[go: up one dir, main page]

JP2010276940A - Glass substrate bonding method and glass bonded body - Google Patents

Glass substrate bonding method and glass bonded body Download PDF

Info

Publication number
JP2010276940A
JP2010276940A JP2009130669A JP2009130669A JP2010276940A JP 2010276940 A JP2010276940 A JP 2010276940A JP 2009130669 A JP2009130669 A JP 2009130669A JP 2009130669 A JP2009130669 A JP 2009130669A JP 2010276940 A JP2010276940 A JP 2010276940A
Authority
JP
Japan
Prior art keywords
glass substrate
glass
thin film
prism
bonding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009130669A
Other languages
Japanese (ja)
Inventor
Nobuji Kawamura
宜司 川村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2009130669A priority Critical patent/JP2010276940A/en
Priority to CN2010101882294A priority patent/CN101900840B/en
Publication of JP2010276940A publication Critical patent/JP2010276940A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Elements Other Than Lenses (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Joining Of Glass To Other Materials (AREA)

Abstract

【課題】表面粗さが容易に得られるオーダーのガラス基材を直接接合させる。
【解決手段】
第1プリズム21と第2プリズム22を接着剤を用いずに直接接合するときに、まず、第1プリズム21の斜面21aに、第1プリズム21に接合する第2プリズム22と主成分が等しいガラス薄膜24を成膜する。そして、ガラス薄膜24と第2プリズム22の側面22aとを、その相互間に蒸留水31を介在させて密着させた後に、蒸留水31を蒸発させて第1プリズム21と第2プリズム22とを一体化する。
【選択図】図2
An object of the present invention is to directly join glass substrates of the order in which surface roughness can be easily obtained.
[Solution]
When the first prism 21 and the second prism 22 are directly joined without using an adhesive, first, glass whose principal component is the same as the second prism 22 joined to the first prism 21 on the inclined surface 21a of the first prism 21. A thin film 24 is formed. Then, after the glass thin film 24 and the side surface 22a of the second prism 22 are brought into close contact with each other with distilled water 31 interposed therebetween, the distilled water 31 is evaporated and the first prism 21 and the second prism 22 are connected. Integrate.
[Selection] Figure 2

Description

本発明は、光学薄膜を介在させてガラス基材を接合したガラス接合体及びその接合方法に関するものであり、さらに詳しくは、接着剤を用いずにガラス基材を接合したガラス接合体及びその接合方法に関する。   The present invention relates to a glass bonded body in which a glass substrate is bonded through an optical thin film and a bonding method thereof, and more specifically, a glass bonded body in which a glass substrate is bonded without using an adhesive and the bonding thereof. Regarding the method.

偏光ビームスプリッタや偏光変換素子,ダイクロイックプリズム,接合レンズ等、ガラス基材を接合した光学素子が様々な製品に利用されている。こうしてガラス基材を接合して接合型光学素子を製造するときには、薄く強固に、かつ安価にガラス基材を接合することができることから、例えば紫外線により硬化する光硬化型接着剤等の接着剤が用いられる。   Optical elements bonded with a glass substrate such as a polarizing beam splitter, a polarization conversion element, a dichroic prism, and a cemented lens are used in various products. Thus, when a glass substrate is bonded to produce a bonded optical element, the glass substrate can be bonded thinly, firmly, and inexpensively. For example, an adhesive such as a photo-curable adhesive that is cured by ultraviolet rays is used. Used.

また、近年では、プロジェクタや青色光を利用した光ディスク等が普及しているが、こうした光学機器にも上述のような接合型光学素子が用いられている。しかし、ガラス基材の接合に用いられる接着剤は、紫外線に近い青色光が照射されたり、高照度,高温環境で使用されると、褪色等の劣化が経時的に生じることが知られている。特に、高照度,高温環境下で用いられるプロジェクタの光学系や、青色光に対応した光ピックアップ等の光学機器では、接着剤の劣化に伴う接合型光学素子の光学的性能の劣化が、光学機器全体の寿命を決めるボトルネックとなってしまうことがある。このため、接合型光学素子には、高照度,高温環境や紫外線で劣化し難いような、耐久性が求められている。   In recent years, projectors and optical disks using blue light have been widely used, but the above-described junction type optical elements are also used in such optical devices. However, it is known that the adhesive used for bonding the glass base material is deteriorated over time when it is irradiated with blue light close to ultraviolet light or used in a high illuminance and high temperature environment. . In particular, in the optical system of a projector used in a high illuminance and high temperature environment, or in an optical apparatus such as an optical pickup that supports blue light, the optical performance of the junction type optical element is deteriorated due to the deterioration of the adhesive. It may become a bottleneck that determines the overall lifespan. For this reason, the junction type optical element is required to have durability that does not easily deteriorate due to high illuminance, high temperature environment and ultraviolet rays.

このため、近年では、接着剤を利用せずに、ガラス基板やプリズム,レンズ等のガラス基材同士を直接的に接合する方法、いわゆるオプティカルコンタクトが知られている(特許文献1)。   For this reason, in recent years, a method of directly bonding glass substrates such as a glass substrate, a prism, and a lens without using an adhesive, so-called optical contact is known (Patent Document 1).

オプティカルコンタクトは、極めて精密に研磨した接合面同士を接触させることで、原子間,分子間の相互作用によりガラス基材を接合する方法である。このため、オプティカルコンタクトによってガラス基材を接合するためには、接合面の算術表面粗さ(Ra,以下、単に「表面粗さ」という)が、大きくても1〜2nmのオーダーであることが必要と言われ、実質的には表面粗さがオングストロームオーダーであることが求められる。   Optical contact is a method in which glass substrates are bonded to each other by interatomic and intermolecular interactions by bringing bonded surfaces that have been polished extremely precisely into contact with each other. For this reason, in order to join the glass substrates by optical contact, the arithmetic surface roughness (Ra, hereinafter simply referred to as “surface roughness”) of the joining surface should be at most on the order of 1 to 2 nm. It is said that the surface roughness is substantially in the order of angstroms.

また、オプティカルコンタクトと同様に、半導体の分野では、接着剤を用いずに半導体基板を直接接合する技術が知られている。例えば、薄い酸化膜を形成させ、さらにこの酸化膜に水酸基を付与する表面処理を施した接合面同士を接触させて、熱処理を施すことにより、半導体基板は直接接合される。このように、半導体基板を直接接合する場合においても、接合面の表面粗さは少なくとも1〜2nmのオーダーで、実質的にはこれ以下の表面粗さの接合面でなければ、直接接合することは難しいことが知られている。   Similar to the optical contact, in the semiconductor field, a technique for directly bonding a semiconductor substrate without using an adhesive is known. For example, a semiconductor substrate is directly bonded by forming a thin oxide film and bringing the oxide films into contact with bonding surfaces subjected to a surface treatment for imparting a hydroxyl group and performing a heat treatment. Thus, even when directly bonding semiconductor substrates, the surface roughness of the bonding surface is at least on the order of 1 to 2 nm, and if the bonding surface is not substantially less than this, the bonding surface should be directly bonded. Is known to be difficult.

特開2004−279495号公報JP 2004-279495 A

オプティカルコンタクトによってガラス基材を直接接合するときに要求される接合面の表面粗さは、実現不可能ではないが、容易に得られるオーダーの表面粗さではない。例えば、ガラス基材等の表面を特に平滑に仕上げる研磨加工として鏡面研磨加工が知られているが、一般的な鏡面研磨加工で得られる表面粗さは、精密なものでも5〜10nm程度となっている。これと比較すれば、オプティカルコンタクトには、鏡面研磨よりも一桁程度も精密な研磨が要求されることが分かる。   The surface roughness of the bonding surface required when directly bonding the glass substrates by optical contact is not impossible to achieve, but it is not an orderly obtained surface roughness. For example, a mirror polishing process is known as a polishing process that finishes the surface of a glass substrate or the like particularly smoothly, but the surface roughness obtained by a general mirror polishing process is about 5 to 10 nm even if it is a precise one. ing. Compared with this, it can be seen that the optical contact is required to be polished by an order of magnitude more precise than mirror polishing.

このため、オプティカルコンタクトでガラス基材を直接接合した接合型光学素子は製造が難しく、製造できるにしても高価になってしまうという問題がある。特に、プロジェクタや光ピックアップ等、普及が著しく、安価に量産されることが望まれる光学機器に、オプティカルコンタクトを利用した接合型光学素子を用いることは難しい。   For this reason, it is difficult to manufacture a bonded optical element in which a glass substrate is directly bonded with an optical contact, and there is a problem that even if it can be manufactured, it becomes expensive. In particular, it is difficult to use a junction type optical element using an optical contact in an optical apparatus such as a projector or an optical pickup that is remarkably widespread and is desired to be mass-produced at a low cost.

本発明は、上述の問題点に鑑みてなされたものであり、接合面の表面粗さが容易に得られるオーダーのガラス基材を直接接合するガラス基材接合方法を提供することを目的とする。また、ガラス基材を直接接合した接合型光学素子を、安定して製造することができるようにし、安価に提供することを目的とする。   The present invention has been made in view of the above-described problems, and an object thereof is to provide a glass substrate bonding method for directly bonding glass substrates of the order in which the surface roughness of the bonding surface can be easily obtained. . It is another object of the present invention to provide a bonded optical element obtained by directly bonding a glass substrate so that it can be stably manufactured and provided at a low cost.

