[go: up one dir, main page]

JP2010249378A - Air conditioning equipment and its operation method - Google Patents

Air conditioning equipment and its operation method Download PDF

Info

Publication number
JP2010249378A
JP2010249378A JP2009098084A JP2009098084A JP2010249378A JP 2010249378 A JP2010249378 A JP 2010249378A JP 2009098084 A JP2009098084 A JP 2009098084A JP 2009098084 A JP2009098084 A JP 2009098084A JP 2010249378 A JP2010249378 A JP 2010249378A
Authority
JP
Japan
Prior art keywords
heat exchanger
cooling
heating
hot water
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009098084A
Other languages
Japanese (ja)
Inventor
Yasuo Ueda
靖夫 上田
Shingo Yokoyama
伸悟 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takasago Thermal Engineering Co Ltd
Original Assignee
Takasago Thermal Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takasago Thermal Engineering Co Ltd filed Critical Takasago Thermal Engineering Co Ltd
Priority to JP2009098084A priority Critical patent/JP2010249378A/en
Publication of JP2010249378A publication Critical patent/JP2010249378A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To easily improve heating capacity especially in winter in an air conditioning facility. <P>SOLUTION: The air conditioning facility 1 makes outside air OA pass through an outdoor air conditioning unit 10 to supply the air to an indoor space 13. The outdoor air conditioning unit 10 is provided with a heat exchanger 25 for heating, a heat exchanger 26 for cooling, and a blower 27 for making the outside air OA thermally contact the heating heat exchanger 25 with the cooling heat exchanger 26 to supply the air to the indoor space 13. The air conditioning facility 1 is equipped with a water heater 30 for supplying hot water to the heating heat exchanger 25 and a heat source machine 40 for supplying coolant to the cooling heat exchanger 26. When the temperature of the outside air OA is within a predetermined low-temperature range, the facility is in a heating operation mode, and hot water is supplied from the water heater 30 to the heating heat exchanger 25. When the temperature of the outside air OA is within a predetermined high-temperature range, the facility is in a cooling operation mode, and the coolant is supplied from the heat source machine 40 to the cooling heat exchanger 26. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、暖房運転が可能な空調設備とその運転方法に関する。   The present invention relates to an air conditioning facility capable of heating operation and an operation method thereof.

例えば中規模ビルなどに設置される空調設備が知られている。特許文献1には、熱源機で所定の温度に調節した空気を屋内ユニットから屋内に吹き出すように構成された空調設備が開示されている。   For example, air conditioning equipment installed in a medium-sized building is known. Patent Literature 1 discloses an air conditioning facility configured to blow out air adjusted to a predetermined temperature by a heat source machine from an indoor unit into the room.

なお、この特許文献1の空調設備には、給湯器から熱源機に湯を供給して、熱源機に付いた霜を除去する構成も示されている。また、給湯器を利用したものとしては、暖房対象箇所に設置された温水暖房配管に給湯器から給湯する温水暖房が特許文献2に開示されている。また、特許文献3には、給湯器から空調機や温水マットに給湯する温水暖房装置が開示されている。更に、特許文献4には、温水器から床暖房装置や壁暖房装置に温水を供給する空調装置が開示されている。   In addition, the air-conditioning equipment of this patent document 1 also shows the structure which supplies hot water from a water heater to a heat source machine, and removes the frost attached to the heat source machine. Moreover, as a thing using a hot water heater, the hot water heating which supplies hot water from a hot water heater to the hot water heating piping installed in the heating object location is disclosed by patent document 2. FIG. Patent Document 3 discloses a hot water heater that supplies hot water from a water heater to an air conditioner or a hot water mat. Furthermore, Patent Literature 4 discloses an air conditioner that supplies hot water from a water heater to a floor heating device or a wall heating device.

特開平7−260294号公報JP-A-7-260294 特開2006−292309号公報JP 2006-292309 A 特開2002−295844号公報JP 2002-295844 A 特開2008−25864号公報JP 2008-25864 A

しかしながら、従来の空調設備では、特に冬期の暖房能力が低く、寒冷地などでは、空調設備の他に何らかの補助暖房が必要となっていた。また、暖房能力を向上させるために、熱源機に内蔵されているヒータの電気出力を大きくさせると、設備費用が高くなり、熱源機の設置スペースも広く必要になる問題があった。   However, the conventional air conditioning equipment has a low heating capacity especially in winter, and some auxiliary heating is required in addition to the air conditioning equipment in cold districts. In addition, if the electrical output of the heater built in the heat source device is increased in order to improve the heating capacity, there is a problem that the equipment cost increases and a large installation space for the heat source device is required.

本発明は上記課題に鑑みてなされたものであり、空調設備において特に冬期の暖房能力を容易に向上させることを目的としている。   This invention is made | formed in view of the said subject, and it aims at improving easily the heating capability in winter especially in an air-conditioning installation.

上記課題を解決するために、本発明によれば、外気を外調機に通過させて室内空間に供給する空調設備であって、前記外調機には、加熱用の熱交換器と、冷却用の熱交換器と、これら加熱用の熱交換器および冷却用の熱交換器に外気を熱的に接触させて、室内空間に供給する送風機が設けられ、前記加熱用の熱交換器に温水を供給する給湯器と、前記冷却用の熱交換器に冷媒を供給する熱源機を備える、空調設備が提供される。   In order to solve the above-described problems, according to the present invention, air conditioning equipment that supplies outside air to an indoor space by passing the outside air is provided, and the external air conditioner includes a heat exchanger for heating, a cooling device A heat exchanger for heating, and a blower for bringing the outside air into thermal contact with the heat exchanger for heating and the heat exchanger for cooling and supplying the indoor space to the indoor space. There is provided an air conditioner including a hot water supply device that supplies the heat and a heat source device that supplies a refrigerant to the cooling heat exchanger.

この空調設備において、外気の温度を測定するセンサと、前記加熱用の熱交換器への温水の供給を制御する温水用制御弁と、前記冷却用の熱交換器への冷媒の供給を制御する冷媒用制御弁と、前記センサの測定温度に基いて、前記温水用制御弁および前記冷媒用制御弁を制御する制御装置を有しても良い。   In this air conditioning equipment, a sensor that measures the temperature of the outside air, a hot water control valve that controls the supply of hot water to the heating heat exchanger, and a refrigerant supply to the cooling heat exchanger are controlled. You may have a control apparatus which controls the said control valve for hot water and the said control valve for refrigerant | coolants based on the control temperature for refrigerant | coolants and the measured temperature of the said sensor.

また、本発明によれば、外気を外調機に通過させ、加熱用の熱交換器および冷却用の熱交換器に外気を熱的に接触させて、室内空間に供給する空調設備の運転方法であって、外気の温度が所定の低温度範囲の場合は、暖房運転モードとなって、給湯器から前記加熱用の熱交換器に温水が供給され、外気の温度が所定の高温度範囲の場合は、冷房運転モードとなって、熱源機から前記冷却用の熱交換器に冷媒が供給される、空調設備の運転方法が提供される。   Further, according to the present invention, the operating method of the air-conditioning equipment for passing the outside air through the external air conditioner, bringing the outside air into thermal contact with the heat exchanger for heating and the heat exchanger for cooling, and supplying the air to the indoor space When the temperature of the outside air is in the predetermined low temperature range, the heating operation mode is set, hot water is supplied from the water heater to the heat exchanger for heating, and the temperature of the outside air is in the predetermined high temperature range. In this case, there is provided a method for operating an air conditioning facility in which the cooling operation mode is set and the refrigerant is supplied from the heat source unit to the cooling heat exchanger.

