[go: up one dir, main page]

JP2010216651A - Roller bearing and rotating shaft cooling structure - Google Patents

Roller bearing and rotating shaft cooling structure Download PDF

Info

Publication number
JP2010216651A
JP2010216651A JP2010016814A JP2010016814A JP2010216651A JP 2010216651 A JP2010216651 A JP 2010216651A JP 2010016814 A JP2010016814 A JP 2010016814A JP 2010016814 A JP2010016814 A JP 2010016814A JP 2010216651 A JP2010216651 A JP 2010216651A
Authority
JP
Japan
Prior art keywords
rotating shaft
temperature
rolling bearing
inner ring
oil supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010016814A
Other languages
Japanese (ja)
Inventor
Masayuki Kanatsu
将幸 金津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2010016814A priority Critical patent/JP2010216651A/en
Publication of JP2010216651A publication Critical patent/JP2010216651A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/66Special parts or details in view of lubrication
    • F16C33/6637Special parts or details in view of lubrication with liquid lubricant
    • F16C33/6659Details of supply of the liquid to the bearing, e.g. passages or nozzles
    • F16C33/6677Details of supply of the liquid to the bearing, e.g. passages or nozzles from radial inside, e.g. via a passage through the shaft and/or inner ring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C37/00Cooling of bearings
    • F16C37/007Cooling of bearings of rolling bearings

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rolling Contact Bearings (AREA)
  • Sliding Valves (AREA)
  • Temperature-Responsive Valves (AREA)
  • Mechanically-Actuated Valves (AREA)
  • Mounting Of Bearings Or Others (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a roller bearing and rotating shaft cooling structure which can execute good lubrication and cooling under high temperature and high speed rotating conditions by adjusting a supply amount of lubricant which is supplied to the bearing or the rotating shaft corresponding to the rotating speed and the temperature. <P>SOLUTION: The roller bearing 10 is under-race lubricated and an oil amount adjustment mechanism 20, which allows the supply amount of lubricant (to be supplied) to the inside of the roller bearing 10 to be adjusted according to the rotating speed, is provided with an inner race 13. Moreover, either the rotating speed sensitive valve 70 or the temperature sensitive valve 80 is arranged to the oil passage 46, 49, 55, 56, 57 which are prepared in the rotating shaft 41 and the roller bearing 60, and the lubricant of the quantity corresponding to the rotating speed and temperature of the of rotating shaft 41 is supplied. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、転がり軸受及び回転軸冷却構造に関し、より詳細には、ガスタービン、ジェットエンジン、工作機械、及び自動車のターボチャージャー等に組み込まれて、高温・高速回転条件下において使用される転がり軸受及び回転軸冷却構造に関する。   The present invention relates to a rolling bearing and a rotating shaft cooling structure, and more specifically, a rolling bearing incorporated in a gas turbine, a jet engine, a machine tool, a turbocharger of an automobile, and the like and used under high temperature and high speed rotation conditions. And a rotating shaft cooling structure.

ガスタービン、ジェットエンジン、工作機械、及び自動車のターボチャージャー等に組み込まれて使用される転がり軸受は、高速回転する回転軸を支持するため、十分な潤滑及び冷却が必要となる。このような高速回転条件下において使用される転がり軸受の潤滑及び冷却を行うことを目的として、従来、内輪の内輪軌道溝に開口部を有する給油孔から転動体に向けて潤滑油を噴出する、所謂、アンダーレースによる潤滑が採用されている。また、高速回転によって温度上昇する回転軸を積極的に冷却することにより、高速回転を可能としたものが提案されている。   Rolling bearings that are incorporated and used in gas turbines, jet engines, machine tools, automobile turbochargers, and the like support rotating shafts that rotate at high speeds, and therefore require sufficient lubrication and cooling. For the purpose of lubricating and cooling the rolling bearing used under such high-speed rotation conditions, conventionally, the lubricating oil is jetted from the oil supply hole having an opening in the inner ring raceway groove of the inner ring toward the rolling element. So-called under-lace lubrication is employed. Further, there has been proposed one that enables high-speed rotation by actively cooling a rotating shaft that rises in temperature due to high-speed rotation.

従来のアンダーレース潤滑を行う装置としては、内輪の回転に伴う遠心力の作用によって、内輪の軸方向一端面に形成した環状溝の底部から、給油孔を介して内輪軌道面に設けられたV字溝へ潤滑油を供給し、V字溝の開口部と転動体との間に形成された潤滑油逃がし用の隙間から安定した量の潤滑油を転動体に向けて直接吹き付けて潤滑するようにした転がり軸受装置が知られている(例えば、特許文献1参照)。   As an apparatus for performing conventional under-lace lubrication, V is provided on the inner ring raceway surface through a lubrication hole from the bottom of an annular groove formed on one axial end face of the inner ring by the action of centrifugal force accompanying the rotation of the inner ring. Lubricant is supplied to the groove, and a stable amount of lubricating oil is directly blown toward the rolling element from the clearance for the lubricating oil formed between the opening of the V-shaped groove and the rolling element for lubrication. A rolling bearing device is known (for example, see Patent Document 1).

また、転がり軸受の内部に潤滑油を供給する潤滑油噴射ノズルを備えるとともに、外輪と保持器との空隙部に向けて圧縮空気を噴射する圧縮空気噴射ノズルを設け、供給された潤滑油が外輪の軌道面に滞留することを防止して、高温・高速回転条件下において使用される転がり軸受の潤滑及び冷却を行うようにした軸受潤滑装置が知られている(例えば、特許文献2参照)。   In addition, a lubricating oil injection nozzle that supplies lubricating oil to the inside of the rolling bearing is provided, and a compressed air injection nozzle that injects compressed air toward the gap between the outer ring and the cage is provided, and the supplied lubricating oil is supplied to the outer ring. There is known a bearing lubrication device that prevents and stays on the raceway surface to lubricate and cool a rolling bearing used under high temperature and high speed rotation conditions (see, for example, Patent Document 2).

さらに、内輪に設けられた給油孔に連通して回転軸に穿設された通路内に、潤滑油の流量を調節する流量調節手段を設け、軸受内部に供給される潤滑油の流量を回転軸の回転速度に応じて調節して、潤滑油の安定した供給を図った潤滑油流量調節装置が開示されている(例えば、特許文献3参照)。   Further, a flow rate adjusting means for adjusting the flow rate of the lubricating oil is provided in a passage formed in the rotary shaft so as to communicate with the oil supply hole provided in the inner ring, and the flow rate of the lubricating oil supplied to the inside of the bearing is controlled by the rotary shaft. There is disclosed a lubricating oil flow rate adjusting device that adjusts according to the rotational speed of the oil to achieve a stable supply of lubricating oil (see, for example, Patent Document 3).

また、回転軸を支持する軸受の内外輪温度を測定し、測定された軸受の温度に基づいて、冷却液の温度を独立に制御することで、回転軸が高速回転して軸受が発熱した場合でも、軸受の予圧を適正範囲に抑制するようにした工作機械の回転軸装置が知られている(例えば、特許文献4参照)。   In addition, when the temperature of the inner and outer rings of the bearing that supports the rotating shaft is measured and the temperature of the coolant is independently controlled based on the measured temperature of the bearing, the rotating shaft rotates at a high speed and the bearing generates heat. However, a rotating shaft device of a machine tool that suppresses the preload of the bearing within an appropriate range is known (for example, see Patent Document 4).

さらに、回転軸を支持する軸受の温度を測定する温度センサを備え、軸受の温度に応じた量の潤滑油を軸受に供給するようにした軸受装置が知られている(例えば、特許文献5参照)。   Further, a bearing device is known that includes a temperature sensor that measures the temperature of the bearing that supports the rotating shaft, and supplies lubricating oil in an amount corresponding to the temperature of the bearing to the bearing (see, for example, Patent Document 5). ).

特開平11−182560号公報Japanese Patent Laid-Open No. 11-182560 特開2000−192971号公報JP 2000-192971 A 特許第3084356号公報Japanese Patent No. 3084356 特開2007-90518号公報JP 2007-90518 A 特開2008-2591号公報JP 2008-2591 A

上記特許文献1に記載の転がり軸受装置は、内輪の回転に伴う遠心力の作用によって、開口部と転動体との間に形成された隙間から、安定して潤滑油を供給するようにしているが、回転速度の変化に伴って給油量を調整する機能を有していない。従って、高速回転時には、十分な量の潤滑油が転がり軸受に供給されずに発熱したり、低速回転時には、潤滑油の供給量が過多となったりして、潤滑油の攪拌抵抗に起因して軸受トルクが増大するなどのおそれがあった。   The rolling bearing device described in Patent Document 1 is configured to stably supply lubricating oil from a gap formed between the opening and the rolling element by the action of centrifugal force accompanying the rotation of the inner ring. However, it does not have a function of adjusting the amount of oil supply with a change in the rotational speed. Therefore, a sufficient amount of lubricating oil is not supplied to the rolling bearing during high-speed rotation and heat is generated, and during low-speed rotation, the amount of lubricating oil supplied is excessive, which is caused by the stirring resistance of the lubricating oil. There was a risk that the bearing torque would increase.

また、上記特許文献2に記載の軸受潤滑装置は、内輪の回転に伴う遠心力の作用によって潤滑油が外輪に滞留することを防止し、潤滑油を効率よく循環させて潤滑効率及び冷却効率の向上を図ったものであり、回転速度の変化に伴って給油量を調整することはできない。また、軸受の外部に付帯設備を要する問題点があった。   Further, the bearing lubrication device described in Patent Document 2 prevents the lubricating oil from staying in the outer ring by the action of the centrifugal force accompanying the rotation of the inner ring, and efficiently circulates the lubricating oil to improve the lubrication efficiency and the cooling efficiency. This is an improvement, and the amount of oil supply cannot be adjusted as the rotational speed changes. In addition, there is a problem that ancillary equipment is required outside the bearing.

