange portion 21 by finishing the surface by coining.
Further, it is desirable that the surface hardness by coining is finished to HRC25 or more and the surface roughness to Ra6.3 or less.

最後に、図1に示すように、フランジ付き軸部材1の軸部10の外周面に、複数個の玉50、51と保持器52、53と外輪部材45とがそれぞれ組み込まれる。
そして、軸部10の小径部12の外周面に内輪体42が嵌め込まれた後、端軸部15の先端部が径方向外方へかしめられてかしめ部17が形成されることによって小径部12の外周面に内輪体42が固定される。
また、フランジ付き軸部材1の軸部10の外周面にアンギュラ玉軸受41が組み付けられる前、又は後において、フランジ部21のボルト孔24の第1面取り部25側からハブボルト27の軸部29が挿入され、軸部29のセレーション軸部29aがボルト孔24に圧入されることによってフランジ部21にハブボルト27が固定される。
これをもって車輪用軸受装置が製造される。
Finally, as shown in FIG. 1, a plurality of balls 50, 51, cages 52, 53, and an outer ring member 45 are assembled on the outer peripheral surface of the shaft portion 10 of the shaft member 1 with flange.
Then, after the inner ring body 42 is fitted on the outer peripheral surface of the small-diameter portion 12 of the shaft portion 10, the distal end portion of the end shaft portion 15 is caulked radially outward to form the caulking portion 17, thereby forming the small-diameter portion 12. The inner ring body 42 is fixed to the outer peripheral surface of the inner ring.
In addition, before or after the angular ball bearing 41 is assembled to the outer peripheral surface of the shaft portion 10 of the flanged shaft member 1, the shaft portion 29 of the hub bolt 27 extends from the first chamfered portion 25 side of the bolt hole 24 of the flange portion 21. The hub bolt 27 is fixed to the flange portion 21 by being inserted and the serration shaft portion 29 a of the shaft portion 29 is press-fitted into the bolt hole 24.
With this, the wheel bearing device is manufactured.

なお、図1に示すように、内輪体42の外周面には、速度センサ90に対応する被検出部95を周方向に有するパルサーリング96が必要に応じて圧入固定される。この場合、外輪部材45の端部内周面には、有蓋筒状のカバー部材91が圧入固定され、このカバー部材91の蓋板部92に速度センサ90が、その検出部をパルサーリング96の被検出部95に臨ませて取り付けられる。   As shown in FIG. 1, a pulsar ring 96 having a detected portion 95 corresponding to the speed sensor 90 in the circumferential direction is press-fitted and fixed to the outer peripheral surface of the inner ring body 42 as necessary. In this case, a covered cylindrical cover member 91 is press-fitted and fixed to the inner peripheral surface of the end portion of the outer ring member 45, and the speed sensor 90 is attached to the cover plate portion 92 of the cover member 91 so that the detection portion thereof is covered by the pulsar ring 96. It is attached facing the detector 95.

なお、この発明に係る車輪用軸受装置は前記実施例1に限定するものではなく、この発明の要旨を逸脱しない範囲内において、種々なる形態で実施することもできる。
例えば、前記実施例1においては、フランジ付き軸部材1の鍛造凹部33が、浅底部34と、深底部37を有する二段の段差状に形成される場合を例示したが、三段、四段等の段差状に形成されてもよい。
さらに、鍛造凹部が開口側から底部に向けて複数の湾曲面が形成されて深底状に形成される場合においてもこの発明を実施可能である。
The wheel bearing device according to the present invention is not limited to the first embodiment, and can be implemented in various forms without departing from the gist of the present invention.
For example, in the first embodiment, the case where the forged recess 33 of the shaft member 1 with the flange is formed in a two-step shape having the shallow bottom portion 34 and the deep bottom portion 37 is exemplified. Or the like.
Furthermore, the present invention can be implemented even when the forged recess is formed in a deep bottom shape by forming a plurality of curved surfaces from the opening side toward the bottom.