この運転方法において、外気の温度が前記低温度範囲と高温度範囲の間の中間温度範囲の場合は、外気冷房運転モードとなって、前記給湯器から前記加熱用の熱交換器への温水の供給と、前記熱源機から前記冷却用の熱交換器への冷媒の供給が、いずれも停止されても良い。また、前記室内空間への給気を停止させ、前記給湯器から前記加熱用の熱交換器へ温水を供給し、前記熱源機から前記冷却用の熱交換器へ冷媒を供給する凍結防止運転モードを有しても良い。また、凍結防止運転モードでは、前記熱源機において冷媒を冷却せずに前記冷却用の熱交換器へ冷媒を供給しても良い。   In this operation method, when the temperature of the outside air is an intermediate temperature range between the low temperature range and the high temperature range, the outside air cooling operation mode is set, and hot water from the water heater to the heating heat exchanger is set. The supply and the supply of the refrigerant from the heat source unit to the cooling heat exchanger may both be stopped. In addition, an anti-freezing operation mode in which supply of air to the indoor space is stopped, hot water is supplied from the water heater to the heat exchanger for heating, and refrigerant is supplied from the heat source device to the heat exchanger for cooling. You may have. In the freeze prevention operation mode, the refrigerant may be supplied to the cooling heat exchanger without cooling the refrigerant in the heat source unit.

本発明によれば、外調機に内蔵された加熱用の熱交換器に、給湯器から温水を供給して暖房運転を行うことができる。給湯器の温水を利用して暖房運転ができるので、特に冬期の暖房能力を容易に向上させることができようになる。このため、設備費用を低く抑えることができ、熱源機の設置スペースも小さくできる。   ADVANTAGE OF THE INVENTION According to this invention, a warming operation can be performed by supplying warm water from a water heater to a heat exchanger for heating built in an external air conditioner. Since the heating operation can be performed using the hot water of the water heater, the heating capacity can be easily improved particularly in winter. For this reason, equipment cost can be kept low and the installation space of a heat source machine can also be made small.

また、外気の温度が低温度範囲と高温度範囲の間の中間温度範囲の場合は、給湯器から前記加熱用の熱交換器への温水の供給と、熱源機から冷却用の熱交換器への冷媒の供給をいずれも停止させる外気冷房運転モードとすることにより、省エネルギ化がはかれ、ランニングコストの低減、地球温暖化の防止がはかられる。また、特に厳冬期などでは、室内空間への給気を停止させ、給湯器から加熱用の熱交換器へ温水を供給し、熱源機から冷却用の熱交換器へ冷媒を供給する凍結防止運転モードを行うことにより、各熱交換器や配管中の凍結発生を回避できる。   When the temperature of the outside air is in the intermediate temperature range between the low temperature range and the high temperature range, the hot water is supplied from the water heater to the heating heat exchanger, and from the heat source device to the cooling heat exchanger. By setting the outside air cooling operation mode in which all the refrigerant supply is stopped, energy saving is achieved, running cost is reduced, and global warming is prevented. Also, especially in severe winters, freeze-off operation stops supplying air to the indoor space, supplies hot water from the water heater to the heat exchanger for heating, and supplies refrigerant from the heat source unit to the heat exchanger for cooling. By performing the mode, freezing in each heat exchanger and piping can be avoided.

本実施の形態にかかる空調設備の説明図である。It is explanatory drawing of the air-conditioning equipment concerning this Embodiment. 各運転モードと温度範囲の関係の説明図である。It is explanatory drawing of the relationship between each operation mode and a temperature range. 外気温度と冷媒用制御弁の開度の関係を示すグラフである。It is a graph which shows the relationship between outside temperature and the opening degree of the control valve for refrigerant | coolants. 外気温度と温水用制御弁(三方弁)の開度の関係を示すグラフである。It is a graph which shows the relationship between the open air temperature and the opening degree of the hot water control valve (three-way valve). 凍結防止運転モードの説明図である。It is explanatory drawing of freezing prevention operation mode. 加熱用の熱交換器に接続される温水配管の変形例の説明図である。It is explanatory drawing of the modification of the hot water piping connected to the heat exchanger for heating. 温水配管に複数台の給湯器を並列に接続した実施の形態の説明図である。It is explanatory drawing of embodiment which connected the several water heater to the hot water piping in parallel.

以下、本発明の実施の形態を図面を参照にして説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In addition, in this specification and drawing, about the component which has the substantially same function structure, duplication description is abbreviate | omitted by attaching | subjecting the same code | symbol.

図1に示すように、この実施の形態にかかる空調設備1は、外気OAを外調機10に通過させ、所定の温度とした給気SAを、給気ダクト11を経て、建物12内の室内空間13に供給する構成である。給気ダクト11には、温度センサ14が取り付けられている。温度センサ14は、室内空間13に供給される給気SAの温度Tを測定し、この温度センサ14で測定された給気SAの温度Tが、空調設備1全体を司る制御装置15に入力される。 As shown in FIG. 1, the air-conditioning equipment 1 according to this embodiment allows the outside air OA to pass through the external air conditioner 10, and the supply air SA having a predetermined temperature is supplied to the inside of the building 12 through the air supply duct 11. In this configuration, the indoor space 13 is supplied. A temperature sensor 14 is attached to the air supply duct 11. Temperature sensor 14 measures the temperature T S of the supply air SA to be supplied to the indoor space 13, the temperature T S of the temperature sensor 14 with the measured supply air SA is the controller 15 which controls the entire air conditioning 1 Entered.

外調機10には、外気取入ダクト20が接続されており、この外気取入ダクト20を経て、外調機10内に外気OAが取り入れられる。外気取入ダクト20には、温度センサ21と、モータダンパ22が取り付けられている。温度センサ21は、外調機10内に取り入れられる外気OAの温度Tを測定し、この温度センサ21で測定された外気OAの温度Tが、制御装置15に入力される。モータダンパ22の開閉は、制御装置15によって制御される。 An external air intake duct 20 is connected to the external air conditioner 10, and external air OA is taken into the external air conditioner 10 through the external air intake duct 20. A temperature sensor 21 and a motor damper 22 are attached to the outside air intake duct 20. Temperature sensor 21 measures the temperature T O of the outside air OA that is incorporated in the outer conditioner 10, the temperature T O of the measured ambient air OA at this temperature sensor 21 is input to the control unit 15. The opening and closing of the motor damper 22 is controlled by the control device 15.