本発明のガラス基材の接合方法は、第1ガラス基材の接合面に、前記第1ガラス基材に接合する第2ガラス基材と主成分が等しい薄膜を成膜する成膜工程と、前記薄膜と前記第2ガラス基材の接合面とを、その相互間に水を介在させて密着した後に前記水を蒸発させて前記第1ガラス基材と前記第2ガラス基材とを一体化する接合工程と、を備えることを特徴とするガラス基材の接合方法。   The glass substrate bonding method of the present invention includes a film forming step of forming a thin film having the same main component as the second glass substrate bonded to the first glass substrate on the bonding surface of the first glass substrate; The first glass substrate and the second glass substrate are integrated by evaporating the water after adhering the thin film and the bonding surface of the second glass substrate with water interposed therebetween. A glass substrate bonding method comprising: a bonding step of:

また、前記接合工程における前記水の蒸発は、大気中で、常温以上かつ水の沸点未満の所定温度での加熱により行われることを特徴とする。   Further, the evaporation of the water in the joining step is performed by heating at a predetermined temperature not lower than the normal temperature and lower than the boiling point of water in the atmosphere.

また、前記接合工程の後に、前記第1ガラス基材と前記第2ガラス基材との接合体を真空中で加熱する接合強化工程を行うことを特徴とする。   Moreover, after the said joining process, the joining reinforcement | strengthening process which heats the joined body of a said 1st glass base material and a said 2nd glass base material in a vacuum is characterized by the above-mentioned.

また、前記第1ガラス基材の接合面に所定の光学的機能を有する光学薄膜が予め形成され、前記成膜工程は前記光学薄膜の表面に行われることを特徴とする。   Further, an optical thin film having a predetermined optical function is formed in advance on the bonding surface of the first glass substrate, and the film forming step is performed on the surface of the optical thin film.

また、前記光学薄膜の表面を研磨した後に、前記成膜工程が行われることを特徴とする。   Further, the film forming step is performed after polishing the surface of the optical thin film.

また、前記薄膜は、層状に複数連続して設けられることを特徴とする。   In addition, a plurality of the thin films are continuously provided in a layer shape.

また、前記成膜工程で成膜される前記薄膜は、常温から100度の間での温度変化に対し、d線に対する屈折率の変化量が0.5%以下であることを特徴とする。   The thin film formed in the film forming step is characterized in that a change in refractive index with respect to d-line is 0.5% or less with respect to a temperature change between room temperature and 100 degrees.

また、前記薄膜が二酸化ケイ素からなることを特徴とする。   The thin film is made of silicon dioxide.

本発明のガラス接合体は、第1ガラス基材と第2ガラス基材との接合体であって、前記第1ガラス基材の前記第2ガラス基材との接合面に、前記第2ガラス基材と主成分が等しい薄膜が形成され、この薄膜と前記第2ガラス基材との接合面との間に介在させた水を蒸発させることにより、前記第2ガラス基材の接合面が前記薄膜を介して前記第1ガラス基材の接合面に接合されていることを特徴とする。   The glass joined body of the present invention is a joined body of a first glass substrate and a second glass substrate, and the second glass is formed on a joint surface of the first glass substrate with the second glass substrate. A thin film having the same main component as that of the base material is formed, and by evaporating water interposed between the thin film and the bonding surface of the second glass substrate, the bonding surface of the second glass substrate is It is bonded to the bonding surface of the first glass substrate through a thin film.

本発明のガラス基材接合方法によれば、接合面の表面粗さが容易に得られるオーダーのガラス基材を直接接合することができる。また、このガラス基材接合方法を用いることで、ガラス基材を直接接合した接合型光学素子を、安定して製造することができ、安価に提供することができる。   According to the glass substrate bonding method of the present invention, a glass substrate of the order in which the surface roughness of the bonding surface can be easily obtained can be directly bonded. Moreover, by using this glass base material joining method, the joining type optical element which directly joined the glass base material can be manufactured stably, and can be provided at low cost.

ビームスプリッタの構成を示す説明図である。It is explanatory drawing which shows the structure of a beam splitter. ビームスプリッタの製造工程を示す説明図である。It is explanatory drawing which shows the manufacturing process of a beam splitter. 半透膜の表面を研磨する様子を示す説明図である。It is explanatory drawing which shows a mode that the surface of a semipermeable membrane is grind | polished. ガラス薄膜を複数設ける例を示す説明図である。It is explanatory drawing which shows the example which provides multiple glass thin films. ガラス基板からビームスプリッタを製造する様子を示す説明図である。It is explanatory drawing which shows a mode that a beam splitter is manufactured from a glass substrate. ガラス基板からビームスプリッタを製造する様子を示す説明図である。It is explanatory drawing which shows a mode that a beam splitter is manufactured from a glass substrate.

光ピックアップ11は、青色光用の光ディスク12に光を入射させることによりデータを読み書きする光学系であり、光源16、ビームスプリッタ17(ガラス接合体)、パワーモニタ18等から構成される。   The optical pickup 11 is an optical system that reads and writes data by making light incident on the optical disk 12 for blue light, and includes a light source 16, a beam splitter 17 (glass bonded body), a power monitor 18, and the like.

光ディスク12は、波長405nm近傍の青色光を利用して、データの読み出しや書き込みが行われる。また、光源16は、光ディスク12に入射させる青色光を発生する光源であり、レーザーダイオードやコリメートレンズ,1/2波長板,回折格子等から構成される。レーザーダイオードは波長405nm近傍の青色光を発する。そして、レーザーダイオードで発せられた青色光は、コリメートレンズで平行光に整えられるとともに、1/2波長板を通過することによりS偏光に整えられる。さらに、回折格子によって、データの読み書きに利用される主ビームと、トラッキング等に利用される2つの副ビームに分岐されて、ビームスプリッタ17に入射する。   The optical disk 12 reads and writes data using blue light having a wavelength of around 405 nm. The light source 16 is a light source that generates blue light to be incident on the optical disc 12, and includes a laser diode, a collimating lens, a half-wave plate, a diffraction grating, and the like. The laser diode emits blue light having a wavelength of around 405 nm. The blue light emitted from the laser diode is adjusted to parallel light by the collimator lens and adjusted to S-polarized light by passing through the half-wave plate. Further, it is branched by the diffraction grating into a main beam used for reading and writing data and two sub beams used for tracking and the like, and enters the beam splitter 17.

ビームスプリッタ17は、光源16から入射する青色光を、光ディスク12の方向とパワーモニタ18の方向の2方向に分岐させる光学素子であり、第1プリズム21(第1ガラス基材),第2プリズム22(第2ガラス基材),半透膜23,ガラス薄膜24から構成される。   The beam splitter 17 is an optical element that branches blue light incident from the light source 16 in two directions, ie, the direction of the optical disk 12 and the direction of the power monitor 18, and includes a first prism 21 (first glass substrate) and a second prism. 22 (second glass substrate), a semipermeable membrane 23, and a glass thin film 24.

第1プリズム21は、二酸化ケイ素にホウ酸が混合されたホウケイ酸ガラスからなる直角三角形状のプリズムであり、半透膜23及びガラス薄膜24を介して、斜辺で第2プリズム22と接合される。第2プリズム22は、第1プリズム21と同様に、ホウケイ酸ガラスからなる直角三角形状のプリズムであり、直角を成す2辺のうち1辺の側の側面22a(接合面)に、半透膜23及びガラス薄膜24を介して第1プリズム21の斜辺が接合されている。また、第1プリズム21や第2プリズム22の表面は、表面粗さRaが10nmの程度に平滑な表面となっている。さらに、第1プリズム21と第2プリズム22の接合には接着剤は用いられておらず、第1プリズム21の表面に設けられたガラス薄膜24と第2プリズム22の側面22aを直接接触させて、第1プリズム21と第2プリズム22は直接接合されている。   The first prism 21 is a right-angled triangular prism made of borosilicate glass in which boric acid is mixed with silicon dioxide, and is joined to the second prism 22 on the hypotenuse via the semipermeable membrane 23 and the glass thin film 24. . Similar to the first prism 21, the second prism 22 is a right-angled triangular prism made of borosilicate glass, and a semipermeable membrane is formed on a side surface 22a (joint surface) on one side of two sides forming a right angle. The hypotenuse of the first prism 21 is joined via the glass 23 and the glass thin film 24. The surfaces of the first prism 21 and the second prism 22 are smooth surfaces with a surface roughness Ra of about 10 nm. Further, no adhesive is used to join the first prism 21 and the second prism 22, and the glass thin film 24 provided on the surface of the first prism 21 and the side surface 22 a of the second prism 22 are brought into direct contact with each other. The first prism 21 and the second prism 22 are directly joined.

半透膜23は、複数の誘電体薄膜を積層して構成され、第1プリズム21の斜面21a(接合面)に設けられる。半透膜23には、光源16からS偏光の青色光が第1プリズム21を通って入射する。このとき、半透膜23は、入射した青色光の約70%を光ディスク12側に反射し、残り約30%を第2プリズム22側に透過する。また、ここでは半透膜23にはS偏光だけが入射するが、半透膜23は波長によらずP偏光を略100%透過する。   The semipermeable membrane 23 is configured by laminating a plurality of dielectric thin films, and is provided on the inclined surface 21 a (bonding surface) of the first prism 21. S-polarized blue light from the light source 16 enters the semipermeable membrane 23 through the first prism 21. At this time, the semi-transmissive film 23 reflects about 70% of the incident blue light to the optical disk 12 side and transmits the remaining 30% to the second prism 22 side. Here, only the S-polarized light is incident on the semi-permeable film 23, but the semi-permeable film 23 transmits substantially 100% of the P-polarized light regardless of the wavelength.