また、上記特許文献3に記載の潤滑油流量調節装置は、供給する給油量を回転速度に応じて調整することが可能であるが、潤滑油流量調節装置が回転軸に配設されているので、転がり軸受と潤滑油流量調節装置との位置合わせなど、組み付けが複雑であり、改善の余地があった。   Moreover, although the lubricating oil flow control apparatus of the said patent document 3 can adjust the amount of oil supply supplied according to a rotational speed, since the lubricating oil flow control apparatus is arrange | positioned at the rotating shaft. The assembly of the rolling bearing and the lubricating oil flow rate adjustment device is complicated and there is room for improvement.

また、上記特許文献4及び特許文献5に記載の技術は、回転軸やハウジングに、温度センサを設置するための追加加工が必要であり、量産性に欠ける問題があった。また、回転体から測定データを外部に取り出すためには、一般的にスリップリング、テレメータ、或いは、非接触式測定器などの高価な装置が必要となり、装置が大型化すると共に、コストが増大する問題があった。   Further, the techniques described in Patent Document 4 and Patent Document 5 require additional processing for installing a temperature sensor on the rotating shaft and the housing, and have a problem of lack of mass productivity. Further, in order to extract measurement data from the rotating body to the outside, generally an expensive device such as a slip ring, a telemeter, or a non-contact type measuring device is required, which increases the size and cost. There was a problem.

本発明は、前述した課題に鑑みてなされたものであり、その目的は、簡単な機構によって、回転速度に対応して、或いは軸受温度(回転軸温度)に応じて、回転軸や転がり軸受の内部に供給する潤滑油の供給量を調整することにより、高温・高速回転条件下において、良好な潤滑及び冷却を行うことができる転がり軸受及び回転軸冷却構造を提供することにある。   The present invention has been made in view of the above-described problems, and an object of the present invention is to provide a rotary shaft and a rolling bearing by a simple mechanism, corresponding to the rotational speed, or depending on the bearing temperature (rotational shaft temperature). An object of the present invention is to provide a rolling bearing and a rotating shaft cooling structure capable of performing satisfactory lubrication and cooling under high temperature and high speed rotation conditions by adjusting the supply amount of lubricating oil supplied to the inside.

本発明の上記目的は、下記の構成により達成される。
(1)内周面に外輪軌道溝を有する外輪と、外周面に内輪軌道溝を有する内輪と、外輪軌道溝と内輪軌道溝間に転動自在に配設される複数の転動体と、を備え、アンダーレース潤滑される転がり軸受であって、内輪は、転がり軸受の内部に供給する潤滑油の供給量を回転速度に応じて調整可能な給油量調整機構を備えることを特徴とする転がり軸受。
(2)給油量調整機構は、内輪軌道溝の軸方向側方に設けられる内輪外周面と内輪内周面とを連通して径方向に沿って設けられる第1給油路と、第1給油路から分岐して内輪軌道溝に連通する第2給油路と、第1給油路内に配設されるニードルバルブの弁体と、ニードルバルブの弁体を内輪内周面に向けて付勢するコイルばねと、を備えることを特徴とする(1)に記載の転がり軸受。
(3)第2給油路は、径方向に異なる位置で第1給油路から分岐すると共に、複数の流路からなることを特徴とする(2)に記載の転がり軸受。
(4)転がり軸受で回動自在に支持される回転軸を、潤滑油によって冷却する回転軸冷却構造であって、回転軸及び転がり軸受の少なくとも一方に設けられる潤滑油の油路に配設され、回転軸の回転速度に応じて潤滑油の供給量を連続的に調整する回転速度感応式バルブを備えることを特徴とする回転軸冷却構造。
(5)転がり軸受で回動自在に支持される回転軸を、潤滑油によって冷却する回転軸冷却構造であって、回転軸及び転がり軸受の少なくとも一方に設けられる潤滑油の油路に配設され、回転軸又は転がり軸受の温度に応じて潤滑油の供給量を連続的に調整する温度感応式バルブを備えることを特徴とする回転軸冷却構造。
(6)回転速度感応式バルブは、ニードルバルブと、ニードルバルブの弁体をニードルバルブの流路が狭まる方向に付勢するコイルばねと、を備え、回転軸の回転に伴い弁体に作用する遠心力によって、弁体をコイルばねの付勢力に抗して移動させ、回転速度感応式バルブの開度を回転軸の回転速度に応じて連続的に調整することを特徴とする(4)に記載の回転軸冷却構造。
(7)温度感応式バルブは、ニードルバルブと、温度が上昇したとき伸長し、温度が低下したとき縮長する形状記憶合金で形成され、温度が上昇したときニードルバルブの弁体をニードルバルブの流路が広まる方向に付勢する第1感熱式コイルばねと、温度が上昇したとき縮長し、温度が低下したとき伸長する形状記憶合金で形成され、温度が低下したとき弁体を流路が狭まる方向に付勢する第2感熱式コイルばねと、を備え、転がり軸受の温度に応じて第1及び第2感熱式コイルばねを伸縮させ、温度感応式バルブの開度を転がり軸受の温度に応じて連続的に調整することを特徴とする(5)に記載の回転軸冷却構造。
The above object of the present invention can be achieved by the following constitution.
(1) An outer ring having an outer ring raceway groove on an inner peripheral surface, an inner ring having an inner ring raceway groove on an outer peripheral surface, and a plurality of rolling elements arranged to be freely rollable between the outer ring raceway groove and the inner ring raceway groove. A rolling bearing that is provided with an under-lace lubrication, and the inner ring includes an oil supply amount adjusting mechanism capable of adjusting a supply amount of lubricating oil supplied to the inside of the rolling bearing according to a rotation speed. .
(2) The oil supply amount adjusting mechanism includes a first oil supply passage provided along the radial direction by communicating an inner ring outer peripheral surface and an inner ring inner peripheral surface provided on an axial side of the inner ring raceway groove, and a first oil supply passage. The second oil supply passage branched from the inner ring raceway groove, the valve body of the needle valve disposed in the first oil supply passage, and the coil that urges the valve body of the needle valve toward the inner peripheral surface of the inner ring A rolling bearing according to (1), comprising a spring.
(3) The rolling bearing according to (2), wherein the second oil supply passage is branched from the first oil supply passage at a position different in the radial direction and includes a plurality of flow passages.
(4) A rotating shaft cooling structure that cools a rotating shaft that is rotatably supported by a rolling bearing with lubricating oil, and is disposed in an oil passage for lubricating oil provided on at least one of the rotating shaft and the rolling bearing. A rotating shaft cooling structure comprising a rotation speed sensitive valve that continuously adjusts the supply amount of lubricating oil according to the rotation speed of the rotating shaft.
(5) A rotating shaft cooling structure that cools a rotating shaft that is rotatably supported by a rolling bearing with lubricating oil, and is disposed in an oil passage for lubricating oil provided on at least one of the rotating shaft and the rolling bearing. A rotating shaft cooling structure comprising a temperature sensitive valve that continuously adjusts the supply amount of lubricating oil in accordance with the temperature of the rotating shaft or rolling bearing.
(6) The rotational speed sensitive valve includes a needle valve and a coil spring that urges the valve body of the needle valve in a direction in which the flow path of the needle valve narrows, and acts on the valve body as the rotary shaft rotates. (4) characterized in that the valve body is moved against the urging force of the coil spring by centrifugal force, and the opening degree of the rotation speed sensitive valve is continuously adjusted according to the rotation speed of the rotation shaft. The rotating shaft cooling structure described.
(7) The temperature sensitive valve is formed of a needle memory and a shape memory alloy that expands when the temperature rises and contracts when the temperature drops. Formed with a first heat-sensitive coil spring that urges in the direction in which the flow path widens, and a shape memory alloy that contracts when the temperature rises and expands when the temperature drops, and passes the valve body through the flow path when the temperature drops A second heat-sensitive coil spring that urges in the direction of narrowing, and expands and contracts the first and second heat-sensitive coil springs according to the temperature of the rolling bearing to increase the opening of the temperature-sensitive valve. The rotating shaft cooling structure according to (5), which is continuously adjusted according to

本発明の転がり軸受によれば、内輪に設けられる給油量調整機構が、転がり軸受に供給する潤滑油の供給量を回転速度に応じて調整するため、各回転速度に応じて過不足なく潤滑油を供給すると共に、効率的に冷却することができ、高温・高速回転の条件でも良好なアンダーレース潤滑を行うことができる。   According to the rolling bearing of the present invention, the lubrication amount adjusting mechanism provided in the inner ring adjusts the supply amount of the lubricating oil supplied to the rolling bearing according to the rotational speed. Can be efficiently cooled, and good underlace lubrication can be performed even under conditions of high temperature and high speed rotation.

また、給油量調整機構は、内輪外周面に開口する第1給油路、第1給油路から分岐して内輪軌道溝に連通する第2給油路、ニードルバルブ及びコイルばねを有する回転速度感応式バルブを備えるため、低速回転時には、主に内輪外周面に潤滑油を供給して転がり軸受を潤滑し、転動体による潤滑油の攪拌抵抗を抑制して軸受トルクの低減を図り、高速回転時には、主として内輪軌道溝に潤滑油を供給して、転動体及び内輪軌道溝を十分に潤滑して潤滑不良を防止すると共に、冷却効率を向上させることができる。   The oil supply amount adjusting mechanism includes a first oil supply passage that opens to the outer peripheral surface of the inner ring, a second oil supply passage that branches from the first oil supply passage and communicates with the inner ring raceway groove, a needle valve, and a coil speed spring. Therefore, during low-speed rotation, the lubricating oil is supplied mainly to the outer peripheral surface of the inner ring to lubricate the rolling bearing, and the bearing resistance is reduced by suppressing the agitation resistance of the lubricating oil by the rolling elements. Lubricating oil can be supplied to the inner ring raceway groove to sufficiently lubricate the rolling elements and the inner ring raceway groove to prevent poor lubrication and improve the cooling efficiency.

