JP2010264384A - Method for removing water bloom - Google Patents
Method for removing water bloom Download PDFInfo
- Publication number
- JP2010264384A JP2010264384A JP2009117671A JP2009117671A JP2010264384A JP 2010264384 A JP2010264384 A JP 2010264384A JP 2009117671 A JP2009117671 A JP 2009117671A JP 2009117671 A JP2009117671 A JP 2009117671A JP 2010264384 A JP2010264384 A JP 2010264384A
- Authority
- JP
- Japan
- Prior art keywords
- water
- oxygen
- blooms
- lake
- sea
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/30—Wastewater or sewage treatment systems using renewable energies
- Y02W10/37—Wastewater or sewage treatment systems using renewable energies using solar energy
Landscapes
- Aeration Devices For Treatment Of Activated Polluted Sludge (AREA)
Abstract
Description
本発明は、水流が生じにくく溶存酸素濃度が低い湖沼の底層水域において、好気性微生物の活動を活発化させ、富栄養化により表層に浮遊したアオコを除去する方法に関する。 The present invention relates to a method for activating the activity of aerobic microorganisms in a bottom water area of a lake with a low dissolved oxygen concentration that is unlikely to generate a water flow, and for removing the sea cucumber floating on the surface layer by eutrophication.
近年、富栄養化した湖沼やダム湖では、初夏から盛夏にかけてアオコが異常増殖して、水の表面が緑色の膜で覆われるようになってきている。アオコが発生すると、景観を損ない、腐敗による悪臭の発生、酸欠による魚のへい死、浄水場におけるろ過障害などが生じる。また、アオコが発生している水を塩素殺菌しようとすると、トリハロメタンの前駆物質が生成されてしまうといった、別の弊害も招来してしまう。 In recent years, in eutrophied lakes and dam lakes, blue-green sea bream grows abnormally from early summer to midsummer, and the surface of water is covered with a green film. The occurrence of blue sea bream damages the landscape, causes bad odor due to spoilage, causes fish to die due to lack of oxygen, and impedes filtration at the water purification plant. In addition, when the water in which the water is generated is chlorinated, another harmful effect is caused such that a precursor of trihalomethane is generated.
また、アオコ類の中には、ミクロキスティスなど有毒性の種が存在することが知られており、上水道の水源地となっているダム湖では特に深刻な問題となっている。 In addition, it is known that there are toxic species such as microkistis among sea cucumbers, which is a particularly serious problem in the dam lake which is the water source of the water supply.
この他、アオコの発生が一因となって貧酸素状態が進むと、還元作用により底泥から有害金属類が溶出しやすくなり、別の水質悪化も招来してしまう。 In addition, when the poor oxygen state progresses due to the occurrence of blue sea cucumber, harmful metals are likely to be eluted from the bottom mud due to the reducing action, resulting in another deterioration of water quality.
アオコ対策としては、日光遮断、水温制御、pH調整、曝気等による水質環境の保全、また、葦等の植栽、生態系の管理、流入水の管理、下水道の整備等が挙げられる。また、アオコを直接回収、取り除く方法も試みられている。 Measures against blue sea bream include sun protection, water temperature control, pH adjustment, maintenance of the water quality environment by aeration, planting of firewood, etc., management of the ecosystem, management of inflow water, and development of sewers. In addition, a method of directly collecting and removing the blue sea bream has been tried.
例えば、特許文献1(特開平6−182324号公報「湖沼、池等のアオコ処理方法」)や特許文献2(特開2007−98342号公報「アオコ回収装置」)には、湖沼からアオコを含んだ表層水を回収装置に導入し、アオコを凝集沈殿除去する方法が開示されている。 For example, Patent Document 1 (Japanese Laid-Open Patent Publication No. Hei 6-182324 “Aqua-Treatment Method for Lakes, Ponds, etc.”) and Patent Document 2 (Japanese Laid-Open Patent Publication No. 2007-98342 “Aquo Collection Device”) include aquatic plants from lakes. A method is disclosed in which surface water is introduced into a recovery device to remove flocculent precipitates.
また、特許文献3(特開平11−70382号公報「アオコ除去装置」)には、アオコを含んだ表層水に薬品を加えてアオコをフロック状にし、微細な気泡に付着させて浮上させて除去する方法が開示されている。 Patent Document 3 (Japanese Patent Laid-Open Publication No. 11-70382 “Aoi removal device”) adds a chemical to surface water containing aoko to make it a flock, and attaches it to fine bubbles to float and remove it. A method is disclosed.
また、湖水強制循環(エア−レション)によるアオコ対策も考案されており、特許文献4(特開2006−835号公報「水浄化システムおよび水流発生撹拌混合機」)には、アオコを含んだ表層水と底層水とを混合して、アオコの不活性化と底層の貧酸素状態を改善する水流撹拌発生装置を用いる方法が開示されている。特許文献5(特開2006−181565号公報「水浄化システム及び水流発生撹拌混合機」)には、ポンプの吸込口を湖沼等の水面から水深ほぼ1メートルに設置して、アオコを表層水と共にポンプで吸い込み、水深10メートル以深の低層に放出し、アオコに水圧差ショックと水温差ショックを与えてアオコを不活性化(死滅)させる方法が開示されている。 In addition, a countermeasure against water-bloom by forced lake water circulation (air-relation) has been devised. Patent Document 4 (Japanese Patent Laid-Open Publication No. 2006-835 “Water Purification System and Water Flow Generation Stir Mixer”) includes a surface layer containing water-bloom. A method is disclosed that uses a water agitation generator that mixes water and bottom water to improve the deactivation of the sea lions and the poor oxygen state of the bottom. In Patent Document 5 (Japanese Patent Laid-Open No. 2006-181565 “Water Purification System and Water Flow Generation Stir Mixer”), the suction port of the pump is installed at a depth of about 1 meter from the surface of a lake or the like, and the sea cucumber is placed with the surface water. A method is disclosed in which the water is sucked with a pump, discharged to a lower layer with a depth of 10 meters or deeper, and a water pressure differential shock and a water temperature differential shock are applied to the watermelon to inactivate (kill) the watermelon.
