JP2010192373A - All-solid secondary battery - Google Patents
All-solid secondary battery Download PDFInfo
- Publication number
- JP2010192373A JP2010192373A JP2009037729A JP2009037729A JP2010192373A JP 2010192373 A JP2010192373 A JP 2010192373A JP 2009037729 A JP2009037729 A JP 2009037729A JP 2009037729 A JP2009037729 A JP 2009037729A JP 2010192373 A JP2010192373 A JP 2010192373A
- Authority
- JP
- Japan
- Prior art keywords
- positive electrode
- active material
- electrode active
- oxide
- lithium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/36—Accumulators not provided for in groups H01M10/05-H01M10/34
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/028—Positive electrodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
【課題】優れたレート特性及びサイクル特性を示す全固体二次電池用正極及びそれを用いてなる全固体二次電池を提供する。
【解決手段】リチウムの吸蔵、放出が可能な正極活物質の表面の少なくとも一部が、周期表中13族元素のうち少なくとも1種を含む酸化物により被覆されてなる表面処理正極活物質を含有するようにした。
【選択図】なしProvided are a positive electrode for an all-solid-state secondary battery exhibiting excellent rate characteristics and cycle characteristics, and an all-solid-state secondary battery using the same.
A surface-treated positive electrode active material in which at least a part of the surface of a positive electrode active material capable of occluding and releasing lithium is coated with an oxide containing at least one of group 13 elements in the periodic table. I tried to do it.
[Selection figure] None
Description
この発明は、優れたレート特性及びサイクル特性を示す全固体二次電池用正極及びそれを用いてなる全固体二次電池に関するものである。 The present invention relates to a positive electrode for an all-solid-state secondary battery exhibiting excellent rate characteristics and cycle characteristics, and an all-solid-state secondary battery using the same.
リチウムイオン二次電池は大きな電気化学容量、高い作動電位や、優れた充放電サイクル特性を有するため、携帯情報端末、携帯電子機器、家庭用小型電力貯蔵装置、モーターを動力源とする自動二輪車、電気自動車、ハイブリッド電気自動車等の用途への需要が増大している。このような用途の広がり伴い、リチウムイオン二次電池の安全性の向上及び高性能化が要求されている。しかしながら、電解質として有機溶媒にリチウム塩を溶解させた非水電解液が用いられた従前のリチウムイオン二次電池は、150℃程度で容易に発火するため、その安全性が懸念されている。このため、近時、安全性の向上を目的に、不燃材料である無機材料からなる固体電解質を用いた全固体二次電池の研究が盛んに行われている。 Lithium ion secondary batteries have large electrochemical capacity, high operating potential, and excellent charge / discharge cycle characteristics, so portable information terminals, portable electronic devices, small household power storage devices, motorcycles powered by motors, There is an increasing demand for applications such as electric vehicles and hybrid electric vehicles. With the spread of such applications, there is a demand for improved safety and higher performance of lithium ion secondary batteries. However, since a conventional lithium ion secondary battery using a nonaqueous electrolytic solution in which a lithium salt is dissolved in an organic solvent as an electrolyte easily ignites at about 150 ° C., there is a concern about its safety. For this reason, research on all-solid secondary batteries using a solid electrolyte made of an inorganic material, which is an incombustible material, has been actively conducted for the purpose of improving safety.
全固体二次電池の固体電解質には硫化物、酸化物等があるが、リチウムイオン伝導性の観点から硫化物系の固体電解質が最も期待できる材料である。しかし、硫化物固体電解質を使用した場合には、正極活物質や負極活物質との界面で反応がおこり、抵抗成分が生成してくるという問題点がある。抵抗成分の生成は、特に、異種アニオンを含有する化合物同士が接した場合により顕著である。 Solid electrolytes for all-solid-state secondary batteries include sulfides and oxides. From the viewpoint of lithium ion conductivity, sulfide-based solid electrolytes are the most promising materials. However, when a sulfide solid electrolyte is used, there is a problem that a reaction occurs at the interface with the positive electrode active material or the negative electrode active material and a resistance component is generated. The generation of the resistance component is particularly remarkable when compounds containing different anions are in contact with each other.
従来、界面でのリチウムイオン伝導度向上を目的として、LiI−Al2O3等の異種化合物同士を接触させ、界面で空間電荷層を形成し、伝導度を改善する試みが報告されているが、硫化物固体電解質の場合、リチウムイオン濃度の変化や、正極活物質との反応により界面での抵抗がより上昇する傾向にある。このような問題点に対して、Li−CoMnNi−O等の金属酸リチウムの表面にLi4Ti5O12等の酸化物を被覆処理するという検討もされているが(特許文献1)、より一層の抵抗成分の低減、また電池としての出力向上が望まれている。 Conventionally, for the purpose of improving lithium ion conductivity at the interface, attempts have been made to improve the conductivity by bringing different compounds such as LiI-Al 2 O 3 into contact with each other to form a space charge layer at the interface. In the case of a sulfide solid electrolyte, the resistance at the interface tends to increase more due to a change in the lithium ion concentration or reaction with the positive electrode active material. With respect to such problems, studies have been made to coat the surface of lithium metal oxide such as Li—CoMnNi—O with an oxide such as Li 4 Ti 5 O 12 (Patent Document 1). It is desired to further reduce the resistance component and improve the output as a battery.
固体電解質を使用した際の低出力特性改善としては、固体電解質の薄膜化の検討(特許文献2)や、固体電解質と同系統の正極活物質(同じアニオンを持つ化合物)の使用(特許文献3)、また、酸化物として安定なSiO2による活物質の被覆処理等が検討されてきた。しかしながら、薄膜化した固体電解質では容量が低く、同系統材料の組み合わせによる高出力化やサイクル特性の向上は達成されておらず、また、SiO2等の酸化物の処理だけでは特性は不十分である。 As an improvement in the low output characteristics when using a solid electrolyte, examination of thinning of the solid electrolyte (Patent Document 2) and use of a positive electrode active material (compound having the same anion) of the same system as the solid electrolyte (Patent Document 3) In addition, an active material coating treatment with SiO 2 which is stable as an oxide has been studied. However, the thin solid electrolyte has a low capacity, and high power output and improvement in cycle characteristics have not been achieved by combining materials of the same type, and characteristics are not sufficient only by treatment of oxides such as SiO 2. is there.
そこで本発明は、上記現状に鑑み、優れたレート特性及びサイクル特性を示す全固体二次電池用正極及びそれを用いてなる全固体二次電池を提供することを課題とする。 Then, this invention makes it a subject to provide the positive electrode for all-solid-state secondary batteries which shows the outstanding rate characteristic and cycling characteristics, and the all-solid-state secondary battery using the same in view of the said present condition.