さらに、第2給油路は、径方向に異なる位置で第1給油路から分岐し、複数の流路からなるため、回転速度に応じて流路を変更して、内輪軌道溝に供給する潤滑油の供給量を精密且つ連続的に制御し、効率的に転がり軸受の潤滑及び冷却を行うことができる。   Furthermore, since the second oil supply passage is branched from the first oil supply passage at a different position in the radial direction and includes a plurality of flow passages, the lubricating oil is supplied to the inner ring raceway groove by changing the flow passage according to the rotational speed. The supply amount of the roller can be precisely and continuously controlled, and the rolling bearing can be lubricated and cooled efficiently.

また、本発明の回転軸冷却構造によれば、回転軸の回転速度に応じて回転軸を冷却する潤滑油の供給量を連続的に調整する回転速度感応式バルブが油路に配設されるので、低速回転時には潤滑油の供給量を低減させて回転軸とハウジングとの温度差を略一定に保つと共に、回転軸の回転速度の上昇に伴って潤滑油の供給量を増大させて、回転軸を効率的に冷却することができる。これにより、回転軸の安定した高速回転が可能となる。   Further, according to the rotating shaft cooling structure of the present invention, the rotational speed sensitive valve that continuously adjusts the supply amount of the lubricating oil that cools the rotating shaft according to the rotating speed of the rotating shaft is disposed in the oil passage. Therefore, during low-speed rotation, the amount of lubricating oil supplied is reduced to keep the temperature difference between the rotating shaft and the housing substantially constant, and the amount of lubricating oil supplied is increased as the rotational speed of the rotating shaft is increased. The shaft can be cooled efficiently. Thereby, the stable high-speed rotation of the rotating shaft becomes possible.

さらに、回転軸又は転がり軸受の温度に応じて、潤滑油の供給量を連続的に調整する温度感応式バルブが油路に配設されるので、転がり軸受の温度に応じた量の潤滑油を転がり軸受に供給することができ、転がり軸受及び回転軸を効率的に冷却して、高温・高速回転の条件でも良好な潤滑を行うことができる。   Furthermore, since a temperature-sensitive valve that continuously adjusts the supply amount of the lubricating oil according to the temperature of the rotating shaft or the rolling bearing is disposed in the oil passage, an amount of lubricating oil corresponding to the temperature of the rolling bearing is supplied. It can be supplied to the rolling bearing, and the rolling bearing and the rotating shaft can be efficiently cooled, and good lubrication can be performed even under conditions of high temperature and high speed rotation.

また、回転速度感応式バルブは、ニードルバルブと、ニードルバルブの弁体をニードルバルブの流路が狭まる方向に付勢するコイルばねと、を備え、回転軸の回転に伴い弁体に作用する遠心力によって、弁体をコイルばねの付勢力に抗して移動させ、回転速度感応式バルブの開度を回転軸の回転速度に応じて連続的に調整するようにしたので、簡単な機構で回転軸の回転速度に応じた量の潤滑油を供給することができる。   The rotational speed sensitive valve includes a needle valve and a coil spring that urges the valve body of the needle valve in a direction in which the flow path of the needle valve narrows, and a centrifugal force that acts on the valve body as the rotating shaft rotates. The valve body is moved against the urging force of the coil spring by force, and the opening of the rotational speed sensitive valve is continuously adjusted according to the rotational speed of the rotating shaft. An amount of lubricating oil corresponding to the rotational speed of the shaft can be supplied.

さらに、温度感応式バルブは、ニードルバルブと、温度に応じて伸縮する形状記憶合金で形成される第1及び第2感熱式コイルばねと、を備え、転がり軸受の温度に応じて第1及び第2感熱式コイルばねを伸縮させ、温度感応式バルブの開度を転がり軸受の温度に応じて連続的に調整するようにしたので、簡単な機構で転がり軸受の温度に応じた量の潤滑油を供給することができる。これにより、回転軸を効果的に冷却して安定した高速回転が可能となる。   The temperature-sensitive valve further includes a needle valve and first and second heat-sensitive coil springs formed of a shape memory alloy that expands and contracts depending on the temperature, and the first and second heat-sensitive valves depend on the temperature of the rolling bearing. 2. The thermosensitive coil spring is expanded and contracted, and the opening of the temperature sensitive valve is continuously adjusted according to the temperature of the rolling bearing, so an amount of lubricating oil corresponding to the temperature of the rolling bearing can be applied with a simple mechanism. Can be supplied. As a result, the rotating shaft can be effectively cooled to enable stable high-speed rotation.

本発明に係る転がり軸受の第1実施形態を説明するための断面図である。It is sectional drawing for demonstrating 1st Embodiment of the rolling bearing which concerns on this invention. 図1に示す給油量調整機構の周辺の拡大断面図ある。It is an expanded sectional view of the periphery of the oil supply amount adjustment mechanism shown in FIG. 内輪停止時における給油量調整機構の作用を説明するための拡大断面図である。It is an expanded sectional view for demonstrating an effect | action of the oil supply amount adjustment mechanism at the time of an inner ring stop. 内輪低速回転時における給油量調整機構の作用を説明するための拡大断面図である。It is an expanded sectional view for demonstrating an effect | action of the oil supply amount adjustment mechanism at the time of an inner ring | wheel low speed rotation. 内輪中速回転時における給油量調整機構の作用を説明するための拡大断面図である。It is an expanded sectional view for demonstrating the effect | action of the oil supply amount adjustment mechanism at the time of inner ring | wheel medium speed rotation. 内輪高速回転時における給油量調整機構の作用を説明するための拡大断面図である。It is an expanded sectional view for demonstrating the effect | action of the oil supply amount adjustment mechanism at the time of inner ring high-speed rotation. 本発明に係る転がり軸受の第2実施形態を説明するための拡大断面図である。It is an expanded sectional view for explaining a 2nd embodiment of a rolling bearing concerning the present invention. 本発明に係る回転軸冷却構造の一実施形態を説明するための断面図である。It is sectional drawing for demonstrating one Embodiment of the rotating shaft cooling structure which concerns on this invention. 図8に示す回転速度感応式バルブの拡大断面図である。FIG. 9 is an enlarged cross-sectional view of the rotational speed sensitive valve shown in FIG. 8. 図8に示す温度感応式バルブの拡大断面図である。It is an expanded sectional view of the temperature sensitive type valve shown in FIG. 本発明に係る回転軸冷却構造の変形例を説明するための温度感応式バルブの周辺の拡大断面図である。It is an expanded sectional view of the periphery of a temperature sensitive type valve for explaining a modification of a rotating shaft cooling structure concerning the present invention.

以下、本発明に係る転がり軸受及び回転軸冷却構造の各実施形態について、図面を参照して詳細に説明する。   Hereinafter, embodiments of a rolling bearing and a rotating shaft cooling structure according to the present invention will be described in detail with reference to the drawings.

(第1実施形態)
まず、図1〜図6を参照して、本発明に係る転がり軸受の第1実施形態について説明する。
(First embodiment)
First, with reference to FIGS. 1-6, 1st Embodiment of the rolling bearing which concerns on this invention is described.

本実施形態の転がり軸受10は、図1に示すように、内周面に外輪軌道溝12を有する外輪11と、外周面に内輪軌道溝14を有する内輪13と、保持器15によって回動自在に保持され、接触角αで外輪軌道溝12及び内輪軌道溝14に接触しながら、外輪軌道溝12及び内輪軌道溝14間に転動自在に配設される複数の転動体である玉16と、を備えるアンギュラ玉軸受である。   As shown in FIG. 1, the rolling bearing 10 of this embodiment is rotatable by an outer ring 11 having an outer ring raceway groove 12 on an inner peripheral surface, an inner ring 13 having an inner ring raceway groove 14 on an outer peripheral surface, and a cage 15. And a ball 16 which is a plurality of rolling elements that are disposed between the outer ring raceway groove 12 and the inner ring raceway groove 14 while being in contact with the outer ring raceway groove 12 and the inner ring raceway groove 14 at a contact angle α. , Angular ball bearings.

転がり軸受10は、内輪13に給油量調整機構20を内蔵し、回転速度に応じて潤滑油量を調整して軸受10の内部に供給する。即ち、内輪13から潤滑油を供給するアンダーレース潤滑方式の軸受である。   In the rolling bearing 10, an oil supply amount adjusting mechanism 20 is built in the inner ring 13, and the amount of lubricating oil is adjusted according to the rotation speed and supplied to the inside of the bearing 10. That is, it is a bearing of an under race lubrication system that supplies lubricating oil from the inner ring 13.

給油量調整機構20は、図2に示すように、内輪13の内輪軌道溝14の軸方向側方に設けられる内輪外周面21と内輪内周面22とを連通して径方向に沿って設けられる第1給油路23と、第1給油路23の途中から分岐して内輪軌道溝14に連通する第2給油路27と、テーパ穴24内に嵌装されるテーパ状の弁体30と、テーパ穴24の底面と弁体30との間に配置され、弁体30を内輪内周面22に向けて常時付勢するコイルばね31と、を備える。なお、本実施形態では、第1給油路23、弁体30及びコイルばね31により回転速度感応式のニードルバルブが構成される。   As shown in FIG. 2, the oil supply amount adjusting mechanism 20 is provided along the radial direction by communicating an inner ring outer peripheral surface 21 and an inner ring inner peripheral surface 22 provided on the side in the axial direction of the inner ring raceway groove 14 of the inner ring 13. A first oil supply passage 23, a second oil supply passage 27 that branches from the middle of the first oil supply passage 23 and communicates with the inner ring raceway groove 14, a tapered valve body 30 fitted in the taper hole 24, A coil spring 31 that is disposed between the bottom surface of the tapered hole 24 and the valve body 30 and constantly urges the valve body 30 toward the inner peripheral surface 22 of the inner ring. In the present embodiment, the first oil supply passage 23, the valve body 30, and the coil spring 31 constitute a rotational speed sensitive needle valve.