このほか、特許文献6(特開平8−33888号公報「アオコ処理方法およびアオコ処理装置」)や特許文献7(特開2005−152848号公報「電気化学的手法によるアオコ回収システム」)には、超音波処理や電気化学的手法によるアオコ処理方法が、特許文献8(特開2005−138029号公報「湖沼等閉鎖水域に発生・生存するアオコの殺藻・成長抑制方法及びアオコの殺藻・成長抑制装置」)には、オゾンや紫外線処理などでアオコを成長抑制ないし死滅させる方法が、特許文献9(特開2006−14625号公報「浮遊性藍藻類収集装置及び浮遊性藍藻類処理システム」)には、収集したアオコを含む表層水を加圧ポンプで加圧して、アオコのガス胞破壊、群体破砕処理する方法が、それぞれ提案されている。 In addition, Patent Document 6 (Japanese Patent Application Laid-Open No. 8-33888 “Aoco Processing Method and Blue Water Processing Device”) and Patent Document 7 (Japanese Patent Application Laid-Open No. 2005-152848 “Aoco Recovery System Using Electrochemical Technique”) include: Japanese Patent Application Laid-Open No. 2005-138029 discloses a method for suppressing algae killing and growing in closed water areas such as lakes and algae killing and growth of blue sea cucumber. For the suppression device "), a method for suppressing or killing the growth of sea cucumber with ozone or ultraviolet treatment is disclosed in Patent Document 9 (Japanese Patent Laid-Open No. 2006-14625," Floating cyanobacteria collection device and floating cyanobacteria processing system "). Have proposed a method of applying pressure to the surface water containing the collected sea cucumber with a pressure pump to destroy gas vesicles of the sea bream and crush the colonies.
この他、筏やフロ−トの上に各種のアオコ除去装置を設置して、表層水とアオコを一緒に汲み上げて、アオコをろ過しこれを除去する方法などが知られている。 In addition to this, there are known methods for installing various kinds of sea cucumber removal devices on ridges and floats, pumping surface water and sea bream together, filtering the sea bream, and removing it.
しかしながら、一般的に、アオコが浮遊している水面は非常に広範囲であるため、特許文献1や2、又は特許文献3に開示するようなアオコを凝集沈殿、または浮揚させて収集し、ろ過等によりアオコを取り除く方法では、大規模な処理装置が必要であり、効率的にも経済的にも問題があり、また分離されたアオコの廃棄処分にも多くの課題がある。そのため、大きな湖沼やダム湖で実用化されている例はないという現実がある。 However, in general, since the water surface on which the watermelon is floating is very wide, the watermelon as disclosed in Patent Documents 1 and 2 or Patent Document 3 is collected by flocculation sedimentation, or floated, filtered, etc. However, the method for removing the sea cucumber requires a large-scale processing apparatus, which is problematic both in terms of efficiency and economy, and there are many problems in the disposal of the separated sea cucumber. Therefore, there is a reality that there are no examples of practical use in large lakes and dam lakes.
また、同様に、例えば特許文献4に開示するような水流撹拌発生方式や湖水の上下層撹拌方式などでアオコを収集、処理するには相当数の装置を設置する必要があるという問題点があった。また、多くのアオコ除去方式は湖面に吹く強風や、豪雨による水流変化などの影響が大きいため、実面積の大きな湖沼やダム湖に不向きであるという問題点もある。 Similarly, there is a problem that a considerable number of devices need to be installed in order to collect and process aquatic plants, for example, as disclosed in Patent Document 4, such as the water flow agitation generation method and the lake water upper and lower layer agitation method. It was. Also, many methods for removing sea cucumbers are not suitable for large lakes and dam lakes because of the large influence of strong winds blowing on the surface of the lake and changes in water flow due to heavy rain.
また、特許文献5の様に、アオコを表層水と共にポンプで吸込み、水深10メートル以深の低層に放出し、アオコに水圧差ショックと水温差ショックを与えてアオコを不活性化させる方法では、不活性化したアオコは湖底に沈降するものの、そのままヘドロ化し、底層の水質をさらに悪化させるという問題点があった。このとき、底泥から鉄・マンガンといったアオコ増殖の促進物質と考えられている金属類やリンなどの富栄養源が溶出し、かえってアオコの繁殖を促進してしまうという問題点があった。 In addition, as in Patent Document 5, the water is sucked together with the surface water with a pump, discharged into a lower layer with a depth of 10 meters or more, and a water pressure differential shock and a water temperature differential shock are applied to the watermelon to inactivate the watermelon. The activated sea cucumber sinks to the bottom of the lake, but it becomes sludge as it is, and the water quality of the bottom layer is further deteriorated. At this time, metals and phosphorus rich sources such as iron and manganese, which are considered as promoting substances for the growth of blue sea bream, elute from the bottom mud, which causes a problem of promoting the growth of blue sea bream.
その他、湖面上に設置した大型噴水装置で湖面を遮光する方法や底泥の浚渫などの方法が実施されているが、大きな効果は挙げていない。 In addition, methods such as shading the surface of the lake with a large fountain device installed on the surface of the lake and dredging mud of the bottom have been implemented, but no significant effect has been achieved.
すなわち、解決しようとする問題点は、アオコを死滅させた上、これを底層で分解するとともに貧酸素状態を改善し、アオコの増殖サイクルを断ち切って湖沼を改質する点である。 In other words, the problem to be solved is to kill the blue sea cucumber, decompose it in the bottom layer, improve the anoxic state, cut off the breeding cycle of the blue sea bream, and reform the lake.
請求項1に記載のアオコの除去方法は、底層が貧酸素化し表層にはアオコが発生した湖沼の改質方法であって、当該湖沼の水に酸素を高濃度に溶存させ、これを底層域に連続的に供給して底層域を所定の酸素濃度以上となるように維持しつつ、アオコと共に表層水を取水し前記底層域へ所定の流量で略水平に吐出することを最も主要な特徴とする。 The method for removing sea cucumber according to claim 1 is a method for reforming a lake where the bottom layer has become hypoxic and a surface has been swelled, wherein oxygen is dissolved in a high concentration in the water of the lake, The main feature is to continuously supply water to the bottom layer area and maintain the bottom layer area at a predetermined oxygen concentration or more, while taking water on the surface layer together with the sea urchin and discharging it to the bottom layer area at a predetermined flow rate substantially horizontally. To do.