外調機10の内部には、加熱用の熱交換器25と、冷却用の熱交換器26と、送風機27が設けられている。送風機27の稼動により、外気OAが外調機10内に取り込まれて、加熱用の熱交換器25および冷却用の熱交換器26に熱的に接触させられる。その結果、温度調整された外気OAが給気SAとなって、室内空間13に供給される。送風機27の稼動は、制御装置15によって制御される。   Inside the external air conditioner 10, a heat exchanger 25 for heating, a heat exchanger 26 for cooling, and a blower 27 are provided. With the operation of the blower 27, the outside air OA is taken into the external air conditioner 10 and brought into thermal contact with the heat exchanger 25 for heating and the heat exchanger 26 for cooling. As a result, the temperature-adjusted outside air OA becomes the supply air SA and is supplied to the indoor space 13. The operation of the blower 27 is controlled by the control device 15.

加熱用の熱交換器25には、給湯器30で加熱された温水が、温水配管31を経て循環供給される。給湯器30には、例えば瞬間式ガス湯沸器やガス、電気等を熱源とする貯湯式湯沸器等が用いられる。温水配管31には、ポンプ32が設けられており、このポンプ32の稼動により、給湯器30から加熱用の熱交換器25に温水が循環させられる。また、温水配管31には、加熱用の熱交換器25を迂回させるバイパス経路33が分岐して接続されており、バイパス経路33の下流端は、加熱用の熱交換器25への温水の供給を制御する温水用制御弁としての三方弁34を経て温水配管31に合流して接続されている。この三方弁34の開閉により、温水を加熱用の熱交換器25に通す状態と、加熱用の熱交換器25に通さずに、温水をバイパス経路33に通す状態とに切り替えることができる。また、三方弁34の開度を調整することにより、熱交換器25に通す温水の流量とバイパス経路33に通す温水の流量の割合を変えることができる。給湯器30、ポンプ32および三方弁34は、いずれも制御装置15によって制御される。   Hot water heated by the water heater 30 is circulated and supplied to the heat exchanger 25 for heating via the hot water pipe 31. As the water heater 30, for example, an instantaneous gas water heater or a hot water storage water heater that uses gas, electricity or the like as a heat source is used. The hot water pipe 31 is provided with a pump 32, and the hot water is circulated from the water heater 30 to the heat exchanger 25 for heating by the operation of the pump 32. In addition, a bypass path 33 that bypasses the heat exchanger 25 for heating is branched and connected to the hot water pipe 31, and the downstream end of the bypass path 33 supplies hot water to the heat exchanger 25 for heating. The hot water pipe 31 is joined and connected via a three-way valve 34 as a hot water control valve for controlling. By opening and closing the three-way valve 34, it is possible to switch between a state in which hot water is passed through the heat exchanger 25 for heating and a state in which hot water is passed through the bypass path 33 without passing through the heat exchanger 25 for heating. Further, by adjusting the opening degree of the three-way valve 34, the ratio of the flow rate of hot water that passes through the heat exchanger 25 and the flow rate of hot water that passes through the bypass path 33 can be changed. The water heater 30, the pump 32, and the three-way valve 34 are all controlled by the control device 15.

冷却用の熱交換器26には、冷却機能を備えたヒートポンプチラーなどの熱源機40から、冷媒配管41を経て冷媒が循環供給される。熱源機40は、例えば建物12の屋上、庭などの屋外に配置されている。冷却用の熱交換器26に循環供給される冷媒には、例えば冷水が用いられる。冷媒配管41には、ポンプ42と冷媒用制御弁43が設けられている。ポンプ42の稼動により、熱源機40で冷却された冷媒が、冷媒配管41を経て冷却用の熱交換器26に循環供給される。また、冷媒用制御弁43の開度を調整することにより、冷却用の熱交換器26に通す冷媒の流量を変えることができる。熱源機40、ポンプ42および冷媒用制御弁43は、いずれも制御装置15によって制御される。   Refrigerant is circulated and supplied to the heat exchanger 26 for cooling through a refrigerant pipe 41 from a heat source device 40 such as a heat pump chiller having a cooling function. The heat source device 40 is disposed outdoors such as a rooftop or a garden of the building 12, for example. For example, cold water is used as the refrigerant that is circulated and supplied to the cooling heat exchanger 26. The refrigerant pipe 41 is provided with a pump 42 and a refrigerant control valve 43. With the operation of the pump 42, the refrigerant cooled by the heat source device 40 is circulated and supplied to the cooling heat exchanger 26 through the refrigerant pipe 41. Further, by adjusting the opening degree of the refrigerant control valve 43, the flow rate of the refrigerant passing through the cooling heat exchanger 26 can be changed. The heat source device 40, the pump 42, and the refrigerant control valve 43 are all controlled by the control device 15.

以上のように構成された空調設備1において、図2に示したように、外気温度が19℃以上の場合は、高温度範囲となって冷房運転モードとなり、外気温度が15℃以下の場合は、低温度範囲となって暖房運転モードとなり、外気温度が15〜19℃の場合は、中間温度範囲となって外気冷房運転モードとなる場合を例として説明する。   In the air conditioning equipment 1 configured as described above, as shown in FIG. 2, when the outside air temperature is 19 ° C. or higher, the cooling operation mode is set in the high temperature range, and when the outside air temperature is 15 ° C. or lower. An example will be described in which the heating operation mode is set in the low temperature range and the outside air cooling operation mode is set in the intermediate temperature range when the outside air temperature is 15 to 19 ° C.

先ず、制御装置15からの指令により、外調機10に設けられた送風機27が稼動させられ、空調設備1による空調運転が開始される。なお、送風機27とモータダンパ22はインターロックをとって連動させても良いが、この実施の形態では、制御装置15からの指令により、モータダンパ22は開かれる。また、外気取入ダクト20を経て外調機10内に外気OAが取り入れられる際に、温度センサ21で測定された外気OAの温度Tが、制御装置15に入力される。 First, the blower 27 provided in the external air handler 10 is operated by an instruction from the control device 15, and the air conditioning operation by the air conditioning equipment 1 is started. Although the blower 27 and the motor damper 22 may be interlocked and interlocked, in this embodiment, the motor damper 22 is opened by a command from the control device 15. Further, when the outside air OA is taken into the external air conditioner 10 through the outside air intake duct 20, the temperature T O of the outside air OA measured by the temperature sensor 21 is input to the control device 15.

ここで、外気OAの温度Tが19℃以上の高温度範囲であれば、冷房運転モードが行われる。冷房運転モードの場合、制御装置15からの指令により、熱源機40が稼動されて冷媒が冷却される。更に、制御装置15からの指令により、ポンプ42が稼動され、冷媒用制御弁43が開かれることにより、熱源機40で冷却された冷媒が、冷媒配管41を経て冷却用の熱交換器26に循環供給される。なお、冷房運転モードを行う場合は、給湯器30およびポンプ32はいずれも停止させられる。 Here, if the high temperature range the temperature T O is above 19 ° C. of outdoor air OA, the cooling operation mode is performed. In the case of the cooling operation mode, the heat source device 40 is operated and the refrigerant is cooled by a command from the control device 15. Further, in response to a command from the control device 15, the pump 42 is operated and the refrigerant control valve 43 is opened, so that the refrigerant cooled by the heat source device 40 passes through the refrigerant pipe 41 to the cooling heat exchanger 26. Circulated. When performing the cooling operation mode, both the water heater 30 and the pump 32 are stopped.