第1給油路23は、内輪内周面22側から内輪外周面21側に向かうに従って次第に穴径が細くなるテーパ穴24と、内輪外周面21に開口すると共にテーパ穴24に連通するストレート穴25と、から構成される。   The first oil supply passage 23 has a tapered hole 24 whose hole diameter gradually decreases from the inner ring inner peripheral surface 22 side toward the inner ring outer peripheral surface 21 side, and a straight hole 25 that opens to the inner ring outer peripheral surface 21 and communicates with the tapered hole 24. And.

第2給油路27は、第1給油路23に対する傾斜角βが15°〜75°で傾斜し、テーパ穴24の途中から分岐して、内輪軌道溝14に開口する。第2給油路27の穴径は、第1給油路23のストレート穴25の穴径の20〜80%に設定される。また、第2給油路27は、内輪軌道溝14に開口するが、その開口は、内輪軌道溝14と玉16との接触点Pの反対側に配置される(図1参照)ので、第2給油路27が内輪13の剛性に与える影響は殆どない。   The second oil supply passage 27 is inclined at an inclination angle β of 15 ° to 75 ° with respect to the first oil supply passage 23, branches from the middle of the tapered hole 24, and opens into the inner ring raceway groove 14. The hole diameter of the second oil supply passage 27 is set to 20 to 80% of the hole diameter of the straight hole 25 of the first oil supply passage 23. Further, the second oil supply passage 27 opens into the inner ring raceway groove 14, and the opening is disposed on the opposite side of the contact point P between the inner ring raceway groove 14 and the ball 16 (see FIG. 1). The oil supply passage 27 has almost no influence on the rigidity of the inner ring 13.

なお、給油量調整機構20は、1つでもよいが、給油量調整機構20の設置による重心位置の変化(バランス不良)を防止するため、周方向に等間隔で複数設ける方が好ましい。また、同様の理由から、弁体30は、軽金属や樹脂などの軽量素材で成形する方が好ましい。   In addition, although the number of oil supply amount adjustment mechanisms 20 may be one, in order to prevent the change of the gravity center position (bad balance) by installation of the oil supply amount adjustment mechanism 20, it is preferable to provide two or more at equal intervals in the circumferential direction. For the same reason, the valve body 30 is preferably molded from a lightweight material such as light metal or resin.

本実施形態の転がり軸受10の作用について図3〜図6を参照して説明する。なお、潤滑油は、潤滑油供給装置から不図示の回転軸の給油穴を介して、内輪内周面22側から第1給油路23に供給されるものとする。   The operation of the rolling bearing 10 of this embodiment will be described with reference to FIGS. Note that the lubricating oil is supplied from the lubricating oil supply device to the first oil supply passage 23 from the inner ring inner peripheral surface 22 side through an oil supply hole of a rotating shaft (not shown).

まず、図3に示すように、内輪13が停止しているとき、弁体30は、遠心力が作用していないので、コイルばね31のばね力によって内輪内周面22側に位置している。   First, as shown in FIG. 3, when the inner ring 13 is stopped, the valve body 30 is positioned on the inner ring inner peripheral surface 22 side by the spring force of the coil spring 31 because the centrifugal force is not acting. .

次に、内輪13が低速で回転すると、図4に示すように、弁体30は、遠心力によって径方向外方(図中上方)に移動し、自重及びコイルばね31のばね力と、弁体30に作用する遠心力とがバランスする位置に移動する。これにより、テーパ穴24の内面及び弁体30の外面間には、比較的大きな環状隙間Cが形成される。   Next, when the inner ring 13 rotates at a low speed, as shown in FIG. 4, the valve body 30 moves radially outward (upward in the figure) by centrifugal force, and the weight of the self-weight and the spring force of the coil spring 31 and the valve It moves to a position where the centrifugal force acting on the body 30 is balanced. Thus, a relatively large annular gap C is formed between the inner surface of the tapered hole 24 and the outer surface of the valve body 30.

この時、潤滑油供給装置から第1給油路23に供給された潤滑油は、テーパ穴24及び弁体30間の環状隙間Cを介して弁体30より下流側の空間に流入し、主として、第2給油路27よりも相対的に穴径の大きなストレート穴25から内輪外周面21に供給される。   At this time, the lubricating oil supplied from the lubricating oil supply device to the first oil supply passage 23 flows into the space downstream of the valve body 30 through the annular gap C between the tapered hole 24 and the valve body 30, It is supplied to the inner ring outer peripheral surface 21 through the straight hole 25 having a relatively larger hole diameter than the second oil supply passage 27.

内輪外周面21に供給された潤滑油の一部は、内輪外周面21に沿って内輪軌道溝14に供給されて内輪軌道溝14と玉16とを潤滑する。従って、過剰な潤滑油が内輪軌道溝14に供給されることがなく、玉16による潤滑油の攪拌抵抗が抑制されて、軸受トルクを低減することができる。   A part of the lubricating oil supplied to the inner ring outer peripheral surface 21 is supplied to the inner ring raceway groove 14 along the inner ring outer peripheral surface 21 to lubricate the inner ring raceway groove 14 and the balls 16. Therefore, excessive lubricating oil is not supplied to the inner ring raceway groove 14, the stirring resistance of the lubricating oil by the balls 16 is suppressed, and the bearing torque can be reduced.

次に、内輪13が中速で回転すると、図5に示すように、弁体30に作用する遠心力が回転速度に応じて大きくなり、弁体30は、自重及びコイルばね31のばね力に抗して更に径方向外方に移動する。これにより、テーパ穴24及び弁体30間の環状隙間Cが狭められる共に、弁体30と分岐点側の第2給油路27の開口との重なりが少なくなるので、ストレート穴25から内輪外周面21に供給される潤滑油量が減少し、第2給油路27から内輪軌道溝14に供給される潤滑油量が増大する。   Next, when the inner ring 13 rotates at a medium speed, as shown in FIG. 5, the centrifugal force acting on the valve body 30 increases according to the rotational speed, and the valve body 30 is subjected to its own weight and the spring force of the coil spring 31. Against this, it moves further outward in the radial direction. As a result, the annular gap C between the tapered hole 24 and the valve body 30 is narrowed, and the overlap between the valve body 30 and the opening of the second oil supply passage 27 on the branch point side is reduced. The amount of lubricating oil supplied to 21 decreases, and the amount of lubricating oil supplied from the second oil supply passage 27 to the inner ring raceway groove 14 increases.

次に、内輪13が高速で回転すると、図6に示すように、弁体30に作用する遠心力が更に大きくなり、弁体30は、自重及びコイルばね31のばね力に抗して更に径方向外方に移動する。これにより、テーパ穴24及び弁体30間の環状隙間Cが更に狭められる共に、弁体30と分岐点側の第2給油路27の開口との重なりが更に少なくなるので、ストレート穴25から内輪外周面21に供給される潤滑油量が極小となり、主として第2給油路27から内輪軌道溝14に潤滑油が供給される。   Next, when the inner ring 13 rotates at a high speed, as shown in FIG. 6, the centrifugal force acting on the valve body 30 is further increased, and the valve body 30 further has a diameter against the own weight and the spring force of the coil spring 31. Move outward in the direction. As a result, the annular gap C between the tapered hole 24 and the valve body 30 is further narrowed, and the overlap between the valve body 30 and the opening of the second oil supply passage 27 on the branch point side is further reduced. The amount of lubricating oil supplied to the outer peripheral surface 21 is minimized, and the lubricating oil is mainly supplied from the second oil supply passage 27 to the inner ring raceway groove 14.

この時、ストレート穴25から内輪外周面21に供給された潤滑油は、潤滑油に作用する遠心力によって外輪11側に飛ばされてしまうが、弁体30によって、内輪13の回転速度に応じて供給量が調整(増大)された潤滑油が、第2給油路27から内輪軌道溝14に供給されるので、内輪軌道溝14及び玉16の潤滑不足が防止されると共に、転がり軸受10が効率的に冷却される。   At this time, the lubricating oil supplied from the straight hole 25 to the outer peripheral surface 21 of the inner ring is blown to the outer ring 11 side by the centrifugal force acting on the lubricating oil, but depending on the rotational speed of the inner ring 13 by the valve body 30. Since the lubricating oil whose supply amount has been adjusted (increased) is supplied from the second oil supply passage 27 to the inner ring raceway groove 14, insufficient lubrication of the inner ring raceway groove 14 and the balls 16 is prevented, and the rolling bearing 10 is efficient. Cooled.

以上説明したように、本実施形態の転がり軸受10によれば、内輪13に設けられる給油量調整機構20が、転がり軸受10に供給する潤滑油の供給量を回転速度に応じて連続的に調整するので、各回転速度に応じて過不足なく潤滑油を供給すると共に、効率的に冷却することができる。   As described above, according to the rolling bearing 10 of the present embodiment, the oil supply amount adjusting mechanism 20 provided in the inner ring 13 continuously adjusts the supply amount of the lubricating oil supplied to the rolling bearing 10 according to the rotational speed. Therefore, the lubricating oil can be supplied without excess or deficiency according to each rotational speed and can be efficiently cooled.