すなわち本発明に係る全固体二次電池用正極は、リチウムの吸蔵、放出が可能な正極活物質の表面の少なくとも一部が、周期表中13族元素のうち少なくとも1種を含む酸化物により被覆されてなる表面処理正極活物質を含有することを特徴とする。 That is, in the positive electrode for an all-solid secondary battery according to the present invention, at least a part of the surface of the positive electrode active material capable of occluding and releasing lithium is covered with an oxide containing at least one of group 13 elements in the periodic table. The surface-treated positive electrode active material thus formed is contained.
このようなものであれば、正極活物質の表面がX−O(Xは13族元素であるB、Al、Ga、In、Tlを示す。)の結合を有する化合物で被覆されているので、正極活物質と固体電解質との直接接触を防ぐことができ、このため、正極活物質と固体電解質との界面における反応が抑制され、抵抗成分の生成を抑制することができる。 In such a case, the surface of the positive electrode active material is coated with a compound having a bond of X—O (X represents a group 13 element B, Al, Ga, In, Tl). Direct contact between the positive electrode active material and the solid electrolyte can be prevented, and therefore, reaction at the interface between the positive electrode active material and the solid electrolyte is suppressed, and generation of a resistance component can be suppressed.
前記酸化物は、リチウム酸化物Li−X−Oであってもよい。Li−X−O化合物はリチウムイオンが移動可能な経路として機能するので、前記酸化物がLi−X−O化合物であるとリチウムイオンが拡散しやすくなり、イオン伝導性の向上に繋がる。 The oxide may be lithium oxide Li—X—O. Since the Li—X—O compound functions as a path through which lithium ions can move, when the oxide is a Li—X—O compound, lithium ions are easily diffused, which leads to an improvement in ion conductivity.
前記13族元素としては、ホウ素、アルミニウム、ガリウムが好適に用いられる。これら元素の酸化物は合成が容易であり、また、正極活物質と固体電解質との絶縁性やリチウムイオンの拡散性にも優れている。 As the group 13 element, boron, aluminum, or gallium is preferably used. The oxides of these elements are easy to synthesize, and are excellent in insulation between the positive electrode active material and the solid electrolyte and lithium ion diffusibility.
前記酸化物の少なくとも一部は、4配位の構造を有するものであることが好ましい。4配位の酸化物はリチウムイオンの拡散性に優れているので、4配位の酸化物で正極活物質の表面を被覆することにより、イオン伝導性の向上を図ることができる。 At least a part of the oxide preferably has a tetracoordinate structure. Since the tetracoordinate oxide has excellent lithium ion diffusibility, the ion conductivity can be improved by coating the surface of the positive electrode active material with the tetracoordinate oxide.
このような本発明に係る正極を備えている全固体二次電池もまた、本発明の一つである。すなわち本発明に係る全固体二次電池は、本発明に係る正極と、リチウムとの合金化、又は、リチウムの吸蔵、放出が可能な負極活物質を含有する負極と、硫黄及びリチウムを含む無機固体電解質を含有する固体電解質層と、を備えることを特徴とする。 Such an all-solid secondary battery including the positive electrode according to the present invention is also one aspect of the present invention. That is, the all-solid-state secondary battery according to the present invention includes a positive electrode according to the present invention, a negative electrode containing a negative electrode active material capable of being alloyed with lithium, occluded or released, and inorganic containing sulfur and lithium. And a solid electrolyte layer containing a solid electrolyte.
硫化物固体電解質を使用した全固体二次電池は、正極活物質と固体電解質との界面抵抗が大きいが、本発明によれば、正極活物質の表面が(Li−)X−O化合物(Xは13族元素であるB、Al、Ga、In、Tlを示す。)で被覆されていることにより、当該被覆層が固体電解質と正極活物質との直接接触を防ぐことができるので、これらの界面で抵抗成分が生成しにくくなる。また、正極活物質の表面がLi−X−O化合物で被覆されていると、正極活物質と固体電解質との界面でのリチウムイオン濃度の低下が抑制され、またリチウムイオンが移動可能な経路を形成することができるので、これによっても正極活物質と固体電解質との界面における抵抗の低減が可能となる。このため、本発明によれば、レート特性及びサイクル特性に優れた全固体二次電池を得ることができる。 The all-solid-state secondary battery using a sulfide solid electrolyte has a large interface resistance between the positive electrode active material and the solid electrolyte, but according to the present invention, the surface of the positive electrode active material has a (Li-) X—O compound (X Represents a group 13 element B, Al, Ga, In, or Tl.), The coating layer can prevent direct contact between the solid electrolyte and the positive electrode active material. Resistance components are less likely to be generated at the interface. Further, when the surface of the positive electrode active material is coated with a Li—X—O compound, a decrease in the lithium ion concentration at the interface between the positive electrode active material and the solid electrolyte is suppressed, and a path through which lithium ions can move is provided. As a result, the resistance at the interface between the positive electrode active material and the solid electrolyte can be reduced. For this reason, according to this invention, the all-solid-state secondary battery excellent in the rate characteristic and cycling characteristics can be obtained.
以下、本発明の一実施形態に係る全固体二次電池について説明する。 Hereinafter, an all solid state secondary battery according to an embodiment of the present invention will be described.
本実施形態に係る全固体二次電池は、正極、負極、及び、正極と負極に挟まれた固体電解質層が積層されてなるものである。 The all solid state secondary battery according to the present embodiment is formed by laminating a positive electrode, a negative electrode, and a solid electrolyte layer sandwiched between the positive electrode and the negative electrode.
前記正極が含有する正極活物質としては、リチウムイオンを可逆的に吸蔵、放出することが可能なものであれば特に限定されず、例えば、コバルト酸リチウム、ニッケル酸リチウム、ニッケルコバルト酸リチウム、ニッケルコバルトアルミニウム酸リチウム、ニッケルコバルトマンガン酸リチウム、マンガン酸リチウム、リン酸鉄リチウム、硫化ニッケル、硫化銅、硫黄、酸化鉄、酸化バナジウム等が挙げられる。これらの正極活物質は、単独で用いられてもよく、2種以上が併用されてもよい。 The positive electrode active material contained in the positive electrode is not particularly limited as long as it can reversibly occlude and release lithium ions. For example, lithium cobaltate, lithium nickelate, nickel lithium cobaltate, nickel Examples include lithium cobaltaluminate, nickel cobalt lithium manganate, lithium manganate, lithium iron phosphate, nickel sulfide, copper sulfide, sulfur, iron oxide, and vanadium oxide. These positive electrode active materials may be used independently and 2 or more types may be used together.