すなわち、請求項1に係る発明は、アオコを水圧変化や水温変化といった環境変化により不活性化させ、これを、好気性微生物が活動する底層域に滞留させることにより連続的に分解する。なお、湖沼とはダム湖を含み、水が停留している部分の河川や港湾なども含むものとする。また、湖沼の水とは、場所は底層でも表層でもここでは特に限定されない。 That is, the invention according to claim 1 inactivates the watermelon by an environmental change such as a change in water pressure or a change in water temperature, and continuously decomposes it by staying in the bottom layer area where aerobic microorganisms are active. Lakes include dam lakes, including rivers and harbors where water is stopped. Moreover, the location of the lake water is not particularly limited here, whether it is the bottom layer or the surface layer.
なお、アオコが発生する湖沼は、水面1m以深で溶存酸素濃度が2mg/l以下である場合が多く、アオコのない水面部分や流れのある河川では、溶存酸素濃度が8mg/l程度であるので、所定の酸素濃度とは、8mg/l以上、好ましくは10mg/l以上をいう。高濃度とは、この酸素濃度を維持する濃度をいい、例えば15mg/l以上をいう。なお、25℃で水に溶解する飽和酸素量は8.11mg/lである。また、流量と溶存酸素濃度と供給量は相対的であって、適宜湖沼の状況に応じて設定されるものである。 In addition, lakes and marshes where water flies occur often have a water surface depth of 1 m or less and a dissolved oxygen concentration of 2 mg / l or less. The predetermined oxygen concentration is 8 mg / l or more, preferably 10 mg / l or more. A high concentration refers to a concentration that maintains this oxygen concentration, for example, 15 mg / l or more. The amount of saturated oxygen dissolved in water at 25 ° C. is 8.11 mg / l. Further, the flow rate, dissolved oxygen concentration, and supply amount are relative and appropriately set according to the state of the lake.
また、請求項2に記載のアオコの除去方法は、請求項1に記載のアオコの除去方法において、酸素を高濃度に溶存させる水を、アオコを含んだ前記表層水とすることを主要な特徴とする。 In addition, the method for removing sea cucumber according to claim 2 is characterized in that, in the method for removing sea urchin according to claim 1, water in which oxygen is dissolved at a high concentration is the surface water containing the sea bream. And
すなわち、請求項2に係る発明は、高濃度酸素溶存水の供給手段と、表層水の供給手段とをまとめることが可能となるので、本発明の実施に使用する装置ないしシステム構成を簡素化できる。 That is, the invention according to claim 2 makes it possible to combine the supply means for the high-concentration oxygen-dissolved water and the supply means for the surface layer water, so that the apparatus or system configuration used to implement the present invention can be simplified. .
また、請求項3に記載のアオコの除去方法は、請求項1または2に記載のアオコの除去方法において、はじめに噴流により酸素を水に高濃度に溶存させ、つぎに気泡を高濃度酸素溶存水から分離する機構を備えた装置により、連続的に高濃度酸素溶存水を供給することを主要な特徴とする。 In addition, the method for removing sea cucumber according to claim 3 is the method for removing sea urchin according to claim 1 or 2, wherein oxygen is first dissolved in water at a high concentration by a jet, and then bubbles are dissolved in high concentration oxygen-dissolved water. The main feature is that high-concentration oxygen-dissolved water is continuously supplied by an apparatus having a mechanism for separating from the water.
すなわち、請求項3に係る発明は、噴流によってもアオコを不活性化可能となると共に、気泡を除いて意図しない水流(たとえば上昇流)が生じないようにして安定的に底層域に酸素水を送出可能となり、ムラなく分解を促進させることが可能となる。このような構成をもつものとして、たとえば、特許第3849986号「気液溶解装置」の技術を用いることができる。 That is, the invention according to claim 3 makes it possible to inactivate the sea urchin even by a jet flow, and stably supplies oxygen water to the bottom layer region so as not to generate an unintended water flow (for example, an upward flow) except for bubbles. It becomes possible to send out, and it becomes possible to promote decomposition without unevenness. As a device having such a configuration, for example, the technique of Japanese Patent No. 3845986 “gas-liquid dissolution apparatus” can be used.
また、請求項4に記載のアオコの除去方法は、請求項1、2または3に記載のアオコの除去方法において、取水から吐出までの間に2.5kg/cm2以上の水圧となる工程を経ること主要な特徴とする。 In addition, the method for removing the sea cucumber according to claim 4 is the method for removing the sea urchin according to claim 1, 2 or 3, wherein the water pressure is 2.5 kg / cm 2 or more between the water intake and the discharge. It is the main feature that goes through.
すなわち、請求項4に係る発明は、アオコを圧力変化により確実に死滅させることができ、分解を促進させる。なお、水圧表記はゲージ圧とする。吐出口を単に水深25mより深い位置としても良いし、水深と噴流により2.5kg/cm2以上の水圧を確保する態様であってもよい。 That is, the invention according to claim 4 can surely kill the water-bloom by the pressure change, and promotes the decomposition. The water pressure is indicated as gauge pressure. The discharge port may be simply positioned deeper than the water depth of 25 m, or a mode in which a water pressure of 2.5 kg / cm 2 or more is secured by the water depth and the jet flow may be used.
本発明によれば、アオコを死滅させた上、これを底層で分解するとともに貧酸素状態を改善し、アオコの増殖サイクルを断ち切って湖沼を改質することが可能となる。より詳細には、本発明(請求項1)によれば、アオコを水圧変化や水温変化といった環境変化により不活性化させ、これを、好気性微生物を活性化させた底層域に滞留させることにより連続的に分解することができる。また、本発明(請求項2)によれば、本発明の実施に使用する装置ないしシステム構成を簡素化可能となる。また、本発明(請求項3)によれば、噴流によってもアオコを不活性化可能となると共に、気泡を除いて意図しない水流(たとえば上昇流)が生じないようにして安定的に底層域に酸素水を送出し、ムラなく分解を促進させることが可能となる。また、本発明(請求項4)によれば、アオコを圧力変化により確実に死滅させることができ、分解を促進させる。 According to the present invention, it is possible to kill the watermelon, decompose it in the bottom layer, improve the anoxic state, cut off the growth cycle of the watermelon, and improve the lake. More specifically, according to the present invention (Claim 1), the water-bloom is inactivated by an environmental change such as a change in water pressure or a change in water temperature, and this is retained in the bottom layer area where the aerobic microorganism is activated. It can be decomposed continuously. Further, according to the present invention (Claim 2), it is possible to simplify the apparatus or system configuration used to implement the present invention. Further, according to the present invention (Claim 3), it is possible to inactivate the sea cucumber even by a jet flow, and stably to the bottom layer region without causing an unintended water flow (for example, an upward flow) except for bubbles. Oxygen water can be sent out to promote decomposition without unevenness. In addition, according to the present invention (claim 4), the sea cucumber can be surely killed by the pressure change, and the decomposition is promoted.