このように構成された転がり軸受10は、回転数24000rpm以上、dmn値300万以上の条件の回転軸に適用可能であり、例えば、ガスタービン、ジェットエンジン、工作機械、及び自動車のターボチャージャー等の高温・高速回転条件下で使用される転がり軸受に好適である。   The thus configured rolling bearing 10 can be applied to a rotating shaft having a rotational speed of 24,000 rpm or more and a dmn value of 3 million or more, such as a gas turbine, a jet engine, a machine tool, and an automobile turbocharger. Suitable for rolling bearings used under high temperature and high speed rotation conditions.

(第2実施形態)
次に、図7を参照して、本発明に係る転がり軸受の第2実施形態について説明する。なお、第1実施形態と同一又は同等部分については、図面に同一符号を付してその説明を省略或いは簡略化する。
(Second Embodiment)
Next, a second embodiment of the rolling bearing according to the present invention will be described with reference to FIG. Note that portions that are the same as or equivalent to those of the first embodiment are denoted by the same reference numerals in the drawings, and description thereof is omitted or simplified.

本実施形態の転がり軸受10は、図7に示すように、第2給油路27を構成する3つの流路35,36,37を備える。それぞれの流路35,36,37は、第1給油路23(テーパ穴24)内の径方向に異なる位置から分岐し、内輪軌道溝14にそれぞれ開口する。また、流路35,36,37の開口は、いずれも、内輪軌道溝14と玉16との接触点Pの反対側に配置される(図1参照)。   As shown in FIG. 7, the rolling bearing 10 of the present embodiment includes three flow paths 35, 36, and 37 that constitute the second oil supply path 27. The respective flow paths 35, 36, and 37 are branched from different positions in the radial direction in the first oil supply path 23 (taper hole 24), and open to the inner ring raceway groove 14, respectively. Further, the openings of the flow paths 35, 36, and 37 are all disposed on the opposite side of the contact point P between the inner ring raceway groove 14 and the ball 16 (see FIG. 1).

また、本実施形態では、流路35,36,37は、流路35の穴径をd1、流路36の穴径をd2、流路37の穴径をd3とすると、穴径d1>穴径d2>穴径d3となるように設定されることが好ましい。   In the present embodiment, the flow paths 35, 36, and 37 have a hole diameter d1> hole, where the hole diameter of the flow path 35 is d1, the hole diameter of the flow path 36 is d2, and the hole diameter of the flow path 37 is d3. It is preferable that the diameter d2> the hole diameter d3.

そして、内輪13が回転すると、弁体30は、回転速度に応じて自重及びコイルばね31のばね力に抗して図中上方に移動する。これにより、テーパ穴24及び弁体30間の環状隙間Cが狭められると共に、弁体30が通過した流路35,36,37が順次開放されるので、ストレート穴25から内輪外周面21に供給される潤滑油量が減少し、流路35,36,37から内輪軌道溝14に供給される潤滑油量が順次増大する。   When the inner ring 13 rotates, the valve body 30 moves upward in the figure against its own weight and the spring force of the coil spring 31 according to the rotational speed. As a result, the annular gap C between the tapered hole 24 and the valve body 30 is narrowed, and the flow paths 35, 36, and 37 through which the valve body 30 has passed are sequentially opened, so that the straight hole 25 supplies the inner ring outer peripheral surface 21. The amount of lubricating oil that is supplied decreases, and the amount of lubricating oil that is supplied to the inner ring raceway groove 14 from the flow paths 35, 36, and 37 increases sequentially.

以上説明したように、本実施形態の転がり軸受10によれば、第2給油路27は、径方向に異なる位置で第1給油路23から分岐し、穴径が互いに異なる複数の流路35,36,37からなるため、回転速度に応じて流路35,36,37を変更して、内輪軌道溝14に供給する潤滑油の供給量を精密且つ連続的に制御し、効率的に転がり軸受10の潤滑及び冷却を行うことができる。
その他の構成及び作用効果については、上記第1実施形態と同様である。
As described above, according to the rolling bearing 10 of the present embodiment, the second oil supply passage 27 branches from the first oil supply passage 23 at different positions in the radial direction, and the plurality of flow passages 35 having different hole diameters. 36, 37, the flow paths 35, 36, 37 are changed in accordance with the rotational speed, and the supply amount of the lubricating oil supplied to the inner ring raceway groove 14 is precisely and continuously controlled to efficiently roll the bearing. Ten lubrications and coolings can be performed.
About another structure and an effect, it is the same as that of the said 1st Embodiment.

次に、図8〜図11を参照して、本発明に係る回転軸冷却構造の一実施形態について説明する。   Next, with reference to FIGS. 8-11, one Embodiment of the rotating shaft cooling structure which concerns on this invention is described.

本実施形態の回転軸冷却構造40は、図8に示すように、一対の転がり軸受60によって両端が回転自在に支持される回転軸41と、回転速度感応式バルブ70と、温度感応式バルブ80と、を備える。なお、図8中の符号61は外輪、63は内輪、65は保持器、66は玉(転動体)である。   As shown in FIG. 8, the rotating shaft cooling structure 40 of the present embodiment includes a rotating shaft 41 that is rotatably supported by a pair of rolling bearings 60, a rotational speed sensitive valve 70, and a temperature sensitive valve 80. And comprising. In FIG. 8, reference numeral 61 denotes an outer ring, 63 denotes an inner ring, 65 denotes a cage, and 66 denotes a ball (rolling element).

回転軸41は、インナーシャフト42と、インナーシャフト42に外嵌されるミドルシャフト43と、ミドルシャフト43に外嵌されるアウターシャフト44と、を備える3重構造の軸である。アウターシャフト44の両端部は、一対の転がり軸受60によってハウジング90に対して回転自在に支持されている。   The rotating shaft 41 is a triple-structured shaft including an inner shaft 42, a middle shaft 43 that is externally fitted to the inner shaft 42, and an outer shaft 44 that is externally fitted to the middle shaft 43. Both end portions of the outer shaft 44 are rotatably supported with respect to the housing 90 by a pair of rolling bearings 60.

インナーシャフト42には、一方の端面から給油穴45が軸方向に形成されており、給油穴45は、径方向に形成される第1径方向給油路(油路)46によってインナーシャフト42の外周面に連通している。また、他方の端面からは、第1排油穴47が軸方向に形成されており、この第1排油穴47は、径方向に形成される第2径方向給油路48及び第3径方向給油路(油路)49によってインナーシャフト42の外周面に連通している。第3径方向給油路49は、第1排油穴47から転がり軸受60に給油するための分岐路として機能する。第1径方向給油路46の外周面開口部と、第2径方向給油路48の外周面開口部とは、インナーシャフト42の外周面に形成される螺旋溝50によって連通する。   An oil supply hole 45 is formed in the inner shaft 42 from one end face in the axial direction. The oil supply hole 45 is formed on the outer periphery of the inner shaft 42 by a first radial oil supply path (oil path) 46 formed in the radial direction. It communicates with the surface. Further, a first oil drain hole 47 is formed in the axial direction from the other end face, and the first oil drain hole 47 is formed in a second radial oil supply path 48 and a third radial direction formed in the radial direction. An oil supply passage (oil passage) 49 communicates with the outer peripheral surface of the inner shaft 42. The third radial direction oil supply passage 49 functions as a branch passage for supplying oil from the first oil drain hole 47 to the rolling bearing 60. The outer peripheral surface opening of the first radial oil supply passage 46 and the outer peripheral surface opening of the second radial oil supply passage 48 communicate with each other through a spiral groove 50 formed on the outer peripheral surface of the inner shaft 42.

螺旋溝50は、この螺旋溝50内を流れる潤滑油によってインナーシャフト42及びミドルシャフト43、換言すれば、回転軸41を冷却する冷却機構として作用する。なお、インナーシャフト42の外周面に螺旋状に形成される螺旋溝50の冷却効果は、例えば、中空軸による冷却効果よりも高いが、冷却機構は螺旋溝50に限定されず、任意の形態が可能である。   The spiral groove 50 acts as a cooling mechanism that cools the inner shaft 42 and the middle shaft 43, in other words, the rotating shaft 41, with the lubricating oil flowing in the spiral groove 50. The cooling effect of the spiral groove 50 formed in a spiral shape on the outer peripheral surface of the inner shaft 42 is higher than, for example, the cooling effect by the hollow shaft. However, the cooling mechanism is not limited to the spiral groove 50, and any form is possible. Is possible.

ミドルシャフト43は、インナーシャフト42に外嵌すると共に、アウターシャフト44に内嵌する円筒状に形成されており、軸方向一方の端面からは、第3径方向給油路49と、ミドルシャフト43の軸方向略中間部の外周面に形成される円周溝状の油溜まり52と、を連通させる給油穴51が軸方向に形成されている。また、ミドルシャフト43の外周面には、それぞれの転がり軸受60に対応する位置に円周溝53が形成され、この円周溝53は、ミドルシャフト43の外周面とアウターシャフト44の内周面間に形成される隙間54を介して油溜まり52に連通する。また、第3径方向給油路49は、インナーシャフト42の第1排油穴47とミドルシャフト43の給油穴51とを連通する。   The middle shaft 43 is externally fitted to the inner shaft 42 and is formed in a cylindrical shape to be fitted to the outer shaft 44. From one end surface in the axial direction, the third radial oil supply passage 49 and the middle shaft 43 are An oil supply hole 51 is formed in the axial direction for communicating with a circumferential groove-like oil reservoir 52 formed on the outer peripheral surface of the substantially intermediate portion in the axial direction. In addition, a circumferential groove 53 is formed on the outer peripheral surface of the middle shaft 43 at a position corresponding to each rolling bearing 60. The circumferential groove 53 is formed on the outer peripheral surface of the middle shaft 43 and the inner peripheral surface of the outer shaft 44. The oil reservoir 52 communicates with a gap 54 formed therebetween. The third radial direction oil supply passage 49 communicates the first oil discharge hole 47 of the inner shaft 42 and the oil supply hole 51 of the middle shaft 43.