前記正極活物質は、その表面の少なくとも一部が周期表中13族元素の酸化物により被覆されている表面処理正極活物質として前記正極に含有されている。13族元素は酸化還元されにくく化学的に安定であるので、13族元素の酸化物により前記正極活物質の表面が被覆されていると、正極活物質と固体電解質との接触を防ぐことができ、このため、正極活物質と固体電解質との界面における反応が抑制され、抵抗成分の生成を抑制することができる。 The positive electrode active material is contained in the positive electrode as a surface-treated positive electrode active material in which at least a part of the surface thereof is covered with an oxide of a group 13 element in the periodic table. Since the group 13 element is hardly oxidized and reduced and is chemically stable, when the surface of the positive electrode active material is covered with the oxide of the group 13 element, contact between the positive electrode active material and the solid electrolyte can be prevented. For this reason, reaction at the interface between the positive electrode active material and the solid electrolyte is suppressed, and generation of a resistance component can be suppressed.
なお、前記正極活物質は、その表面の少なくとも一部が前記酸化物で被覆されていればよく、前記正極活物質の表面全体が前記酸化物で被覆されていなくともよく、前記正極活物質の表面が部分的に前記酸化物で被覆されていてもよい。 The positive electrode active material only needs to have at least a part of its surface covered with the oxide, and the entire surface of the positive electrode active material may not be covered with the oxide. The surface may be partially coated with the oxide.
前記13族元素は、具体的には、B、Al、Ga、In、Tlであり、前記酸化物に含まれるのはそのうち1種であってもよく、2種以上であってもよいが、前記酸化物はホウ素、アルミニウム、又は、ガリウムを含んでいることが好ましい。これら元素の酸化物は合成が容易であり、また、前記正極活物質をこれら元素の酸化物で被覆した場合、優れた特性を有する二次電池を得ることができる。 The group 13 element is specifically B, Al, Ga, In, or Tl, and the oxide may include one kind or two or more kinds. The oxide preferably contains boron, aluminum, or gallium. The oxides of these elements are easy to synthesize, and when the positive electrode active material is coated with an oxide of these elements, a secondary battery having excellent characteristics can be obtained.
前記酸化物としては、13族元素Xと酸素のみからなるX−O化合物や、更にリチウムを含有するリチウム酸化物Li−X−O等が挙げられる。X−O化合物とLi−X−O化合物の一方のみで前記正極活物質表面が被覆されていてもよいが、X−O化合物とLi−X−O化合物とが併存していることが好ましい。X−O化合物は正極活物質と固体電解質との界面反応の抑制能に優れており、Li−X−O化合物はリチウムイオンが移動可能な経路を形成することよりリチウムイオンの拡散性に優れているので、X−O化合物とLi−X−O化合物とが併存することにより、正極活物質と固体電解質との界面反応の抑制とリチウムイオンの拡散とを良好なバランスで両立させることができ、二次電池の安全性と高出力化とを共に達成することができる。 Examples of the oxide include an X—O compound composed only of a group 13 element X and oxygen, and lithium oxide Li—X—O containing lithium. Although the surface of the positive electrode active material may be coated with only one of the X—O compound and the Li—X—O compound, it is preferable that the X—O compound and the Li—X—O compound coexist. The X—O compound is excellent in the ability to suppress the interfacial reaction between the positive electrode active material and the solid electrolyte, and the Li—X—O compound is excellent in lithium ion diffusibility by forming a path through which lithium ions can move. Therefore, the coexistence of the X—O compound and the Li—X—O compound makes it possible to achieve a good balance between the suppression of the interfacial reaction between the positive electrode active material and the solid electrolyte and the diffusion of lithium ions, Both safety and high output of the secondary battery can be achieved.
13族元素の酸化物の主たる配位構造は、4配位と6配位であるが、前記正極活物質の表面を被覆する前記酸化物の少なくとも一部は、4配位の酸化物であることが好ましい。4配位の酸化物はリチウムイオンの拡散性に優れているので、4配位の酸化物で正極活物質の表面を被覆することにより、イオン伝導性を向上させて、高出力化を図ることができる。前記正極活物質の表面を被覆する前記酸化物の全てが4配位の酸化物であってもよいが、4配位の酸化物と6配位の酸化物とが併存することがより好ましい。6配位の酸化物はリチウムイオンの拡散性は充分ではないものの、化学的に安定であり正極活物質と固体電解質との界面反応の抑制能に優れているので、4配位の酸化物と6配位の酸化物とが併存すると、正極活物質と固体電解質との界面反応の抑制とリチウムイオンの拡散を良好なバランスで両立させることができるので、二次電池の安全性と高出力化とを共に達成することができる。 The main coordination structure of the Group 13 element oxide is tetracoordinate and hexacoordinate, but at least a part of the oxide covering the surface of the positive electrode active material is a tetracoordinate oxide. It is preferable. Tetracoordinate oxide is excellent in lithium ion diffusibility, so that the surface of the positive electrode active material is coated with the tetracoordinate oxide to improve ion conductivity and increase output. Can do. Although all of the oxide covering the surface of the positive electrode active material may be a tetracoordinate oxide, it is more preferable that a tetracoordinate oxide and a hexacoordinate oxide coexist. Although the 6-coordinate oxide does not have sufficient lithium ion diffusibility, it is chemically stable and has excellent ability to suppress the interfacial reaction between the positive electrode active material and the solid electrolyte. When a 6-coordinate oxide coexists, it is possible to achieve a good balance between the suppression of the interfacial reaction between the positive electrode active material and the solid electrolyte and the diffusion of lithium ions. Can be achieved together.
