JP2010208875A - Magnetic hollow particle and method for producing the same - Google Patents
Magnetic hollow particle and method for producing the same Download PDFInfo
- Publication number
- JP2010208875A JP2010208875A JP2009054774A JP2009054774A JP2010208875A JP 2010208875 A JP2010208875 A JP 2010208875A JP 2009054774 A JP2009054774 A JP 2009054774A JP 2009054774 A JP2009054774 A JP 2009054774A JP 2010208875 A JP2010208875 A JP 2010208875A
- Authority
- JP
- Japan
- Prior art keywords
- magnetic
- particles
- particle
- template
- hollow
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002245 particle Substances 0.000 title claims abstract description 234
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 24
- 239000006249 magnetic particle Substances 0.000 claims abstract description 98
- 238000010438 heat treatment Methods 0.000 claims abstract description 19
- 239000008346 aqueous phase Substances 0.000 claims abstract description 17
- 239000002356 single layer Substances 0.000 claims abstract description 16
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 108
- 239000006185 dispersion Substances 0.000 claims description 38
- 238000000034 method Methods 0.000 claims description 33
- SZVJSHCCFOBDDC-UHFFFAOYSA-N iron(II,III) oxide Inorganic materials O=[Fe]O[Fe]O[Fe]=O SZVJSHCCFOBDDC-UHFFFAOYSA-N 0.000 claims description 27
- 239000002131 composite material Substances 0.000 claims description 24
- 229920006317 cationic polymer Polymers 0.000 claims description 18
- 230000008569 process Effects 0.000 claims description 6
- 238000002156 mixing Methods 0.000 claims description 2
- 229910000859 α-Fe Inorganic materials 0.000 claims description 2
- 238000005406 washing Methods 0.000 abstract description 5
- 239000000377 silicon dioxide Substances 0.000 description 27
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 23
- 229910021642 ultra pure water Inorganic materials 0.000 description 20
- 239000012498 ultrapure water Substances 0.000 description 20
- 239000000243 solution Substances 0.000 description 12
- 238000003917 TEM image Methods 0.000 description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 10
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 9
- 239000011247 coating layer Substances 0.000 description 9
- 125000000524 functional group Chemical group 0.000 description 9
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 8
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 8
- 239000011248 coating agent Substances 0.000 description 8
- 238000000576 coating method Methods 0.000 description 8
- 238000010304 firing Methods 0.000 description 8
- 239000006228 supernatant Substances 0.000 description 8
- 239000006087 Silane Coupling Agent Substances 0.000 description 7
- 125000000129 anionic group Chemical group 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 7
- 229960004106 citric acid Drugs 0.000 description 7
- 238000010586 diagram Methods 0.000 description 7
- 238000003756 stirring Methods 0.000 description 7
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 6
- 125000002091 cationic group Chemical group 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 5
- 238000009826 distribution Methods 0.000 description 5
- -1 oleic acid Chemical class 0.000 description 5
- 239000002244 precipitate Substances 0.000 description 5
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 4
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 4
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 4
- 206010020843 Hyperthermia Diseases 0.000 description 4
- 239000005642 Oleic acid Substances 0.000 description 4
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- KYKAJFCTULSVSH-UHFFFAOYSA-N chloro(fluoro)methane Chemical compound F[C]Cl KYKAJFCTULSVSH-UHFFFAOYSA-N 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 230000036031 hyperthermia Effects 0.000 description 4
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 4
- 239000010410 layer Substances 0.000 description 4
- 230000005415 magnetization Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 230000002269 spontaneous effect Effects 0.000 description 4
- NJRXVEJTAYWCQJ-UHFFFAOYSA-N thiomalic acid Chemical compound OC(=O)CC(S)C(O)=O NJRXVEJTAYWCQJ-UHFFFAOYSA-N 0.000 description 4
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 125000003277 amino group Chemical group 0.000 description 3
- NBVXSUQYWXRMNV-UHFFFAOYSA-N fluoromethane Chemical compound FC NBVXSUQYWXRMNV-UHFFFAOYSA-N 0.000 description 3
- 230000004927 fusion Effects 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 3
- 239000003960 organic solvent Substances 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 238000012795 verification Methods 0.000 description 3
- SJECZPVISLOESU-UHFFFAOYSA-N 3-trimethoxysilylpropan-1-amine Chemical compound CO[Si](OC)(OC)CCCN SJECZPVISLOESU-UHFFFAOYSA-N 0.000 description 2
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonium chloride Substances [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 2
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- 206010028980 Neoplasm Diseases 0.000 description 2
- 229920002873 Polyethylenimine Polymers 0.000 description 2
- 239000004809 Teflon Substances 0.000 description 2
- 229920006362 Teflon® Polymers 0.000 description 2
- 238000004220 aggregation Methods 0.000 description 2
- 230000002776 aggregation Effects 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N ammonia Natural products N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 235000011114 ammonium hydroxide Nutrition 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 201000011510 cancer Diseases 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 229940079593 drug Drugs 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 238000012377 drug delivery Methods 0.000 description 2
- 239000000839 emulsion Substances 0.000 description 2
- 238000011049 filling Methods 0.000 description 2
- 125000001841 imino group Chemical group [H]N=* 0.000 description 2
- 150000002505 iron Chemical class 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000002923 metal particle Substances 0.000 description 2
- 239000003094 microcapsule Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 238000009210 therapy by ultrasound Methods 0.000 description 2
- WYTZZXDRDKSJID-UHFFFAOYSA-N (3-aminopropyl)triethoxysilane Chemical compound CCO[Si](OCC)(OCC)CCCN WYTZZXDRDKSJID-UHFFFAOYSA-N 0.000 description 1
- RIQRGMUSBYGDBL-UHFFFAOYSA-N 1,1,1,2,2,3,4,5,5,5-decafluoropentane Chemical compound FC(F)(F)C(F)C(F)C(F)(F)C(F)(F)F RIQRGMUSBYGDBL-UHFFFAOYSA-N 0.000 description 1
- XNWFRZJHXBZDAG-UHFFFAOYSA-N 2-METHOXYETHANOL Chemical compound COCCO XNWFRZJHXBZDAG-UHFFFAOYSA-N 0.000 description 1
- JHUUPUMBZGWODW-UHFFFAOYSA-N 3,6-dihydro-1,2-dioxine Chemical compound C1OOCC=C1 JHUUPUMBZGWODW-UHFFFAOYSA-N 0.000 description 1
- BDAGIHXWWSANSR-UHFFFAOYSA-N Formic acid Chemical compound OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 1
- BCKXLBQYZLBQEK-KVVVOXFISA-M Sodium oleate Chemical compound [Na+].CCCCCCCC\C=C/CCCCCCCC([O-])=O BCKXLBQYZLBQEK-KVVVOXFISA-M 0.000 description 1
- 238000005576 amination reaction Methods 0.000 description 1
- 229960004543 anhydrous citric acid Drugs 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000011246 composite particle Substances 0.000 description 1
- 239000002872 contrast media Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000002296 dynamic light scattering Methods 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000003301 hydrolyzing effect Effects 0.000 description 1
- FBAFATDZDUQKNH-UHFFFAOYSA-M iron chloride Chemical compound [Cl-].[Fe] FBAFATDZDUQKNH-UHFFFAOYSA-M 0.000 description 1
- DEVYBOZJYUYBMC-KVVVOXFISA-N iron;(z)-octadec-9-enoic acid Chemical compound [Fe].CCCCCCCC\C=C/CCCCCCCC(O)=O DEVYBOZJYUYBMC-KVVVOXFISA-N 0.000 description 1
- 150000004668 long chain fatty acids Chemical class 0.000 description 1
- ZDGGJQMSELMHLK-UHFFFAOYSA-N m-Trifluoromethylhippuric acid Chemical compound OC(=O)CNC(=O)C1=CC=CC(C(F)(F)F)=C1 ZDGGJQMSELMHLK-UHFFFAOYSA-N 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 238000002715 modification method Methods 0.000 description 1
- INJVFBCDVXYHGQ-UHFFFAOYSA-N n'-(3-triethoxysilylpropyl)ethane-1,2-diamine Chemical compound CCO[Si](OCC)(OCC)CCCNCCN INJVFBCDVXYHGQ-UHFFFAOYSA-N 0.000 description 1
- PHQOGHDTIVQXHL-UHFFFAOYSA-N n'-(3-trimethoxysilylpropyl)ethane-1,2-diamine Chemical compound CO[Si](OC)(OC)CCCNCCN PHQOGHDTIVQXHL-UHFFFAOYSA-N 0.000 description 1
- MQWFLKHKWJMCEN-UHFFFAOYSA-N n'-[3-[dimethoxy(methyl)silyl]propyl]ethane-1,2-diamine Chemical compound CO[Si](C)(OC)CCCNCCN MQWFLKHKWJMCEN-UHFFFAOYSA-N 0.000 description 1
- 239000012454 non-polar solvent Substances 0.000 description 1
- CCCMONHAUSKTEQ-UHFFFAOYSA-N octadecene Natural products CCCCCCCCCCCCCCCCC=C CCCMONHAUSKTEQ-UHFFFAOYSA-N 0.000 description 1
- 150000002889 oleic acids Chemical class 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 229920000083 poly(allylamine) Polymers 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000000527 sonication Methods 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 239000012798 spherical particle Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- ACTRVOBWPAIOHC-UHFFFAOYSA-N succimer Chemical compound OC(=O)C(S)C(S)C(O)=O ACTRVOBWPAIOHC-UHFFFAOYSA-N 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Landscapes
- Hard Magnetic Materials (AREA)
- Soft Magnetic Materials (AREA)
- Compounds Of Iron (AREA)
- Manufacturing Of Micro-Capsules (AREA)
Abstract
【課題】本発明は、粒子径および外殻の膜厚を自在に制御でき、且つ、分散性に優れる磁性中空粒子およびその製造方法を提供することを目的とする。
【解決手段】正に帯電させた粒子径100nm以下の球状のテンプレート粒子の表面に対して、負に帯電させた粒子径6nm以下の磁性粒子を単層で帯電吸着させる。これを水相で圧力加熱することによって、磁性粒子が互いに強固に融着し、外殻を形成する。外殻内部の残存成分を洗浄・溶出することによって磁性中空粒子が作製される。
【選択図】図1An object of the present invention is to provide a magnetic hollow particle capable of freely controlling the particle diameter and the film thickness of the outer shell, and excellent in dispersibility, and a method for producing the same.
A negatively charged magnetic particle having a particle diameter of 6 nm or less is charged and adsorbed in a single layer on the surface of a positively charged spherical template particle having a particle diameter of 100 nm or less. By heating this with an aqueous phase under pressure, the magnetic particles are firmly fused together to form an outer shell. Magnetic hollow particles are produced by washing and eluting the remaining components inside the outer shell.