アウターシャフト44は、その内外周面を連通するように径方向に形成される径方向給油路(油路)55を備え、この径方向給油路55は、ミドルシャフト43の円周溝53と転がり軸受60の内輪63に形成される径方向給油路56(油路)とを連通する。また、アウターシャフト44の端面には、インナーシャフト42の第1排油穴47と連通する第2排油穴(油路)57が形成されている。   The outer shaft 44 includes a radial oil supply passage (oil passage) 55 formed in a radial direction so as to communicate with the inner and outer peripheral surfaces thereof, and the radial oil supply passage 55 rolls with the circumferential groove 53 of the middle shaft 43. A radial oil supply path 56 (oil path) formed in the inner ring 63 of the bearing 60 is communicated. Further, a second oil drain hole (oil passage) 57 communicating with the first oil drain hole 47 of the inner shaft 42 is formed on the end surface of the outer shaft 44.

そして、本実施形態では、図8に示すように、回転速度感応式バルブ70は、インナーシャフト42の第1径方向給油路46、アウターシャフト44の径方向給油路55、及び内輪63の径方向給油路56に配設され、温度感応式バルブ80は、アウターシャフト44の第2排油穴57及びインナーシャフト42の第3径方向給油路49に配設されている。なお、回転速度感応式バルブ70及び温度感応式バルブ80の配置位置は、上記の位置に限定されない。例えば、回転速度感応式バルブ70は、インナーシャフト42の第3径方向給油路49に配設されてもよく、温度感応式バルブ80は、内輪63の径方向給油路56に配設されてもよい。   In the present embodiment, as shown in FIG. 8, the rotational speed sensitive valve 70 includes the first radial oil supply passage 46 of the inner shaft 42, the radial oil supply passage 55 of the outer shaft 44, and the radial direction of the inner ring 63. The temperature sensitive valve 80 is disposed in the oil supply path 56 and is disposed in the second oil drain hole 57 of the outer shaft 44 and the third radial oil supply path 49 of the inner shaft 42. In addition, the arrangement positions of the rotational speed sensitive valve 70 and the temperature sensitive valve 80 are not limited to the above positions. For example, the rotational speed sensitive valve 70 may be disposed in the third radial oil supply passage 49 of the inner shaft 42, and the temperature sensitive valve 80 may be disposed in the radial oil supply passage 56 of the inner ring 63. Good.

回転速度感応式バルブ70は、図9に示すように、給油路46と一体に形成される流路71と、流路71のテーパ穴72内に嵌装されるテーパ状の弁体74と、を有するニードルバルブと、テーパ穴72の底面と弁体74との間に配置され、弁体74をテーパ穴72の底面側に向けて常時付勢するコイルばね(引っ張りコイルばね)75と、を備える。流路71は、内径側から外径側に向かうに従って次第に穴径が太くなるテーパ穴72と、テーパ穴72と内径側流路(図示では給油穴45)とを連通させるストレート穴73と、から構成される。また、回転速度感応式バルブ70は、給油路55,56にも同様に配設されている。   As shown in FIG. 9, the rotational speed sensitive valve 70 includes a flow path 71 formed integrally with the oil supply path 46, a tapered valve body 74 fitted in the tapered hole 72 of the flow path 71, And a coil spring (a tension coil spring) 75 that is disposed between the bottom surface of the tapered hole 72 and the valve body 74 and constantly urges the valve body 74 toward the bottom surface side of the tapered hole 72. Prepare. The flow path 71 includes a tapered hole 72 whose diameter gradually increases from the inner diameter side toward the outer diameter side, and a straight hole 73 that connects the tapered hole 72 and the inner diameter side flow path (the oil supply hole 45 in the drawing). Composed. The rotational speed sensitive valve 70 is also disposed in the oil supply passages 55 and 56 in the same manner.

このように構成された回転速度感応式バルブ70では、回転軸41の回転に伴って回転速度感応式バルブ70が回転すると、弁体74が遠心力によって径方向外方(図9の上方)に移動し、自重及びコイルばね75のばね力と、弁体74に作用する遠心力とがバランスする位置で停止する。即ち、回転速度感応式バルブ70の開度は、回転軸41の回転速度に応じて連続的に調整され、回転速度が増加するに伴って大きくなり、回転速度が低下するに伴って小さくなる。従って、潤滑油の供給量は、回転速度が増加するに伴って増大し、回転速度が低下するに伴って減少する。   In the rotational speed sensitive valve 70 configured as described above, when the rotational speed sensitive valve 70 rotates with the rotation of the rotating shaft 41, the valve body 74 is moved radially outward (upward in FIG. 9) by centrifugal force. It moves and stops at a position where its own weight and the spring force of the coil spring 75 balance with the centrifugal force acting on the valve element 74. That is, the opening degree of the rotational speed sensitive valve 70 is continuously adjusted according to the rotational speed of the rotary shaft 41, and increases as the rotational speed increases and decreases as the rotational speed decreases. Accordingly, the supply amount of the lubricating oil increases as the rotational speed increases, and decreases as the rotational speed decreases.

温度感応式バルブ80は、図10に示すように、給油路49と一体に形成される流路81と、流路81のテーパ穴82内に嵌装されるテーパ状の弁体84と、を有するニードルバルブと、テーパ穴82の底面と弁体84との間に配置され、温度が上昇したとき伸長し、温度が低下したとき縮長する形状記憶合金で形成される第1感熱式コイルばね85と、テーパ穴82の開口側と弁体84との間に配置され、温度が上昇したとき縮長し、温度が低下したとき伸長する形状記憶合金で形成される第2感熱式コイルばね86と、を備える。流路81は、内径側から外径側に向かうに従って次第に穴径が太くなるテーパ穴82と、テーパ穴82と内径側流路(図示では第1排油穴47)とを連通させるストレート穴83と、から構成される。また、温度感応式バルブ80は、第2排油穴57にも同様に配設されており、この場合、第1感熱式コイルばね85と第2感熱式コイルばね86が逆に配置されている。なお、第1感熱式コイルばね85及び第2感熱式コイルばね86は少なくとも一方であってもよい。   As shown in FIG. 10, the temperature-sensitive valve 80 includes a flow path 81 formed integrally with the oil supply path 49 and a tapered valve body 84 fitted into the tapered hole 82 of the flow path 81. A first heat-sensitive coil spring which is disposed between a needle valve having a tapered hole 82 and a valve body 84 and which is formed of a shape memory alloy that expands when the temperature rises and contracts when the temperature decreases. 85, a second heat-sensitive coil spring 86 which is disposed between the opening side of the tapered hole 82 and the valve body 84 and is formed of a shape memory alloy which contracts when the temperature increases and expands when the temperature decreases. And comprising. The flow path 81 has a tapered hole 82 whose diameter gradually increases from the inner diameter side toward the outer diameter side, and a straight hole 83 that allows the tapered hole 82 and the inner diameter side flow path (the first oil drain hole 47 in the figure) to communicate with each other. And. The temperature sensitive valve 80 is similarly disposed in the second oil drain hole 57, and in this case, the first thermal coil spring 85 and the second thermal coil spring 86 are disposed in reverse. . The first thermal coil spring 85 and the second thermal coil spring 86 may be at least one.

このように構成された温度感応式バルブ80では、回転軸41が高速回転して、転がり軸受60の発熱によって回転軸41の温度が上昇すると、温度感応式バルブ80の温度も上昇する。これにより、第1感熱式コイルばね85が伸長すると共に、第2感熱式コイルばね86が縮長するので、弁体84は第1感熱式コイルばね85と第2感熱式コイルばね86とのばね力がバランスする位置に移動して停止する。即ち、温度感応式バルブ80の開度は、温度感応式バルブ80の温度、換言すれば、回転軸41の温度に応じて連続的に調整され、温度が上昇するに伴って大きくなり、温度が低下するに伴って小さくなる。従って、潤滑油の供給量は、温度が上昇するに伴って増大し、温度が低下するに伴って減少する。また、第2排油穴57に配設される温度感応式バルブ80では、第1感熱式コイルばね85と第2感熱式コイルばね86が逆に配置されるため、その動作は、上記した給油路49に配設される温度感応式バルブ80の動作とは逆になる。   In the temperature sensitive valve 80 configured as described above, when the rotary shaft 41 rotates at a high speed and the temperature of the rotary shaft 41 rises due to heat generated by the rolling bearing 60, the temperature of the temperature sensitive valve 80 also rises. As a result, the first thermal coil spring 85 expands and the second thermal coil spring 86 contracts, so that the valve body 84 is a spring between the first thermal coil spring 85 and the second thermal coil spring 86. Move to a position where the force balances and stop. That is, the opening degree of the temperature sensitive valve 80 is continuously adjusted according to the temperature of the temperature sensitive valve 80, in other words, the temperature of the rotating shaft 41, and increases as the temperature rises. It becomes smaller as it falls. Therefore, the supply amount of the lubricating oil increases as the temperature increases, and decreases as the temperature decreases. Further, in the temperature sensitive valve 80 disposed in the second oil drain hole 57, since the first heat sensitive coil spring 85 and the second heat sensitive coil spring 86 are disposed in reverse, the operation thereof is the above-described oil supply. The operation of the temperature sensitive valve 80 disposed in the path 49 is reversed.