1 フランジ付き軸部材
10 軸部
20 中間軸部
20a フランジ基部
21 フランジ部
23 厚肉部
24 ボルト孔
27 ハブボルト
30 嵌合軸部
33 鍛造凹部
34 浅底部
35 湾曲面
36 中間湾曲面
37 深底部
38 湾曲面
41 アンギュラ玉軸受(転がり軸受)
45 外輪部材
DESCRIPTION OF SYMBOLS 1 Shaft member with a flange 10 Shaft part 20 Intermediate shaft part 20a Flange base 21 Flange part 23 Thick part 24 Bolt hole 27 Hub bolt 30 Fitting shaft part 33 Forging recessed part 34 Shallow bottom part 35 Curved surface 36 Intermediate curved surface 37 Deep bottom part 38 Curved Surface 41 angular contact ball bearing (rolling bearing)
45 Outer ring member

Claims (3)

転がり軸受が組み付けられる軸部と、この軸部の一端側に形成されかつ車輪の中心孔が嵌込まれる嵌合軸部と、前記軸部と前記嵌合軸部との間に位置する外周面に外径方向へ放射状に延出されかつ前記車輪を締め付けるハブボルトが配置されるボルト孔が貫設された複数のフランジ部とを有するフランジ付き軸部材を備えた車輪用軸受装置であって、
前記フランジ部は、冷間鍛造によって前記嵌合軸部の中心部端面に鍛造凹部が形成される際の側方押出加工によって形成され、
前記鍛造凹部は、開口側から底部に向けて複数の湾曲面が形成されて深底状に形成されていることを特徴とする車輪用軸受装置。
A shaft portion to which the rolling bearing is assembled, a fitting shaft portion formed on one end side of the shaft portion and fitted with a center hole of the wheel, and an outer peripheral surface located between the shaft portion and the fitting shaft portion A wheel bearing device including a flanged shaft member that has a plurality of flange portions that are radially extended in an outer diameter direction and in which a bolt hole in which a hub bolt for tightening the wheel is disposed is provided,
The flange portion is formed by side extrusion when a forged recess is formed on the end surface of the central portion of the fitting shaft portion by cold forging,
The forged recess is a wheel bearing device, wherein a plurality of curved surfaces are formed from the opening side toward the bottom to form a deep bottom.
請求項1に記載の車輪用軸受装置であって、
鍛造凹部は、浅底部と、この浅底部の中心部に凹設された深底部を有する段差状に形成されていることを特徴とする車輪用軸受装置。
The wheel bearing device according to claim 1,
The forged recess is formed in a stepped shape having a shallow bottom and a deep bottom recessed in the center of the shallow bottom.
請求項2に記載の車輪用軸受装置であって、
鍛造凹部の深底部は、浅底部に中間湾曲面を介して連続すると共に、中心側に向かって漸次深くなる湾曲面をなしていることを特徴とする車輪用軸受装置。
The wheel bearing device according to claim 2,
The deep bearing portion of the forged recess has a curved surface that continues to the shallow bottom portion via an intermediate curved surface and gradually becomes deeper toward the center.
JP2009034585A 2009-02-17 2009-02-17 Wheel bearing device Pending JP2010188830A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2009034585A JP2010188830A (en) 2009-02-17 2009-02-17 Wheel bearing device
US12/704,279 US20100210369A1 (en) 2009-02-17 2010-02-11 Wheel bearing device and manufacturing method therefor
CN201010117768.9A CN101804771B (en) 2009-02-17 2010-02-11 Wheel bearing device and manufacturing method therefor
EP10153657A EP2221194B1 (en) 2009-02-17 2010-02-16 Wheel bearing device and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009034585A JP2010188830A (en) 2009-02-17 2009-02-17 Wheel bearing device

Publications (1)

Publication Number Publication Date
JP2010188830A true JP2010188830A (en) 2010-09-02

Family

ID=42815374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009034585A Pending JP2010188830A (en) 2009-02-17 2009-02-17 Wheel bearing device

Country Status (1)

Country Link
JP (1) JP2010188830A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014002924A1 (en) * 2012-06-28 2014-01-03 株式会社ジェイテクト Method for manufacturing wheel bearing apparatus, and wheel bearing apparatus
CN105179450A (en) * 2015-09-30 2015-12-23 江苏威鹰机械有限公司 Production method of car transmission input axle hubs