[Selection] Figure 1
Description
本発明は、磁性中空粒子に関し、より詳細には、粒子径および外殻の膜厚を自在に制御でき、且つ、分散性に優れる磁性中空粒子およびその製造方法に関する。 The present invention relates to a magnetic hollow particle, and more particularly, to a magnetic hollow particle having excellent dispersibility and a method for producing the magnetic hollow particle, in which the particle diameter and the film thickness of the outer shell can be freely controlled.
近年、磁性中空粒子をマイクロカプセルとして利用することが検討されており、例えば、その中空部に薬剤を充填することによって、ドラックデリバリーの担体として用いたり、フロンなどの気体を充填することによって、超音波反射画像を撮像する際の造影剤として用いたりすることが検討されている。さらには、その磁気熱量効果を利用して、がんの温熱治療(ハイパーサーミア)の用途に適用することが検討されている。 In recent years, it has been studied to use magnetic hollow particles as microcapsules. For example, by filling a drug in the hollow part, it can be used as a carrier for drug delivery, or by filling a gas such as chlorofluorocarbon. It has been studied to use it as a contrast agent when capturing a sound wave reflection image. Furthermore, using the magnetocaloric effect has been studied for application to hyperthermia treatment of cancer.
磁性中空粒子の製造方法については、これまで種々の方法が検討されている。特開2000−34582号公報(特許文献1)は、鉄塩の水溶液にテンプレートとして球状のポリマー粒子を分散させ、鉄塩を加水分解することによって、テンプレート粒子の表面に酸化鉄の被覆層を形成し、これを乾燥・焼成して磁性中空粒子を作製する方法を開示する。 Various methods have been studied for producing magnetic hollow particles. JP 2000-34582 A (Patent Document 1) forms a coating layer of iron oxide on the surface of template particles by dispersing spherical polymer particles as a template in an aqueous solution of iron salt and hydrolyzing the iron salt. Then, a method for producing a magnetic hollow particle by drying and firing this is disclosed.
しかし、特許文献1の方法では、中空粒子の外殻の膜厚の制御が困難であり、一般に、その膜厚は厚くなる傾向にあった。また、その中空部の形状や容積にばらつきが生じていた。さらに、その粒子径の多くは、400〜600nm程度の大きいものであった。 However, in the method of Patent Document 1, it is difficult to control the film thickness of the outer shell of the hollow particles, and generally the film thickness tends to increase. In addition, the shape and volume of the hollow portion varied. Furthermore, many of the particle diameters were as large as about 400 to 600 nm.
一方、特開2000−203810号公報(特許文献2)は、テンプレートを使用しない別法として、金属塩の水溶液に有機溶剤を添加することによって、適切な水滴径をもつW/O型エマルジョンを形成し、当該エマルジョンを噴霧・焼成することによって、膜厚20nm以下の外殻を有する磁性中空粒子を作製する方法を開示する。特許文献2の方法によれば、膜厚が薄くなり、また、その中空部がきれいな球状になることは認められるものの、依然として、中空粒子の外殻の膜厚および粒子径を制御することは困難であり、その粒子径の多くはマイクロメータオーダーであった。 On the other hand, Japanese Patent Laid-Open No. 2000-203810 (Patent Document 2) forms a W / O type emulsion having an appropriate water droplet diameter by adding an organic solvent to an aqueous solution of a metal salt as an alternative method not using a template. And the method of producing the magnetic hollow particle which has an outer shell with a film thickness of 20 nm or less by spraying and baking the said emulsion is disclosed. According to the method of Patent Document 2, it is recognized that the film thickness becomes thin and the hollow part becomes a beautiful spherical shape, but it is still difficult to control the film thickness and particle diameter of the outer shell of the hollow particles. Many of the particle sizes were on the order of micrometers.
さらに、特開平5−138009号公報(特許文献3)は、ポリマーからなるテンプレート粒子と該テンプレート粒子の粒子径の1/5以下の粒子径を有する金属粒子とを気流中で高速撹拌することによって、金属粒子をテンプレート粒子の表面に衝突させて被覆層を形成した後、これを加熱・焼成して磁性中空粒子を作製する方法を開示する。しかし、特許文献3の方法においても、中空粒子の微細化は困難であり、その粒子径の多くはマイクロメータオーダーであった。 Furthermore, Japanese Patent Application Laid-Open No. 5-138209 (Patent Document 3) discloses that template particles made of a polymer and metal particles having a particle size of 1/5 or less of the particle size of the template particles are stirred at high speed in an air stream. A method for producing magnetic hollow particles by colliding metal particles with the surface of template particles to form a coating layer and then heating and firing the coating layer is disclosed. However, even in the method of Patent Document 3, it is difficult to make hollow particles fine, and many of the particle diameters are on the order of micrometers.
磁性中空粒子のさらなる応用展開を考えた場合、その粒子径の極小化は、一つの重要な懸案事項であるが、上述したように、特許文献1〜3が開示するいずれの方法によっても、粒子径100nm以下の磁性中空粒子を自在に制御して作製することは非常に困難であった。 When considering further application development of magnetic hollow particles, minimization of the particle diameter is one important concern, but as described above, the particles can be obtained by any of the methods disclosed in Patent Documents 1 to 3. It was very difficult to freely control and produce magnetic hollow particles having a diameter of 100 nm or less.
また、磁性中空粒子には、その用途において、高い分散性が要求されるところ、特許文献1〜3が開示する方法においては、中空粒子の外殻の強度を得るために高温で焼成する工程が必須であるため、その焼成工程において粒子同士が凝集していまい、分散性が悪化するという問題があった。加えて、従来法による磁性中空粒子には、自発磁化による凝集の問題が存在する。すなわち、磁性中空粒子の外殻の膜厚が20nm以上になると、磁性中空粒子自体が自発磁化をもつため、粒子間に磁気的な引力が働いて分散性が悪化するという問題があった。 In addition, the magnetic hollow particles are required to have high dispersibility in their use. In the methods disclosed in Patent Documents 1 to 3, there is a step of firing at a high temperature in order to obtain the strength of the outer shell of the hollow particles. Since it is essential, there is a problem that the particles are aggregated in the firing step and the dispersibility is deteriorated. In addition, the magnetic hollow particles according to the conventional method have a problem of aggregation due to spontaneous magnetization. That is, when the film thickness of the outer shell of the magnetic hollow particle is 20 nm or more, the magnetic hollow particle itself has spontaneous magnetization, so that there is a problem that the magnetic attraction acts between the particles and the dispersibility deteriorates.
本発明は、上記従来技術における課題に鑑みてなされたものであり、本発明は、粒子径および外殻の膜厚を自在に制御でき、且つ、分散性に優れる磁性中空粒子およびその製造方法を提供することを目的とする。 The present invention has been made in view of the above-described problems in the prior art, and the present invention provides a magnetic hollow particle that can freely control the particle diameter and the thickness of the outer shell, and has excellent dispersibility, and a method for producing the same. The purpose is to provide.
本発明者らは、粒子径および外殻の膜厚を自在に制御でき、且つ、分散性に優れる磁性中空粒子につき鋭意検討した。その結果、正に帯電させた球状のテンプレート粒子の表面に対して、負に帯電させた粒子径3〜6nmの磁性粒子を単層で帯電吸着させ、これを水相で圧力加熱することによって、外殻を形成する磁性粒子が互いに強固に融着する現象を見出し、本発明に至ったのである。 The present inventors diligently studied magnetic hollow particles that can freely control the particle diameter and the thickness of the outer shell and that are excellent in dispersibility. As a result, negatively charged magnetic particles with a particle diameter of 3 to 6 nm are charged and adsorbed in a single layer on the surface of the positively charged spherical template particles, and this is pressure-heated in an aqueous phase, The inventors have found a phenomenon in which the magnetic particles forming the outer shell are firmly bonded to each other, and have reached the present invention.
すなわち、本発明によれば、磁性粒子が融着してなる外殻と球状の中空部とを備える、粒子径100nm以下の磁性中空粒子が提供される。本発明においては、前記外殻の膜厚を10nm以下にすることができ、前記中空部内に第2の磁性粒子を内包させることができる。また、本発明においては、前記中空部内に第2の磁性粒子を内包させることができ、前記磁性粒子を、マグネタイト粒子とすることができる。さらに、本発明においては、前記外殻を、前記磁性粒子の単層膜とすることができ、また、前記外殻を、前記磁性粒子の単層膜が積層された積層膜とすることができる。 That is, according to the present invention, there are provided magnetic hollow particles having a particle diameter of 100 nm or less, comprising an outer shell formed by fusing magnetic particles and a spherical hollow portion. In the present invention, the thickness of the outer shell can be 10 nm or less, and the second magnetic particles can be included in the hollow portion. Moreover, in this invention, the 2nd magnetic particle can be included in the said hollow part, and the said magnetic particle can be made into a magnetite particle. Furthermore, in the present invention, the outer shell can be a single-layer film of the magnetic particles, and the outer shell can be a multilayer film in which the single-layer films of the magnetic particles are stacked. .
さらに、本発明によれば、正に帯電させた球状のテンプレート粒子の分散液と、負に帯電させた6nm以下の粒子径を有する磁性粒子の分散液とを混合し、前記テンプレート粒子の表面に前記磁性粒子を単層で吸着させてテンプレート−磁性粒子複合体を形成する工程と、前記テンプレート−磁性粒子複合体を水相で圧力加熱する工程と、前記テンプレート粒子を溶出する工程とを含む、磁性中空粒子の製造方法が提供される。本発明においては、前記加熱する工程の加熱温度を、150℃〜200℃でとすることができる。また、本発明においては、前記テンプレート−磁性粒子複合体の分散液とカチオン性ポリマー溶液とを混合し、カチオン性ポリマーを前記テンプレート−磁性粒子複合体の表面に吸着させてテンプレート−磁性粒子−カチオン性ポリマー複合体を形成する工程と、前記テンプレート−磁性粒子−カチオン性ポリマー複合体の分散液と前記磁性粒子の分散液とを混合し、前記テンプレート−磁性粒子−カチオン性ポリマー複合体の表面に前記磁性粒子を単層で吸着させる工程とをさらに含むことができる。さらに、本発明においては、前記テンプレート粒子が第2のフェライト粒子を含有することができ、前記磁性粒子をマグネタイト粒子とすることができ、前記テンプレート粒子をシリカ粒子とすることができる。 Further, according to the present invention, a positively charged dispersion of spherical template particles and a negatively charged dispersion of magnetic particles having a particle diameter of 6 nm or less are mixed, and the surface of the template particles is mixed. Including a step of adsorbing the magnetic particles in a single layer to form a template-magnetic particle composite, a step of pressure heating the template-magnetic particle composite in an aqueous phase, and a step of eluting the template particles. A method for producing magnetic hollow particles is provided. In the present invention, the heating temperature in the heating step may be 150 ° C. to 200 ° C. In the present invention, the template-magnetic particle composite dispersion and the cationic polymer solution are mixed, and the cationic polymer is adsorbed on the surface of the template-magnetic particle composite to form the template-magnetic particle-cation. Mixing the template-magnetic particle-cationic polymer composite dispersion and the magnetic particle dispersion to form a surface of the template-magnetic particle-cationic polymer composite. A step of adsorbing the magnetic particles in a single layer. Further, in the present invention, the template particles can contain second ferrite particles, the magnetic particles can be magnetite particles, and the template particles can be silica particles.