こうして、冷房運転モードを行う場合は、送風機27の稼動によって外調機10内に取り入れられた外気OAは、冷却用の熱交換器26に熱的に接触して冷却させられる。その結果、所望の温度に冷却された外気OAが給気SAとなって、室内空間13に供給される。なお、室内空間13に供給される給気SAの温度Tは、温度センサ14で測定されて制御装置15に入力される。 Thus, when the cooling operation mode is performed, the outside air OA taken into the external air conditioner 10 by the operation of the blower 27 is brought into thermal contact with the cooling heat exchanger 26 and cooled. As a result, the outside air OA cooled to a desired temperature becomes the supply air SA and is supplied to the indoor space 13. The temperature T S of the supply air SA to be supplied to the indoor space 13 is input to the control device 15 is measured by the temperature sensor 14.

更に、このように冷房運転モードを行う場合、冷却用の熱交換器26による冷却能力の比例制御が行われる。即ち、制御装置15からの指令により、図3に示すように、室内空間13の空調目標温度Tと外気温度Tとの差に比例して、冷媒用制御弁43の開度が調整される。例えば、室内空間13の空調目標温度Tと外気温度Tとの差が小さい場合は、制御装置15からの指令により、冷媒用制御弁43の開度が小さくされ、これにより、冷却用の熱交換器26への冷媒の供給量が減少させられる。その結果、冷却用の熱交換器26による冷却能力が抑制させられる。一方、室内空間13の空調目標温度Tと外気温度Tとの差が大きい場合は、制御装置15からの指令により、冷媒用制御弁43の開度が大きくされ、これにより、冷却用の熱交換器26への冷媒の供給量が増加させられる。その結果、冷却用の熱交換器26による冷却能力が増強させられる。 Furthermore, when performing the cooling operation mode in this way, proportional control of the cooling capacity by the heat exchanger 26 for cooling is performed. That is, in accordance with a command from the controller 15, as shown in FIG. 3, in proportion to the difference between the air-conditioning target temperature T and the ambient temperature T O of the interior space 13, the opening degree of the refrigerant control valve 43 is adjusted . For example, when the difference between the air-conditioning target temperature T and the ambient temperature T O of the interior space 13 is small, in accordance with a command from the controller 15, the opening degree of the refrigerant control valve 43 is reduced, thereby, the heat of the cooling The amount of refrigerant supplied to the exchanger 26 is reduced. As a result, the cooling capacity by the heat exchanger 26 for cooling is suppressed. On the other hand, when the difference between the air-conditioning target temperature T and the ambient temperature T O of the interior space 13 is large, in accordance with a command from the controller 15, the opening degree of the refrigerant control valve 43 is increased, thereby, the heat of the cooling The amount of refrigerant supplied to the exchanger 26 is increased. As a result, the cooling capacity of the cooling heat exchanger 26 is increased.

このように、室内空間13の空調目標温度Tと外気温度Tとの差に比例して冷却用の熱交換器26の冷却能力が制御されることにより、外気OAは常に所望の温度に冷却され、一定の温度の給気SAが室内空間13に供給される。なお、冷却用の熱交換器26の冷却能力は、ポンプ42や熱源機40の出力を制御することによっても行うことができる。 Thus, the outside air OA is always cooled to a desired temperature by controlling the cooling capacity of the cooling heat exchanger 26 in proportion to the difference between the air conditioning target temperature T and the outside air temperature T O in the indoor space 13. Then, the supply air SA having a constant temperature is supplied to the indoor space 13. The cooling capacity of the cooling heat exchanger 26 can also be achieved by controlling the output of the pump 42 and the heat source device 40.

一方、外気OAの温度Tが15℃以下の低温度範囲であれば、暖房運転モードが行われる。暖房運転モードの場合、制御装置15からの指令により、給湯器30が稼動し、温水の加熱が行われる。更に、制御装置15からの指令により、ポンプ32が稼動され、三方弁34が開いて、温水を加熱用の熱交換器25に通す状態となる。これにより、給湯器30で加熱された温水が、温水配管31を経て加熱用の熱交換器25に循環供給される。なお、暖房運転モードを行う場合は、熱源機40およびポンプ42はいずれも停止させられる。 On the other hand, the temperature T O of the outside air OA is as long as the low temperature range of 15 ℃ or less, the heating operation mode is performed. In the case of the heating operation mode, the water heater 30 is operated by the command from the control device 15 and the hot water is heated. Further, in response to a command from the control device 15, the pump 32 is operated, the three-way valve 34 is opened, and the hot water is passed through the heat exchanger 25 for heating. Thereby, the hot water heated by the water heater 30 is circulated and supplied to the heat exchanger 25 for heating through the hot water pipe 31. In addition, when performing heating operation mode, both the heat source machine 40 and the pump 42 are stopped.

こうして、暖房運転モードを行う場合は、送風機27の稼動によって外調機10内に取り入れられた外気OAは、加熱用の熱交換器25に熱的に接触して昇温させられる。その結果、所望の温度に昇温された外気OAが給気SAとなって、室内空間13に供給される。なお、室内空間13に供給される給気SAの温度Tは、温度センサ14で測定されて制御装置15に入力される。 Thus, when the heating operation mode is performed, the outside air OA taken into the external air conditioner 10 by the operation of the blower 27 is brought into thermal contact with the heat exchanger 25 for heating and is heated. As a result, the outside air OA heated to a desired temperature becomes the supply air SA and is supplied to the indoor space 13. The temperature T S of the supply air SA to be supplied to the indoor space 13 is input to the control device 15 is measured by the temperature sensor 14.

更に、このように暖房運転モードを行う場合も、加熱用の熱交換器25による昇温能力の比例制御が行われる。即ち、制御装置15からの指令により、図4に示すように、室内空間13の空調目標温度Tと外気温度Tとの差に比例して、三方弁343の開度が調整される。例えば、室内空間13の空調目標温度Tと外気温度Tとの差が小さい場合は、制御装置15からの指令により、三方弁34の開度が小さくされ、これにより、加熱用の熱交換器25への温水の供給量が減少させられ、バイパス経路33に通される温水の供給量が増加させられる。その結果、加熱用の熱交換器25による昇温能力が抑制させられる。一方、室内空間13の空調目標温度Tと外気温度Tとの差が大きい場合は、制御装置15からの指令により、三方弁34の開度が大きくされ、これにより、加熱用の熱交換器25への温水の供給量が増加させられ、バイパス経路33に通される温水の供給量が減少させられる。その結果、加熱用の熱交換器25による昇温能力が増強させられる。 Further, even when the heating operation mode is performed as described above, proportional control of the temperature raising capability by the heat exchanger 25 for heating is performed. That is, in accordance with a command from the controller 15, as shown in FIG. 4, in proportion to the difference between the air-conditioning target temperature T and the ambient temperature T O of the interior space 13, the opening degree of the three-way valve 343 is adjusted. For example, when the difference between the air-conditioning target temperature T and the ambient temperature T O of the interior space 13 is small, in accordance with a command from the controller 15, the opening degree of the three-way valve 34 is reduced, thereby, the heat exchanger for heating The amount of hot water supplied to 25 is reduced, and the amount of hot water passed through the bypass path 33 is increased. As a result, the temperature raising capability by the heat exchanger 25 for heating is suppressed. On the other hand, when the difference between the air-conditioning target temperature T and the ambient temperature T O of the interior space 13 is large, in accordance with a command from the controller 15, the opening degree of the three-way valve 34 is large, thereby, the heat exchanger for heating The amount of hot water supplied to 25 is increased, and the amount of hot water passed through the bypass path 33 is reduced. As a result, the heating capability by the heat exchanger 25 for heating is enhanced.