以下、本実施の形態を図面を用いながら説明する。図1は、本発明の実施に用いるシステムを湖沼に適用した様子を示した概念図である。 Hereinafter, the present embodiment will be described with reference to the drawings. FIG. 1 is a conceptual diagram showing a state in which a system used for carrying out the present invention is applied to a lake.
アオコは、栄養、光、水温の条件が整えば急速に増殖し、特に、アオコの養分となる窒素やリンを多く含む生活排水が湖沼に流入して富栄養化すると大量発生する。そして、一旦アオコが発生すると、その死骸が湖底に積み重なってヘドロとなり、そのヘドロから再度リンが溶出してアオコの養分となるという悪循環が生じる。 Blue sea bream grows rapidly when the conditions of nutrition, light, and water temperature are in place, especially when a large amount of nitrogenous and phosphorus-rich domestic wastewater flows into the lake and eutrophies. Then, once the blue sea bream occurs, the dead bodies pile up on the bottom of the lake and become sludge, and a vicious cycle occurs in which phosphorus elutes again from the sludge and becomes the sea bream's nutrients.
本願発明者は鋭意検討の結果、実面積および実体積の大きな湖沼で、簡便なシステムを導入して簡便な方法により実効性の高いアオコの除去方法ないし湖沼の改質方法を発明するに至った。図1に示したように、本方法を実現するシステムは、主として、表層水収集装置1と酸素水供給装置2とから構成される。 As a result of intensive studies, the present inventor has invented a method for removing sea cucumber or a method for reforming a lake that is highly effective by introducing a simple system in a lake with a large real area and volume. . As shown in FIG. 1, the system for realizing this method is mainly composed of a surface water collection device 1 and an oxygen water supply device 2.
表層水収集装置1は、アオコを含んだ表層水を吸い込み、送水ホース11を介して、この水を酸素水供給装置2へ送る。表層水収集装置1には、木くずや木の葉が混入せず、アオコは取り込むようなフィルタを適宜備えているものとする。なお、表層水収集装置1は、湖沼のうちアオコが浮遊している場所のほぼ中心部に配置させるが、図示しないブイとアンカーによりこの位置に停留させるものとする。 The surface water collection device 1 sucks surface water containing the sea cucumber and sends this water to the oxygen water supply device 2 via the water supply hose 11. It is assumed that the surface water collecting apparatus 1 is appropriately provided with a filter that does not mix wood chips or leaves of leaves and takes in water. The surface water collecting device 1 is arranged at the substantially central portion of the lake where the sea urchin floats, but is stopped at this position by a buoy and anchor (not shown).
酸素水供給装置2は、アオコを含んだ表層水と空気(または酸素)とを噴流により混合し、溶存酸素濃度を高めつつアオコを水圧により死滅させる。更に、気液分離をおこない、液体(死滅したアオコと高濃度酸素溶存水の混合液)を水平に緩やかに吐出する。水平に緩やかに吐出する理由は、水流によってでなく、水層密度差を利用した拡散によって底層の貧酸素状態を改善するためである。水平吐出により、位置によるムラ無く底層の溶存酸素濃度を高めることが可能となる。 The oxygen water supply device 2 mixes the surface water containing the sea cucumber and air (or oxygen) by a jet, and kills the sea bream by the water pressure while increasing the dissolved oxygen concentration. Furthermore, gas-liquid separation is performed, and liquid (mixed liquid of dead sea cucumber and high-concentration oxygen-dissolved water) is slowly and slowly discharged horizontally. The reason why the horizontal discharge is gentle is to improve the poor oxygen state of the bottom layer not by the water flow but by diffusion utilizing the water layer density difference. By horizontal discharge, the dissolved oxygen concentration in the bottom layer can be increased without unevenness depending on the position.
表層水に溶存させる酸素は、送水ホース11に併設した導気ホース(図示せず)から取り込み、気液分離した後の空気は、排気ホース(図示せず)により水面に排気する。なお、仕様の態様により、排気を適宜還流して再使用するようにしても良い。 Oxygen dissolved in the surface water is taken from an air guide hose (not shown) provided in the water supply hose 11 and the air after gas-liquid separation is exhausted to the water surface by an exhaust hose (not shown). Note that the exhaust gas may be appropriately recirculated and reused depending on the specification.
酸素水供給装置2の構成例として図2に示したものを採用することができる。図示したように、酸素水供給装置2は、気液溶解室21と、それを内包する気液分離室22とにより構成される。気液溶解室21では、空気とアオコを含んだ表層水とをノズル211によってドーム状の天板部分212へ付勢して噴出する。ドーム形状により気液が噴流となり気泡が微細化し効率的に酸素が水に溶存していく。このとき、アオコの塊も細かく分離される。これにより、アオコの表面積が大きくなり、底層へ吐出した後に好気性微生物により効率的に分解が進行する。 As the configuration example of the oxygen water supply device 2, the one shown in FIG. As shown in the figure, the oxygen water supply device 2 includes a gas-liquid dissolution chamber 21 and a gas-liquid separation chamber 22 containing the gas-liquid dissolution chamber 21. In the gas-liquid dissolution chamber 21, air and surface water containing aquatic are urged and ejected to the dome-shaped top plate portion 212 by the nozzle 211. Due to the dome shape, the gas and liquid become jets, the bubbles become finer, and oxygen is dissolved in water efficiently. At this time, the lump of blue sea bream is also finely separated. As a result, the surface area of the sea bream is increased, and the decomposition proceeds efficiently by the aerobic microorganisms after being discharged to the bottom layer.