上述したように、本発明によれば、粒子径および外殻の膜厚を自在に制御でき、且つ、分散性に優れる磁性中空粒子およびその製造方法が提供される。 As described above, according to the present invention, there are provided magnetic hollow particles that can freely control the particle diameter and the thickness of the outer shell, and that are excellent in dispersibility, and a method for producing the same.
以下、本発明を図面に示した実施の形態をもって説明するが、本発明は、図面に示した実施の形態に限定されるものではない。なお、以下に参照する各図においては、共通する要素については同じ符号を用い、適宜その説明を省略するものとする。また、以下の説明において使用する「平均粒子径」とは、個数平均を指すものとする。 Hereinafter, the present invention will be described with reference to embodiments shown in the drawings, but the present invention is not limited to the embodiments shown in the drawings. In each drawing referred to below, common elements are denoted by the same reference numerals, and description thereof is omitted as appropriate. In addition, “average particle diameter” used in the following description refers to number average.
図1は、本発明の第1の実施形態である磁性中空粒子100の製造方法を説明するための概念図である。本実施形態においては、まず、テンプレートとして粒子径の揃った球状の粒子を用意する。図1(a)は、本実施形態におけるテンプレートである、シリカ粒子10を示す。シリカ粒子10の粒子径については適宜選択することができるが、本実施形態においては、シリカ粒子10の平均粒子径を100nm以下にすることによって、従来法ではその作製が困難であった極小磁性中空粒子を作製することができる。本実施形態においては、シリカ粒子10の平均粒子径を100nm以下にすることができ、80nm以下にすることができ、50nm以下にすることができる。 FIG. 1 is a conceptual diagram for explaining a method for producing a magnetic hollow particle 100 according to the first embodiment of the present invention. In the present embodiment, first, spherical particles having a uniform particle diameter are prepared as templates. Fig.1 (a) shows the silica particle 10 which is a template in this embodiment. The particle diameter of the silica particles 10 can be selected as appropriate. In the present embodiment, the average particle diameter of the silica particles 10 is set to 100 nm or less, so that it is difficult to produce the magnetic particles by the conventional method. Particles can be made. In this embodiment, the average particle diameter of the silica particles 10 can be 100 nm or less, can be 80 nm or less, and can be 50 nm or less.
次に、本実施形態においては、このテンプレート(シリカ粒子10)が水相中で正に帯電するようにその表面を改質する。本実施形態においては、例えば、カチオン性シランカップリング剤12でシリカ粒子10の表面を被覆することによって、その表面を改質することができる。本実施形態においては、カチオン性シランカップリング剤12として、アミノ基あるいはイミノ基を有するシランカップリング剤を挙げることができ、例えば、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリエトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン等を挙げることができる。以下の説明においては、カチオン性シランカップリング剤12によって修飾されたシリカ粒子10を修飾シリカ粒子14として参照する。 Next, in this embodiment, the surface of the template (silica particles 10) is modified so as to be positively charged in the aqueous phase. In the present embodiment, for example, the surface of the silica particles 10 can be modified by coating the surface of the silica particles 10 with the cationic silane coupling agent 12. In the present embodiment, examples of the cationic silane coupling agent 12 include silane coupling agents having an amino group or an imino group, such as 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, N-2- (aminoethyl) -3-aminopropyltriethoxysilane, N-2- (aminoethyl) -3-aminopropyltrimethoxysilane, N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane Etc. In the following description, the silica particles 10 modified with the cationic silane coupling agent 12 are referred to as modified silica particles 14.
本実施形態においては、併せて、磁性中空粒子の外殻の構成要素となる磁性粒子を用意する。図1(b)は、本実施形態における磁性粒子16を示す。本実施形態においては、磁性粒子16として、マグネタイト粒子を挙げることができる。また、本実施形態においては、磁性粒子16の平均粒子径を6nm以下にすることが望ましい。この理由については、後に詳説する。 In the present embodiment, magnetic particles that are components of the outer shell of the magnetic hollow particles are also prepared. FIG. 1B shows the magnetic particle 16 in the present embodiment. In the present embodiment, examples of the magnetic particles 16 include magnetite particles. In the present embodiment, it is desirable that the average particle diameter of the magnetic particles 16 be 6 nm or less. The reason for this will be described in detail later.
次に、本実施形態においては、この磁性粒子16が水相中で負に帯電するようにその表面を改質する。本実施形態においては、アニオン性官能基を有する分子18で磁性粒子16の表面を被覆することによって、その表面を改質することができる。具体的には、オレイン酸などの長鎖の脂肪酸で被覆された磁性粒子の非極性溶媒分散液に対し、チオリンゴ酸などの一時被覆物質を添加して、粒子表面の脂肪酸を一時被覆物質に交換する。続いて、アニオン性官能基を有する分子の水分散液に対し、上記一時被覆物質で被覆された磁性粒子を添加して、粒子表面の一時被覆物質をアニオン性官能基を有する分子に交換することによって、表面改質を行なうことができる。なお、本実施形態における上述した表面改質の方法については、本願出願人の先の出願である特願2007−194233号に詳細に記載されている。 Next, in the present embodiment, the surfaces of the magnetic particles 16 are modified so as to be negatively charged in the aqueous phase. In the present embodiment, the surface of the magnetic particle 16 can be modified by coating the surface of the magnetic particle 16 with the molecule 18 having an anionic functional group. Specifically, a temporary coating substance such as thiomalic acid is added to a non-polar solvent dispersion of magnetic particles coated with long-chain fatty acids such as oleic acid, and the fatty acid on the particle surface is replaced with a temporary coating substance. To do. Subsequently, the magnetic particles coated with the temporary coating material are added to the aqueous dispersion of molecules having an anionic functional group, and the temporary coating material on the particle surface is exchanged with molecules having an anionic functional group. Thus, surface modification can be performed. The surface modification method described above in the present embodiment is described in detail in Japanese Patent Application No. 2007-194233, which is an earlier application of the present applicant.
本実施形態においては、アニオン性官能基を有する分子18として、低分子カルボン酸を挙げることができ、例えば、クエン酸、ジメルカプトコハク酸等を挙げることができる。以下の説明においては、アニオン性官能基を有する分子18によって修飾された磁性粒子16を修飾磁性粒子20として参照する。 In the present embodiment, examples of the molecule 18 having an anionic functional group include low-molecular carboxylic acids, and examples thereof include citric acid and dimercaptosuccinic acid. In the following description, the magnetic particle 16 modified with the molecule 18 having an anionic functional group is referred to as the modified magnetic particle 20.
次に、本実施形態においては、上述した手順で調製した修飾シリカ粒子14および修飾磁性粒子20を水相中で混合することによって、修飾シリカ粒子14の表面に修飾磁性粒子20を帯電吸着させる。ここで、修飾シリカ粒子14の表面に存在するアミノ基等のカチオン性官能基が水相中で水素イオンを受け取ることによって、その表面が正に帯電し、修飾磁性粒子20の表面に存在するカチオン性官能基が水相中で水素イオンを放出することによって、その表面が負に帯電する。ただし、修飾シリカ粒子14の正電荷の量はpH領域が低くなるほど大きくなるのに対し、修飾磁性粒子20の負電荷の量はpH領域が高くなるほど大きくなる。そこで、本実施形態においては、両者の吸着効率を最大化するために、水相のpH領域を5〜6に調製することが好ましい。 Next, in the present embodiment, the modified silica particles 14 and the modified magnetic particles 20 prepared by the above-described procedure are mixed in an aqueous phase, whereby the modified magnetic particles 20 are charged and adsorbed on the surface of the modified silica particles 14. Here, when the cationic functional group such as an amino group present on the surface of the modified silica particle 14 receives hydrogen ions in the aqueous phase, the surface is positively charged, and the cation present on the surface of the modified magnetic particle 20. When the functional functional group releases hydrogen ions in the aqueous phase, its surface is negatively charged. However, the amount of positive charges of the modified silica particles 14 increases as the pH region decreases, whereas the amount of negative charges of the modified magnetic particles 20 increases as the pH region increases. Therefore, in the present embodiment, it is preferable to adjust the pH range of the aqueous phase to 5 to 6 in order to maximize the adsorption efficiency of both.
図1(c)は、修飾シリカ粒子14の表面に修飾磁性粒子20が均等に帯電吸着した状態を示す。本実施形態においては、図1(c)に示すように、上述した至適pH条件下においては、修飾シリカ粒子14と修飾磁性粒子20の間に生じる静電引力は最大になるため、修飾磁性粒子20は修飾シリカ粒子14の表面に強く引き寄せられて均等に吸着する。さらに、修飾磁性粒子20(すなわち、磁性粒子16)は粒子径6nm以下の微細な粒子であるため、修飾シリカ粒子14の表面に修飾磁性粒子20からなる緻密な被覆層22が形成される。また、本実施形態においては、被覆層22は、修飾磁性粒子20の単層として形成される。以下の説明においては、修飾磁性粒子20によって被覆された修飾シリカ粒子14をシリカ粒子−磁性粒子複合体30として参照する。 FIG. 1C shows a state in which the modified magnetic particles 20 are uniformly charged and adsorbed on the surface of the modified silica particles 14. In the present embodiment, as shown in FIG. 1C, the electrostatic attractive force generated between the modified silica particle 14 and the modified magnetic particle 20 is maximized under the above-mentioned optimum pH condition. The particles 20 are strongly attracted to the surface of the modified silica particles 14 and adsorb evenly. Furthermore, since the modified magnetic particle 20 (that is, the magnetic particle 16) is a fine particle having a particle diameter of 6 nm or less, a dense coating layer 22 composed of the modified magnetic particle 20 is formed on the surface of the modified silica particle 14. In the present embodiment, the coating layer 22 is formed as a single layer of the modified magnetic particles 20. In the following description, the modified silica particle 14 coated with the modified magnetic particle 20 is referred to as a silica particle-magnetic particle composite 30.