このように、室内空間13の空調目標温度Tと外気温度Tとの差に比例して加熱用の熱交換器25の昇温能力が制御されることにより、外気OAは常に所望の温度に昇温され、一定の温度の給気SAが室内空間13に供給される。なお、加熱用の熱交換器25の昇温能力は、ポンプ32や給湯器30の出力を制御することによっても行うことができる。 In this way, the temperature rise capability of the heat exchanger 25 for heating is controlled in proportion to the difference between the air conditioning target temperature T of the indoor space 13 and the outside air temperature T O , so that the outside air OA is always at a desired temperature. The temperature is raised, and the supply air SA having a constant temperature is supplied to the indoor space 13. Note that the heating capability of the heat exchanger 25 for heating can also be achieved by controlling the output of the pump 32 and the water heater 30.

また一方、外気OAの温度Tが15〜19℃の中間温度範囲であれば、外気冷房運転モードが行われる。外気冷房運転モードの場合、制御装置15からの指令により、熱源機40の稼動は停止され、冷媒は冷却されない。また、制御装置15からの指令により、給湯器30の稼動は停止され、温水の加熱は行われない。更に、制御装置15からの指令により、ポンプ42、32の稼動も停止させられる。 On the other hand, the temperature T O of the outside air OA is as long as the intermediate temperature range of 15 to 19 ° C., outside air cooling operation mode is performed. In the outside air cooling operation mode, the operation of the heat source device 40 is stopped by the command from the control device 15, and the refrigerant is not cooled. Further, the operation of the water heater 30 is stopped by the command from the control device 15, and the hot water is not heated. Furthermore, the operation of the pumps 42 and 32 is also stopped by a command from the control device 15.

このため、外気冷房運転モードを行う場合は、送風機27の稼動によって外調機10内に取り入れられた外気OAは、加熱用の熱交換器25のよる昇温と冷却用の熱交換器26による冷却をされることがなく、温度調節されずに外調機10内を通過する。こうして、外気OAがそのまま給気SAとなって、室内空間13に供給される。なお、室内空間13に供給される給気SAの温度Tは、温度センサ14で測定されて制御装置15に入力される。 For this reason, when the outside air cooling operation mode is performed, the outside air OA taken into the external air conditioner 10 by the operation of the blower 27 is raised by the heating heat exchanger 25 and the cooling heat exchanger 26. It is not cooled and passes through the external air conditioner 10 without adjusting the temperature. Thus, the outside air OA is directly supplied to the indoor space 13 as the supply air SA. The temperature T S of the supply air SA to be supplied to the indoor space 13 is input to the control device 15 is measured by the temperature sensor 14.

加えて、この空調設備1にあっては、外気OAの温度Tが4℃以下の超低温度範囲となった場合は、室内空間13への給気を停止させ、給湯器30から加熱用の熱交換器25へ温水を供給し、熱源機40から冷却用の熱交換器26へ冷媒を供給する凍結防止運転モードが行われる。 In addition, in this air conditioner 1, when the temperature T O of the outside air OA is in an extremely low temperature range of 4 ° C. or less, the supply of air to the indoor space 13 is stopped and the water heater 30 is used for heating. A freeze prevention operation mode is performed in which hot water is supplied to the heat exchanger 25 and refrigerant is supplied from the heat source unit 40 to the cooling heat exchanger 26.

即ち、図5に示すように、外気OAの温度Tが4℃以下となると(図5のステップS1のYes)、凍結防止運転モードとなる(図5のステップS2)。なお、凍結防止運転モード(外気OAの温度Tが4℃以下)は、暖房運転モード(外気OAの温度Tが15℃以下)の範囲内である。このため、凍結防止運転モードでは、制御装置15からの指令により、給湯器30が稼動し、温水の加熱が行われている。更に、制御装置15からの指令により、ポンプ32が稼動され、三方弁34が開いて、温水を加熱用の熱交換器25に通す状態となっている。これにより、給湯器30で加熱された温水が、温水配管31を経て加熱用の熱交換器25に循環供給される(図5のステップS3)。また、制御装置15からの指令により、熱源機40では冷媒の冷却が停止される。但し、凍結防止運転モードでは、ポンプ42が稼動され、冷媒用制御弁43が開かれて、冷却用の熱交換器26に冷媒配管41を経て冷媒が循環供給されることにより、冷媒の凍結が回避される(図5のステップS4)。 That is, as shown in FIG. 5, when the temperature T O of the outside air OA is 4 ° C. or less (Yes in step S1 in FIG. 5), the freeze prevention operation mode (step S2 in FIG. 5). The anti-freezing operation mode (the temperature T O of the outside air OA is 4 ° C. or less) is within the range of the heating operation mode (the temperature T O of the outside air OA is 15 ° C. or less). For this reason, in the freeze prevention operation mode, the water heater 30 is operated by the command from the control device 15 and the hot water is heated. Further, in response to a command from the control device 15, the pump 32 is operated, the three-way valve 34 is opened, and hot water is passed through the heat exchanger 25 for heating. Thereby, the hot water heated by the water heater 30 is circulated and supplied to the heat exchanger 25 for heating through the hot water pipe 31 (step S3 in FIG. 5). Further, the cooling of the refrigerant is stopped in the heat source device 40 in accordance with a command from the control device 15. However, in the freeze prevention operation mode, the pump 42 is operated, the refrigerant control valve 43 is opened, and the refrigerant is circulated and supplied to the cooling heat exchanger 26 through the refrigerant pipe 41, so that the refrigerant is frozen. It is avoided (step S4 in FIG. 5).

こうして、凍結防止運転モードを行う場合は、暖房運転モードと同様に、送風機27の稼動によって外調機10内に取り入れられた外気OAは、加熱用の熱交換器25に熱的に接触して昇温させられる。その結果、所望の温度に昇温された外気OAが給気SAとなって、室内空間13に供給される。なお、室内空間13に供給される給気SAの温度Tは、温度センサ14で測定されて制御装置15に入力される。なお、凍結防止運転モードでは、夜間などの暖房運転が不要な期間は、送風機27の稼動を停止させ、室内空間13への給気SAの供給を停止させても良い。 Thus, when the freeze prevention operation mode is performed, the outside air OA taken into the external air conditioner 10 by the operation of the blower 27 is in thermal contact with the heat exchanger 25 for heating, as in the heating operation mode. The temperature is raised. As a result, the outside air OA heated to a desired temperature becomes the supply air SA and is supplied to the indoor space 13. The temperature T S of the supply air SA to be supplied to the indoor space 13 is input to the control device 15 is measured by the temperature sensor 14. In the freeze prevention operation mode, the operation of the blower 27 may be stopped and the supply of the supply air SA to the indoor space 13 may be stopped during a period when the heating operation is unnecessary, such as at night.