気液分離室22では、気液溶解室21の下部に設けられた逃がし孔213から、高濃度酸素溶解水と水に溶けなかった気泡とが流入してくるので、上部にこの気泡を集積して排気する排気口221を、下部にアオコを伴った高濃度酸素溶存水を供給する供給口222を設けている。排気口221には排気ホースが接続され、供給口222には水平に配した吐出口が接続されている。なお、吐出口は大きくして可能な限り緩やかな水流となるようにする。 In the gas-liquid separation chamber 22, high-concentration oxygen-dissolved water and bubbles that have not been dissolved in water flow in from the escape holes 213 provided in the lower portion of the gas-liquid dissolution chamber 21. The exhaust port 221 for exhausting is provided, and a supply port 222 for supplying high-concentration oxygen-dissolved water accompanied by a watermelon is provided in the lower part. An exhaust hose is connected to the exhaust port 221, and a discharge port arranged horizontally is connected to the supply port 222. It should be noted that the discharge port is enlarged so that the water flow is as gentle as possible.
酸素水供給装置2は、表層水収集装置1の直下25mの底層に配置する。図示は省略するが、酸素水供給装置は、上部にブイをつけ、アンカーを湖底に配置することにより、その姿勢を維持する。また、付勢に必要なポンプ等も適宜備える。なお、25mの位置は、水圧によりアオコのガス胞を破壊するための深さであるが、気液溶解室21の配置位置における水圧と噴流による水圧との合計が2.5kg/m2(ゲージ圧)となるのであれば水深25mよりも浅く配置しても良い。 The oxygen water supply device 2 is disposed in the bottom layer of 25 m directly below the surface water collection device 1. Although not shown, the oxygen water supply device maintains its posture by attaching a buoy to the top and placing the anchor on the bottom of the lake. Moreover, a pump and the like necessary for energizing are also provided as appropriate. The position of 25 m is a depth for destroying the gas sac of the sea urchin by water pressure, but the sum of the water pressure at the position where the gas-liquid dissolution chamber 21 and the water pressure by the jet flow are 2.5 kg / m 2 (gauge Pressure), the water depth may be less than 25 m.
表層水収集装置1と酸素水供給装置2とを駆動することにより、次のようにアオコが除去され湖沼が改質される。まず、酸素水供給装置2を駆動すると、湖沼の水に酸素が高濃度に溶存し底層域に連続的に供給される。これにより、好気性微生物が活性化する。なお、このときの水は適宜取り込むものとする。 By driving the surface water collection device 1 and the oxygen water supply device 2, the sea cucumber is removed and the lake is reformed as follows. First, when the oxygen water supply device 2 is driven, oxygen is dissolved in a high concentration in the water of the lake and is continuously supplied to the bottom layer region. Thereby, aerobic microorganisms are activated. In addition, the water at this time shall be taken in appropriately.
図3は、ダムにおける溶存酸素分布を実測値に基づき概念的に示した模式図である。通常、アオコが発生していると底層域は酸素濃度が実質的に0となる。酸素水供給装置2を駆動して酸素濃度が安定すると、底層の酸素濃度は10mg/l程度となる。図4は、図3と同じダムについて貧酸素状態を改善した後の溶存酸素分布を実測値に基づき概念的に示した模式図である。図では酸素水供給装置のみを示したが、これにより、表層部と同等以上の酸素濃度とすることが可能となる。 FIG. 3 is a schematic diagram conceptually showing the dissolved oxygen distribution in the dam based on the actually measured values. In general, when the water-bloom is generated, the oxygen concentration in the bottom layer region is substantially zero. When the oxygen water supply device 2 is driven to stabilize the oxygen concentration, the oxygen concentration in the bottom layer is about 10 mg / l. FIG. 4 is a schematic diagram conceptually showing the dissolved oxygen distribution after improving the poor oxygen state for the same dam as in FIG. 3 based on the actually measured values. Although only the oxygen water supply device is shown in the figure, this makes it possible to achieve an oxygen concentration equal to or higher than that of the surface layer portion.
底層域の酸素濃度が安定した後に、表層水収集装置1を駆動する。これにより、アオコと共に表層水が酸素水供給装置2へ供給され、もともとの水圧と噴流により付勢された圧力によりアオコが死滅し、かつ、アオコの塊が細分化する。このとき、アオコのガス胞も破壊される。駆動によりアオコを含んだ高濃度酸素水を底層域へ所定の流量で水平に吐出させる。これにより、酸素水とアオコを供給しながら好気性微生物の活性を維持し、アオコの分解を進めることが可能となる。なお温度差および光量減によってもアオコは死滅する。 After the oxygen concentration in the bottom layer region is stabilized, the surface water collection device 1 is driven. As a result, surface water is supplied to the oxygen water supply device 2 together with the blue water, the green water is killed by the original water pressure and the pressure urged by the jet, and the blue water mass is subdivided. At this time, Aoko's gas vesicles are also destroyed. By driving, high-concentration oxygen water containing blue sea urchins is discharged horizontally to the bottom layer region at a predetermined flow rate. Thereby, it becomes possible to maintain the activity of the aerobic microorganism while supplying oxygen water and the water-bloom, and to proceed with the decomposition of the water-bloom. The sea cucumber is killed by the temperature difference and the light intensity reduction.
アオコは、太陽光を直接浴びているので、吐出位置の水温より温度がやや高い場合がある。よって吐出後アオコはゆっくりと上昇する場合があるが、周囲の水温に近づくに従って、(ガス胞が除去され水よりも大きな比重となっているため)ゆっくりと沈降を開始する。そして好気性微生物の活性の高い底層に再到達し、分解される。なお、分解によって生じるリンは水中の鉄イオンと結合・沈殿し、湖底に堆積するため、栄養源の連鎖を断ち切ることが可能となる。また、分解によって生じた窒素分も低層の酸化・還元雰囲気の変化によって脱窒される。 Since blue water is directly exposed to sunlight, the temperature may be slightly higher than the water temperature at the discharge position. Therefore, the water-blooming may rise slowly after discharge, but as the temperature of the surrounding water approaches, settling begins slowly (because the gas vesicles are removed and the specific gravity is greater than that of water). Then, it reaches the bottom layer with high activity of aerobic microorganisms and is decomposed. In addition, phosphorus produced by decomposition binds and precipitates with iron ions in water and accumulates at the bottom of the lake, making it possible to break the chain of nutrient sources. Further, the nitrogen content generated by the decomposition is also denitrified by the change in the low-layer oxidation / reduction atmosphere.