以下に、本実施形態の回転軸冷却構造40の作用について説明する。なお、潤滑油は、不図示の潤滑油供給装置からインナーシャフト42の給油穴45に供給され、転がり軸受60の潤滑に使用されなかった潤滑油は、インナーシャフト42の第1排油穴47及びアウターシャフト44の第2排油穴57から潤滑油供給装置に返送されるものとする。   Below, an effect | action of the rotating shaft cooling structure 40 of this embodiment is demonstrated. The lubricating oil is supplied from a lubricating oil supply device (not shown) to the oil supply hole 45 of the inner shaft 42, and the lubricating oil that has not been used for lubricating the rolling bearing 60 is the first drain oil hole 47 of the inner shaft 42 and It is assumed that the oil is returned from the second oil drain hole 57 of the outer shaft 44 to the lubricating oil supply device.

回転軸41の回転速度が低速の場合、回転軸41の温度は低温であり、温度感応式バルブ80よりも回転速度感応式バルブ70が主として作用する。即ち、低速回転時においては、回転速度感応式バルブ70の弁体74に作用する遠心力は小さく、回転速度感応式バルブ70の開度が小さい。これにより、給油穴45に供給された潤滑油は、回転速度感応式バルブ70によって流量が絞られて、少量の潤滑油が第1径方向給油路46から螺旋溝50に供給される。従って、潤滑油による回転軸41(インナーシャフト42)の冷却効果は大きくない。一方、低速回転時における転がり軸受60の発熱は少ないので、これにより、回転軸41の温度は、略一定に保たれる。   When the rotational speed of the rotating shaft 41 is low, the temperature of the rotating shaft 41 is low, and the rotational speed sensitive valve 70 mainly acts rather than the temperature sensitive valve 80. That is, during low speed rotation, the centrifugal force acting on the valve element 74 of the rotation speed sensitive valve 70 is small, and the opening degree of the rotation speed sensitive valve 70 is small. Thereby, the flow rate of the lubricating oil supplied to the oil supply hole 45 is reduced by the rotational speed sensitive valve 70, and a small amount of lubricating oil is supplied to the spiral groove 50 from the first radial oil supply path 46. Therefore, the cooling effect of the rotating shaft 41 (inner shaft 42) by the lubricating oil is not great. On the other hand, since the heat generated by the rolling bearing 60 during low-speed rotation is small, the temperature of the rotating shaft 41 is thereby maintained substantially constant.

この時、回転軸41の温度は低いので、第3径方向給油路49に配設された温度感応式バルブ80の開度が小さく、螺旋溝50から第1排油穴47に供給された潤滑油は、その一部が温度感応式バルブ80を介して転がり軸受60に供給され、残りの大部分は第2排油穴57に配設された温度感応式バルブ80を介して潤滑油供給装置に返送される。このように、転がり軸受60に少量の潤滑油を供給することで、転がり軸受60を適度に冷却すると共に、潤滑油の撹拌抵抗を抑制して軸受トルクを低減することができる。   At this time, since the temperature of the rotating shaft 41 is low, the opening degree of the temperature sensitive valve 80 disposed in the third radial oil supply passage 49 is small, and the lubrication supplied from the spiral groove 50 to the first oil discharge hole 47 is performed. A part of the oil is supplied to the rolling bearing 60 via the temperature sensitive valve 80, and most of the remaining oil is supplied to the lubricating oil supply device via the temperature sensitive valve 80 disposed in the second oil drain hole 57. Will be returned. Thus, by supplying a small amount of lubricating oil to the rolling bearing 60, the rolling bearing 60 can be appropriately cooled, and the agitation resistance of the lubricating oil can be suppressed to reduce the bearing torque.

一方、回転軸41が高速回転する場合、転がり軸受60の発熱が大きくなり、回転軸41の温度が上昇するので、第3径方向給油路49に配設された温度感応式バルブ80の開度が温度に応じて大きくなる。また、回転速度感応式バルブ70の弁体74に作用する遠心力が大きくなるので、回転速度感応式バルブ70の開度が回転速度に応じて大きくなる。従って、回転速度感応式バルブ70を介して第1径方向給油路46から螺旋溝50に供給される潤滑油の流量が増大してインナーシャフト42(回転軸41)を効果的に冷却する。   On the other hand, when the rotary shaft 41 rotates at a high speed, the heat generation of the rolling bearing 60 increases, and the temperature of the rotary shaft 41 rises. Therefore, the opening degree of the temperature sensitive valve 80 disposed in the third radial oil supply passage 49 is increased. Increases with temperature. Further, since the centrifugal force acting on the valve element 74 of the rotational speed sensitive valve 70 increases, the opening degree of the rotational speed sensitive valve 70 increases in accordance with the rotational speed. Accordingly, the flow rate of the lubricating oil supplied from the first radial oil supply passage 46 to the spiral groove 50 via the rotational speed sensitive valve 70 increases, and the inner shaft 42 (rotating shaft 41) is effectively cooled.

また、螺旋溝50から第2径方向給油路48を通り第1排油穴47に供給された潤滑油は、回転軸41の温度上昇に伴って開度が大きくなった温度感応式バルブ80を介して、比較的多量(回転軸41の温度に対応する量)の潤滑油が、給油穴51に供給され、給油穴51に供給された潤滑油は、油溜まり52、隙間54、円周溝53、径方向給油路55、及び径方向給油路56を通って、転がり軸受60に供給される。また、転がり軸受60に供給される潤滑油の流量は、アウターシャフト44の径方向給油路55、及び内輪63の径方向給油路56に配設される回転速度感応式バルブ70によっても調整される。   Further, the lubricating oil supplied from the spiral groove 50 through the second radial oil supply passage 48 to the first oil discharge hole 47 passes through the temperature sensitive valve 80 whose opening degree increases as the temperature of the rotary shaft 41 increases. Accordingly, a relatively large amount of lubricating oil (an amount corresponding to the temperature of the rotating shaft 41) is supplied to the oil supply hole 51, and the lubricating oil supplied to the oil supply hole 51 includes an oil reservoir 52, a gap 54, and a circumferential groove. 53, the radial oil supply passage 55, and the radial oil supply passage 56 are supplied to the rolling bearing 60. The flow rate of the lubricating oil supplied to the rolling bearing 60 is also adjusted by a rotational speed sensitive valve 70 disposed in the radial oil supply passage 55 of the outer shaft 44 and the radial oil supply passage 56 of the inner ring 63. .

これにより、転がり軸受60を適正に潤滑すると共に冷却して、内輪63の温度がハウジング90の温度より高温になったときに生じる軸受隙間の減少を最小限に抑制して、転がり軸受60の予圧を適正範囲に維持することができる。   Accordingly, the rolling bearing 60 is properly lubricated and cooled, and the reduction of the bearing gap that occurs when the temperature of the inner ring 63 becomes higher than the temperature of the housing 90 is suppressed to a minimum, so that the preload of the rolling bearing 60 is reduced. Can be maintained within an appropriate range.

また、本実施形態の変形例として、図11に示すように、内輪63の径方向給油路56に、回転速度感応式バルブ70の代わりに、温度感応式バルブ80が配設されていてもよい。   As a modification of the present embodiment, as shown in FIG. 11, a temperature sensitive valve 80 may be disposed in the radial oil supply passage 56 of the inner ring 63 instead of the rotational speed sensitive valve 70. .

本変形例では、温度感応式バルブ80は、図11に示すように、内輪63の径方向給油路56と一体に形成される第1流路81と、第1流路81の中間部から分岐して内輪軌道溝64に開口する第2流路87と、第1流路81のテーパ穴82内に嵌装されるテーパ状の弁体84と、を有するニードルバルブと、テーパ穴82の底面と弁体84との間に配置され、温度が上昇したとき伸長し、温度が低下したとき縮長する形状記憶合金で形成される第1感熱式コイルばね85と、テーパ穴82の開口側と弁体84との間に配置され、温度が上昇したとき縮長し、温度が低下したとき伸長する形状記憶合金で形成される第2感熱式コイルばね86と、を備える。第1流路81は、内径側流路(図示では径方向給油路55)と連通し、内径側から外径側に向かうに従って次第に穴径が細くなるテーパ穴82と、テーパ穴82と内輪外周面63aとを連通させるストレート穴83と、から構成される。   In this modification, the temperature-sensitive valve 80 branches from a first flow path 81 formed integrally with the radial oil supply path 56 of the inner ring 63 and an intermediate portion of the first flow path 81 as shown in FIG. A needle valve having a second flow path 87 that opens into the inner ring raceway groove 64 and a tapered valve body 84 fitted in the tapered hole 82 of the first flow path 81, and the bottom surface of the tapered hole 82. A first heat-sensitive coil spring 85 formed of a shape memory alloy that is disposed between the valve body 84 and expands when the temperature rises and contracts when the temperature decreases, and the opening side of the tapered hole 82. And a second heat-sensitive coil spring 86 formed of a shape memory alloy which is disposed between the valve body 84 and contracts when the temperature rises and expands when the temperature falls. The first flow path 81 communicates with an inner diameter side flow path (radial direction oil supply path 55 in the figure), a tapered hole 82 whose diameter gradually decreases from the inner diameter side toward the outer diameter side, and the tapered hole 82 and the inner ring outer periphery. A straight hole 83 communicating with the surface 63a.