次に、上述した手順で調整したシリカ粒子−磁性粒子複合体30の被覆層22を構成する磁性粒子16の粒子間を強固に融着する工程について説明する。本実施形態においては、シリカ粒子−磁性粒子複合体30を焼成することなく、これを水相中で圧力加熱することによって、磁性粒子16の粒子間を融着する。本実施形態においては、例えば、シリカ粒子−磁性粒子複合体30の水分散液が入った容器を耐圧容器内に静置して密閉し、これをオーブン等で加熱することによって圧力加熱を行うことができる。本実施形態においては、圧力加熱を行う際の温度条件を150〜200℃とすることができる。 Next, the process of firmly fusing the particles of the magnetic particles 16 constituting the coating layer 22 of the silica particle-magnetic particle composite 30 adjusted by the above-described procedure will be described. In the present embodiment, the particles of the magnetic particles 16 are fused by pressure heating in the aqueous phase without firing the silica particle-magnetic particle composite 30. In the present embodiment, for example, the container containing the silica particle-magnetic particle composite 30 aqueous dispersion is placed in a pressure-resistant container and sealed, and pressure heating is performed by heating the container in an oven or the like. Can do. In the present embodiment, the temperature condition for pressure heating can be set to 150 to 200 ° C.
本実施形態において、磁性粒子16の粒子径を6nm以下にすることには、以下に説明する理由がある。仮に、磁性粒子が粒子径6nmを超える大きさになった場合、水相中の圧力加熱のみでは粒子間に十分な融着は生じず、外殻の必要十分な強度を得るためには、従来法のように、さらにこれを高温で焼成することが必要になる。しかしながら、焼成は、中空粒子同士の凝集を惹起し、その結果、分散性が悪化することは避けられない。 In the present embodiment, the reason why the particle diameter of the magnetic particles 16 is 6 nm or less is explained below. If the magnetic particles have a particle diameter exceeding 6 nm, sufficient fusion between the particles does not occur only by pressure heating in the aqueous phase, and in order to obtain the necessary and sufficient strength of the outer shell, As in the method, it is necessary to further fire this at a high temperature. However, the firing inevitably causes aggregation of the hollow particles, and as a result, the dispersibility is inevitably deteriorated.
この点について、本発明者らは、鋭意検討を加えた結果、粒子径6nm以下の磁性粒子であれば、水相中、150℃以上の温度条件下で圧力加熱することによって、磁性粒子間に強固な融着が生じ、焼成したものと同等の強度が実現されることを見出したのである。本実施形態においては、磁性粒子16の粒子間に融着を生じさせるために、その粒子径を6nm以下にすることが望ましく、5nm以下にすることがさらに望ましい。実際には、入手可能な粒子径3〜6nmの微細な磁性粒子を使用することができる。 With regard to this point, as a result of intensive studies, the present inventors have determined that magnetic particles having a particle diameter of 6 nm or less are heated between the magnetic particles by pressure heating in a water phase at a temperature of 150 ° C. or higher. It has been found that strong fusion occurs and the same strength as that obtained by firing is realized. In this embodiment, in order to cause fusion between the magnetic particles 16, the particle diameter is preferably 6 nm or less, and more preferably 5 nm or less. In practice, available fine magnetic particles having a particle diameter of 3 to 6 nm can be used.
上述した圧力加熱の過程においては、磁性粒子16が粒子間で強固に融着して外殻を形成するとともに、修飾シリカ粒子14を構成する成分や磁性粒子16を被覆していたアニオン性官能基を有する分子18は熱分解し、その多くは外殻の外へ溶出する。さらに、この圧力加熱工程の後、適切な溶媒を使用した洗浄工程によって内部に残存する磁性粒子16以外の成分を外部に完全に溶出することで、本実施形態の磁性中空粒子100が作製される。なお、本実施形態においては、テンプレートとしてシリカ粒子を使用しているため、粒子内部の洗浄のために有機溶媒を使用する必要がなく、残留有機溶媒について留意する必要がない。 In the above-described pressure heating process, the magnetic particles 16 are firmly fused between the particles to form an outer shell, and the components constituting the modified silica particles 14 and the anionic functional groups that have covered the magnetic particles 16 are coated. Molecules 18 having a thermal decomposition, many of which elute out of the outer shell. Further, after this pressure heating step, the magnetic hollow particles 100 of this embodiment are produced by completely eluting components other than the magnetic particles 16 remaining inside by a washing step using an appropriate solvent. . In this embodiment, since silica particles are used as a template, it is not necessary to use an organic solvent for cleaning the inside of the particles, and it is not necessary to pay attention to the residual organic solvent.
図1(d)は、本実施形態の磁性中空粒子100を示す。図1(d)に示されるように、磁性中空粒子100の外殻102の内部に形成された空洞である中空部104は、元のテンプレート(シリカ粒子12)の形状に対応したきれいな球状になっている。すなわち、本実施形態においては、焼成に起因する外殻の収縮・変形等が生じないため、中空部104の形状およびその容積は、元のテンプレートの形状およびその体積によって一義的に決定される。したがって、本実施形態においては、元のテンプレートの形状およびその体積を選択することによって、中空部102の形状およびその容積を制御することが可能になる。磁性中空粒子100をドラックデリバリー用のマイクロカプセルとして用いる場合、その容積が自在に制御できることは非常に有益である。 FIG.1 (d) shows the magnetic hollow particle 100 of this embodiment. As shown in FIG. 1 (d), the hollow portion 104, which is a cavity formed inside the outer shell 102 of the magnetic hollow particle 100, has a clean spherical shape corresponding to the shape of the original template (silica particle 12). ing. That is, in this embodiment, since the outer shell shrinks or deforms due to firing does not occur, the shape and volume of the hollow portion 104 are uniquely determined by the shape and volume of the original template. Therefore, in the present embodiment, it is possible to control the shape and volume of the hollow portion 102 by selecting the shape and volume of the original template. When the magnetic hollow particle 100 is used as a microcapsule for drug delivery, it is very beneficial that its volume can be freely controlled.
また、本実施形態においては、図1(d)に示されるように、磁性中空粒子100の外殻102は、磁性粒子16の単層膜として形成される。よって、本実施形態においては、磁性中空粒子100の外殻102の膜厚は、磁性粒子16の粒子径によって一義的に決定される。したがって、本実施形態においては、磁性粒子16の粒子径の大きさを選択することによって、外殻102の膜厚を制御することが可能になる。さらに、本発明においては、磁性中空粒子の外殻の強度を上げるために、その膜厚がより大きくなるように制御することができる。以下、この点について、図2を参照して説明する。 In the present embodiment, the outer shell 102 of the magnetic hollow particle 100 is formed as a single layer film of the magnetic particle 16 as shown in FIG. Therefore, in the present embodiment, the film thickness of the outer shell 102 of the magnetic hollow particle 100 is uniquely determined by the particle diameter of the magnetic particle 16. Therefore, in the present embodiment, the film thickness of the outer shell 102 can be controlled by selecting the size of the particle diameter of the magnetic particles 16. Furthermore, in the present invention, in order to increase the strength of the outer shell of the magnetic hollow particles, the film thickness can be controlled to be larger. Hereinafter, this point will be described with reference to FIG.
図2は、本発明の第2の実施形態である磁性中空粒子200の製造方法を説明するための概念図である。図2(a)に示すように、本実施形態においては、図1(a)〜(c)を参照して説明した上述の方法によって、シリカ粒子−磁性粒子複合体30を作製した後、これを水相中、カチオン性ポリマー32と混合する。カチオン性ポリマー32は、水相中で水素イオンを受け取って正に帯電し、同じ水相中で負に帯電しているシリカ粒子−磁性粒子複合体30の表面に帯電吸着する。その結果、図2(b)に示すように、シリカ粒子−磁性粒子複合体30の最外表面は、カチオン性ポリマー32によって覆われて正に帯電する。本実施形態においては、カチオン性ポリマー32として、側鎖あるいは主鎖にアミノ基あるいはイミノ基を有する高分子を挙げることができ、例えば、ポリエチレンイミン、ポリビニルアミン、ポリアリルアミン等を挙げることができる。 FIG. 2 is a conceptual diagram for explaining a method for producing a magnetic hollow particle 200 according to the second embodiment of the present invention. As shown in FIG. 2 (a), in the present embodiment, after the silica particle-magnetic particle composite 30 is produced by the above-described method described with reference to FIGS. 1 (a) to (c), Is mixed with the cationic polymer 32 in the aqueous phase. The cationic polymer 32 receives hydrogen ions in the aqueous phase and is positively charged, and is charged and adsorbed on the surface of the silica particle-magnetic particle composite 30 that is negatively charged in the same aqueous phase. As a result, as shown in FIG. 2B, the outermost surface of the silica particle-magnetic particle composite 30 is covered with the cationic polymer 32 and is positively charged. In the present embodiment, examples of the cationic polymer 32 include a polymer having an amino group or an imino group in the side chain or main chain, and examples thereof include polyethyleneimine, polyvinylamine, and polyallylamine.
本実施形態においては、さらに、このカチオン性ポリマー32によって被覆されたシリカ粒子−磁性粒子複合体30(以下、シリカ粒子−磁性粒子−カチオン性ポリマー複合体40として参照する)と負に帯電した修飾磁性粒子20とを水相中で混合する。その結果、図2(c)に示すように、シリカ粒子−磁性粒子−カチオン性ポリマー複合体40の最外表面に対して修飾磁性粒子20が帯電吸着し、第2の被覆層42が形成される。その後、これを磁性中空粒子100について上述したのと同様の方法によって圧力加熱・洗浄することによって、本実施形態の磁性中空粒子200が作製される。 In the present embodiment, the silica particle-magnetic particle composite 30 (hereinafter referred to as silica particle-magnetic particle-cationic polymer composite 40) coated with the cationic polymer 32 and the negatively charged modification are further included. Magnetic particles 20 are mixed in an aqueous phase. As a result, as shown in FIG. 2C, the modified magnetic particles 20 are charged and adsorbed on the outermost surface of the silica particle-magnetic particle-cationic polymer composite 40, and the second coating layer 42 is formed. The Thereafter, this is heated under pressure and washed by the same method as described above for the magnetic hollow particles 100, whereby the magnetic hollow particles 200 of the present embodiment are produced.