なお、表層水の吸い込み量は、溶存酸素濃度と吐出量と湖沼の状況に応じて適宜設定することができる。これに関連して、酸素水供給装置2へ供給する水は、底層の酸素濃度とアオコの分解速度との調整をとるため、表層水収集装置1とは別系統で設けていても良い。 In addition, the amount of surface water sucked in can be set as appropriate according to the dissolved oxygen concentration, the discharge amount, and the state of the lake. In relation to this, the water supplied to the oxygen water supply device 2 may be provided in a separate system from the surface water collection device 1 in order to adjust the oxygen concentration in the bottom layer and the decomposition rate of the sea bream.
次に本方法の具体例を説明する。
実施場所 県営Sダム
ダムの規模 常時満水位 EL127.0 メ−トル
有効貯水量 640万 立方メ−トル
水位 EL115.0メ−トル
水量 50万 立方メ−トル
実験開始年月 2006年4月
酸素水供給装置 水中型気液溶解装(WEPシステム:松江土建株式会社製)
酸素水供給の能力 120立方メ−トル/毎時 1台
装置の設置場所 湖底上部 0.5メ−トル 〜 18メ−トル(上下移動)
Next, a specific example of this method will be described.
Conduct place Scale of prefectural S dam Dam Fully water level EL127.0
Effective water storage capacity 6.4 million cubic meters
Water level EL115.0 meter
Amount of water 500,000 cubic meter experiment start date April 2006
Oxygen water supply device Underwater type gas-liquid dissolution equipment (WEP system: Made by Matsue Doken Co., Ltd.)
Oxygen water supply capacity 120 cubic meters / hour 1 equipment installation location Upper lake bottom 0.5 meters to 18 meters (moving up and down)
Sダムにおいて、装置の駆動前の低層水域の溶存酸素濃度は図3と同様に底層は貧酸素状態であり溶存酸素濃度は2mg/l以下であった。装置駆動開始27日後の溶存酸素濃度は図4に示したのと同様に、底層の溶存酸素濃度はほぼ10mg/lとなっていた。 In the S dam, the dissolved oxygen concentration in the lower water area before the operation of the device was poor in the bottom layer as in FIG. 3, and the dissolved oxygen concentration was 2 mg / l or less. The dissolved oxygen concentration 27 days after the start of the apparatus drive was approximately 10 mg / l in the bottom layer, as shown in FIG.
この状態で、湖底に堆積していた黒色の有機質底泥(アオコの死骸)は酸化され、赤みを呈するようになっていた。図5に、白黒ではあるが汚泥の写真を示した(左図:駆動前、右図:駆動後)。また装置駆動前後で、底面から5mmの高さの底泥部分の酸化還元電位を測定したところ、−60mvから+40mvと改善されていた。これらから、底層では酸素が十分に溶存し、好気性微生物によって有機物が分解されていることが裏付けられた。 In this state, the black organic bottom mud (Aoko's carcass) deposited on the bottom of the lake was oxidized and became reddish. FIG. 5 is a black and white photograph of sludge (left figure: before driving, right figure: after driving). Moreover, when the oxidation-reduction potential of the bottom mud portion having a height of 5 mm from the bottom surface was measured before and after driving the apparatus, it was improved from −60 mv to +40 mv. From these results, it was confirmed that oxygen was sufficiently dissolved in the bottom layer and organic substances were decomposed by aerobic microorganisms.
なお、Sダムで採取したアオコ(主にミクロキスティス、アナベナ)と湖水とを圧力容器(10ml)の中に入れ、容器内の水圧を2kg/cm2〜3kg/cm2(水深20〜30m相当)にして、30分間放置した。その後、アオコを容器から取り出して観察した。結果を表1に示す。表に示したように、2.5kg/cm2(25m相当)以上の圧力をかけた場合に、アオコが水中沈降し、ガス胞が破壊されていることが確認できた。すなわち、本方法により、アオコを死滅および沈降させることが可能であることを実験室でも確認できた。なお、アオコは、互いにくっつきあって小塊ないし膜状となっていてもアオコの集合体は極微細化されていることも確認できた。なお、取水から吐出までは30分までかからないので、水深25mであっても一部はガス胞が破壊されない可能性もある。しかしながら、この場合、ガス胞が破壊されないものは再度水面に上昇しやがて取水されるのでいずれ除去されることとなる。 In addition, Aoko (mainly Microkistis, Anabena) collected at S Dam and lake water are placed in a pressure vessel (10 ml), and the water pressure in the vessel is 2 kg / cm 2 to 3 kg / cm 2 (corresponding to a water depth of 20 to 30 m). And left for 30 minutes. Thereafter, the sea cucumber was taken out of the container and observed. The results are shown in Table 1. As shown in the table, when a pressure of 2.5 kg / cm 2 (corresponding to 25 m) or more was applied, it was confirmed that the sea bream settled in water and the gas vesicles were destroyed. That is, it was also confirmed in the laboratory that the aquatic can be killed and settled by this method. In addition, even if the sea cucumbers sticked to each other to form a small lump or film, it was confirmed that the aggregates of the sea bream were extremely fine. In addition, since it does not take up to 30 minutes from water intake to discharge, gas vesicles may not be partially destroyed even at a water depth of 25 m. However, in this case, those in which the gas vesicles are not destroyed rise again to the surface of the water and are eventually removed, so that they are eventually removed.
なお、本発明を実施するに際し、システム構成は、図1に示した構成に限定されない。図6は、異なるシステム構成例を示した図である。図示したように、酸素水供給装置2を表層水供給装置1と分離してもよい。ただし、表層水供給装置1の送水ホースは水深25mより深く配し、水平方向にアオコを含んだ表層水を排出するようにする。この構成によれば、単位時間あたりの酸素水の供給量を向上できるので、除去速度を向上させることができる。 In carrying out the present invention, the system configuration is not limited to the configuration shown in FIG. FIG. 6 is a diagram illustrating a different system configuration example. As illustrated, the oxygen water supply device 2 may be separated from the surface layer water supply device 1. However, the water supply hose of the surface water supply device 1 is disposed deeper than a water depth of 25 m so as to discharge the surface water containing the sea cucumber in the horizontal direction. According to this structure, since the supply amount of oxygen water per unit time can be improved, the removal rate can be improved.