ガラス薄膜24は、直接接合される第2プリズム22と主成分が同じガラス材料からなる厚さ0.2μmの薄膜であり、半透膜23上に成膜される。ここでは、前述のように第2プリズム22がホウケイ酸ガラスからなるので、ガラス薄膜24は二酸化ケイ素からなる。また、成膜された段階で、ガラス薄膜24の表面は表面粗さRaが10nmの程度に平滑な表面となっており、第1プリズム21と第2プリズム22を接合してビームスプリッタ17を形成するときには、ガラス薄膜24の表面は、接着剤を介さずに第2プリズム22の表面と直接接触し、接合される。   The glass thin film 24 is a thin film having a thickness of 0.2 μm made of the same glass material as that of the second prism 22 that is directly bonded, and is formed on the semipermeable membrane 23. Here, as described above, since the second prism 22 is made of borosilicate glass, the glass thin film 24 is made of silicon dioxide. Further, when the film is formed, the surface of the glass thin film 24 is a smooth surface having a surface roughness Ra of about 10 nm, and the beam splitter 17 is formed by joining the first prism 21 and the second prism 22. When doing so, the surface of the glass thin film 24 comes into direct contact with and is bonded to the surface of the second prism 22 without using an adhesive.

さらに、ガラス薄膜24は、室温から100度程度の範囲の温度変化に対して、屈折率が殆ど変化しない高密度のガラス薄膜であり、室温(15〜25度)から100度の範囲で温度を変化させたときに、d線(589.3nm)に対する屈折率Ndの変化が、0.02〜0.1%の範囲に抑えられている。   Furthermore, the glass thin film 24 is a high-density glass thin film whose refractive index hardly changes with respect to a temperature change in the range from room temperature to about 100 degrees, and the temperature is in the range from room temperature (15 to 25 degrees) to 100 degrees. When changed, the change in the refractive index Nd with respect to the d-line (589.3 nm) is suppressed to a range of 0.02 to 0.1%.

半透膜23を透過して、第2プリズム22に入射した青色光は、第2プリズム22の直角を成す2辺のうち第1プリズム21に対向する側の側面22bで全反射され、パワーモニタ18に入射する。   The blue light transmitted through the semi-transmissive film 23 and incident on the second prism 22 is totally reflected by the side surface 22b on the side facing the first prism 21 out of the two sides forming the right angle of the second prism 22, and the power monitor 18 is incident.

こうして、ビームスプリッタ17は、第1プリズム21側の表面にガラス薄膜24を設け、このガラス薄膜24の表面と第2プリズム22の表面を接触させて、第1プリズム21と第2プリズム22を直接接合する。したがって、ビームスプリッタ17は、第1プリズム21と第2プリズム22の接合に接着剤が用いられていない。このため、ビームスプリッタ17には青色光が入射するが、この青色光によってビームスプリッタ17に経時的な劣化が生じることはない。同様に、第1プリズム21と第2プリズム22を直接接合しているので、ビームスプリッタ17を高照度環境下で用いる場合にも、これによってビームスプリッタ17に経時的な劣化が生じることはない。   In this way, the beam splitter 17 is provided with the glass thin film 24 on the surface on the first prism 21 side, and the surface of the glass thin film 24 and the surface of the second prism 22 are brought into contact with each other to directly connect the first prism 21 and the second prism 22. Join. Therefore, the beam splitter 17 does not use an adhesive to join the first prism 21 and the second prism 22. For this reason, although blue light is incident on the beam splitter 17, the blue light does not cause deterioration over time in the beam splitter 17. Similarly, since the first prism 21 and the second prism 22 are directly joined, even when the beam splitter 17 is used in a high illumination environment, this does not cause deterioration of the beam splitter 17 over time.

パワーモニタ18は、ビームスプリッタ17から入射した青色光を光電変換し、その光量を計測する。こうしてパワーモニタ18によって計測された青色光の光量に基づいて、光ディスク12に入射する青色光の光量がデータの読み書きに適切な光量になるように、光源16から出射される青色光の光量が調節される。   The power monitor 18 photoelectrically converts the blue light incident from the beam splitter 17 and measures the amount of light. Based on the amount of blue light measured by the power monitor 18 in this way, the amount of blue light emitted from the light source 16 is adjusted so that the amount of blue light incident on the optical disk 12 is appropriate for reading and writing data. Is done.

上述のように構成される光ピックアップ11は、第1プリズム21と第2プリズム22を接着剤を用いずに直接接合したビームスプリッタ17を用いているので、青色光が入射されることによる経時的な劣化は生じない。さらに、ビームスプリッタ17は、後述する接合方法により、表面粗さRaが10nmのオーダーのガラス薄膜24と第2プリズム22を直接接合している。こうした、表面粗さRaが10nmのオーダーの表面は、イオンプレーティング等による成膜や、鏡面研磨加工等の一般的な精密研磨加工によって容易に得られる。このため、ビームスプリッタ17は、安定して安価に製造することができる。   Since the optical pickup 11 configured as described above uses the beam splitter 17 in which the first prism 21 and the second prism 22 are directly joined without using an adhesive, the time-lapse due to the incidence of blue light. No significant degradation occurs. Further, the beam splitter 17 directly joins the glass thin film 24 having a surface roughness Ra of the order of 10 nm and the second prism 22 by a joining method described later. Such a surface having a surface roughness Ra of the order of 10 nm can be easily obtained by a general precision polishing process such as film formation by ion plating or mirror polishing process. For this reason, the beam splitter 17 can be manufactured stably and inexpensively.

ビームスプリッタ17は、図2(A)〜(D)に示す手順で製造される。まず、図2(A)に示すように、まず、第1プリズム21の斜面21aに半透膜23を成膜する。このとき、第1プリズム21の表面は研磨されており、半透膜23を成膜する斜面21aを含め、いずれの表面も、表面粗さRaが10nmのオーダーに平滑に仕上げられている。   The beam splitter 17 is manufactured according to the procedure shown in FIGS. First, as shown in FIG. 2A, first, a semipermeable membrane 23 is formed on the slope 21a of the first prism 21. At this time, the surface of the first prism 21 is polished, and all the surfaces including the inclined surface 21a on which the semipermeable membrane 23 is formed are smoothly finished to the order of the surface roughness Ra of 10 nm.

次に、図2(B)に示すように、半透膜23上に高密度のガラス薄膜24を成膜する(成膜工程)。このガラス薄膜24はイオンプレーティングによって成膜される。ガラス薄膜24の表面は、成膜された段階で、表面粗さRaが10nmのオーダーの平滑な表面となっている。また、ここで成膜されるガラス薄膜24は0.2μmの厚さに成膜されるとともに、前述のように常温から100度の間で屈折率Ndの温度による変化が0.02%〜0.1%程度に抑えられる程度に高密度に成膜される。これにより、後述するように、ガラス薄膜24上に散逸することなく蒸留水を張ることができる。   Next, as shown in FIG. 2B, a high-density glass thin film 24 is formed on the semipermeable membrane 23 (film formation step). The glass thin film 24 is formed by ion plating. The surface of the glass thin film 24 is a smooth surface having a surface roughness Ra on the order of 10 nm at the stage of film formation. Further, the glass thin film 24 formed here is formed to a thickness of 0.2 μm, and the change in the refractive index Nd depending on the temperature between room temperature and 100 degrees as described above is 0.02 to 0%. The film is formed at a high density so as to be suppressed to about 1%. Thereby, as described later, distilled water can be spread on the glass thin film 24 without being dissipated.

そして、図2(C)に示すように、第1プリズム21と第2プリズム22を接合する(接合工程)。このとき、第1プリズム21の斜面21a上(ガラス薄膜24上)に薄く蒸留水31を張り、この蒸留水31を介してガラス薄膜24と第2プリズム24の側面22aを密着させる。こうして密着させた第1プリズム21及び第2プリズム22を大気中で85度に加熱し、この状態を4時間維持することで、第1プリズム21と第2プリズム22の間の蒸留水31を徐々に蒸発させる。そして、図2(D)に示すように、第1プリズム21と第2プリズム22の間の蒸留水31が蒸発し、ガラス薄膜24(第1プリズム21)の表面と第2プリズム22の側面22aが直接接触すると、第1プリズム21と第2プリズム22は直接接合され、一体化されたビームスプリッタ17となる。   Then, as shown in FIG. 2C, the first prism 21 and the second prism 22 are joined (joining step). At this time, distilled water 31 is thinly applied on the slope 21 a (on the glass thin film 24) of the first prism 21, and the glass thin film 24 and the side surface 22 a of the second prism 24 are brought into close contact with each other through the distilled water 31. The first prism 21 and the second prism 22 thus brought into close contact with each other are heated to 85 degrees in the atmosphere, and this state is maintained for 4 hours, whereby the distilled water 31 between the first prism 21 and the second prism 22 is gradually added. Evaporate. 2D, the distilled water 31 between the first prism 21 and the second prism 22 evaporates, and the surface of the glass thin film 24 (first prism 21) and the side surface 22a of the second prism 22 are obtained. Directly contact each other, the first prism 21 and the second prism 22 are directly joined to form an integrated beam splitter 17.