図2(d)は、本実施形態の磁性中空粒子200を示す。図2(d)に示されるように、磁性中空粒子200の外殻202は、磁性粒子16の二層膜として形成される。ここでは、磁性中空粒子200の外殻202の膜厚は、磁性粒子16の粒子径の2倍の厚さとして規定されることになる。さらに、本実施形態においては、図2(a)および(b)に示される手順を繰り返すことによって、磁性粒子16からなる単層膜を一層ずつ積層し、磁性中空粒子200の外殻202を磁性粒子16の単層膜が積層された積層膜として形成することができる。換言すれば、磁性中空粒子の外殻の膜厚を磁性粒子16の粒子径のN倍として規定することができるため、外殻の膜厚を正確に制御することができる。 FIG.2 (d) shows the magnetic hollow particle 200 of this embodiment. As shown in FIG. 2D, the outer shell 202 of the magnetic hollow particle 200 is formed as a two-layer film of the magnetic particle 16. Here, the film thickness of the outer shell 202 of the magnetic hollow particle 200 is defined as a thickness twice as large as the particle diameter of the magnetic particle 16. Furthermore, in the present embodiment, by repeating the procedure shown in FIGS. 2A and 2B, a single layer film made of the magnetic particles 16 is laminated one by one, and the outer shell 202 of the magnetic hollow particles 200 is magnetically bonded. It can be formed as a laminated film in which single-layer films of particles 16 are laminated. In other words, since the film thickness of the outer shell of the magnetic hollow particles can be defined as N times the particle diameter of the magnetic particle 16, the film thickness of the outer shell can be accurately controlled.
本実施形態においては、用途に応じた必要十分な強度を実現することができる膜厚であって、且つ、磁性中空粒子自体が自発磁化を持たない膜厚に制御することが好ましく、例えば、磁性中空粒子の膜厚を20nm以下にすることができ、10nm以下にすることができ、5nm以下にすることもできる。以上、説明したように、本発明の磁性中空粒子は、自発磁化を持たないため分散性に優れ、且つ、強度に優れている。また、その粒子径ならびに中空部の形状および容量の大きさにばらつきが少ないため、投薬などの定量性が要求される用途に用いるのに有用である。 In the present embodiment, it is preferable to control the film thickness so as to achieve a necessary and sufficient strength according to the application and the magnetic hollow particles themselves do not have spontaneous magnetization. The film thickness of the hollow particles can be 20 nm or less, can be 10 nm or less, and can be 5 nm or less. As described above, the magnetic hollow particles of the present invention have excellent dispersibility and excellent strength because they do not have spontaneous magnetization. In addition, since there is little variation in the particle diameter and the shape and volume of the hollow part, it is useful for applications that require quantitativeness such as medication.
次に、ハイパーサーミアの用途に適した本発明の第3の実施形態である磁性中空粒子300について、以下説明する。図3は、本発明の第3の実施形態である磁性中空粒子300の製造方法を説明するための概念図である。図3(a)は、本実施形態におけるテンプレートである、シリカ粒子50を示す。磁性中空粒子300の製造方法は、図1を参照して説明した手順において、テンプレートとなるシリカ粒子50が第2の磁性粒子52を含有して形成されている点のみが異なるものであり、それ以外については、上述したのと同様の方法によって作製することができる。 Next, the magnetic hollow particle 300 which is the third embodiment of the present invention suitable for the application of hyperthermia will be described below. FIG. 3 is a conceptual diagram for explaining a method for producing a magnetic hollow particle 300 according to the third embodiment of the present invention. FIG. 3A shows silica particles 50 that are templates in the present embodiment. The manufacturing method of the magnetic hollow particle 300 is different from the procedure described with reference to FIG. 1 only in that the silica particle 50 serving as a template is formed including the second magnetic particle 52. About other than, it can produce by the method similar to having mentioned above.
すなわち、図3(a)に示されるように、シリカ粒子50は、カチオン性シランカップリング剤12によって表面を修飾されて修飾シリカ粒子54となったのち、水相において、修飾磁性粒子20と混合される。その結果、図3(b)に示されるように、修飾シリカ粒子54の表面に修飾磁性粒子20が帯電吸着し、被覆層22が形成される。その後、シリカ粒子−磁性粒子複合体60を圧力加熱し、洗浄することによって、本実施形態の磁性中空粒子300が作製される。 That is, as shown in FIG. 3A, the surface of the silica particles 50 is modified with the cationic silane coupling agent 12 to form modified silica particles 54, and then mixed with the modified magnetic particles 20 in the aqueous phase. Is done. As a result, as shown in FIG. 3B, the modified magnetic particles 20 are charged and adsorbed on the surfaces of the modified silica particles 54 to form the coating layer 22. Then, the magnetic hollow particle 300 of this embodiment is produced by pressure-heating and washing the silica particle-magnetic particle composite body 60.
図3(c)は、本実施形態の磁性中空粒子300を示す。図3(c)に示されるように、本実施形態の磁性中空粒子300は、外殻102の内部に形成された中空部104の中に球状の第2の磁性粒子52を遊動自在に内包する。磁性粒子52の粒子径がある程度の大きさを有することによって、ハイパーサーミアの用途に必要十分な磁気熱量効果が担保される。シリカ粒子50が含有する磁性粒子52は、外殻102を構成する磁性粒子16と同じ物質からなるものでもよく、別の物質からなるものでもよい。また、磁性粒子52の粒子径は、シリカ粒子50の粒子径の30〜70%程度にすることができ、50〜70%程度にすることが好ましい。 FIG. 3C shows the magnetic hollow particle 300 of the present embodiment. As shown in FIG. 3C, the magnetic hollow particle 300 of the present embodiment encloses the spherical second magnetic particle 52 in a hollow portion 104 formed inside the outer shell 102 so as to be freely movable. . When the particle diameter of the magnetic particles 52 has a certain size, the magnetocaloric effect necessary and sufficient for the application of hyperthermia is ensured. The magnetic particles 52 contained in the silica particles 50 may be made of the same material as the magnetic particles 16 constituting the outer shell 102 or may be made of another material. The particle diameter of the magnetic particles 52 can be about 30 to 70% of the particle diameter of the silica particles 50, and preferably about 50 to 70%.
以下、本発明の磁性中空粒子について、実施例を用いてより具体的に説明を行なうが、本発明は、後述する実施例に限定されるものではない。 Hereinafter, although the magnetic hollow particle of this invention is demonstrated more concretely using an Example, this invention is not limited to the Example mentioned later.
(1)磁性酸化鉄中空粒子の作製
(クエン酸被覆マグネタイト粒子の作製)
塩化鉄とオレイン酸ナトリウムを反応させて鉄−オレイン酸錯塩を調製し、これとオレイン酸とを混合したものを、室温でオクタデセンに溶かし、90分間一定の速度で320℃まで昇温させ、320℃で30分間反応させた後、室温まで冷却することによって、平均粒径が約6nmで粒径がよく揃ったオレイン酸被覆マグネタイト粒子を得た。このオレイン酸被覆マグネタイト粒子のトルエン分散液16mlに対して、チオリンゴ酸(東京化成工業製、Mw=150.15)0.324gをジメチルスルホキシド4mlに溶かした溶液を加え、4時間ソニケーション(超音波処理)したのち、2-メトキシエタノールで洗浄して、チオリンゴ酸被覆マグネタイト粒子を得た。
(1) Production of magnetic iron oxide hollow particles (production of citric acid-coated magnetite particles)
An iron-oleic acid complex salt is prepared by reacting iron chloride with sodium oleate, and a mixture of this and oleic acid is dissolved in octadecene at room temperature, and the temperature is raised to 320 ° C. at a constant rate for 90 minutes. After reacting at 30 ° C. for 30 minutes, the mixture was cooled to room temperature to obtain oleic acid-coated magnetite particles having an average particle diameter of about 6 nm and a uniform particle diameter. A solution obtained by dissolving 0.324 g of thiomalic acid (manufactured by Tokyo Chemical Industry Co., Ltd., Mw = 150.15) in 4 ml of dimethyl sulfoxide was added to 16 ml of the toluene dispersion of this oleic acid-coated magnetite particle, and sonication was performed for 4 hours (ultrasonic wave) Treatment), and then washed with 2-methoxyethanol to obtain thiomalic acid-coated magnetite particles.
無水クエン酸(キシダ化学製、Mw=192.13)0.415gを超純水に溶解させ、pH7に調整した溶液20mlを上記チオリンゴ酸被覆マグネタイト粒子に加え、4時間ソニケーションしたのち、1,4-ジオキサンで洗浄して、クエン酸被覆マグネタイト粒子分散液を得た。得られた粒子を透過型電子顕微鏡(TEM)で観察し、平均粒子径を求めた結果、約5nmの値を得た。 After adding 0.415 g of anhydrous citric acid (manufactured by Kishida Chemical Co., Mw = 192.13) in ultrapure water and adjusting the pH to 7 to 20 ml of the thiomalic acid-coated magnetite particles, By washing with 4-dioxane, a citric acid-coated magnetite particle dispersion was obtained. The obtained particles were observed with a transmission electron microscope (TEM), and the average particle diameter was determined. As a result, a value of about 5 nm was obtained.
(テンプレート粒子の作製)
40℃に設定したウォーターバス中において、ガラスフラスコ中で50 mlのエタノールと2.5 mlのテトラエトキシシラン(TEOS)を混合し、攪拌しながらそこに3%のアンモニア水溶液を10 ml添加した。45℃ウォーターバス中で二時間攪拌した後、反応溶液(シリカ粒子が分散)に超純水100 mlを加え、エバポレーターを用いて反応溶液中のエタノールを除いた。上述した手順で水中に置換された反応溶液を超純水で透析することによって超純水中に分散した平均粒子径50nmのシリカ粒子(以下、シリカ粒子Aとして参照する)を得た。同様の手順で(但し、撹拌温度は40℃)、平均粒子径100nmのシリカ粒子(以下、シリカ粒子Bとして参照する)を得た。
(Preparation of template particles)
In a water bath set at 40 ° C., 50 ml of ethanol and 2.5 ml of tetraethoxysilane (TEOS) were mixed in a glass flask, and 10 ml of 3% aqueous ammonia solution was added thereto while stirring. After stirring in a 45 ° C. water bath for 2 hours, 100 ml of ultrapure water was added to the reaction solution (silica particles dispersed), and ethanol in the reaction solution was removed using an evaporator. The reaction solution substituted in water by the procedure described above was dialyzed with ultrapure water to obtain silica particles having an average particle diameter of 50 nm dispersed in ultrapure water (hereinafter referred to as silica particles A). In the same procedure (however, the stirring temperature was 40 ° C.), silica particles having an average particle diameter of 100 nm (hereinafter referred to as silica particles B) were obtained.