上水道水源として使用されているダム湖においては、アオコによる悪臭が防止され、浄水場での水質浄化経費が削減でき、安全な飲料水の供給が可能となる。また、観光地として親しまれている湖沼、ダム湖においては、短時間でアオコが除去できるので景観保全に役立つ。また、湖沼、ダム湖の下層水が好気的環境を維持され、かつアオコの発生が防止できれば、ヒメマスやニジマスなどの放流が可能になり、レクリエーションの場も提供すると共に、漁業資源としても期待でき、新たな産業の創出に繋がる可能性がある。 In dam lakes, which are used as water supply sources, bad smell caused by sea lions is prevented, water purification costs at water treatment plants can be reduced, and safe drinking water can be supplied. In addition, in lakes and dam lakes, which are popular as sightseeing spots, it is useful for landscape conservation because aquatic can be removed in a short time. In addition, if the lower water of lakes and dam lakes is maintained in an aerobic environment and the occurrence of blue sea urchins can be prevented, it will be possible to release rainbow trout, rainbow trout, etc. This could lead to the creation of new industries.
1 表層水収集装置
2 酸素水供給装置
11 送水ホース
21 気液溶解室
22 気液分離室
211 ノズル
212 天板部分
213 逃がし孔
221 排気口
222 供給口
DESCRIPTION OF SYMBOLS 1 Surface water collecting apparatus 2 Oxygen water supply apparatus 11 Water supply hose 21 Gas-liquid dissolution chamber 22 Gas-liquid separation chamber 211 Nozzle 212 Top plate part 213 Escape hole 221 Exhaust port 222 Supply port
Claims (4)
当該湖沼の水に酸素を高濃度に溶存させ、これを底層域に連続的に供給して底層域を所定の酸素濃度以上となるように維持しつつ、
アオコと共に表層水を取水し前記底層域へ所定の流量で略水平に吐出することを特徴とする、アオコの除去方法。 It is a method for reforming lakes where the bottom layer has become hypoxic and the surface layer has blue sea bream.
While dissolving oxygen at high concentration in the water of the lake, supplying this continuously to the bottom layer region and maintaining the bottom layer region to be above the predetermined oxygen concentration,
A method for removing sea cucumber, characterized in that surface water is taken together with the sea bream and discharged to the bottom layer area at a predetermined flow rate substantially horizontally.
4. The method for removing sea cucumbers according to claim 1, 2 or 3, wherein a step of forming a water pressure of 2.5 kg / cm 2 or more is performed between water intake and discharge.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2009117671A JP2010264384A (en) | 2009-05-14 | 2009-05-14 | Method for removing water bloom |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2009117671A JP2010264384A (en) | 2009-05-14 | 2009-05-14 | Method for removing water bloom |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JP2010264384A true JP2010264384A (en) | 2010-11-25 |
Family
ID=43361864
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2009117671A Pending JP2010264384A (en) | 2009-05-14 | 2009-05-14 | Method for removing water bloom |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP2010264384A (en) |
Cited By (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2011092812A (en) * | 2009-10-27 | 2011-05-12 | Panasonic Electric Works Co Ltd | Gas dissolving apparatus |
| JP2014224360A (en) * | 2013-05-15 | 2014-12-04 | 松江土建株式会社 | Water bloom removal device |
| JP2015066492A (en) * | 2013-09-27 | 2015-04-13 | 独立行政法人土木研究所 | Method for suppressing propagation of algae |
| WO2015056547A1 (en) * | 2013-10-17 | 2015-04-23 | 株式会社 アスプ | Gas-containing liquid production device and gas-containing liquid injection mechanism |
| WO2015137227A1 (en) * | 2014-03-14 | 2015-09-17 | 独立行政法人土木研究所 | Apparatus and method for inhibiting growth of algae |
| KR20160076728A (en) | 2014-12-23 | 2016-07-01 | 한국건설기술연구원 | Water-bloom control system for removing water-bloom inducing material and supplying dissolved oxygen, and controlling method for the same |
| CN115659641A (en) * | 2022-10-26 | 2023-01-31 | 武汉大学 | Water bloom prevention and control-oriented water engineering multi-objective optimization scheduling method |
Citations (15)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS58128196A (en) * | 1982-01-27 | 1983-07-30 | C T I Sci Syst:Kk | Preventing method of degration in water quality in closed sea area as well as lake and pond |
| JPS63194721A (en) * | 1987-02-09 | 1988-08-11 | Nakayama Kankyo Enji Kk | Agitating device for stored water |
| JPH01315395A (en) * | 1988-06-14 | 1989-12-20 | Toa Harbor Works Co Ltd | Device for cleaning closed water area |
| JPH11207162A (en) * | 1998-01-22 | 1999-08-03 | Yamahiro:Kk | Pressure type oxygen dissolving method |
| JP2002239587A (en) * | 2001-02-20 | 2002-08-27 | Takeshi Yoshioka | Apparatus for increasing dissolved oxygen in deep sea water |
| JP2003071494A (en) * | 2001-09-05 | 2003-03-11 | Yokogawa Electric Corp | Blue-green algae removal apparatus and method |
| JP2004033861A (en) * | 2002-07-01 | 2004-02-05 | Taisei Corp | High oxygen water production apparatus and method for purifying sediment |
| JP2004174287A (en) * | 2000-12-27 | 2004-06-24 | Shiga Pref Gov | Water purification device and water purification method |
| JP2005193197A (en) * | 2004-01-09 | 2005-07-21 | Hokoku Kogyo Co Ltd | Water cleaning apparatus |
| JP2006000835A (en) * | 2004-06-15 | 2006-01-05 | Kyoriz:Kk | Water purification system and water flow generating stirring mixer |
| JP2006136759A (en) * | 2004-11-10 | 2006-06-01 | Yokogawa Electric Corp | Gas dissolved water supply system |
| JP2006181565A (en) * | 2004-12-27 | 2006-07-13 | Kyoriz:Kk | Water purification system and water flow generating stirring mixer |
| JP3849986B2 (en) * | 2004-02-03 | 2006-11-22 | 松江土建株式会社 | Gas-liquid dissolving device |
| JP2007075749A (en) * | 2005-09-15 | 2007-03-29 | Matsue Doken Kk | Gas-liquid dissolving apparatus |
| JP2009045564A (en) * | 2007-08-21 | 2009-03-05 | Yokogawa Electric Corp | Oxygen dissolved water supply device |
-
2009
- 2009-05-14 JP JP2009117671A patent/JP2010264384A/en active Pending