こうして接合されたビームスプリッタ17は、温度や湿度等の環境の変化等により自然に接合が剥離してしまうことはない程度に強固に接合されるが、この接合の強度は、紫外線硬化型接着剤等の接着剤による接合の強度と比較すれば弱い。このため、大気中で接合された第1プリズム21及び第2プリズム22は、真空中で350度に4時間加熱される(接合強化工程)。これにより、第1プリズム21と第2プリズム22の接合強度が強化される。   The beam splitter 17 thus bonded is firmly bonded to such an extent that the bonding does not naturally peel off due to changes in the environment such as temperature and humidity. The bonding strength of the beam splitter 17 is an ultraviolet curable adhesive. It is weak compared to the strength of bonding with adhesives such as. For this reason, the 1st prism 21 and the 2nd prism 22 joined in air | atmosphere are heated at 350 degree | times for 4 hours in a vacuum (joining reinforcement | strengthening process). Thereby, the bonding strength between the first prism 21 and the second prism 22 is enhanced.

上述のようにしてビームスプリッタ17を製造すると、接着剤を用いずに、第1プリズム21と第2プリズム22を直接接合させることができる。さらに、上述の手順でビームスプリッタ17を製造すれば、表面粗さRaが10nm程度の成膜や研磨加工により容易に得られる表面であっても直接接合させることができる。このため、ビームスプリッタ17を、歩留まり良く安定して、かつ、安価に製造することができる。   When the beam splitter 17 is manufactured as described above, the first prism 21 and the second prism 22 can be directly joined without using an adhesive. Furthermore, if the beam splitter 17 is manufactured according to the above-described procedure, even a surface that can be easily obtained by film formation or polishing with a surface roughness Ra of about 10 nm can be directly bonded. For this reason, the beam splitter 17 can be manufactured stably and inexpensively with a high yield.

なお、上述の実施形態では、第1プリズム21の斜面21aに半透膜23を成膜した後、半透膜23の表面を研磨等せずに、その上にガラス薄膜24を成膜する例を説明したが、ガラス薄膜24を成膜する前に、半透膜23の表面を研磨することが好ましい。   In the above-described embodiment, after the semipermeable membrane 23 is formed on the inclined surface 21a of the first prism 21, the surface of the semipermeable membrane 23 is not polished and the glass thin film 24 is formed thereon. However, it is preferable to polish the surface of the semipermeable membrane 23 before the glass thin film 24 is formed.

図3(A)に示すように、第1プリズム21の斜面21aに半透膜23を成膜すると、成膜の様態によっては、半透膜23に局所的な凸状の部分36(以下、凸部という)が生じることがある。例えば、半透膜23は、前述のようにイオンプレーティングによって成膜されるが、半透膜23の材料がクラスター状になって第1プリズム21に飛着すると、これを核とした凸部36が局所的に生じる。こうした凸部36が残されたまま、半透膜23上にガラス薄膜24を成膜すると、ガラス薄膜24が凸部36のサイズに比べて薄い場合には、ガラス薄膜24にも同様の凸部が現れる。このため、大局的にはガラス薄膜24の表面粗さRaが10nm程度であり、かつ、前述の手順でビームスプリッタ17を製造しても、第1プリズム21と第2プリズム22が接合されなかったり、接合されてもきわめて弱い接合となってしまう。このため、図3(B)に示すように、第1プリズム21の斜面21aに半透膜23を成膜した後に、半透膜23の表面を研磨して凸部36を除去し(研磨工程)、その後、凸部36のない半透膜23の表面にガラス薄膜24を成膜することが好ましい。   As shown in FIG. 3A, when the semipermeable membrane 23 is formed on the inclined surface 21a of the first prism 21, depending on the form of the film formation, a local convex portion 36 (hereinafter, referred to as a semi-permeable membrane 23). A convex portion) may occur. For example, the semipermeable membrane 23 is formed by ion plating as described above, but when the material of the semipermeable membrane 23 forms a cluster and lands on the first prism 21, a convex portion using this as a nucleus. 36 occurs locally. When the glass thin film 24 is formed on the semipermeable membrane 23 with the projections 36 remaining, if the glass thin film 24 is thinner than the size of the projections 36, the glass thin film 24 has the same projections. Appears. For this reason, generally, the surface roughness Ra of the glass thin film 24 is about 10 nm, and even if the beam splitter 17 is manufactured by the above-described procedure, the first prism 21 and the second prism 22 are not joined. Even if they are joined, they become extremely weak joints. For this reason, as shown in FIG. 3B, after forming the semipermeable membrane 23 on the slope 21a of the first prism 21, the surface of the semipermeable membrane 23 is polished to remove the convex portion 36 (polishing step). After that, it is preferable to form the glass thin film 24 on the surface of the semipermeable membrane 23 without the convex portion 36.

凸部36を除去するために半透膜23の表面を研磨するときには、メラミン樹脂からなるスポンジや目の細かい磨りガラス等を、ヤスリとして好適に用いることができる。特に、これらのヤスリは、#2000相当の目の細かさであることが好ましい。   When polishing the surface of the semipermeable membrane 23 in order to remove the convex portions 36, a sponge made of melamine resin, fine frosted glass, or the like can be suitably used as a file. In particular, these files preferably have a fineness equivalent to # 2000.

なお、上述の実施形態では、半透膜23上にガラス薄膜24を成膜する例を説明したが、こうしてガラス薄膜24を成膜すると、図4(A)に示すように、ガラス薄膜24に部分的な孔37(以下、ピンホールという)が生じることがある。ガラス薄膜24にピンホール37があると、ガラス薄膜24上に蒸留水31を張るときに、ピンホール37から蒸留水31が散逸する。こうして蒸留水31が散逸すると、第1プリズム21と第2プリズム22を接合させるときに、第1プリズム21(ガラス薄膜24)と第2プリズム22が蒸留水31を介さずに直接接触する。このため、上述の実施形態で説明した手順で第1プリズム21と第2プリズム22を接合させようとした場合に、ピンホール37の位置や分布等によっては、第1プリズム21と第2プリズム22が接合されないことがある。このため、第1プリズム21の斜面21aには、ガラス薄膜を複数重ねて成膜することが好ましい。   In the above-described embodiment, the example in which the glass thin film 24 is formed on the semipermeable membrane 23 has been described. However, when the glass thin film 24 is formed in this manner, the glass thin film 24 is formed as shown in FIG. A partial hole 37 (hereinafter referred to as a pinhole) may occur. If there is a pinhole 37 in the glass thin film 24, the distilled water 31 is dissipated from the pinhole 37 when the distilled water 31 is spread on the glass thin film 24. When the distilled water 31 is thus dissipated, when the first prism 21 and the second prism 22 are joined, the first prism 21 (glass thin film 24) and the second prism 22 come into direct contact without passing through the distilled water 31. Therefore, when the first prism 21 and the second prism 22 are to be joined by the procedure described in the above-described embodiment, the first prism 21 and the second prism 22 are dependent on the position and distribution of the pinholes 37. May not be joined. For this reason, it is preferable to form a plurality of glass thin films on the slope 21 a of the first prism 21.

例えば、図4(B)に示すように、第1プリズム21の斜面21aに、第1プリズム21側から第1ガラス薄膜42a,第2ガラス薄膜42bの順に、2層のガラス薄膜を成膜する。また、第1ガラス薄膜42a,第2ガラス薄膜42bは、前述のガラス薄膜24と同じ成分の硝材からなり、各々厚さはガラス薄膜24の半分(0.1μm)の厚さに設けられる。この場合、第1ガラス薄膜42aにピンホール37が開くと、その上に第2ガラス薄膜42bが成膜されることで、第1ガラス薄膜42aのピンホール37は塞がれる。このため、ピンホール37から蒸留水31が散逸することなく、第1プリズム21(第2ガラス薄膜42b)上に蒸留水31を張り、上述の実施形態の手順で、第1プリズム21と第2プリズム22を確実に直接接合させることができるようになる。   For example, as shown in FIG. 4B, two glass thin films are formed on the slope 21a of the first prism 21 in the order of the first glass thin film 42a and the second glass thin film 42b from the first prism 21 side. . The first glass thin film 42a and the second glass thin film 42b are made of a glass material having the same component as the glass thin film 24 described above, and each has a thickness half that of the glass thin film 24 (0.1 μm). In this case, when the pinhole 37 opens in the first glass thin film 42a, the second glass thin film 42b is formed thereon, so that the pinhole 37 of the first glass thin film 42a is closed. For this reason, the distilled water 31 is spread on the first prism 21 (second glass thin film 42b) without the distilled water 31 being dissipated from the pinhole 37, and the first prism 21 and the second prism 21 are separated by the procedure of the above-described embodiment. The prism 22 can be reliably directly joined.