(磁性粒子内包テンプレート粒子の作製)
上述したのと同様の手順で作製した平均粒子径20nmのクエン酸被覆クエン酸被覆粒子を、エタノールと水の混合液(体積比1:1)の中に分散させた。上記分散液にテトラエトキシシラン(TEOS,Si(OC2H5)4)を添加し、続いて28%アンモニア水溶液を加えて室温で反応させて、クエン酸被覆されたマグネタイト粒子表面をTEOSの加水分解で生じたシリカで被覆した。その結果、平均粒子径100nmのマグネタイト粒子内包シリカ粒子(以下、シリカ粒子Cとして参照する)を得た。
(Preparation of magnetic particle-containing template particles)
Citric acid-coated citric acid-coated particles having an average particle diameter of 20 nm prepared by the same procedure as described above were dispersed in a mixed solution of ethanol and water (volume ratio 1: 1). Tetraethoxysilane (TEOS, Si (OC 2 H 5 ) 4 ) is added to the dispersion, followed by addition of a 28% aqueous ammonia solution and reaction at room temperature. The surface of the magnetite particles coated with citric acid is hydrolyzed with TEOS. It was coated with silica produced by decomposition. As a result, magnetite particle-containing silica particles having an average particle size of 100 nm (hereinafter referred to as silica particles C) were obtained.
(テンプレート粒子のアミノ化)
平均粒子径50nmのシリカ粒子A 1 gを超純水20 mlに分散させた後、このシリカ粒子水分散液のpHを塩酸を用いて3以下に調整した。一方、シランカップリング剤である3-アミノプロピルトリメトキシシラン1.8 mlと6Nの塩酸1.7 mlと超純水2 mlとを混合し、当該混合液を上述した手順で調製したシリカ粒子水分散液に対してゆっくりと添加しながら、強く攪拌した。
(Amination of template particles)
After 1 g of silica particles A having an average particle diameter of 50 nm were dispersed in 20 ml of ultrapure water, the pH of this silica particle aqueous dispersion was adjusted to 3 or less using hydrochloric acid. On the other hand, 1.8 ml of 3-aminopropyltrimethoxysilane, which is a silane coupling agent, 1.7 ml of 6N hydrochloric acid, and 2 ml of ultrapure water are mixed, and the mixture is added to the silica particle aqueous dispersion prepared in the above-described procedure. The mixture was stirred vigorously while slowly adding.
さらに攪拌を続けながら、上記シリカ粒子水分散液に対しエタノール25 mlを添加したのち、水酸化ナトリウム水溶液を用いてpHを5.5に調整した。このシリカ粒子水分散液を70℃のウォーターバス中に設置してさらに四時間攪拌してシリカ粒子の表面をアミノ化した。以下、この分散液を「アミノ化シリカ粒子水分散液」として参照する。 While continuing stirring, 25 ml of ethanol was added to the silica particle aqueous dispersion, and then the pH was adjusted to 5.5 using an aqueous sodium hydroxide solution. This silica particle aqueous dispersion was placed in a 70 ° C. water bath and further stirred for 4 hours to aminate the surface of the silica particles. Hereinafter, this dispersion is referred to as “aminated silica particle aqueous dispersion”.
次に、このアミノ化シリカ粒子水分散液をウォーターバスから遠心管に移し、20,000 Gで15 min.遠心分離した後、上清を捨てた。残ったアミノ化シリカ粒子の沈殿にpH 2の酢酸溶液20 mlを加えて粒子を再分散させた後、20,000 Gで15 min.遠心分離して固液分離するという酢酸溶液による洗浄作業を3回繰り返し、最終的に得られたアミノ化シリカ粒子(以下、アミノ化シリカ粒子Aとして参照する)の沈殿をpH 2の酢酸溶液に再分散させて保存した。同様の手順で、シリカ粒子Bについてもアミノ化し(以下、アミノ化シリカ粒子Bとして参照する)、マグネタイト粒子を内包したシリカ粒子Cについても、同様の手順でアミノ化した(以下、アミノ化シリカ粒子Cとして参照する)。 Next, this aminated silica particle aqueous dispersion was transferred from the water bath to a centrifuge tube, centrifuged at 20,000 G for 15 min., And the supernatant was discarded. Wash the remaining aminated silica particles by adding 20 ml of acetic acid solution at pH 2 to re-disperse the particles, then centrifuge at 20,000 G for 15 min. The precipitate of aminated silica particles finally obtained (hereinafter referred to as aminated silica particles A) was re-dispersed in a pH 2 acetic acid solution and stored. In the same procedure, silica particle B was aminated (hereinafter referred to as aminated silica particle B), and silica particle C enclosing magnetite particles was aminated in the same procedure (hereinafter aminated silica particle). Referred to as C).
(マグネタイト粒子による単層被覆)
アミノ化シリカ粒子A 50 mg分を分散した酢酸溶液を遠心管に移し、20,000 Gで15 min.遠心分離した後、上清を捨てた。残ったアミノ化シリカ粒子の沈殿に超純水1 mlを加えて粒子を再分散させ、20,000 Gで15 min.遠心分離して固液分離するという超純水による洗浄作業を3回繰り返し、最終的に得られたアミノ化シリカ粒子の沈殿を超純水35 mlに分散させ、このアミノ化シリカ粒子水分散液のpHを5に調整した。
(Single layer coating with magnetite particles)
The acetic acid solution in which 50 mg of aminated silica particles A were dispersed was transferred to a centrifuge tube, centrifuged at 20,000 G for 15 min., And the supernatant was discarded. Add 1 ml of ultrapure water to the precipitate of the remaining aminated silica particles to re-disperse the particles, and repeat the washing with ultrapure water three times by centrifugation at 20,000 G for 15 min. The precipitate of the aminated silica particles thus obtained was dispersed in 35 ml of ultrapure water, and the pH of the aqueous dispersion of aminated silica particles was adjusted to 5.
一方、上述した手順で作製した平均粒子径5 nmのクエン酸被覆マグネタイト粒子100 mgを超純水10 mlに分散させてpHを5に調整した。以下、この分散液を「マグネタイト粒子水分散液」として参照する。このマグネタイト粒子水分散液10 mlに対して、上述した手順で調製したアミノ化シリカ粒子水分散液を加え5 min.攪拌した後、超音波処理を30 sec.施し、さらに5 min.攪拌してから遠心管に移して20,000 Gで15 min.遠心分離した。上清を捨てて得られたマグネタイトシリカ複合粒子の沈殿を10 mlの超純水に分散させて保存した。また、アミノ化シリカ粒子Cについても同様の手順でマグネタイト粒子で被覆した。ここで、シリカ粒子Aにマグネタイト粒子を被覆したものをサンプル1とし、シリカ粒子Cにマグネタイト粒子を被覆したものをサンプル3として以下参照する。 On the other hand, 100 mg of citric acid-coated magnetite particles having an average particle diameter of 5 nm prepared by the above-described procedure was dispersed in 10 ml of ultrapure water to adjust the pH to 5. Hereinafter, this dispersion is referred to as “magnetite particle aqueous dispersion”. Add the aminated silica particle aqueous dispersion prepared in the above procedure to 10 ml of this magnetite particle aqueous dispersion and stir for 5 min., Then apply ultrasonic treatment for 30 sec. And stir for another 5 min. And transferred to a centrifuge tube and centrifuged at 20,000 G for 15 min. The precipitate of the magnetite silica composite particles obtained by discarding the supernatant was dispersed and stored in 10 ml of ultrapure water. The aminated silica particles C were also coated with magnetite particles in the same procedure. Here, a sample in which silica particles A are coated with magnetite particles is referred to as sample 1, and a sample in which silica particles C are coated with magnetite particles is referred to as sample 3 below.
(マグネタイト粒子による複層被覆)
シリカ粒子B(平均粒子径100nm)にマグネタイト粒子を被覆したものの分散液10 mlに対し、分子量600のポリエチレンイミンを500 mgを超純水10 mlに溶かした溶液を加え、5 min.攪拌した後、超音波処理を30 sec.施し、さらに5 min.攪拌してから遠心管に移して20,000 Gで15 min.遠心分離した。上清を捨てて得られた沈殿を10 mlの超純水に分散させ、pHを5に調整した。
(Multi-layer coating with magnetite particles)
After adding a solution of 500 mg of polyethyleneimine having a molecular weight of 600 in 10 ml of ultrapure water to 10 ml of a dispersion of silica particles B (average particle size 100 nm) coated with magnetite particles, stirring for 5 min. Then, the mixture was subjected to ultrasonic treatment for 30 sec., Further stirred for 5 min, transferred to a centrifuge tube, and centrifuged at 20,000 G for 15 min. The precipitate obtained by discarding the supernatant was dispersed in 10 ml of ultrapure water, and the pH was adjusted to 5.
この分散液をマグネタイト粒子水分散液10 mlに添加し、5 min.攪拌した後、超音波処理を30 sec.施し、さらに5 min.攪拌してから遠心管に移して20,000 Gで15 min.遠心分離した。上清を捨てて得られた沈殿を35 mlの超純水に分散させて保存した。これをサンプル3として以下参照する。 This dispersion was added to 10 ml of an aqueous magnetite particle dispersion and stirred for 5 min., Then sonicated for 30 sec., Stirred for another 5 min., Transferred to a centrifuge tube, and 15 min. At 20,000 G. Centrifuged. The supernatant obtained by discarding the supernatant was dispersed in 35 ml of ultrapure water and stored. This is referred to as sample 3 below.
(圧力加熱工程)
上述した手順で調製した各サンプル35 mlを容量40 mlのテフロン(登録商標)容器に移し、当該テフロン(登録商標)容器をステンレス製の耐圧容器にセットし、オーブンに入れて、200℃で四時間加熱した。
(Pressure heating process)
Transfer 35 ml of each sample prepared in the above procedure to a 40 ml Teflon (registered trademark) container, place the Teflon (registered trademark) container in a stainless steel pressure-resistant container, place it in an oven, and place it at 200 ° C. Heated for hours.
(テンプレート溶出工程)
圧力加熱後、各サンプルの分散液中の粒子を磁石によって磁気回収した。粒子内部に残存するシリカを溶出すべく、回収した粒子を水酸化ナトリウム水溶液によって洗浄した。具体的には、回収した粒子を1Nの水酸化ナトリウム水溶液10 mlに分散させた後、室温で四時間攪拌し、その後粒子を磁気回収して上清を捨て、1Nの水酸化ナトリウム水溶液10 mlを加えて再び磁気回収するという工程を3回繰り返した。最終的に得られた粒子を最終サンプルとして超純水に分散させて保存した。
(Template elution process)
After pressure heating, the particles in the dispersion liquid of each sample were magnetically collected by a magnet. The collected particles were washed with an aqueous sodium hydroxide solution to elute the silica remaining inside the particles. Specifically, after the dispersed particles were dispersed in 10 ml of 1N aqueous sodium hydroxide solution, the mixture was stirred at room temperature for 4 hours, and then the particles were magnetically recovered and the supernatant was discarded. And the process of magnetic recovery again was repeated 3 times. The finally obtained particles were dispersed and stored in ultrapure water as a final sample.