Patent Citations (15)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS58128196A (en) * | 1982-01-27 | 1983-07-30 | C T I Sci Syst:Kk | Preventing method of degration in water quality in closed sea area as well as lake and pond |
| JPS63194721A (en) * | 1987-02-09 | 1988-08-11 | Nakayama Kankyo Enji Kk | Agitating device for stored water |
| JPH01315395A (en) * | 1988-06-14 | 1989-12-20 | Toa Harbor Works Co Ltd | Device for cleaning closed water area |
| JPH11207162A (en) * | 1998-01-22 | 1999-08-03 | Yamahiro:Kk | Pressure type oxygen dissolving method |
| JP2004174287A (en) * | 2000-12-27 | 2004-06-24 | Shiga Pref Gov | Water purification device and water purification method |
| JP2002239587A (en) * | 2001-02-20 | 2002-08-27 | Takeshi Yoshioka | Apparatus for increasing dissolved oxygen in deep sea water |
| JP2003071494A (en) * | 2001-09-05 | 2003-03-11 | Yokogawa Electric Corp | Blue-green algae removal apparatus and method |
| JP2004033861A (en) * | 2002-07-01 | 2004-02-05 | Taisei Corp | High oxygen water production apparatus and method for purifying sediment |
| JP2005193197A (en) * | 2004-01-09 | 2005-07-21 | Hokoku Kogyo Co Ltd | Water cleaning apparatus |
| JP3849986B2 (en) * | 2004-02-03 | 2006-11-22 | 松江土建株式会社 | Gas-liquid dissolving device |
| JP2006000835A (en) * | 2004-06-15 | 2006-01-05 | Kyoriz:Kk | Water purification system and water flow generating stirring mixer |
| JP2006136759A (en) * | 2004-11-10 | 2006-06-01 | Yokogawa Electric Corp | Gas dissolved water supply system |
| JP2006181565A (en) * | 2004-12-27 | 2006-07-13 | Kyoriz:Kk | Water purification system and water flow generating stirring mixer |
| JP2007075749A (en) * | 2005-09-15 | 2007-03-29 | Matsue Doken Kk | Gas-liquid dissolving apparatus |
| JP2009045564A (en) * | 2007-08-21 | 2009-03-05 | Yokogawa Electric Corp | Oxygen dissolved water supply device |
Cited By (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2011092812A (en) * | 2009-10-27 | 2011-05-12 | Panasonic Electric Works Co Ltd | Gas dissolving apparatus |
| JP2014224360A (en) * | 2013-05-15 | 2014-12-04 | 松江土建株式会社 | Water bloom removal device |
| JP2015066492A (en) * | 2013-09-27 | 2015-04-13 | 独立行政法人土木研究所 | Method for suppressing propagation of algae |
| WO2015056547A1 (en) * | 2013-10-17 | 2015-04-23 | 株式会社 アスプ | Gas-containing liquid production device and gas-containing liquid injection mechanism |
| US9868092B2 (en) | 2013-10-17 | 2018-01-16 | Asupu Co., Ltd | Gas-containing liquid generating apparatus and gas-containing liquid injecting module |
| WO2015137227A1 (en) * | 2014-03-14 | 2015-09-17 | 独立行政法人土木研究所 | Apparatus and method for inhibiting growth of algae |
| JPWO2015137227A1 (en) * | 2014-03-14 | 2017-04-06 | 国立研究開発法人土木研究所 | Algae growth suppression apparatus and method |
| KR20160076728A (en) | 2014-12-23 | 2016-07-01 | 한국건설기술연구원 | Water-bloom control system for removing water-bloom inducing material and supplying dissolved oxygen, and controlling method for the same |
| CN115659641A (en) * | 2022-10-26 | 2023-01-31 | 武汉大学 | Water bloom prevention and control-oriented water engineering multi-objective optimization scheduling method |
| CN115659641B (en) * | 2022-10-26 | 2024-03-08 | 武汉大学 | Water bloom prevention and control oriented water engineering multi-objective optimization scheduling method |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN106477662B (en) | A kind of method and its system using micro-nano air-flotation process water pollution in situ | |
| CN104649524B (en) | A kind of livestock and poultry cultivation sewage water treatment method | |
| JP2010264384A (en) | Method for removing water bloom | |
| CN102083756B (en) | New systems and methods for wastewater treatment | |
| CN103613245B (en) | Treatment process for waste water in neuropeptide product production | |
| KR0174365B1 (en) | Floating algae removal method and apparatus | |
| CN104591443B (en) | A kind of recycling equipment of aquaculture agricultural effluent | |
| CN106800356A (en) | A kind of advanced treatment of wastewater regeneration device based on biochemical and electrolysis tech | |
| US20100252498A1 (en) | systems and methods for wastewater treatment | |
| JP4515868B2 (en) | Water treatment system | |
| KR20010038085A (en) | An In-site River Purifying System | |
| CN109851163A (en) | A kind of unhurried current small watershed removes algae algae control method | |
| CN108094302A (en) | Method for purifying water and system and earthy taste of fresh water fish minimizing technology | |
| CN107473492A (en) | Multiple physical field strengthens oxidation Decomposition purifier and its contamination governing method | |
| CN207995835U (en) | Water purification system | |
| CN117645389B (en) | Aquaculture tail water treatment system | |
| JP3797296B2 (en) | Purification method of bottom sludge | |
| KR101279137B1 (en) | Water quality purification system of small water area | |
| KR100352584B1 (en) | A Water Purifier Ship | |
| JPH08281292A (en) | Treatment of bottom mud layer in water basin | |
| JP2007007603A (en) | System for purifying water quality | |
| CN211226827U (en) | Remains hydration sewage treatment system | |
| KR100292427B1 (en) | A System For Removing Algae and Suspended Solid | |
| KR20160005409A (en) | Apparatus and Method for Stimulating Flotation in Water | |
| CN214400152U (en) | Landscape water treatment system |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120409 |
|
| A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130425 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130507 |
|
| A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20131022 |