更に、このように凍結防止運転モードを行う場合も、加熱用の熱交換器25による昇温能力の比例制御が行われる。即ち、制御装置15からの指令により、図4に示すように、室内空間13の空調目標温度Tと外気温度Tとの差に比例して、三方弁343の開度が調整される。例えば、室内空間13の空調目標温度Tと外気温度Tとの差が小さい場合は、制御装置15からの指令により、三方弁34の開度が小さくされ、これにより、加熱用の熱交換器25への温水の供給量が減少させられ、バイパス経路33に通される温水の供給量が増加させられる。その結果、加熱用の熱交換器25による昇温能力が抑制させられる。一方、室内空間13の空調目標温度Tと外気温度Tとの差が大きい場合は、制御装置15からの指令により、三方弁34の開度が大きくされ、これにより、加熱用の熱交換器25への温水の供給量が増加させられ、バイパス経路33に通される温水の供給量が減少させられる。その結果、加熱用の熱交換器25による昇温能力が増強させられる。 Further, even when the freeze prevention operation mode is performed in this way, proportional control of the temperature raising capability by the heat exchanger 25 for heating is performed. That is, in accordance with a command from the controller 15, as shown in FIG. 4, in proportion to the difference between the air-conditioning target temperature T and the ambient temperature T O of the interior space 13, the opening degree of the three-way valve 343 is adjusted. For example, when the difference between the air-conditioning target temperature T and the ambient temperature T O of the interior space 13 is small, in accordance with a command from the controller 15, the opening degree of the three-way valve 34 is reduced, thereby, the heat exchanger for heating The amount of hot water supplied to 25 is reduced, and the amount of hot water passed through the bypass path 33 is increased. As a result, the temperature raising capability by the heat exchanger 25 for heating is suppressed. On the other hand, when the difference between the air-conditioning target temperature T and the ambient temperature T O of the interior space 13 is large, in accordance with a command from the controller 15, the opening degree of the three-way valve 34 is large, thereby, the heat exchanger for heating The amount of hot water supplied to 25 is increased, and the amount of hot water passed through the bypass path 33 is reduced. As a result, the heating capability by the heat exchanger 25 for heating is enhanced.

このように、室内空間13の空調目標温度Tと外気温度Tとの差に比例して加熱用の熱交換器25の昇温能力が制御されることにより、外気OAは常に所望の温度に昇温され、一定の温度の給気SAが室内空間13に供給される。なお、加熱用の熱交換器25の昇温能力は、ポンプ32や給湯器30の出力を制御することによっても行うことができる。 In this way, the temperature rise capability of the heat exchanger 25 for heating is controlled in proportion to the difference between the air conditioning target temperature T of the indoor space 13 and the outside air temperature T O , so that the outside air OA is always at a desired temperature. The temperature is raised, and the supply air SA having a constant temperature is supplied to the indoor space 13. Note that the heating capability of the heat exchanger 25 for heating can also be achieved by controlling the output of the pump 32 and the water heater 30.

そして、外気OAの温度Tが4℃以下の場合は(図5のステップS1のYes)、凍結防止運転モードが維持される(図5のステップS2〜S4)。 Then, when the temperature T O of the outside air OA is 4 ° C. or less (Yes in step S1 in FIG. 5), the freeze prevention operation mode is maintained (Step S2~S4 in FIG. 5).

一方、外気OAの温度Tが4℃を超えた場合は(図5のステップS1のNo)、凍結防止運転モードが終了する(図5のステップS5)。 On the other hand, when the temperature T O of the outside air OA exceeds 4 ° C. (No in step S1 in FIG. 5), preventing the operation mode is finished frozen (step S5 in FIG. 5).

かくして、この実施の形態にかかる空調設備1によれば、給湯器30の温水を利用して暖房運転ができるので、特に冬期の暖房能力を容易に向上させることができるようになる。瞬間式ガス湯沸器やガス、電気等を熱源とする貯湯式湯沸器等を給湯器30に利用することにより、比較的定額で暖房能力を向上できるので、設備費用を低く抑えることができ、熱源機の設置スペースも小さくできる。特に、給湯器30を外調機10の近くに設置すれば、温水配管31を短くできるといった利点がある。   Thus, according to the air-conditioning equipment 1 according to this embodiment, since the heating operation can be performed using the hot water of the water heater 30, the heating capacity particularly in winter can be easily improved. By using an instantaneous gas water heater or a hot water storage water heater that uses gas, electricity, etc. as a heat source for the water heater 30, heating capacity can be improved at a relatively fixed price, so that the equipment cost can be kept low. In addition, the installation space for the heat source device can be reduced. In particular, if the water heater 30 is installed near the external air conditioner 10, there is an advantage that the hot water pipe 31 can be shortened.

また、冷房運転モードにおける冷却能力の比例制御や、暖房運転モードにおける昇温能力の比例制御を行うことにより、一定の温度の給気SAが室内空間13に供給され、快適な空調が行われる。更に、過度の冷房や暖房が行われることを回避でき、省エネルギ化がはかれ、ランニングコストの低減、地球温暖化の防止がはかられる。   Further, by performing proportional control of the cooling capacity in the cooling operation mode and proportional control of the temperature raising capacity in the heating operation mode, the supply air SA at a constant temperature is supplied to the indoor space 13 and comfortable air conditioning is performed. Furthermore, excessive cooling and heating can be avoided, energy saving can be achieved, running costs can be reduced, and global warming can be prevented.

加えて、外気の温度が低温度範囲と高温度範囲の間の中間温度範囲の場合は、給湯器30から加熱用の熱交換器25への温水の供給と、熱源機40から冷却用の熱交換器26への冷媒の供給をいずれも停止させる外気冷房運転モードとすることにより、更なる省エネルギ化がはかれ、ランニングコストの低減、地球温暖化の防止がはかられる。   In addition, when the temperature of the outside air is in an intermediate temperature range between the low temperature range and the high temperature range, supply of hot water from the water heater 30 to the heat exchanger 25 for heating and heat for cooling from the heat source device 40 By setting the outside air cooling operation mode in which all the refrigerant supply to the exchanger 26 is stopped, further energy saving can be achieved, running costs can be reduced, and global warming can be prevented.

また、特に厳冬期などでは、給湯器30から加熱用の熱交換器25へ温水を供給し、熱源機40から冷却用の熱交換器26へ冷媒を供給する凍結防止運転モードを行うことにより、各熱交換器25、26や配管31、41中の凍結発生を回避できる。   Further, particularly in the severe winter season, by performing a freeze prevention operation mode in which hot water is supplied from the water heater 30 to the heat exchanger 25 for heating and refrigerant is supplied from the heat source device 40 to the heat exchanger 26 for cooling, Freezing in the heat exchangers 25 and 26 and the pipes 31 and 41 can be avoided.