図1は、核磁気共鳴装置(Varian NMR System 400WB)を用いて、観測周波数104.35MHz、プローブ2.5mmφの条件で、アルミニウム酸化物について固体27Al−NMRスペクトルを測定した結果を示すチャートである。このうち、4配位の酸化物が過剰な場合(a)はリチウムイオンの拡散作用が充分ではなく、6配位の酸化物が過剰な場合(b)は正極活物質と固体電解質との界面反応の抑制作用が充分ではない。これに対して、4配位の酸化物と6配位の酸化物とが略1:1の比率で存在する場合(c)は正極活物質と固体電解質との界面反応の抑制とリチウムイオンの拡散とのバランスが良好である。 FIG. 1 is a chart showing the results of measuring a solid 27Al-NMR spectrum for aluminum oxide using a nuclear magnetic resonance apparatus (Varian NMR System 400WB) under the conditions of an observation frequency of 104.35 MHz and a probe of 2.5 mmφ. . Among these, when the 4-coordinate oxide is excessive (a), the lithium ion diffusion action is not sufficient, and when the 6-coordinate oxide is excessive (b), the interface between the positive electrode active material and the solid electrolyte is used. The inhibitory action of the reaction is not sufficient. On the other hand, when the tetracoordinate oxide and the hexacoordinate oxide are present in a ratio of approximately 1: 1 (c), the interfacial reaction between the positive electrode active material and the solid electrolyte is suppressed, and the lithium ion Good balance with diffusion.
前記正極活物質の表面を前記酸化物で被覆する方法としては特に限定されず、例えば、前記酸化物の前駆体溶液中に正極活物質粒子を浸漬し、次いで熱処理する方法、前記酸化物の前駆体溶液を正極活物質粒子に噴霧し、次いで熱処理する方法等が挙げられる。 The method of coating the surface of the positive electrode active material with the oxide is not particularly limited. For example, a method of immersing the positive electrode active material particles in the oxide precursor solution and then heat-treating the precursor, the oxide precursor Examples include a method of spraying the body solution onto the positive electrode active material particles and then performing a heat treatment.
前記酸化物の前駆体としては、例えば、13族元素のアルコキシドが挙げられ、これを適宜選択した有機溶媒中に溶解して前記前駆体溶液として使用する。 Examples of the precursor of the oxide include an alkoxide of a group 13 element, which is dissolved in an appropriately selected organic solvent and used as the precursor solution.
図2は、前記酸化物の前駆体としてアルミニウムイソプロポキシドを用いた場合の、被覆処理前の正極活物質粒子断面(a)と、被覆処理後の表面処理正極活物質粒子断面(b)とを、走査型電子顕微鏡(SEM)を用いて波長分散X線分光法(WDX)により観察した結果を示す写真である。図2(b)に示すように、表面処理正極活物質粒子の表面はアルミニウム酸化物(蛍光部分)により被覆されていることがわかる。 FIG. 2 shows a cross section of positive electrode active material particles before coating treatment (a) and a cross section of surface treated positive electrode active material particles after coating treatment (b) when aluminum isopropoxide is used as the oxide precursor. Is a photograph showing the result of observation by wavelength dispersive X-ray spectroscopy (WDX) using a scanning electron microscope (SEM). As shown in FIG. 2B, it can be seen that the surface of the surface-treated positive electrode active material particles is coated with aluminum oxide (fluorescent portion).
前記負極が含有する負極活物質としては、リチウムとの合金化、又は、リチウムの可逆的な吸蔵、放出が可能なものであれば特に限定されず、例えば、リチウム、インジウム、スズ、アルミ、ケイ素等の金属やそれらの合金:Li4/3Ti5/3O4、SnO等の遷移金属酸化物:人造黒鉛、黒鉛炭素繊維、樹脂焼成炭素、熱分解気相成長炭素、コークス、メソカーボンマイクロビーズ(MCMB)、フルフリルアルコール樹脂焼成炭素、ポリアセン、ピッチ系炭素繊維、気相成長炭素繊維、天然黒鉛及び難黒鉛化性炭素等の炭素材料等が挙げられる。これらの負極活物質は、単独で用いられてもよく、2種以上が併用されてもよい。 The negative electrode active material contained in the negative electrode is not particularly limited as long as it can be alloyed with lithium, or reversibly occluded and released from lithium. For example, lithium, indium, tin, aluminum, silicon etc. of metals and their alloys: Li 4/3 Ti 5/3 O 4, SnO or the like transition metal oxides: artificial graphite, graphite carbon fibers, resin fired carbon, pyrolytic vapor grown carbon, coke, mesocarbon Examples thereof include carbon materials such as beads (MCMB), furfuryl alcohol resin calcined carbon, polyacene, pitch-based carbon fiber, vapor-grown carbon fiber, natural graphite, and non-graphitizable carbon. These negative electrode active materials may be used independently and 2 or more types may be used together.
前記正極及び負極は、上述の活物質からなる粉末に、例えば、導電剤、結着剤、電解質、フィラー、分散剤、イオン導電剤等の添加剤が、適宜選択され配合されていてもよい。 For the positive electrode and the negative electrode, additives such as, for example, a conductive agent, a binder, an electrolyte, a filler, a dispersant, and an ionic conductive agent may be appropriately selected and blended with the powder made of the above-described active material.
前記導電剤としては、例えば、黒鉛、カーボンブラック、アセチレンブラック、ケッチェンブラック、炭素繊維、金属粉等が挙げられ、前記結着剤としては、例えば、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、ポリエチレン等が挙げられる。前記電解質としては、後述する硫化物固体電解質が挙げられる。 Examples of the conductive agent include graphite, carbon black, acetylene black, ketjen black, carbon fiber, and metal powder. Examples of the binder include polytetrafluoroethylene, polyvinylidene fluoride, and polyethylene. Is mentioned. Examples of the electrolyte include a sulfide solid electrolyte described later.
前記正極又は負極を製造するには、例えば、上述の活物質と各種添加剤との混合物を水や有機溶媒等の溶媒に添加してスラリー又はペースト化し、得られたスラリー又はペーストを、ドクターブレード法等を用いて集電体に塗布し、乾燥し、圧延ロール等で圧密化して、正極又は負極とする。 In order to produce the positive electrode or the negative electrode, for example, a mixture of the above active material and various additives is added to a solvent such as water or an organic solvent to form a slurry or paste, and the obtained slurry or paste is used as a doctor blade. It is applied to a current collector using a method or the like, dried, and consolidated with a rolling roll or the like to obtain a positive electrode or a negative electrode.
前記集電体としては、例えば、インジウム、銅、マグネシウム、ステンレス鋼、チタン、鉄、コバルト、ニッケル、亜鉛、アルミニウム、ゲルマニウム、リチウム、又は、これらの合金等からなる板状体や箔状体等が挙げられる。 Examples of the current collector include plates and foils made of indium, copper, magnesium, stainless steel, titanium, iron, cobalt, nickel, zinc, aluminum, germanium, lithium, or alloys thereof. Is mentioned.