また、第2ガラス薄膜42bにもピンホールが開いてしまった場合にも、この第2ガラス薄膜42bのピンホールは、1層のガラス薄膜24に開くピンホール37と比較して、浅く、小さいものになる。したがって、第1プリズム21上に蒸留水31を張ったときに、第2ガラス薄膜42bに開いたピンホール37からの蒸留水31の散逸は小さく抑えられる。このため、第1プリズム21上に成膜するガラス薄膜を2層にすることで、1層のガラス薄膜24を設けた場合と比較して、第1プリズム21と第2プリズム22をより確実に、直接接合させることができるようになる。   Even when a pinhole is opened in the second glass thin film 42b, the pinhole in the second glass thin film 42b is shallower and smaller than the pinhole 37 opened in the single layer glass thin film 24. Become a thing. Therefore, when the distilled water 31 is stretched on the first prism 21, the dissipation of the distilled water 31 from the pinhole 37 opened in the second glass thin film 42b can be suppressed to be small. For this reason, by forming the glass thin film formed on the first prism 21 into two layers, the first prism 21 and the second prism 22 can be more reliably compared with the case where the single glass thin film 24 is provided. Can be directly joined.

なお、ここでは1層のガラス薄膜24の替わりに、第1ガラス薄膜42a,第2ガラス薄膜42bの2層のガラス薄膜を設ける例を説明したが、第1プリズム21の斜面21aには、3以上のガラス薄膜を層状に複数連続して設けるようにしても良い。但し、第1プリズム21の斜面21aにガラス薄膜を複数重ねて設ける場合、ガラス薄膜の層数に応じて、成膜の工程が増加し、生産性が低下する。このため、第1プリズム21の斜面21aに複数層のガラス薄膜を設ける場合には、上述の例のようにガラス薄膜を2層に設けることが特に好ましい。   Here, an example in which two glass thin films of the first glass thin film 42a and the second glass thin film 42b are provided in place of the single glass thin film 24 has been described. However, the inclined surface 21a of the first prism 21 has 3 A plurality of the above glass thin films may be continuously provided in layers. However, when a plurality of glass thin films are provided on the inclined surface 21a of the first prism 21, the number of film forming steps increases according to the number of layers of the glass thin film, and the productivity decreases. For this reason, when providing multiple layers of glass thin films on the slope 21a of the first prism 21, it is particularly preferable to provide two layers of glass thin films as in the above example.

なお、上述の実施形態では、予め三角柱状に形成された第1プリズム21に半透膜23とガラス薄膜24(ガラス薄膜42a,42b)を成膜し、これを予め三角柱状に形成された第2プリズム22と接合させてビームスプリッタ17を製造する例を説明したが、ビームスプリッタ17をガラス基板から製造するようにしても良い。   In the above-described embodiment, the semi-transmissive film 23 and the glass thin film 24 (glass thin films 42a and 42b) are formed on the first prism 21 formed in a triangular prism shape in advance, and this is formed in a triangular prism shape in advance. Although an example in which the beam splitter 17 is manufactured by being joined to the two prisms 22 has been described, the beam splitter 17 may be manufactured from a glass substrate.

この場合、まず、第1プリズム21になる薄い第1ガラス基板46(第1ガラス材料)と、第2プリズム22になる厚い第2ガラス基板47(第2ガラス材料)を用意する。このとき、ガラス基板46,47の表面は、表面粗さRaが10nmの程度に平滑に研磨されているものとする。これらのガラス基板46,47からビームスプリッタ17を製造するときには、まず、図5(A)に示すように、第1ガラス基板46の表面に、半透膜23を成膜する。次に、図5(B)に示すように、半透膜23上にガラス薄膜24を成膜する(成膜工程)。   In this case, first, a thin first glass substrate 46 (first glass material) to be the first prism 21 and a thick second glass substrate 47 (second glass material) to be the second prism 22 are prepared. At this time, the surfaces of the glass substrates 46 and 47 are assumed to be polished smoothly to a surface roughness Ra of about 10 nm. When manufacturing the beam splitter 17 from these glass substrates 46 and 47, first, as shown in FIG. 5A, the semipermeable membrane 23 is formed on the surface of the first glass substrate 46. Next, as shown in FIG. 5B, a glass thin film 24 is formed on the semipermeable membrane 23 (film formation step).

そして、図5(C)に示すように、第1ガラス基板46の表面に蒸留水31を張り、この蒸留水31がガラス薄膜24と第2ガラス基板47との間に介在するようにして、第1ガラス基板46と第2ガラス基板47を密着させる。その後、大気中で85度に加熱し、この状態を4時間維持することで、蒸留水31を徐々に蒸発させる。こうして蒸留水31を蒸発させ、図5(D)に示すように、ガラス薄膜24と第2ガラス基板47が直接接触すると、第1ガラス基板46と第2ガラス基板47が直接接合される(接合工程)。   And as shown in FIG.5 (C), the distilled water 31 is spread on the surface of the 1st glass substrate 46, this distilled water 31 is interposed between the glass thin film 24 and the 2nd glass substrate 47, The first glass substrate 46 and the second glass substrate 47 are brought into close contact with each other. Then, it heats to 85 degree | times in air | atmosphere, The distilled water 31 is evaporated gradually by maintaining this state for 4 hours. As shown in FIG. 5D, when the glass thin film 24 and the second glass substrate 47 are in direct contact with each other, the first glass substrate 46 and the second glass substrate 47 are directly bonded (bonding). Process).

こうして直接接合された第1ガラス基板46と第2ガラス基板47の接合体51は、真空中で350度に4時間加熱され、接合強度が強化される(接合強化工程)。   The bonded body 51 of the first glass substrate 46 and the second glass substrate 47 directly bonded in this way is heated at 350 ° C. for 4 hours in a vacuum, and the bonding strength is strengthened (bonding strengthening step).

その後、図6(A)に示すように、接合体51を、ビームスプリッタ17の幅の間隔で切断し、図6(A)の奥行き方向に長い角柱状部材51aを得る。そして、図6(B)に示すように、各々の角柱状部材51aの角52a〜52cを研磨により除去して、ビームスプリッタ17の形状に整えた後に、長手方向に所定の長さ毎に切断して、ビームスプリッタ17を得る。   Thereafter, as shown in FIG. 6A, the joined body 51 is cut at intervals of the width of the beam splitter 17 to obtain a prismatic member 51a that is long in the depth direction of FIG. 6A. Then, as shown in FIG. 6 (B), the corners 52a to 52c of each prismatic member 51a are removed by polishing and adjusted to the shape of the beam splitter 17, and then cut into predetermined lengths in the longitudinal direction. Thus, the beam splitter 17 is obtained.

こうして、ガラス基板46,47からビームスプリッタ17を製造すると、ビームスプリッタ17を複数同時に製造することができ、生産性が良い。また、予め三角柱状に形成された第1プリズム21と第2プリズム22を接合させる場合よりも、上述のように第1ガラス基板46と第2ガラス基板47を接合させる方が、形状の安定性のために、容易に直接接合させることができる。   Thus, when the beam splitter 17 is manufactured from the glass substrates 46 and 47, a plurality of beam splitters 17 can be manufactured simultaneously, and the productivity is good. In addition, it is more stable in shape when the first glass substrate 46 and the second glass substrate 47 are bonded as described above than when the first prism 21 and the second prism 22 formed in a triangular prism shape in advance are bonded. Because of this, it can be easily joined directly.

さらに、ガラス基板46,47からビームスプリッタ17を製造する場合には、プリズム21,22を接合する場合よりも接合する面の面積が大きいので、ガラス薄膜24に生じるピンホールの影響を受けにくくなる。このため、ガラス基板46,47からビームスプリッタ17を製造すると、より安定して、効率良くビームスプリッタ17を製造することができる。   Further, when the beam splitter 17 is manufactured from the glass substrates 46 and 47, the area of the surface to be joined is larger than when the prisms 21 and 22 are joined, so that it is less susceptible to pinholes generated in the glass thin film 24. . For this reason, when the beam splitter 17 is manufactured from the glass substrates 46 and 47, the beam splitter 17 can be manufactured more stably and efficiently.

なお、こうしてガラス基板46,47からビームスプリッタ17を製造する場合にも、前述と同様に、半透膜23の凸部36を研磨により除去してからガラス薄膜24を設けることが好ましく、半透膜23上には複数のガラス薄膜を重ねて成膜することが好ましい。   Even in the case of manufacturing the beam splitter 17 from the glass substrates 46 and 47 in this way, it is preferable to provide the glass thin film 24 after removing the convex portions 36 of the semipermeable membrane 23 by polishing, as described above. It is preferable to form a plurality of thin glass films on the film 23.

また、ここでは、角柱状部材51aの角52a〜52cを除去した後に、長手方向にビームスプリッタ17の長さに切断してビームスプリッタ17を得る例を説明したが、角柱状部材51aを長手方向にビームスプリッタ17の長さに切断した後に、角を切除し、ビームスプリッタ17を得るようにしても良い。   Further, here, an example has been described in which after removing the corners 52a to 52c of the prismatic member 51a, the beam splitter 17 is obtained by cutting it into the length of the beam splitter 17 in the longitudinal direction. Alternatively, the beam splitter 17 may be obtained by cutting the corner after the beam splitter 17 is cut.