以上、本発明の好ましい実施の形態の一例を説明したが、本発明は図示の形態に限定されない。当業者であれば、特許請求の範囲に記載された思想の範疇内において、各種の変更例または修正例に相到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。以上の実施の形態では、外気温度が19℃以上の場合は、高温度範囲となって冷房運転モードとなり、外気温度が15℃以下の場合は、低温度範囲となって暖房運転モードとなり、外気温度が15〜19℃の場合は、中間温度範囲となって外気冷房運転モードとなる場合を例として説明したが、各温度範囲は任意に設定できる。   As mentioned above, although an example of preferable embodiment of this invention was demonstrated, this invention is not limited to the form of illustration. It will be apparent to those skilled in the art that various changes or modifications can be made within the scope of the ideas described in the claims, and these are naturally within the technical scope of the present invention. It is understood that it belongs. In the above embodiment, when the outside air temperature is 19 ° C. or higher, the cooling operation mode is set in the high temperature range, and when the outside air temperature is 15 ° C. or less, the heating operation mode is set in the low temperature range. In the case where the temperature is 15 to 19 ° C., the case where the outside air cooling operation mode is set as an intermediate temperature range has been described as an example, but each temperature range can be arbitrarily set.

図6に示す例では、加熱用の熱交換器25に接続される温水配管31に、給湯器バイパス経路50と流量調節経路51を加えたものである。給湯器バイパス経路50の上流端は、給湯器30の上流側において、三方弁52を介して、温水配管31から分岐して接続されている。給湯器バイパス経路50の下流端は、給湯器30の下流側において、温水配管31に合流して接続されている。三方弁52は、温水の温度によって開度が変化するワックス弁であり、温水の温度が高くなると、給湯器バイパス経路50への温水の流量が相対的に増えて、給湯器30への温水の流量が相対的に減り、温水の温度が低くなると、給湯器バイパス経路50への温水の流量が相対的に減って、給湯器30への温水の流量が相対的に増えるようになっている。   In the example shown in FIG. 6, a hot water supply bypass path 50 and a flow rate adjustment path 51 are added to the hot water pipe 31 connected to the heat exchanger 25 for heating. The upstream end of the water heater bypass path 50 is branched and connected from the hot water pipe 31 via a three-way valve 52 on the upstream side of the water heater 30. The downstream end of the water heater bypass path 50 joins and is connected to the hot water pipe 31 on the downstream side of the water heater 30. The three-way valve 52 is a wax valve whose opening degree changes depending on the temperature of the hot water. When the temperature of the hot water increases, the flow rate of the hot water to the water heater bypass path 50 relatively increases, and the hot water to the water heater 30 is increased. When the flow rate is relatively reduced and the temperature of the hot water is lowered, the flow rate of the hot water to the water heater bypass path 50 is relatively reduced, and the flow rate of the hot water to the water heater 30 is relatively increased.

また、流量調節経路51と温水配管31には、定流量弁55、56が対をなして設けられている。これら定流量弁55、56の開度バランスによって、給湯器30と給湯器バイパス経路50の方に流れる温水と、給湯器30と給湯器バイパス経路50を迂回する温水の流量比が調節されている。また、温水配管31には、温水溜め部57が接続されており、この温水溜め部57との間で温水が温水配管31中の適宜補給されることにより、温水配管31中の温水の過不足が補われるようになっている。   The flow rate adjusting path 51 and the hot water pipe 31 are provided with a pair of constant flow valves 55 and 56. The flow rate ratio of the hot water flowing toward the water heater 30 and the water heater bypass path 50 and the temperature of the hot water bypassing the water heater 30 and the water heater bypass path 50 are adjusted by the opening balance of the constant flow valves 55 and 56. . In addition, a hot water reservoir 57 is connected to the hot water pipe 31, and hot water is appropriately supplied to and from the hot water reservoir 57 so that the hot water in the hot water pipe 31 is excessive or insufficient. Is to be compensated.

この図6に示す例によれば、三方弁52にワックス弁を用いたことにより、温水の温度が高い場合は、給湯器30への温水の流量が相対的に減り、温水の温度が低い場合は、給湯器30への温水の流量が相対的に増えることとなり、加熱用の熱交換器25に常に一定の温度(例えば60℃)の温水が供給されることとなる。   According to the example shown in FIG. 6, when the temperature of the hot water is high due to the use of the wax valve for the three-way valve 52, the flow rate of the hot water to the hot water heater 30 is relatively reduced and the temperature of the hot water is low. Therefore, the flow rate of the hot water to the water heater 30 is relatively increased, and hot water having a constant temperature (for example, 60 ° C.) is always supplied to the heat exchanger 25 for heating.

また、図7に示すように、温水配管31に複数台(図示では3台)の給湯器30を並列に接続することにより、温水の昇温能力を容易に向上させることができる。この場合、複数台の給湯器30の稼働台数を制御することによって、温水の温度を変化させ、加熱用の熱交換器25の昇温能力を制御することもできる。   Moreover, as shown in FIG. 7, the temperature rising capability of warm water can be easily improved by connecting a plurality (three in the figure) of water heaters 30 in parallel to the warm water pipe 31. In this case, by controlling the number of operating hot water heaters 30, the temperature of the hot water can be changed and the temperature raising capability of the heat exchanger 25 for heating can be controlled.

なお、図1では、温水用制御弁としての三方弁34を制御装置15によって制御する例を説明したが、三方弁34は自力弁を援用して、制御装置15による制御ではなく、温水配管31内を流れる温水の温度による自力制御としても良い。この場合も、外気温度Tにより熱源機40が熱媒の温度を制御することで、温度センサ21による開度制御が実施できる。また、給湯器30の稼動を冬期のみに許可し、夏期は給湯器30の稼動を禁止するいわゆるシーズン切り替えを行っても良い。 In addition, although the example which controls the three-way valve 34 as a hot water control valve by the control apparatus 15 was demonstrated in FIG. 1, the three-way valve 34 uses a self-powered valve and is not the control by the control apparatus 15, but hot water piping 31. It is good also as self-control by the temperature of the warm water which flows through. Also in this case, the opening degree control by the temperature sensor 21 can be performed by the heat source device 40 controlling the temperature of the heat medium by the outside air temperature T O. Further, so-called season switching may be performed in which the operation of the water heater 30 is permitted only in the winter season and the operation of the water heater 30 is prohibited in the summer season.

本発明は、中規模ビルなどに設置される空調設備に有用である。   The present invention is useful for air conditioning equipment installed in a medium-sized building or the like.

OA 外気
SA 給気
1 空調設備
10 外調機
11 給気ダクト
12 建物
13 室内空間
13 温度センサ
15 制御装置
20 外気取入ダクト
21 温度センサ
22 モータダンパ
25 加熱用の熱交換器
26 冷却用の熱交換器
27 送風機
30 給湯器
31 温水配管
32 ポンプ
33 バイパス経路
34 三方弁
40 熱源機
41 冷媒配管
42 ポンプ
43 冷媒用制御弁
OA outside air SA air supply 1 air conditioning equipment 10 air conditioner 11 air supply duct 12 building 13 indoor space 13 temperature sensor 15 control device 20 outside air intake duct 21 temperature sensor 22 motor damper 25 heat exchanger 26 for heating 26 heat exchange for cooling Equipment 27 Blower 30 Water heater 31 Hot water pipe 32 Pump 33 Bypass path 34 Three-way valve 40 Heat source machine 41 Refrigerant pipe 42 Pump 43 Refrigerant control valve

Claims (6)