なお、集電体を用いずに、ペレット状に圧密化成形して正極や負極としてもよい。また、負極活物質として金属又はその合金を使用する場合、金属シート(箔)をそのまま使用してもよい。 In addition, it is good also as a positive electrode or a negative electrode by carrying out the consolidation shaping | molding to a pellet form, without using a collector. Moreover, when using a metal or its alloy as a negative electrode active material, you may use a metal sheet (foil) as it is.
前記固体電解質層は硫化物固体電解質を含有するものである。前記硫化物固体電解質としては、硫黄及びリチウムを含む無機固体電解質であれば特に限定されず、例えば、Li2S単独や、Li2S−P2S5、Li2S−SiS2、Li2S−GeS2、Li2S−B2S5、Li2S−Al2S5等の複合化合物等が挙げられる。 The solid electrolyte layer contains a sulfide solid electrolyte. The sulfide solid electrolyte is not particularly limited as long as it is an inorganic solid electrolyte containing sulfur and lithium. For example, Li 2 S alone, Li 2 S—P 2 S 5 , Li 2 S—SiS 2 , Li 2 S-GeS 2, Li 2 S -B 2 S 5, Li 2 S-Al 2 S complex compounds such as 5, and the like.
前記固体電解質層は、前記硫化物固体電解質をプレスすることで、ペレット状にして得ることができる。 The solid electrolyte layer can be obtained in the form of a pellet by pressing the sulfide solid electrolyte.
本実施形態に係る全固体二次電池は、これらの正極、固体電解質層及び負極を積層し、プレスすることにより製造することができる。 The all-solid-state secondary battery according to the present embodiment can be manufactured by laminating and pressing these positive electrode, solid electrolyte layer, and negative electrode.
以下に実施例を掲げて本発明を更に詳細に説明するが、本発明はこれら実施例のみに限定されるものではない。 The present invention will be described in more detail with reference to the following examples. However, the present invention is not limited to these examples.
(実施例1)
負極として使用するIn箔(厚み0.05mm)をφ13(mm)で打ち抜き、セル容器にセットした。その上に固体電解質であるLi2S−P2S5(80−20mol%)(SE)をメカニカルミリング処理(MM処理)したものを80mg積層し、成型機で軽く表面を整えた。更に、正極活物質としてコバルト酸リチウム(LiCoO2)粒子をエタノール中に分散し、ここにアルミニウムイソプロポキシドをAl添加量0.05wt%になるように溶解した後熱処理することにより、Li−Al−Oの結合を有するリチウムアルミニウム酸化物で被覆された表面処理正極活物質を得た。そして、表面処理正極活物質と、SEと、導電剤である気相成長カーボンファイバ(VGCF)とを60/35/5wt%の比率で混合したものを、正極合剤としてSEの上に積層した。その状態で3t/cm2の圧力で加圧しペレットを作製し試験用セルを得た。
Example 1
An In foil (thickness 0.05 mm) used as the negative electrode was punched out with φ13 (mm) and set in a cell container. On top of that, 80 mg of a solid electrolyte Li 2 S—P 2 S 5 (80-20 mol%) (SE) mechanically milled (MM treated) was laminated, and the surface was lightly adjusted with a molding machine. Further, lithium cobaltate (LiCoO 2 ) particles as a positive electrode active material are dispersed in ethanol, and aluminum isopropoxide is dissolved therein so that the amount of Al added is 0.05 wt%, followed by heat treatment, thereby producing Li-Al. A surface-treated positive electrode active material coated with lithium aluminum oxide having a —O bond was obtained. And what mixed the surface treatment positive electrode active material, SE, and the vapor growth carbon fiber (VGCF) which is a electrically conductive agent in the ratio of 60/35/5 wt% was laminated | stacked on SE as positive mix. . In that state, a pressure was applied at a pressure of 3 t / cm 2 to produce a pellet to obtain a test cell.
得られた試験用セルを、25℃で、0.02Cの定電流で、上限電圧4Vまで充電し、初期容量を測定した後、放電終止電圧1Vまで0.1C放電し、同様にして充放電を繰り返した。50サイクル終了後の初期容量に対する容量維持率を測定し、当該試験用セルのサイクル特性を評価した。 The obtained test cell was charged to an upper limit voltage of 4 V at a constant current of 0.02 C at 25 ° C., measured for initial capacity, discharged to 0.1 C to a final discharge voltage of 1 V, and charged and discharged in the same manner. Was repeated. The capacity retention rate with respect to the initial capacity after the end of 50 cycles was measured, and the cycle characteristics of the test cell were evaluated.
また、得られた試験用セルを、初期は0.02Cの定電流で上限電圧4Vまで充電し0.02Cで放電した。2回目の充電は初回と同じ条件で行い、0.1Cの定電流で放電した。そして、初期容量に対する2回目の容量の割合(%)を測定し、当該試験用セルのレート特性を評価した。 Further, the obtained test cell was initially charged with a constant current of 0.02 C to an upper limit voltage of 4 V and discharged at 0.02 C. The second charge was performed under the same conditions as the first time, and discharged at a constant current of 0.1C. And the ratio (%) of the capacity | capacitance of the 2nd time with respect to initial stage capacity | capacitance was measured, and the rate characteristic of the said test cell was evaluated.
(実施例2)
表面処理正極活物質に、Al添加量が0.1wt%になるものを使用したこと以外は実施例1と同様にして試験用セルを作製し、電池特性を評価した。
(Example 2)
A test cell was prepared in the same manner as in Example 1 except that an Al addition amount of 0.1 wt% was used as the surface-treated positive electrode active material, and the battery characteristics were evaluated.
(実施例3)
表面処理正極活物質に、Al添加量が0.2wt%になるものを使用したこと以外は実施例1と同様にして試験用セルを作製し、電池特性を評価した。
(Example 3)
A test cell was prepared in the same manner as in Example 1 except that an Al addition amount of 0.2 wt% was used as the surface-treated positive electrode active material, and battery characteristics were evaluated.
(実施例4)
表面処理正極活物質に、Al添加量が0.5wt%になるものを使用したこと以外は実施例1と同様にして試験用セルを作製し、電池特性を評価した。
Example 4
A test cell was prepared in the same manner as in Example 1 except that an Al addition amount of 0.5 wt% was used as the surface-treated positive electrode active material, and battery characteristics were evaluated.
(実施例5)
アルミニウムイソプロポキシドに代えてホウ素プロポキシドを使用し、表面処理正極活物質に、B添加量が0.1wt%になるものを使用したこと以外は実施例1と同様にして試験用セルを作製し、電池特性を評価した。
(Example 5)
A test cell was prepared in the same manner as in Example 1 except that boron propoxide was used instead of aluminum isopropoxide, and the surface-treated positive electrode active material used had a B addition amount of 0.1 wt%. The battery characteristics were evaluated.