なお、上述の実施形態では、ビームスプリッタ17の外周の表面には光学薄膜が設けられておらず、プリズム21,22の表面が露呈されている例を説明したが、ビームスプリッタ17の外周面,特に青色光が通る面には、反射防止膜を設けることが好ましい。また、反射防止膜は、プリズム21,22等のガラス材料への密着性を良くするために、通常、高温(例えば350度程度)の状態で成膜されるが、上述の実施形態で説明した接合方法によれば、こうした高温環境下でもプリズム21,22やガラス基板46,47の接合部分が剥離したり、変質したりしないので、プリズム21,22やガラス基板46,47の接合後に反射防止膜を成膜するようにしても良い。このことは、反射防止膜に限ったことではなく、高温環境下で成膜することが必要な光学薄膜をビームスプリッタ17の外周の表面に設ける場合も同様である。   In the above-described embodiment, the example in which the optical thin film is not provided on the outer peripheral surface of the beam splitter 17 and the surfaces of the prisms 21 and 22 are exposed has been described. In particular, an antireflection film is preferably provided on the surface through which blue light passes. In addition, the antireflection film is usually formed at a high temperature (for example, about 350 degrees) in order to improve the adhesion to the glass materials such as the prisms 21 and 22. However, the antireflection film is described in the above embodiment. According to the bonding method, since the bonded portions of the prisms 21 and 22 and the glass substrates 46 and 47 are not peeled off or deteriorated even under such a high temperature environment, antireflection is performed after the prisms 21 and 22 and the glass substrates 46 and 47 are bonded. A film may be formed. This is not limited to the antireflection film, and the same applies when an optical thin film that needs to be formed in a high temperature environment is provided on the outer peripheral surface of the beam splitter 17.

また、上述の実施形態では、半透膜23を介在させて第1プリズム21と第2プリズム22を接合したビームスプリッタ17の例を説明したが、上述の実施形態で説明した接合方法は、半透膜23等の光学薄膜を介在させずにプリズムやガラス基板等のガラス材料を直接接合する場合にも、上述の実施形態で説明した接合方法を好適に用いることができる。   In the above-described embodiment, the example of the beam splitter 17 in which the first prism 21 and the second prism 22 are bonded with the semipermeable membrane 23 interposed therebetween has been described. However, the bonding method described in the above-described embodiment is a semi-transparent method. Even when a glass material such as a prism or a glass substrate is directly bonded without interposing an optical thin film such as the permeable film 23, the bonding method described in the above embodiment can be suitably used.

さらに、上述の実施形態では、半透膜23とは別にガラス薄膜24(ガラス薄膜42a,42b)を設ける例を説明したが、上述の実施形態のように光学薄膜(半透膜23)が介在するようにしてガラス材料を接合する場合に、光学薄膜の最上層(接合させるガラス材料に最も近く、直接接することになる層)がガラス薄膜24と同じ材料からなる場合には、その上に改めてガラス薄膜24を設ける必要はなく、この最上層をガラス薄膜24として利用しても良い。   Furthermore, in the above-described embodiment, an example in which the glass thin film 24 (glass thin films 42a and 42b) is provided separately from the semipermeable membrane 23 has been described, but an optical thin film (semipermeable membrane 23) is interposed as in the above-described embodiment. When the glass material is bonded as described above, if the uppermost layer of the optical thin film (the layer closest to the glass material to be bonded and is in direct contact) is made of the same material as the glass thin film 24, the glass thin film 24 is again formed thereon. It is not necessary to provide the glass thin film 24, and this uppermost layer may be used as the glass thin film 24.

なお、上述の実施形態では、イオンプレーティングによってガラス薄膜24,42a,42bを成膜する例を説明したが、ガラス薄膜24,42a,42bの成膜方法はイオンプレーティングに限らず、表面粗さが10nm程度以下となり、かつ、蒸留水31が散逸しない程度に高密度のガラス薄膜24,42a,42bを成膜することができれば、スパッタリングやCVD等、他の周知の成膜方法でこれを設けるようにしても良い。また、上述の実施形態では、ガラス薄膜24,42a,42bの密度の目安として、常温から100度の間での温度変化に対する屈折率Ndの変化量の範囲を挙げて説明したが、表面粗さが10nm程度以下であり、かつ、蒸留水31が散逸しなければ、屈折率Ndの変化量が前述の範囲を超えていても良い。例えば、上述の実施形態では、ガラス薄膜24,42a,42bは、常温から100度の間での温度変化に対して、屈折率Ndの変化量が0.02%〜0.1%程度に抑えられている例を説明したが、この温度範囲内でのガラス薄膜24,42a,42bの屈折率Ndの変化量は、0.5%以下であることが好ましく、0.2%以下であればさらに好ましく、上述の実施形態のように0.1%以下となっていることが特に好ましい。   In the above-described embodiment, the example in which the glass thin films 24, 42a, and 42b are formed by ion plating has been described. However, the method of forming the glass thin films 24, 42a, and 42b is not limited to ion plating, and the surface roughening is performed. If the glass thin films 24, 42a, and 42b having a high density can be formed to such an extent that the distilled water 31 does not dissipate to about 10 nm or less, this can be performed by other known film forming methods such as sputtering and CVD. You may make it provide. In the above-described embodiment, the range of the amount of change in the refractive index Nd with respect to the temperature change from room temperature to 100 degrees has been described as an example of the density of the glass thin films 24, 42a, and 42b. Is about 10 nm or less, and the amount of change in the refractive index Nd may exceed the aforementioned range as long as the distilled water 31 does not dissipate. For example, in the above-described embodiment, the glass thin films 24, 42a, and 42b suppress the change amount of the refractive index Nd to about 0.02% to 0.1% with respect to the temperature change from room temperature to 100 degrees. However, the amount of change in the refractive index Nd of the glass thin films 24, 42a, 42b within this temperature range is preferably 0.5% or less, and 0.2% or less. More preferably, it is particularly preferably 0.1% or less as in the above-described embodiment.

また、上述の実施形態では、ガラス薄膜24,42a,42bの厚さの一例を挙げて説明したが、ガラス薄膜24,42a,42bの厚さは任意に定めて良い。また、上述の実施形態では、ガラス薄膜42a,42bを、ガラス薄膜24の半分の厚さに設ける例を説明したが、これに限らず、複数のガラス薄膜を設ける場合にも、各ガラス薄膜の厚さは任意に定めて良い。   In the above-described embodiment, an example of the thickness of the glass thin films 24, 42a, and 42b has been described. However, the thickness of the glass thin films 24, 42a, and 42b may be arbitrarily determined. Moreover, although the example which provides the glass thin film 42a, 42b in the half thickness of the glass thin film 24 was demonstrated in the above-mentioned embodiment, not only this but also when providing a several glass thin film, each glass thin film of The thickness may be arbitrarily determined.

なお、上述の実施形態では、プリズム21,22(ガラス基板46,47)の接合時の環境,温度,及び時間の具体例を挙げて説明したが、プリズム21,22(ガラス基板46,47)の間に介在する蒸留水31を徐々に蒸発させることができれば、接合時の環境,温度,及び時間等の条件は任意に定めることができる。同様に、上述の実施形態では、プリズム21,22(ガラス基板46,47)の接合強度を強化するときの環境,温度,及び時間の具体例を挙げて説明したが、プリズム21,22の接合強度を強化することができれば、この工程の環境,温度,及び時間等の条件は、任意に定めることができる。   In the above-described embodiment, the specific examples of environment, temperature, and time at the time of joining the prisms 21 and 22 (glass substrates 46 and 47) have been described. However, the prisms 21 and 22 (glass substrates 46 and 47) are described. If the distilled water 31 intervening between them can be gradually evaporated, conditions such as environment, temperature, and time at the time of joining can be arbitrarily determined. Similarly, in the above-described embodiment, the specific examples of environment, temperature, and time when strengthening the bonding strength of the prisms 21 and 22 (glass substrates 46 and 47) have been described. If the strength can be enhanced, conditions such as the environment, temperature, and time of this process can be arbitrarily determined.

例えば、上述の実施形態では、プリズム21,22を接合させるときに、85度に加熱して蒸留水31を蒸発させる例を説明したが、蒸留水31を介して接触させたプリズム21,22を加熱する温度はこれに限らず、常温以上かつ蒸留水31の沸点未満の任意の温度に加熱しても良い。また、上述の実施形態では、接合強度を強化するときに、真空中で350度に加熱する例を説明したが、接合を強化するときに加熱する温度は、常温よりも高く、プリズムやガラス基板、ガラス薄膜のガラス転位点,半透膜23に用いた材料の融点のいずれよりも低い温度の範囲内の任意の温度で加熱しても良い。   For example, in the above-described embodiment, when the prisms 21 and 22 are joined, the example in which the distilled water 31 is evaporated by heating to 85 degrees has been described. However, the prisms 21 and 22 that are brought into contact with each other via the distilled water 31 are described. The heating temperature is not limited to this, and it may be heated to an arbitrary temperature that is not lower than normal temperature and lower than the boiling point of distilled water 31. Further, in the above-described embodiment, when the bonding strength is strengthened, the example of heating to 350 degrees in vacuum has been described. However, the heating temperature when strengthening the bonding is higher than the normal temperature, and the prism or the glass substrate. The glass thin film may be heated at an arbitrary temperature within a temperature range lower than both the glass transition point of the glass thin film and the melting point of the material used for the semipermeable membrane 23.