(2)TEMによる撮影
本実施例の各サンプルについて磁性酸化鉄中空粒子のTEM像を観察した。図4、図5、および図6は、それぞれ、サンプル1、サンプル2、およびサンプル3のTEM像を示す。TEM像から各サンプルの平均粒子径を求めた結果、サンプル1については、図4に示すように、約50nmの揃った粒子径を有し、サンプル2および3については、図5および6に示すように、約100nmの揃った粒子径を有していた。また、サンプル1および3については、外殻がマグネタイト粒子からなる単層構造を備えており、サンプル2については、外殻がマグネタイト粒子からなる二層構造を備えていることが分かった。さらに、サンプル1〜3は、いずれも、外形および中空部がきれいな球状であった。
(2) Photographing by TEM A TEM image of magnetic iron oxide hollow particles was observed for each sample of this example. 4, 5, and 6 show TEM images of Sample 1, Sample 2, and Sample 3, respectively. As a result of obtaining the average particle size of each sample from the TEM image, sample 1 has a uniform particle size of about 50 nm as shown in FIG. 4, and samples 2 and 3 are shown in FIGS. Thus, the particles had a uniform particle size of about 100 nm. Samples 1 and 3 were found to have a single layer structure in which the outer shell was made of magnetite particles, and sample 2 was found to have a two layer structure in which the outer shell was made of magnetite particles. Furthermore, all of Samples 1 to 3 had a spherical shape with a clean outer shape and hollow portion.
(3)分散性の検証
上記サンプル3を超純水中に分散させて洗浄した後に、再度、超純水に分散して分散性の評価を行った。なお、分散性の評価は、動的光散乱法を用いた粒径の重量換算分布の測定結果に基づいて行った。粒径の重量換算分布の測定にはFPAR−1000(大塚電子株式会社)を使用した。図7は、サンプル3の粒径の重量換算分布の測定結果を示す。図7に示されるように、サンプル3は、203.9±51.7nmの範囲に単峰性の分布を示し、良好な分散性が認められた。
(3) Verification of dispersibility After the sample 3 was dispersed and washed in ultrapure water, it was dispersed again in ultrapure water and the dispersibility was evaluated. The evaluation of dispersibility was performed based on the measurement result of the weight conversion distribution of the particle diameter using the dynamic light scattering method. FPAR-1000 (Otsuka Electronics Co., Ltd.) was used for measurement of the weight conversion distribution of particle diameter. FIG. 7 shows the measurement result of the weight-converted distribution of the particle diameter of Sample 3. As shown in FIG. 7, Sample 3 showed a unimodal distribution in the range of 203.9 ± 51.7 nm, and good dispersibility was recognized.
(4)超音波造影効果の検証
サンプル3の水分散液を容量2 mlのエッペンドルフチューブに移し、磁性中空粒子を磁気回収して上清を捨てた。このエッペンドルフチューブを容量100 mlのセパラブルフラスコ内に立ててこれを密閉し、60℃のウォーターバスに浸しながら、フラスコの口に接続したダイアグラムポンプを一時間運転させ、フラスコ内を真空状態にして中空粒子の内部に残留した水を蒸発させた。
(4) Verification of ultrasonic contrast effect The aqueous dispersion of sample 3 was transferred to an Eppendorf tube with a volume of 2 ml, magnetic hollow particles were magnetically recovered, and the supernatant was discarded. The Eppendorf tube is placed in a 100 ml separable flask, sealed, and immersed in a 60 ° C water bath. Water remaining inside the hollow particles was evaporated.
ダイアグラムポンプを停止した後、ゴム栓で塞がれたフラスコの口から注射器を用いて代替フロンである2H,3H-デカフルオロペンタン1 mlを注入した。その後、セパラブルフラスコからエッペンドルフチューブを取り出し、これに超純水1 mlを加えて、中空粒子を分散させた後、Fukuda Denshi製UF-550XTDを用いて超音波造影を行った。 After stopping the diagram pump, 1 ml of 2H, 3H-decafluoropentane, an alternative fluorocarbon, was injected from the mouth of the flask closed with a rubber stopper using a syringe. Thereafter, the Eppendorf tube was taken out from the separable flask, 1 ml of ultrapure water was added thereto to disperse the hollow particles, and ultrasonic contrast was performed using UF-550XTD manufactured by Fukuda Denshi.
図8は、サンプル2の磁性中空粒子のTEM像を示し、図8(a)は、真空引きを実施する前の磁性中空粒子のTEM像を示し、図8(b)は、真空引きを実施した後に中空部にフロンが封入された磁性中空粒子のTEM像を示す。図8に示されるように、真空引きを実施した後において、磁性中空粒子の外殻は破損しておらず、真空引きを実施する前後において、その形状に全く変化が見られなかった。この結果から、本実施例の磁性中空粒子の外殻が必要十分な強度を備えていることが示された。 8 shows a TEM image of the magnetic hollow particles of Sample 2, FIG. 8 (a) shows a TEM image of the magnetic hollow particles before evacuation, and FIG. 8 (b) shows evacuation. Then, a TEM image of magnetic hollow particles in which chlorofluorocarbon is enclosed in the hollow part is shown. As shown in FIG. 8, after vacuuming, the outer shell of the magnetic hollow particles was not damaged, and there was no change in the shape before and after vacuuming. From this result, it was shown that the outer shell of the magnetic hollow particle of this example has a necessary and sufficient strength.
図9は、撮像された超音波反射画像を示す。図9(a)は、フロン封入処理前のサンプル2の水分散液の画像を示し、図9(b)は、フロン封入処理後のサンプル2の水分散液を示す。図9(a)、(b)を比較すると明らかなように、フロン封入処理後のサンプル2の画像には、はっきりとした造影が映っており、本実施例の磁性中空粒子の中空部にフロンが確実に封入されていることが示された。 FIG. 9 shows a captured ultrasonic reflection image. FIG. 9A shows an image of the aqueous dispersion of sample 2 before the chlorofluorocarbon sealing process, and FIG. 9B shows the aqueous dispersion of sample 2 after the chlorofluorocarbon sealing process. As is clear from comparison between FIGS. 9A and 9B, the image of sample 2 after the fluorocarbon encapsulation treatment shows a clear contrast, and the fluorocarbon in the hollow portion of the magnetic hollow particles of the present example. Was shown to be securely encapsulated.
(5)磁気熱量効果の検証
サンプル3を超純水0.7 mlに分散させ、測定用のセルに入れ、コイル内にセットした。コイルから周波数900 kHzの交流磁界を発生させた状態で、ファイバー状の温度計をセル中の粒子分散液に差し、温度変化をモニターした。
(5) Verification of magnetocaloric effect Sample 3 was dispersed in 0.7 ml of ultrapure water, placed in a measurement cell, and set in a coil. While an AC magnetic field having a frequency of 900 kHz was generated from the coil, a fiber thermometer was inserted into the particle dispersion in the cell, and the temperature change was monitored.
図10は、サンプル3の水分散液に交流磁界をかけた場合の温度変化を示すグラフである。図10に示されるように、サンプル3を分散させた超純水の温度は、交流磁界をかけると一気に上昇をはじめ、約800秒を経過した時点で、がん細胞が死滅するといわれる温度(42〜43℃)に達しており、本実施例の磁性酸化鉄中空粒子がハイパーサーミアに適用可能であることが示された。 FIG. 10 is a graph showing a temperature change when an AC magnetic field is applied to the aqueous dispersion of sample 3. As shown in FIG. 10, the temperature of the ultrapure water in which the sample 3 is dispersed begins to rise at a stretch when an alternating magnetic field is applied, and the temperature at which cancer cells are said to die when about 800 seconds elapse ( It was shown that the magnetic iron oxide hollow particles of this example are applicable to hyperthermia.
以上、説明したように、本発明によれば、粒子径および外殻の膜厚を自在に制御でき、且つ、分散性に優れる磁性中空粒子およびその製造方法が提供される。本発明によって、磁性中空粒子の更なる応用展開が期待される。 As described above, according to the present invention, there are provided magnetic hollow particles that can freely control the particle diameter and the film thickness of the outer shell, and are excellent in dispersibility, and a method for producing the same. By the present invention, further application development of magnetic hollow particles is expected.
10…シリカ粒子、12…カチオン性シランカップリング剤、14…修飾シリカ粒子、16…磁性粒子、18…アニオン性官能基を有する分子、20…修飾磁性粒子、22…被覆層、30…シリカ粒子−磁性粒子複合体、32…カチオン性ポリマー、40…シリカ粒子−磁性粒子−カチオン性ポリマー複合体、42…第2の被覆層、50…シリカ粒子、52…第2の磁性粒子、54…修飾シリカ粒子、100…磁性中空粒子、102…外殻、104…中空部、200…磁性中空粒子、202…外殻、300…磁性中空粒子
DESCRIPTION OF SYMBOLS 10 ... Silica particle, 12 ... Cationic silane coupling agent, 14 ... Modified silica particle, 16 ... Magnetic particle, 18 ... Molecule which has anionic functional group, 20 ... Modified magnetic particle, 22 ... Covering layer, 30 ... Silica particle -Magnetic particle composite, 32 ... Cationic polymer, 40 ... Silica particle-Magnetic particle-Cationic polymer composite, 42 ... Second coating layer, 50 ... Silica particle, 52 ... Second magnetic particle, 54 ... Modification Silica particles, 100 ... magnetic hollow particles, 102 ... outer shell, 104 ... hollow part, 200 ... magnetic hollow particle, 202 ... outer shell, 300 ... magnetic hollow particle
Claims (12)
前記テンプレート−磁性粒子複合体を水相で圧力加熱する工程と、
前記テンプレート粒子を溶出する工程と、
を含む、磁性中空粒子の製造方法。 A positively charged dispersion of spherical template particles is mixed with a negatively charged dispersion of magnetic particles having a particle diameter of 6 nm or less, and the magnetic particles are adsorbed on the surface of the template particles in a single layer. Forming a template-magnetic particle composite,
Pressure-heating the template-magnetic particle composite in an aqueous phase;
Eluting the template particles;
A method for producing magnetic hollow particles.