(実施例6)
アルミニウムイソプロポキシドに代えてガリウムイソプロポキシドを使用し、表面処理正極活物質に、Ga添加量が0.1wt%になるものを使用したこと以外は実施例1と同様にして試験用セルを作製し、電池特性を評価した。
(Example 6)
A test cell was prepared in the same manner as in Example 1 except that gallium isopropoxide was used instead of aluminum isopropoxide, and the surface-treated positive electrode active material was a material with a Ga addition amount of 0.1 wt%. Fabricated and battery characteristics were evaluated.
(比較例1)
正極活物質に表面処理を行わなかったこと以外は実施例1と同様にして試験用セルを作製し、電池特性を評価した。
(Comparative Example 1)
A test cell was prepared in the same manner as in Example 1 except that the positive electrode active material was not subjected to surface treatment, and battery characteristics were evaluated.
(比較例2)
正極活物質の表面処理を行わずに、Al添加量が0.05wt%になるように酸化アルミニウムを正極作成時に混合したこと以外は実施例1と同様にして試験用セルを作製し、電池特性を評価した。
(Comparative Example 2)
A test cell was prepared in the same manner as in Example 1 except that aluminum oxide was mixed at the time of preparing the positive electrode so that the amount of Al added was 0.05 wt% without performing the surface treatment of the positive electrode active material. Evaluated.
(比較例3)
正極活物質の表面処理を行わずに、Al添加量が0.5wt%になるように酸化アルミニウムを正極作成時に混合したこと以外は実施例1と同様にして試験用セルを作製し、電池特性を評価した。
(Comparative Example 3)
A test cell was prepared in the same manner as in Example 1 except that aluminum oxide was mixed at the time of preparing the positive electrode so that the amount of Al added was 0.5 wt% without performing the surface treatment of the positive electrode active material. Evaluated.
(比較例4)
正極活物質の表面処理を行わずに、B添加量が0.5wt%になるように酸化ホウ素を正極作成時に混合したこと以外は実施例1と同様にして試験用セルを作製し、電池特性を評価した。
(Comparative Example 4)
A test cell was prepared in the same manner as in Example 1 except that boron oxide was mixed at the time of preparing the positive electrode so that the B addition amount was 0.5 wt% without performing the surface treatment of the positive electrode active material. Evaluated.
(比較例5)
正極活物質の表面処理を行わずに、Ga添加量が0.5wt%になるように酸化ガリウムを正極作成時に混合したこと以外は実施例1と同様にして試験用セルを作製し、電池特性を評価した。
(Comparative Example 5)
A test cell was prepared in the same manner as in Example 1 except that gallium oxide was mixed at the time of preparing the positive electrode so that the Ga addition amount was 0.5 wt% without performing the surface treatment of the positive electrode active material. Evaluated.
実施例1〜6及び比較例1〜5で得られた結果を下記表1に示した。 The results obtained in Examples 1 to 6 and Comparative Examples 1 to 5 are shown in Table 1 below.
表1に記載の結果より、正極活物質の表面が13族元素の酸化物で被覆されていると、高容量が得られ、レート特性及びサイクル特性にも優れていた。一方、正極合剤を調製する際に13族元素の酸化物を単に混合しただけでは、正極活物質の表面は13族元素の酸化物で被覆されず、容量は低いままであり、レート特性及びサイクル特性も充分ではないことが明らかとなった。 From the results shown in Table 1, when the surface of the positive electrode active material was coated with an oxide of a group 13 element, a high capacity was obtained and the rate characteristics and cycle characteristics were excellent. On the other hand, when the oxide of the group 13 element is simply mixed at the time of preparing the positive electrode mixture, the surface of the positive electrode active material is not covered with the oxide of the group 13 element, the capacity remains low, rate characteristics and It became clear that the cycle characteristics were not sufficient.
本発明によれば、安全性が高く高出力な全固体二次電池を提供することができる。 According to the present invention, an all-solid secondary battery with high safety and high output can be provided.
Claims (5)
リチウムとの合金化、又は、リチウムの吸蔵、放出が可能な負極活物質を含有する負極と、
硫黄及びリチウムを含む無機固体電解質を含有する固体電解質層と、を備えることを特徴とする全固体二次電池。 The positive electrode according to claim 1, 2, 3, or 4,
A negative electrode containing a negative electrode active material capable of alloying with lithium, or occluding and releasing lithium, and
And a solid electrolyte layer containing an inorganic solid electrolyte containing sulfur and lithium.
Priority Applications (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2009037729A JP5551880B2 (en) | 2009-02-20 | 2009-02-20 | All solid state secondary battery |
| KR1020090050524A KR20100095349A (en) | 2009-02-20 | 2009-06-08 | Positive electrode for all-solid secondary battery and all-solid secondary battery employing same |
| US12/708,863 US20100216030A1 (en) | 2009-02-20 | 2010-02-19 | Positive electrode for all-solid secondary battery and all-solid secondary battery employing same |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2009037729A JP5551880B2 (en) | 2009-02-20 | 2009-02-20 | All solid state secondary battery |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JP2010192373A true JP2010192373A (en) | 2010-09-02 |
| JP5551880B2 JP5551880B2 (en) | 2014-07-16 |
Family
ID=42759108
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2009037729A Expired - Fee Related JP5551880B2 (en) | 2009-02-20 | 2009-02-20 | All solid state secondary battery |
Country Status (2)
| Country | Link |
|---|---|
| JP (1) | JP5551880B2 (en) |
| KR (1) | KR20100095349A (en) |
Cited By (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2011125499A1 (en) * | 2010-03-31 | 2011-10-13 | 独立行政法人物質・材料研究機構 | All-solid-state lithium cell |
| US8986895B2 (en) | 2009-02-04 | 2015-03-24 | Kabushiki Kaisha Toyota Chuo Kenkyusho | Garnet-type lithium ion-conducting oxide and all-solid-state lithium ion secondary battery containing the same |
| JP2015069958A (en) * | 2013-10-01 | 2015-04-13 | 日立マクセル株式会社 | Positive electrode material for nonaqueous secondary batteries, manufacturing method thereof, positive electrode mixture layer for nonaqueous secondary batteries arranged by use of positive electrode material for nonaqueous secondary batteries, positive electrode for nonaqueous secondary batteries, and nonaqueous secondary battery |
| JP2015076336A (en) * | 2013-10-11 | 2015-04-20 | 日立マクセル株式会社 | Positive electrode material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery |
| JP2016024907A (en) * | 2014-07-17 | 2016-02-08 | 三星電子株式会社Samsung Electronics Co.,Ltd. | Lithium ion secondary battery |
| JP2016110714A (en) * | 2014-12-02 | 2016-06-20 | 三星電子株式会社Samsung Electronics Co.,Ltd. | Lithium ion secondary battery, and method for manufacturing positive electrode active material for lithium ion secondary battery |