なお、上述の実施形態では、プリズム21,22やガラス基板46,47を、蒸留水31を介して密着させるときに、プリズム21,22間やガラス基板46,47間に、これらの部材の自重以外には圧力を加えず、単に蒸留水31を蒸発させてこれらを接合する例を説明したが、介在する蒸留水31を蒸発させてプリズム21,22やガラス基板46,47を接合させるときには、これらを加圧しながら保持するようにしても良い。例えば、ガラス基板46に半透膜23やガラス薄膜24を設けることによって、ガラス基板46に反りが生じることがあるので、こうした場合には、単に接触させるだけでなく、ガラス基板46の反りが低減されるように加圧しながらガラス基板46とガラス基板47を密着させることが好ましい。   In the above-described embodiment, when the prisms 21 and 22 and the glass substrates 46 and 47 are brought into close contact with each other via the distilled water 31, the weights of these members are between the prisms 21 and 22 and between the glass substrates 46 and 47. In the above example, the distilled water 31 is simply evaporated and bonded to each other without applying pressure. However, when the distilled water 31 is evaporated and the prisms 21 and 22 and the glass substrates 46 and 47 are bonded, These may be held while being pressurized. For example, since the glass substrate 46 may be warped by providing the glass substrate 46 with the semipermeable membrane 23 or the glass thin film 24, in such a case, the warpage of the glass substrate 46 is reduced in addition to simply contacting. The glass substrate 46 and the glass substrate 47 are preferably brought into close contact with each other while being pressurized.

なお、上述の実施形態では、プリズム21,22やガラス基板46,47を接合させるときに、蒸留水31を介在させる例を説明したが、これに限らず、プリズム21,22やガラス基材42a,42bを接合するときに、これらの間に介在させる液体は、水(HO)が十分に含まれ、かつ、揮発させることができれば良く、アルコール類やイオン等、他の成分が混在していても良い。 In the above-described embodiment, the example in which the distilled water 31 is interposed when the prisms 21 and 22 and the glass substrates 46 and 47 are joined has been described. , 42b, the liquid intervening between them is sufficient if water (H 2 O) is sufficiently contained and can be volatilized, and other components such as alcohols and ions are mixed. May be.

なお、上述の実施形態では、プリズム21,22やガラス基板46,47がホウケイ酸ガラスからなる例を説明したが、プリズム21,22やガラス基板46,47等の接合するガラス基材の材料はこれに限らず、任意のガラス材料を用いて良い。例えば、プリズム21,22やガラス基板46,47が非晶質である必要はなく、水晶からなるものを用いても良い。また、プリズム21,22やガラス基板46,47はホウケイ酸ガラスからなる必要はなく、ナトリウムやカルシウム等を含むソーダ石灰ガラス等、他の周知のガラスからなるものでも良く、二酸化ケイ素の純度が高い石英ガラスからなるものであっても良い。さらに、プリズム21,22やガラス基板46,47の製造には、組成等に応じた周知の方法で製造されたものを用いることができる。こうした任意の材料からなるガラス基材を、上述の実施形態で説明した方法で接合する場合にも、ガラス薄膜24,42a,42bを、ガラス基材の主成分である二酸化ケイ素からなる薄膜とすることが好ましい。また、ガラス薄膜24,42a,42bは、ガラス基材の主成分と同じ二酸化ケイ素を主成分とするものであれば良く、直接接触するガラス基材と同じ成分の不純物を含んだ薄膜としても良く、直接接触するガラス基材と異なる成分の不純物を含んだ薄膜としても良い。   In the above-described embodiment, the example in which the prisms 21 and 22 and the glass substrates 46 and 47 are made of borosilicate glass has been described. However, the material of the glass base material to be joined such as the prisms 21 and 22 and the glass substrates 46 and 47 is as follows. Not limited to this, any glass material may be used. For example, the prisms 21 and 22 and the glass substrates 46 and 47 do not have to be amorphous, and those made of quartz may be used. Further, the prisms 21 and 22 and the glass substrates 46 and 47 do not need to be made of borosilicate glass, and may be made of other well-known glasses such as soda lime glass containing sodium or calcium, and the purity of silicon dioxide is high. It may be made of quartz glass. Furthermore, for manufacturing the prisms 21 and 22 and the glass substrates 46 and 47, those manufactured by a well-known method according to the composition and the like can be used. Even when a glass substrate made of such an arbitrary material is bonded by the method described in the above embodiment, the glass thin films 24, 42a, and 42b are thin films made of silicon dioxide, which is the main component of the glass substrate. It is preferable. Further, the glass thin films 24, 42a, 42b may be any film containing silicon dioxide as the main component of the glass substrate, and may be a thin film containing impurities of the same component as the glass substrate in direct contact. A thin film containing impurities of a component different from that of the glass substrate in direct contact may be used.

なお、上述の実施形態では、ビームスプリッタ17を製造する例を説明したが、上述の実施形態で説明した接合方法は、形状や用途によらず、ガラス材料を接合する他の周知の接合型光学素子にも好適に適用することができる。また、上述の実施形態では、直接接合させる面が平面である例を説明したが、上述の実施形態で説明した接合方法で直接接合させる面の形状は曲面であっても良い。このため、上述の実施形態で説明した接合方法は、P偏光又はS偏光の一方に透過光の偏光状態を整えるPSコンバータや、偏光ビームスプリッタ、接合レンズ等、ビームスプリッタ17以外の周知の接合型光学素子に好適に用いることができる。   In the above-described embodiment, an example in which the beam splitter 17 is manufactured has been described. However, the bonding method described in the above-described embodiment is not limited to the shape and application, and other well-known bonding-type optics that bonds glass materials. The present invention can also be suitably applied to elements. In the above-described embodiment, the example in which the surfaces to be directly bonded are flat has been described. However, the shape of the surface to be directly bonded by the bonding method described in the above-described embodiments may be a curved surface. For this reason, the bonding method described in the above embodiment is a well-known bonding type other than the beam splitter 17 such as a PS converter that adjusts the polarization state of transmitted light to one of P-polarized light and S-polarized light, a polarized beam splitter, and a bonded lens. It can be suitably used for an optical element.

11 光ピックアップ
17 ビームスプリッタ
21 第1プリズム(ガラス基材)
21a 斜面(接合面)
22 第2プリズム(ガラス基材)
22a 側面(接合面)
23 半透膜
24,42a,42b ガラス薄膜
31 蒸留水
46,47 ガラス基板(ガラス基材)
51 接合体
11 Optical pickup 17 Beam splitter 21 First prism (glass substrate)
21a Slope (joint surface)
22 Second prism (glass substrate)
22a Side surface (joint surface)
23 Semipermeable membrane 24, 42a, 42b Glass thin film 31 Distilled water 46, 47 Glass substrate (glass substrate)
51 Conjugate

Claims (9)

第1ガラス基材の接合面に、前記第1ガラス基材に接合する第2ガラス基材と主成分が等しい薄膜を成膜する成膜工程と、
前記薄膜と前記第2ガラス基材の接合面とを、その相互間に水を介在させて密着した後に前記水を蒸発させて前記第1ガラス基材と前記第2ガラス基材とを一体化する接合工程と、
を備えることを特徴とするガラス基材の接合方法。
A film forming step of forming a thin film having the same main component as the second glass substrate to be bonded to the first glass substrate on the bonding surface of the first glass substrate;
The first glass substrate and the second glass substrate are integrated by evaporating the water after adhering the thin film and the bonding surface of the second glass substrate with water interposed therebetween. A joining process to perform,
A method for joining glass substrates, comprising:
前記接合工程における前記水の蒸発は、大気中で、常温以上かつ水の沸点未満の所定温度での加熱により行われることを特徴とする請求項1記載のガラス基材の接合方法。   The glass substrate bonding method according to claim 1, wherein the water evaporation in the bonding step is performed in the air by heating at a predetermined temperature not lower than normal temperature and lower than the boiling point of water. 前記接合工程の後に、前記第1ガラス基材と前記第2ガラス基材との接合体を真空中で加熱する接合強化工程を行うことを特徴とする請求項1または2記載のガラス基材の接合方法。   3. The glass substrate according to claim 1, wherein after the bonding step, a bonding strengthening step of heating the bonded body of the first glass substrate and the second glass substrate in a vacuum is performed. Joining method. 前記第1ガラス基材の接合面に所定の光学的機能を有する光学薄膜が予め形成され、前記成膜工程は前記光学薄膜の表面に行われることを特徴とする請求項1ないし3いずれかに記載のガラス基材の接合方法。   The optical thin film having a predetermined optical function is formed in advance on the bonding surface of the first glass substrate, and the film forming step is performed on the surface of the optical thin film. The glass substrate joining method as described. 前記光学薄膜の表面を研磨した後に、前記成膜工程が行われることを特徴とする請求項4記載のガラス基材の接合方法。   The glass substrate bonding method according to claim 4, wherein the film forming step is performed after polishing the surface of the optical thin film. 前記薄膜は、層状に複数連続して設けられることを特徴とする請求項1ないし5いずれかに記載のガラス基材の接合方法。   The glass substrate bonding method according to claim 1, wherein a plurality of the thin films are continuously provided in a layer shape. 前記成膜工程で成膜される前記薄膜は、常温から100度の間での温度変化に対し、d線に対する屈折率の変化量が0.5%以下であることを特徴とする請求項1ないし6いずれかに記載のガラス基材の接合方法。   The thin film formed in the film forming step has a refractive index change amount with respect to d-line of 0.5% or less with respect to a temperature change between room temperature and 100 degrees. 7. The method for bonding glass substrates according to any one of 6 to 6. 前記薄膜が二酸化ケイ素からなることを特徴とする請求項1ないし7いずれかに記載のガラス基材接合方法。   The glass substrate bonding method according to claim 1, wherein the thin film is made of silicon dioxide. 第1ガラス基材と第2ガラス基材との接合体であって、前記第1ガラス基材の前記第2ガラス基材との接合面に、前記第2ガラス基材と主成分が等しい薄膜が形成され、この薄膜と前記第2ガラス基材との接合面との間に介在させた水を蒸発させることにより、前記第2ガラス基材の接合面が前記薄膜を介して前記第1ガラス基材の接合面に接合されていることを特徴とするガラス接合体。   A thin film having a main component equal to that of the second glass substrate on a bonding surface of the first glass substrate and the second glass substrate, the bonded body of the first glass substrate and the second glass substrate. And the water interposed between the thin film and the bonding surface of the second glass substrate is evaporated, so that the bonding surface of the second glass substrate passes through the thin film and the first glass. A glass joined body which is joined to a joining surface of a substrate.
JP2009130669A 2009-05-29 2009-05-29 Glass substrate bonding method and glass bonded body Pending JP2010276940A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009130669A JP2010276940A (en) 2009-05-29 2009-05-29 Glass substrate bonding method and glass bonded body
CN2010101882294A CN101900840B (en) 2009-05-29 2010-05-25 Joining method of glass base material and glass conjugant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009130669A JP2010276940A (en) 2009-05-29 2009-05-29 Glass substrate bonding method and glass bonded body