外気を外調機に通過させて室内空間に供給する空調設備であって、
前記外調機には、加熱用の熱交換器と、冷却用の熱交換器と、これら加熱用の熱交換器および冷却用の熱交換器に外気を熱的に接触させて、室内空間に供給する送風機が設けられ、
前記加熱用の熱交換器に温水を供給する給湯器と、前記冷却用の熱交換器に冷媒を供給する熱源機を備える、空調設備。
An air conditioner that passes outside air through an air conditioner and supplies it to the indoor space,
In the external air conditioner, outside air is brought into thermal contact with the heat exchanger for heating, the heat exchanger for cooling, and the heat exchanger for cooling and the heat exchanger for cooling to enter the indoor space. A blower to supply is provided,
An air conditioner comprising a water heater that supplies hot water to the heat exchanger for heating, and a heat source device that supplies refrigerant to the heat exchanger for cooling.
外気の温度を測定するセンサと、前記加熱用の熱交換器への温水の供給を制御する温水用制御弁と、前記冷却用の熱交換器への冷媒の供給を制御する冷媒用制御弁と、前記センサの測定温度に基いて、前記温水用制御弁および前記冷媒用制御弁を制御する制御装置を有する、請求項1に記載の空調設備。 A sensor that measures the temperature of the outside air, a control valve for hot water that controls supply of hot water to the heat exchanger for heating, and a control valve for refrigerant that controls supply of refrigerant to the heat exchanger for cooling The air conditioning equipment according to claim 1, further comprising a control device that controls the control valve for hot water and the control valve for refrigerant based on a measured temperature of the sensor. 外気を外調機に通過させ、加熱用の熱交換器および冷却用の熱交換器に外気を熱的に接触させて、室内空間に供給する空調設備の運転方法であって、
外気の温度が所定の低温度範囲の場合は、暖房運転モードとなって、給湯器から前記加熱用の熱交換器に温水が供給され、
外気の温度が所定の高温度範囲の場合は、冷房運転モードとなって、熱源機から前記冷却用の熱交換器に冷媒が供給される、空調設備の運転方法。
An operation method of an air conditioning system that allows outside air to pass through an external air conditioner, causes the outside air to come into thermal contact with a heat exchanger for heating and a heat exchanger for cooling, and supplies the air to the indoor space,
When the temperature of the outside air is in a predetermined low temperature range, it becomes a heating operation mode, hot water is supplied from the water heater to the heat exchanger for heating,
When the temperature of the outside air is in a predetermined high temperature range, the cooling operation mode is set, and the refrigerant is supplied from the heat source unit to the cooling heat exchanger.
外気の温度が前記低温度範囲と高温度範囲の間の中間温度範囲の場合は、外気冷房運転モードとなって、前記給湯器から前記加熱用の熱交換器への温水の供給と、前記熱源機から前記冷却用の熱交換器への冷媒の供給が、いずれも停止される、請求項3に記載の空調設備の運転方法。 When the temperature of the outside air is an intermediate temperature range between the low temperature range and the high temperature range, the outside air cooling operation mode is set, supply of hot water from the water heater to the heat exchanger for heating, and the heat source The operation method of the air-conditioning equipment according to claim 3, wherein supply of the refrigerant from the machine to the cooling heat exchanger is stopped. 前記給湯器から前記加熱用の熱交換器へ温水を供給し、前記熱源機から前記冷却用の熱交換器へ冷媒を供給する凍結防止運転モードを有する、請求項3または4に記載の空調設備の運転方法。 5. The air conditioner according to claim 3, further comprising an antifreezing operation mode in which hot water is supplied from the water heater to the heat exchanger for heating and refrigerant is supplied from the heat source device to the heat exchanger for cooling. Driving method. 凍結防止運転モードでは、前記熱源機において冷媒を冷却せずに前記冷却用の熱交換器へ冷媒を供給する、請求項5に記載の空調設備の運転方法。
The method of operating an air conditioning facility according to claim 5, wherein in the freeze prevention operation mode, the refrigerant is supplied to the heat exchanger for cooling without cooling the refrigerant in the heat source unit.
JP2009098084A 2009-04-14 2009-04-14 Air conditioning equipment and its operation method Pending JP2010249378A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009098084A JP2010249378A (en) 2009-04-14 2009-04-14 Air conditioning equipment and its operation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009098084A JP2010249378A (en) 2009-04-14 2009-04-14 Air conditioning equipment and its operation method

Publications (1)

Publication Number Publication Date
JP2010249378A true JP2010249378A (en) 2010-11-04

Family

ID=43311916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009098084A Pending JP2010249378A (en) 2009-04-14 2009-04-14 Air conditioning equipment and its operation method

Country Status (1)

Country Link
JP (1) JP2010249378A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62204219U (en) * 1986-06-17 1987-12-26
JPH0933065A (en) * 1995-07-19 1997-02-07 Hitachi Ltd Air conditioning method and device
JPH0979611A (en) * 1995-09-13 1997-03-28 Sony Corp Air-conditioning device
JPH09243142A (en) * 1996-03-05 1997-09-16 Kajima Corp Booster coil air conditioning system
JPH11211190A (en) * 1998-01-29 1999-08-06 Yamatake Corp Outside air cooling air conditioning control system and air conditioning control device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62204219U (en) * 1986-06-17 1987-12-26
JPH0933065A (en) * 1995-07-19 1997-02-07 Hitachi Ltd Air conditioning method and device
JPH0979611A (en) * 1995-09-13 1997-03-28 Sony Corp Air-conditioning device
JPH09243142A (en) * 1996-03-05 1997-09-16 Kajima Corp Booster coil air conditioning system
JPH11211190A (en) * 1998-01-29 1999-08-06 Yamatake Corp Outside air cooling air conditioning control system and air conditioning control device

Similar Documents

Publication Publication Date Title
US8141623B2 (en) Automatic switching two pipe hydronic system
KR100869971B1 (en) Refrigeration, refrigeration and hot water storage system using heat pump
US7628337B2 (en) Secondary heating system
CN102538112A (en) Household heat and humidity separate control radiation air conditioning system and control method thereof
US10066858B2 (en) Method of heating a building
JP2017150778A (en) Dehumidifying/reheating air-conditioning system utilizing ground thermal energy
JP2011141073A (en) Device and method of improving efficiency of air conditioning device
JP2009036413A (en) Geothermal heat pump-type dry air conditioning system
CN105890225A (en) Partial heat recovery type air conditioner cold hot water and life hot water joint supply system
CN109959073A (en) air conditioning system and operation method thereof
JP2005214591A (en) Hot water supply system using natural energy
CN110553325A (en) Room temperature adjusting device and control method
KR101171763B1 (en) Gas driven heatpump system with the combined heat source
JP2004301470A (en) Underground heat utilization system
KR101693964B1 (en) Heating system for hybrid vehicle and control method thereof
CN106196634A (en) A multifunctional solar outdoor activity room system and control method
KR101604418B1 (en) Heat pump type cooling and heating system having hot water supplying function
CN210624718U (en) Air conditioning system
CN103119373B (en) Hot water prioritization
KR101430590B1 (en) Cooling system for watertank
KR101894936B1 (en) Air conditioning apparatus
CN104633773A (en) Temperature adjusting system
JP2010249378A (en) Air conditioning equipment and its operation method
JP4471164B2 (en) Heat exchange system
US20090078783A1 (en) Secondary heating and cooling system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120229

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130319

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140325