| US9531036B2 (en) | 2013-08-23 | 2016-12-27 | Kabushiki Kaisha Toyota Chuo Kenkyusho | Garnet-type ion conducting oxide, complex, lithium secondary battery, manufacturing method of garnet-type ion conducting oxide and manufacturing method of complex |
| US10141566B2 (en) | 2014-08-15 | 2018-11-27 | Samsung Electronics Co., Ltd. | Lithium secondary battery including a coated cathode material and solid electrolyte, and method of preparing the same |
| US10530015B2 (en) | 2011-06-20 | 2020-01-07 | Kabushiki Kaisha Toyota Chuo Kenkyusho | All-solid-state lithium secondary battery and method for producing the same |
| EP4009401A1 (en) | 2020-12-01 | 2022-06-08 | Toyota Jidosha Kabushiki Kaisha | Coated cathode active material, method for producing coated cathode active material, and all solid state battery |
Families Citing this family (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR101792316B1 (en) | 2013-11-29 | 2017-10-31 | 한양대학교 산학협력단 | Active material for all-soild state lithium secondary battery, preparing method thereof and all-soild state lithium secondary battery employing the same |
| JP6269597B2 (en) * | 2015-06-29 | 2018-01-31 | トヨタ自動車株式会社 | Positive electrode active material layer, all solid lithium battery, and method for producing positive electrode active material layer |
| KR101774683B1 (en) | 2016-01-26 | 2017-09-19 | 현대자동차주식회사 | Electorde active material slurry, preparation method thereof, and all solid secondary battery comprising the same |
| US11217785B2 (en) | 2017-01-24 | 2022-01-04 | Samsung Electronics Co., Ltd. | Composite cathode active material and secondary battery including the same |
| CN117977044B (en) * | 2024-04-01 | 2024-07-16 | 四川新能源汽车创新中心有限公司 | Method for recycling sulfide-based all-solid-state battery material |
Citations (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH10130038A (en) * | 1996-10-24 | 1998-05-19 | Central Glass Co Ltd | Transparent conductive laminate and its production |
| JP2001313034A (en) * | 2000-03-24 | 2001-11-09 | Merck Patent Gmbh | Coated lithium composite oxide particles and method for producing the same |
| JP2002097006A (en) * | 2000-09-20 | 2002-04-02 | Fine Ceramics Research Association | Manufacturing method of aluminum nitride |
| JP2005078800A (en) * | 2003-08-29 | 2005-03-24 | Mitsubishi Materials Corp | Positive active material powder of nonaqueous secondary battery, its manufacturing method, and nonaqueous secondary battery using this |
| JP2005247656A (en) * | 2004-03-05 | 2005-09-15 | Toyo Sasaki Glass Co Ltd | Glass molding with enhanced cleaning property |
| JP2006155979A (en) * | 2004-11-26 | 2006-06-15 | Central Res Inst Of Electric Power Ind | All solid-state battery |
| JP2007059409A (en) * | 2006-10-11 | 2007-03-08 | Central Res Inst Of Electric Power Ind | All solid-state battery |
| JP2008103204A (en) * | 2006-10-19 | 2008-05-01 | Idemitsu Kosan Co Ltd | Positive electrode active material and secondary battery using the same |
| JP2008103280A (en) * | 2006-10-20 | 2008-05-01 | Idemitsu Kosan Co Ltd | Positive electrode mixture and all-solid-state secondary battery using the same |
| JP2008135379A (en) * | 2006-10-25 | 2008-06-12 | Sumitomo Chemical Co Ltd | Lithium secondary battery |
-
2009
- 2009-02-20 JP JP2009037729A patent/JP5551880B2/en not_active Expired - Fee Related
- 2009-06-08 KR KR1020090050524A patent/KR20100095349A/en not_active Ceased
Patent Citations (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH10130038A (en) * | 1996-10-24 | 1998-05-19 | Central Glass Co Ltd | Transparent conductive laminate and its production |
| JP2001313034A (en) * | 2000-03-24 | 2001-11-09 | Merck Patent Gmbh | Coated lithium composite oxide particles and method for producing the same |
| JP2002097006A (en) * | 2000-09-20 | 2002-04-02 | Fine Ceramics Research Association | Manufacturing method of aluminum nitride |
| JP2005078800A (en) * | 2003-08-29 | 2005-03-24 | Mitsubishi Materials Corp | Positive active material powder of nonaqueous secondary battery, its manufacturing method, and nonaqueous secondary battery using this |
| JP2005247656A (en) * | 2004-03-05 | 2005-09-15 | Toyo Sasaki Glass Co Ltd | Glass molding with enhanced cleaning property |
| JP2006155979A (en) * | 2004-11-26 | 2006-06-15 | Central Res Inst Of Electric Power Ind | All solid-state battery |
| JP2007059409A (en) * | 2006-10-11 | 2007-03-08 | Central Res Inst Of Electric Power Ind | All solid-state battery |
| JP2008103204A (en) * | 2006-10-19 | 2008-05-01 | Idemitsu Kosan Co Ltd | Positive electrode active material and secondary battery using the same |
| JP2008103280A (en) * | 2006-10-20 | 2008-05-01 | Idemitsu Kosan Co Ltd | Positive electrode mixture and all-solid-state secondary battery using the same |
| JP2008135379A (en) * | 2006-10-25 | 2008-06-12 | Sumitomo Chemical Co Ltd | Lithium secondary battery |
Non-Patent Citations (3)
| Title |
|---|
| JPN6014018551; Sukanda Jiansirisomboon、外1名: 'Sol-gel processing and phase characterization of Al2O3 and Al2O3/SiC nanocomposite powders' Materials Research Bulletin Vol.41, 2007, pp.791-803 * |
| JPN6014018552; L.A.O'Dell、外3名: 'A 27Al MAS NMR study of a sol-gel produced alumina: Identification of the NMR parameters of the theta-A' Solid State Nuclear Magnetic Resonance Vol.31, pp.169-173 * |
| JPN6014018553; I.Levin、外3名: 'Cubic to monoclinic phase transformations in alumina' acta materialia Vol.45,No.9, 1997, pp.3659-3669 * |
Cited By (16)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US8986895B2 (en) | 2009-02-04 | 2015-03-24 | Kabushiki Kaisha Toyota Chuo Kenkyusho | Garnet-type lithium ion-conducting oxide and all-solid-state lithium ion secondary battery containing the same |
| JPWO2011125499A1 (en) * | 2010-03-31 | 2013-07-08 | 独立行政法人物質・材料研究機構 | All solid lithium battery |
| WO2011125499A1 (en) * | 2010-03-31 | 2011-10-13 | 独立行政法人物質・材料研究機構 | All-solid-state lithium cell |
| US10026989B2 (en) | 2010-03-31 | 2018-07-17 | National Institute For Materials Science | All solid lithium battery |
| US10530015B2 (en) | 2011-06-20 | 2020-01-07 | Kabushiki Kaisha Toyota Chuo Kenkyusho | All-solid-state lithium secondary battery and method for producing the same |