Publications (1)

Publication Number Publication Date
JP2010276940A true JP2010276940A (en) 2010-12-09

Family

ID=43226530

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009130669A Pending JP2010276940A (en) 2009-05-29 2009-05-29 Glass substrate bonding method and glass bonded body

Country Status (2)

Country Link
JP (1) JP2010276940A (en)
CN (1) CN101900840B (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018526316A (en) * 2015-08-10 2018-09-13 コーニング インコーポレイテッド Method for producing optical element
WO2019182690A1 (en) * 2018-03-20 2019-09-26 Invensas Bonding Technologies, Inc. Direct-bonded lamination for improved image clarity in optical devices
JP2020030299A (en) * 2018-08-22 2020-02-27 日本電気硝子株式会社 Method for manufacturing optical component
JP2020046458A (en) * 2018-09-14 2020-03-26 日本電気硝子株式会社 Optical component
JP2021063907A (en) * 2019-10-15 2021-04-22 パナソニックIpマネジメント株式会社 Light source device and projection type display device
JPWO2022131066A1 (en) * 2020-12-18 2022-06-23
US11715730B2 (en) 2017-03-16 2023-08-01 Adeia Semiconductor Technologies Llc Direct-bonded LED arrays including optical elements configured to transmit optical signals from LED elements
US11762200B2 (en) 2019-12-17 2023-09-19 Adeia Semiconductor Bonding Technologies Inc. Bonded optical devices
US11860415B2 (en) 2018-02-26 2024-01-02 Adeia Semiconductor Bonding Technologies Inc. Integrated optical waveguides, direct-bonded waveguide interface joints, optical routing and interconnects

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109518129B (en) * 2017-09-18 2022-03-01 安徽精卓光显技术有限责任公司 Preparation method of curved glass
CN116583400A (en) * 2020-12-18 2023-08-11 Agc株式会社 Bonded body, method for producing bonded body, and light-emitting device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06298539A (en) * 1993-04-09 1994-10-25 Naoetsu Denshi Kogyo Kk Bonding of glass material
JPH10142408A (en) * 1996-11-12 1998-05-29 Canon Inc Production of optical element and optical element by this method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1172411C (en) * 2001-04-18 2004-10-20 中国科学院理化技术研究所 A nonlinear optical crystal laser frequency conversion coupler
US20100033816A1 (en) * 2006-09-29 2010-02-11 3M Innovative Properties Company Adhesives inhibiting formation of artifacts in polymer based optical elements
CN101539668A (en) * 2008-03-21 2009-09-23 中国科学院西安光学精密机械研究所 Light splitting prism

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06298539A (en) * 1993-04-09 1994-10-25 Naoetsu Denshi Kogyo Kk Bonding of glass material
JPH10142408A (en) * 1996-11-12 1998-05-29 Canon Inc Production of optical element and optical element by this method

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018526316A (en) * 2015-08-10 2018-09-13 コーニング インコーポレイテッド Method for producing optical element
US11715730B2 (en) 2017-03-16 2023-08-01 Adeia Semiconductor Technologies Llc Direct-bonded LED arrays including optical elements configured to transmit optical signals from LED elements
US12199082B2 (en) 2017-03-16 2025-01-14 Adeia Semiconductor Technologies Llc Method of direct-bonded optoelectronic devices
US12166024B2 (en) 2017-03-16 2024-12-10 Adeia Semiconductor Technologies Llc Direct-bonded LED arrays drivers
US12271032B2 (en) 2018-02-26 2025-04-08 Adeia Semiconductor Bonding Technologies Inc. Integrated optical waveguides, direct-bonded waveguide interface joints, optical routing and interconnects
US11860415B2 (en) 2018-02-26 2024-01-02 Adeia Semiconductor Bonding Technologies Inc. Integrated optical waveguides, direct-bonded waveguide interface joints, optical routing and interconnects
JP7436376B2 (en) 2018-03-20 2024-02-21 アデイア セミコンダクター ボンディング テクノロジーズ インコーポレイテッド Direct bond stacking for improved image clarity in optical devices
US11256004B2 (en) 2018-03-20 2022-02-22 Invensas Bonding Technologies, Inc. Direct-bonded lamination for improved image clarity in optical devices
JP2021518583A (en) * 2018-03-20 2021-08-02 インヴェンサス ボンディング テクノロジーズ インコーポレイテッド Directly coupled laminates for improved mapping in optical devices
US12270970B2 (en) 2018-03-20 2025-04-08 Adeia Semiconductor Bonding Technologies Inc. Direct-bonded lamination for improved image clarity in optical devices
WO2019182690A1 (en) * 2018-03-20 2019-09-26 Invensas Bonding Technologies, Inc. Direct-bonded lamination for improved image clarity in optical devices
JP2020030299A (en) * 2018-08-22 2020-02-27 日本電気硝子株式会社 Method for manufacturing optical component
JP2020046458A (en) * 2018-09-14 2020-03-26 日本電気硝子株式会社 Optical component
JP7329731B2 (en) 2019-10-15 2023-08-21 パナソニックIpマネジメント株式会社 Light source device and projection display device
JP2021063907A (en) * 2019-10-15 2021-04-22 パナソニックIpマネジメント株式会社 Light source device and projection type display device
US11762200B2 (en) 2019-12-17 2023-09-19 Adeia Semiconductor Bonding Technologies Inc. Bonded optical devices
US12153222B2 (en) 2019-12-17 2024-11-26 Adeia Semiconductor Bonding Technologies Inc. Bonded optical devices
JPWO2022131066A1 (en) * 2020-12-18 2022-06-23

Also Published As

Publication number Publication date
CN101900840A (en) 2010-12-01
CN101900840B (en) 2012-11-28

Similar Documents

Publication Publication Date Title
JP2010276940A (en) Glass substrate bonding method and glass bonded body
CN104428696B (en) Array of optical components
US20110216255A1 (en) Polarization diffraction grating, method for manufacturing the same, and optical pickup apparatus using the polarization diffraction grating
US20130038933A1 (en) Beam splitter and method for manufacturing the same
TW201415088A (en) Polarizing beam splitter and methods of making same
JP4860268B2 (en) Prism manufacturing method, prism, optical pickup, and liquid crystal projector
JP2010190936A (en) Method of manufacturing optical article
JP4440706B2 (en) Polarization hologram element, manufacturing method thereof, optical pickup device using polarization hologram element, and optical disc drive apparatus
JP2010228153A (en) Method for manufacturing optical article
JP2010276941A (en) Manufacturing method of junction type optical element
JP2010067310A (en) Wide-band wavelength plate and optical head device
JP2007280460A (en) Optical head device
JP4116317B2 (en) Polarization separating element, method for manufacturing the same, bonding apparatus, and optical pickup apparatus
JP2007212694A (en) Beam splitter
JP4443425B2 (en) Optical multilayer device
JP2009145799A (en) Optical element and optical element manufacturing method
JP2007101866A (en) Optical component and method for manufacturing optical component
JP4139140B2 (en) Polarization hologram element and manufacturing method thereof
JP3947828B2 (en) Optical head device and manufacturing method thereof
JP4211443B2 (en) Prism manufacturing method and optical system manufacturing method
JP4259894B2 (en) Method for manufacturing polarization separation element
JP2012108969A (en) Optical element, prism, polarization conversion element, optical pickup device and projection device
JP2007249130A (en) Flat optical member, optical device manufacturing method, and optical device
US20050213210A1 (en) Phase difference plate and optical head device
JPH09185837A (en) Optical head device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111209

A977 Report on retrieval

Effective date: 20121003

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121010

A521 Written amendment

Effective date: 20121210

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Effective date: 20130724

Free format text: JAPANESE INTERMEDIATE CODE: A02