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003025803A (en) * 2001-07-19 2003-01-29 Koyo Seiko Co Ltd Axle bearing device
JP2006111070A (en) * 2004-10-13 2006-04-27 Nsk Ltd Wheel supporting hub unit, raceway member of wheel supporting hub unit, and manufacturing method thereof
JP2007152413A (en) * 2005-12-08 2007-06-21 Nsk Ltd Manufacturing method of bearing ring member constituting rolling bearing unit for supporting wheel
JP2007237958A (en) * 2006-03-09 2007-09-20 Nsk Ltd Rolling bearing unit raceway ring member, rolling bearing unit, and rolling bearing unit raceway member manufacturing method
WO2008018439A1 (en) * 2006-08-07 2008-02-14 Nsk Ltd. Raceway ring member for bearing unit, bearing unit, and method and device for producing raceway ring member for bearing unit
JP2008055984A (en) * 2006-08-30 2008-03-13 Ntn Corp Bearing device for wheel
JP2008114644A (en) * 2006-11-01 2008-05-22 Jtekt Corp Rolling bearing device for wheels
JP2008247386A (en) * 2008-05-12 2008-10-16 Ntn Corp Wheel bearing device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003025803A (en) * 2001-07-19 2003-01-29 Koyo Seiko Co Ltd Axle bearing device
JP2006111070A (en) * 2004-10-13 2006-04-27 Nsk Ltd Wheel supporting hub unit, raceway member of wheel supporting hub unit, and manufacturing method thereof
JP2007152413A (en) * 2005-12-08 2007-06-21 Nsk Ltd Manufacturing method of bearing ring member constituting rolling bearing unit for supporting wheel
JP2007237958A (en) * 2006-03-09 2007-09-20 Nsk Ltd Rolling bearing unit raceway ring member, rolling bearing unit, and rolling bearing unit raceway member manufacturing method
WO2008018439A1 (en) * 2006-08-07 2008-02-14 Nsk Ltd. Raceway ring member for bearing unit, bearing unit, and method and device for producing raceway ring member for bearing unit
JP2008055984A (en) * 2006-08-30 2008-03-13 Ntn Corp Bearing device for wheel
JP2008114644A (en) * 2006-11-01 2008-05-22 Jtekt Corp Rolling bearing device for wheels
JP2008247386A (en) * 2008-05-12 2008-10-16 Ntn Corp Wheel bearing device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014002924A1 (en) * 2012-06-28 2014-01-03 株式会社ジェイテクト Method for manufacturing wheel bearing apparatus, and wheel bearing apparatus
CN105179450A (en) * 2015-09-30 2015-12-23 江苏威鹰机械有限公司 Production method of car transmission input axle hubs

Similar Documents

Publication Publication Date Title
CN101804770B (en) Wheel bearing device and manufacturing method therefor
JP5682117B2 (en) Wheel bearing device and manufacturing method thereof
JP6523677B2 (en) Method of manufacturing hub wheel and inner member of wheel bearing device
EP2221194B1 (en) Wheel bearing device and manufacturing method therefor
JP5477028B2 (en) Manufacturing method of wheel bearing device
JP2013023086A (en) Hub unit for supporting wheel, and method for manufacturing the same
JP2010188830A (en) Wheel bearing device
EP2497583B1 (en) Method of manufacturing a shaft member for a wheel hub assembly with rolling bearings
JP2012149721A (en) Wheel rolling bearing device
JP2010188831A (en) Wheel bearing device
JP5423033B2 (en) Manufacturing method of wheel bearing device
JP2010188829A (en) Wheel bearing device
JP5310066B2 (en) Wheel bearing device and manufacturing method thereof
JP2010188835A (en) Method of manufacturing wheel bearing device
JP5858073B2 (en) Manufacturing method of wheel bearing device
JP5560569B2 (en) Wheel bearing device and manufacturing method thereof
JP2010188827A (en) Wheel bearing device and method of manufacturing the same
JP5714217B2 (en) Wheel bearing device
JP2010188834A (en) Wheel bearing device
JP2010188833A (en) Wheel bearing device
JP5236097B2 (en) Wheel bearing device
JP2013018338A (en) Hub unit for wheel support
JP2024107907A (en) Hub unit bearing
JP2023043696A (en) Wheel bearing device
JP2012183934A (en) Shaft member of rolling bearing device for wheel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130604

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130725

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140204