| US9531036B2 (en) | 2013-08-23 | 2016-12-27 | Kabushiki Kaisha Toyota Chuo Kenkyusho | Garnet-type ion conducting oxide, complex, lithium secondary battery, manufacturing method of garnet-type ion conducting oxide and manufacturing method of complex |
| JP2015069958A (en) * | 2013-10-01 | 2015-04-13 | 日立マクセル株式会社 | Positive electrode material for nonaqueous secondary batteries, manufacturing method thereof, positive electrode mixture layer for nonaqueous secondary batteries arranged by use of positive electrode material for nonaqueous secondary batteries, positive electrode for nonaqueous secondary batteries, and nonaqueous secondary battery |
| JP2015076336A (en) * | 2013-10-11 | 2015-04-20 | 日立マクセル株式会社 | Positive electrode material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery |
| JP2016024907A (en) * | 2014-07-17 | 2016-02-08 | 三星電子株式会社Samsung Electronics Co.,Ltd. | Lithium ion secondary battery |
| US10141566B2 (en) | 2014-08-15 | 2018-11-27 | Samsung Electronics Co., Ltd. | Lithium secondary battery including a coated cathode material and solid electrolyte, and method of preparing the same |
| JP2016110714A (en) * | 2014-12-02 | 2016-06-20 | 三星電子株式会社Samsung Electronics Co.,Ltd. | Lithium ion secondary battery, and method for manufacturing positive electrode active material for lithium ion secondary battery |
| EP4009401A1 (en) | 2020-12-01 | 2022-06-08 | Toyota Jidosha Kabushiki Kaisha | Coated cathode active material, method for producing coated cathode active material, and all solid state battery |
| KR20220077081A (en) | 2020-12-01 | 2022-06-08 | 도요타 지도샤(주) | Coated cathode active material, method for producing coated cathode active material, and all solid state battery |
| JP2022087504A (en) * | 2020-12-01 | 2022-06-13 | トヨタ自動車株式会社 | Coated positive electrode active material, manufacturing method of coated positive electrode active material and all-solid-state battery |
| US11990619B2 (en) | 2020-12-01 | 2024-05-21 | Toyota Jidosha Kabushiki Kaisha | Coated cathode active material, method for producing coated cathode active material, and all solid state battery |
| JP7581806B2 (en) | 2020-12-01 | 2024-11-13 | トヨタ自動車株式会社 | Coated positive electrode active material, method for producing coated positive electrode active material, and all-solid-state battery |
Also Published As
| Publication number | Publication date |
|---|---|
| JP5551880B2 (en) | 2014-07-16 |
| KR20100095349A (en) | 2010-08-30 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP5551880B2 (en) | All solid state secondary battery | |
| Sun et al. | Electrochemical performance of rare-earth doped LiMn2O4 spinel cathode materials for Li-ion rechargeable battery | |
| US20100216030A1 (en) | Positive electrode for all-solid secondary battery and all-solid secondary battery employing same | |
| US20120021298A1 (en) | All-solid lithium ion secondary battery and electrode therefor | |
| JP2012028231A (en) | Solid lithium ion secondary battery | |
| JP6738121B2 (en) | Lithium ion secondary battery | |
| Tong et al. | A novel core-shell structured nickel-rich layered cathode material for high-energy lithium-ion batteries | |
| JP2012022794A (en) | Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery | |
| TW201526341A (en) | Solid-state battery | |
| CN106159318A (en) | Novel slice type solid-state serondary lithium battery that garnet-type solid electrolyte supports and preparation method thereof | |
| JPWO2013018486A1 (en) | Non-aqueous electrolyte secondary battery active material, method for producing the same, and negative electrode using the same | |
| JP2013089321A (en) | Lithium ion secondary battery and method for producing positive electrode active material for lithium ion secondary battery | |
| JP5151329B2 (en) | Positive electrode body and lithium secondary battery using the same | |
| JP2013084566A (en) | Nonaqueous electrolytic secondary cell | |
| JPWO2013146054A1 (en) | Nonaqueous electrolyte secondary battery | |
| Deng et al. | Structure and electrochemical performance of spinel LiMn1. 95Ni0. 05O3. 98F0. 02 coated with Li-La-Zr-O solid electrolyte | |
| JP2015053234A (en) | Production method of oxide solid electrolyte material, production method of electrode body, oxide solid electrolyte material, and electrode body | |
| JP2016004708A (en) | Positive electrode active material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery using the same | |
| Zhang et al. | Study on the electrochemical performance of all-solid-state lithium battery based on Li3BO3 gradient coated LiCoO2 cathode | |
| JP2012028212A (en) | Solid lithium-ion secondary battery | |
| JP2015018621A (en) | Sodium battery cathode active material and method of producing the same | |
| JP2018008843A (en) | Solid electrolyte, all-solid battery, and manufacturing method thereof | |
| JP2015215947A (en) | Electrode for nonaqueous electrolyte secondary batteries and nonaqueous electrolyte secondary battery | |
| JP6273868B2 (en) | Negative electrode active material for power storage device and method for producing the same | |
| JP2023064496A (en) | Positive electrode material and secondary battery using the same |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120206 |
|
| A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130821 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130910 |
|
| A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20131115 |
|
| A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20131118 |
|
| A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20131210 |
|
| A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140310 |
|
| A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20140310 |
|
| A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20140409 |
|
| TRDD | Decision of grant or rejection written | ||
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140508 |
|
| A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140523 |
|
| R150 | Certificate of patent or registration of utility model |
Ref document number: 5551880 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
| LAPS | Cancellation because of no payment of annual fees |