前記テンプレート−磁性粒子−カチオン性ポリマー複合体の分散液と前記磁性粒子の分散液とを混合し、前記テンプレート−磁性粒子−カチオン性ポリマー複合体の表面に前記磁性粒子を単層で吸着させる工程とをさらに含む、請求項7または8に記載の製造方法。 The template-magnetic particle composite dispersion and the cationic polymer solution are mixed, and the cationic polymer is adsorbed on the surface of the template-magnetic particle composite to form a template-magnetic particle-cationic polymer composite. Process,
A step of mixing the template-magnetic particle-cationic polymer complex dispersion and the magnetic particle dispersion to adsorb the magnetic particles on the surface of the template-magnetic particle-cationic polymer complex in a single layer. The manufacturing method according to claim 7 or 8, further comprising:
The manufacturing method according to claim 7, wherein the template particles are silica particles.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2009054774A JP2010208875A (en) | 2009-03-09 | 2009-03-09 | Magnetic hollow particle and method for producing the same |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2009054774A JP2010208875A (en) | 2009-03-09 | 2009-03-09 | Magnetic hollow particle and method for producing the same |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JP2010208875A true JP2010208875A (en) | 2010-09-24 |
Family
ID=42969472
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2009054774A Pending JP2010208875A (en) | 2009-03-09 | 2009-03-09 | Magnetic hollow particle and method for producing the same |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP2010208875A (en) |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2011096230A1 (en) * | 2010-02-08 | 2011-08-11 | 学校法人慈恵大学 | Magnetic particles, process for producing same, and medicinal preparation including magnetic particles |
| JP2013000222A (en) * | 2011-06-14 | 2013-01-07 | Jikei Univ | Coagulable magnetic particle, method for using the same, and coagulated body forming system |
| JP2015192995A (en) * | 2014-03-27 | 2015-11-05 | 東ソー株式会社 | Method for producing magnetic fine particles and dispersion thereof |
| JP2016184702A (en) * | 2015-03-26 | 2016-10-20 | 東ソー株式会社 | Magnetic fine particle and method for producing dispersion liquid thereof |
Citations (14)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS58223606A (en) * | 1982-06-14 | 1983-12-26 | Nippon Soda Co Ltd | Preparation of ultrafine hollow microsphere of metallic oxide |
| JPH05138009A (en) * | 1991-11-22 | 1993-06-01 | Japan Synthetic Rubber Co Ltd | Method for producing spherical inorganic hollow particles |
| JPH05163023A (en) * | 1991-12-11 | 1993-06-29 | Japan Synthetic Rubber Co Ltd | Oxygen-deficient hollow magnetite particle, its production and use |
| JP2000034582A (en) * | 1999-07-26 | 2000-02-02 | Jsr Corp | Composite and hollow particles |
| JP2000203810A (en) * | 1999-01-14 | 2000-07-25 | Toyota Central Res & Dev Lab Inc | Hollow oxide powder particles |
| JP2002517085A (en) * | 1998-05-26 | 2002-06-11 | バー−イラン ユニバーシティ | Nucleation and growth of magnetic metal oxide nanoparticles and uses thereof |
| JP2003015171A (en) * | 2001-07-03 | 2003-01-15 | New Industry Research Organization | Magnetic substance holding fine particles and method for producing the same |
| JP2004052068A (en) * | 2002-07-23 | 2004-02-19 | Fujitsu Ltd | Nano metal particle cluster, method for producing the same, method for treating the same, and recording medium utilizing at least magnetism |
| JP2005029437A (en) * | 2003-07-08 | 2005-02-03 | Yazaki Corp | Method for producing ferrite hollow particles |
| JP2005232427A (en) * | 2004-02-18 | 2005-09-02 | Kobe Univ | Magnetic hollow fine particles and method for producing the same |
| WO2008048716A2 (en) * | 2006-06-06 | 2008-04-24 | Cornell Research Foundation, Inc. | Nanostructured metal oxides comprising internal voids and methods of use thereof |
| JP2008106301A (en) * | 2006-10-24 | 2008-05-08 | Univ Of Yamanashi | Hollow magnetic sphere and method for producing the same |
| WO2009014201A1 (en) * | 2007-07-26 | 2009-01-29 | Tokyo Institute Of Technology | Process for production of surface-coated inorganic particles |
| JP2009067606A (en) * | 2007-09-10 | 2009-04-02 | Tokyo Institute Of Technology | Method for producing ferrite hollow fine particles |
-
2009
- 2009-03-09 JP JP2009054774A patent/JP2010208875A/en active Pending
Patent Citations (14)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS58223606A (en) * | 1982-06-14 | 1983-12-26 | Nippon Soda Co Ltd | Preparation of ultrafine hollow microsphere of metallic oxide |
| JPH05138009A (en) * | 1991-11-22 | 1993-06-01 | Japan Synthetic Rubber Co Ltd | Method for producing spherical inorganic hollow particles |
| JPH05163023A (en) * | 1991-12-11 | 1993-06-29 | Japan Synthetic Rubber Co Ltd | Oxygen-deficient hollow magnetite particle, its production and use |
| JP2002517085A (en) * | 1998-05-26 | 2002-06-11 | バー−イラン ユニバーシティ | Nucleation and growth of magnetic metal oxide nanoparticles and uses thereof |
| JP2000203810A (en) * | 1999-01-14 | 2000-07-25 | Toyota Central Res & Dev Lab Inc | Hollow oxide powder particles |
| JP2000034582A (en) * | 1999-07-26 | 2000-02-02 | Jsr Corp | Composite and hollow particles |
| JP2003015171A (en) * | 2001-07-03 | 2003-01-15 | New Industry Research Organization | Magnetic substance holding fine particles and method for producing the same |
| JP2004052068A (en) * | 2002-07-23 | 2004-02-19 | Fujitsu Ltd | Nano metal particle cluster, method for producing the same, method for treating the same, and recording medium utilizing at least magnetism |
| JP2005029437A (en) * | 2003-07-08 | 2005-02-03 | Yazaki Corp | Method for producing ferrite hollow particles |
| JP2005232427A (en) * | 2004-02-18 | 2005-09-02 | Kobe Univ | Magnetic hollow fine particles and method for producing the same |
| WO2008048716A2 (en) * | 2006-06-06 | 2008-04-24 | Cornell Research Foundation, Inc. | Nanostructured metal oxides comprising internal voids and methods of use thereof |
| JP2008106301A (en) * | 2006-10-24 | 2008-05-08 | Univ Of Yamanashi | Hollow magnetic sphere and method for producing the same |
| WO2009014201A1 (en) * | 2007-07-26 | 2009-01-29 | Tokyo Institute Of Technology | Process for production of surface-coated inorganic particles |
| JP2009067606A (en) * | 2007-09-10 | 2009-04-02 | Tokyo Institute Of Technology | Method for producing ferrite hollow fine particles |
Cited By (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2011096230A1 (en) * | 2010-02-08 | 2011-08-11 | 学校法人慈恵大学 | Magnetic particles, process for producing same, and medicinal preparation including magnetic particles |
| JP5526156B2 (en) * | 2010-02-08 | 2014-06-18 | 学校法人慈恵大学 | Magnetic particle, method for producing the same, and magnetic particle-containing preparation |
| JP2013000222A (en) * | 2011-06-14 | 2013-01-07 | Jikei Univ | Coagulable magnetic particle, method for using the same, and coagulated body forming system |
| JP2015192995A (en) * | 2014-03-27 | 2015-11-05 | 東ソー株式会社 | Method for producing magnetic fine particles and dispersion thereof |
| JP2016184702A (en) * | 2015-03-26 | 2016-10-20 | 東ソー株式会社 | Magnetic fine particle and method for producing dispersion liquid thereof |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Karimzadeh et al. | Superparamagnetic iron oxide (Fe3O4) nanoparticles coated with PEG/PEI for biomedical applications: A facile and scalable preparation route based on the cathodic electrochemical deposition method | |
| Karimzadeh et al. | Effective preparation, characterization and in situ surface coating of superparamagnetic Fe3O4 nanoparticles with polyethyleneimine through cathodic electrochemical deposition (CED) | |
| Kwizera et al. | Synthesis and properties of magnetic-optical core–shell nanoparticles | |
| KR100846839B1 (en) | Metal oxide hollow nanocapsules and preparation method thereof | |
| CN111137915B (en) | Composite nano material with mesoporous silica coated with nano particles and preparation method and application thereof | |
| Wu et al. | Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies | |
| Lei et al. | A novel two-step modifying process for preparation of chitosan-coated Fe3O4/SiO2 microspheres | |
| JP2005537653A (en) | Magnetic particles and method for producing the same | |
| US20120319030A1 (en) | Multifunctional colloid nano composite derived from nucleophilic substitution-induced layer-by-layer assembly in organic media and fabrication of the same | |
| CN102756125B (en) | Method for fabricating nanohybrids, the nanohybrids | |
| CN106517215A (en) | Preparation method of graphene-coated silicon dioxide nanoparticles | |
| CN106540658A (en) | A kind of graphene oxide covalent bond coated magnetic nano composition and preparation method thereof | |
| CN102358783A (en) | Preparation method of polystyrene/gold composite microspheres | |
| CN100545218C (en) | Method of coating iron oxide with silica | |
| JP2010208875A (en) | Magnetic hollow particle and method for producing the same | |
| Durdureanu-Angheluta et al. | Tailored and functionalized magnetite particles for biomedical and industrial applications | |
| Hosseinifar et al. | Synthesis, characterization, and application of partially blocked amine-functionalized magnetic nanoparticles | |
| Xu et al. | Synthesis of superparamagnetic Fe3O4/SiO2 composite particles via sol-gel process based on inverse miniemulsion | |
| WO2014175278A1 (en) | Method for producing composite particle dispersion liquid, composite particles, and method for producing metallic nanoparticle dispersion liquid | |
| Wee et al. | Role of N-methyl-2-pyrrolidone for preparation of Fe3O4@ SiO2 controlled the shell thickness | |
| Shah | Nanosynthesis Techniques of Silica-Coated | |
| CN103447547B (en) | Method for preparing ferroferric oxide/gold nano-composite particles of star-like structure in micro-emulsion | |
| JP2010131593A (en) | Precursor of inorganic hollow particles, inorganic hollow particles, method for producing the same, and optical member and optical member produced using inorganic hollow particles | |
| CN101927147B (en) | Nano-scale magnetic silicon dioxide composite microsphere and preparation method thereof | |
| CN110465920A (en) | It is a kind of novel using pollen as the magnetic pollen of template travelling Micro-Robot preparation method |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120209 |
|
| A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130326 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130813 |
|
| A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20131210 |