このように構成された回転軸冷却構造40では、一対の転がり軸受60の一方に大きな負荷が作用し、或いは、いずれか一方の転がり軸受60に供給される潤滑油の量が少ないなど、それぞれの転がり軸受60の運転条件が異なると、転がり軸受60の温度が異なった値となる。このような場合、温度が高い側の温度感応式バルブ80は、バルブの開度が大きくなって多くの潤滑油を供給し、転がり軸受60を潤滑すると共に冷却する。一方、温度が低い側の温度感応式バルブ80は、バルブの開度が小さくなって潤滑油の供給量を絞る。この結果、一対の転がり軸受60間の温度差が解消されて良好な潤滑が行われる。   In the rotating shaft cooling structure 40 configured in this way, a large load acts on one of the pair of rolling bearings 60, or the amount of lubricating oil supplied to one of the rolling bearings 60 is small. When the operating conditions of the rolling bearing 60 are different, the temperature of the rolling bearing 60 is different. In such a case, the temperature sensitive valve 80 on the higher temperature side increases the opening of the valve and supplies a large amount of lubricating oil to lubricate and cool the rolling bearing 60. On the other hand, the temperature-sensitive valve 80 on the lower temperature side reduces the opening of the valve to reduce the supply amount of the lubricating oil. As a result, the temperature difference between the pair of rolling bearings 60 is eliminated and good lubrication is performed.

以上説明したように、本実施形態の回転軸冷却構造40によれば、特に、工作機械、ガスタービン、ジェットエンジン、及び自動車のターボチャージャー等の高温・高速回転条件下で使用される回転軸41において、回転軸41の回転速度の上昇に伴って潤滑油の供給量を連続的に調整し、回転軸41を効果的に冷却すると共に、転がり軸受60を潤滑する。また、回転軸41の温度上昇に伴って、潤滑油の供給量を連続的に調整して転がり軸受60を冷却し、転がり軸受60の予圧を適正範囲に抑制することができる。   As described above, according to the rotating shaft cooling structure 40 of the present embodiment, the rotating shaft 41 used under high-temperature and high-speed rotating conditions such as machine tools, gas turbines, jet engines, and automobile turbochargers, in particular. , The supply amount of the lubricating oil is continuously adjusted as the rotational speed of the rotating shaft 41 increases, so that the rotating shaft 41 is effectively cooled and the rolling bearing 60 is lubricated. Further, as the temperature of the rotating shaft 41 rises, the supply amount of the lubricating oil can be continuously adjusted to cool the rolling bearing 60, and the preload of the rolling bearing 60 can be suppressed to an appropriate range.

なお、本発明は上記実施形態に例示したものに限定されるものではなく、本発明の要旨を逸脱しない範囲において適宜変更可能である。
例えば、上記実施形態では、給油量調整機構20は、弁体30とコイルばね31とからなる構造として説明したが、これに限定されるものではなく、回転速度に応じて潤滑油の供給量を調整可能なものであればよく、例えば、電磁バルブなどを用いることができる。
In addition, this invention is not limited to what was illustrated to the said embodiment, In the range which does not deviate from the summary of this invention, it can change suitably.
For example, in the above-described embodiment, the oil supply amount adjusting mechanism 20 has been described as a structure including the valve body 30 and the coil spring 31. However, the structure is not limited thereto, and the supply amount of the lubricating oil is set according to the rotation speed. Anything can be used as long as it can be adjusted.

また、上記実施形態では、弁体74とコイルばね(引っ張りコイルばね)75とで回転速度感応式バルブ70を構成し、弁体84と温度に応じて伸縮する形状記憶合金で形成される第1及び第2感熱式コイルばね85、86とで温度感応式バルブ80を構成したが、これに限定されず、回転速度又は温度によって潤滑油の流量及び流路を連続的に切り換え可能な構造であればよく、例えば、電磁バルブや形状記憶合金製バルブなどを用いることができる。   In the above embodiment, the valve body 74 and the coil spring (tensile coil spring) 75 constitute the rotational speed sensitive valve 70, and the valve body 84 and the first shape memory alloy that expands and contracts depending on the temperature. The temperature-sensitive valve 80 is configured by the second heat-sensitive coil springs 85 and 86. However, the present invention is not limited to this, and the flow rate and flow path of the lubricating oil can be continuously switched depending on the rotation speed or temperature. For example, an electromagnetic valve, a shape memory alloy valve, or the like can be used.

10 転がり軸受(アンギュラ玉軸受)
11 外輪
12 外輪軌道溝
13 内輪
14 内輪軌道溝
16 玉(転動体)
20 給油量調整機構
21 内輪外周面
22 内輪内周面
23 第1給油路
27 第2給油路
30 弁体
31 コイルばね
35,36,37 流路
d1,d2,d3 穴径
40 回転軸冷却構造
41 回転軸
42 インナーシャフト
43 ミドルシャフト
44 アウターシャフト
46 第1径方向給油路(油路)
48 第2径方向給油路
49 第3径方向給油路(油路)
50 螺旋溝
55 径方向給油路(油路)
56 径方向給油路(油路)
57 第2排油穴(油路)
60 転がり軸受
70 回転速度感応式バルブ
71 流路
74 弁体
75 コイルばね(引っ張りコイルばね)
80 温度感応式バルブ
81 流路
84 弁体
85 第1感熱式コイルばね
86 第2感熱式コイルばね
10 Rolling bearings (angular ball bearings)
11 outer ring 12 outer ring raceway groove 13 inner ring 14 inner ring raceway groove 16 ball (rolling element)
DESCRIPTION OF SYMBOLS 20 Oil supply amount adjustment mechanism 21 Inner ring outer peripheral surface 22 Inner ring inner peripheral surface 23 1st oil supply path 27 2nd oil supply path 30 Valve body 31 Coil spring 35, 36, 37 Flow path d1, d2, d3 Hole diameter 40 Rotating shaft cooling structure 41 Rotating shaft 42 Inner shaft 43 Middle shaft 44 Outer shaft 46 First radial oil supply passage (oil passage)
48 Second radial oil supply passage 49 Third radial oil supply passage (oil passage)
50 Spiral groove 55 Radial direction oil supply passage (oil passage)
56 Radial oil supply passage (oil passage)
57 Second oil drain hole (oil passage)
60 Rolling bearing 70 Rotational speed sensitive valve 71 Flow path 74 Valve body 75 Coil spring (Tension coil spring)
80 Temperature-sensitive valve 81 Flow path 84 Valve body 85 First thermal coil spring 86 Second thermal coil spring

Claims (7)

内周面に外輪軌道溝を有する外輪と、外周面に内輪軌道溝を有する内輪と、前記外輪軌道溝と前記内輪軌道溝間に転動自在に配設される複数の転動体と、を備え、アンダーレース潤滑される転がり軸受であって、
前記内輪は、前記転がり軸受の内部に供給する潤滑油の供給量を回転速度に応じて調整可能な給油量調整機構を備えることを特徴とする転がり軸受。
An outer ring having an outer ring raceway groove on an inner peripheral surface, an inner ring having an inner ring raceway groove on an outer peripheral surface, and a plurality of rolling elements arranged to be freely rollable between the outer ring raceway groove and the inner ring raceway groove. A rolling bearing that is lubricated under race,
The rolling bearing according to claim 1, wherein the inner ring includes an oil supply amount adjusting mechanism capable of adjusting a supply amount of lubricating oil supplied to the inside of the rolling bearing according to a rotation speed.
前記給油量調整機構は、前記内輪軌道溝の軸方向側方に設けられる内輪外周面と内輪内周面とを連通して径方向に沿って設けられる第1給油路と、前記第1給油路から分岐して前記内輪軌道溝に連通する第2給油路と、前記第1給油路内に配設されるニードルバルブの弁体と、前記ニードルバルブの弁体を前記内輪内周面に向けて付勢するコイルばねと、を備えることを特徴とする請求項1に記載の転がり軸受。   The oil supply amount adjusting mechanism includes a first oil supply passage provided along a radial direction by communicating an inner ring outer peripheral surface and an inner ring inner peripheral surface provided on an axial side of the inner ring raceway groove, and the first oil supply passage. A second oil supply path branched from the inner ring raceway groove, a valve body of a needle valve disposed in the first oil supply path, and a valve body of the needle valve facing the inner peripheral surface of the inner ring The rolling bearing according to claim 1, further comprising a coil spring that biases. 前記第2給油路は、径方向に異なる位置で前記第1給油路から分岐すると共に、複数の流路からなることを特徴とする請求項2に記載の転がり軸受。   The rolling bearing according to claim 2, wherein the second oil supply passage is branched from the first oil supply passage at a position that is different in a radial direction, and includes a plurality of flow passages. 転がり軸受で回動自在に支持される回転軸を、潤滑油によって冷却する回転軸冷却構造であって、
前記回転軸及び前記転がり軸受の少なくとも一方に設けられる前記潤滑油の油路に配設され、前記回転軸の回転速度に応じて前記潤滑油の供給量を連続的に調整する回転速度感応式バルブを備えることを特徴とする回転軸冷却構造。
A rotating shaft cooling structure that cools a rotating shaft that is rotatably supported by a rolling bearing with lubricating oil,
A rotational speed sensitive valve that is disposed in an oil passage of the lubricating oil provided in at least one of the rotating shaft and the rolling bearing and continuously adjusts the supply amount of the lubricating oil according to the rotational speed of the rotating shaft. A rotating shaft cooling structure comprising:
転がり軸受で回動自在に支持される回転軸を、潤滑油によって冷却する回転軸冷却構造であって、
前記回転軸及び前記転がり軸受の少なくとも一方に設けられる前記潤滑油の油路に配設され、前記回転軸又は前記転がり軸受の温度に応じて前記潤滑油の供給量を連続的に調整する温度感応式バルブを備えることを特徴とする回転軸冷却構造。
A rotating shaft cooling structure that cools a rotating shaft that is rotatably supported by a rolling bearing with lubricating oil,
A temperature sensitive sensor that is disposed in an oil passage of the lubricating oil provided in at least one of the rotating shaft and the rolling bearing and continuously adjusts the supply amount of the lubricating oil according to the temperature of the rotating shaft or the rolling bearing. A rotary shaft cooling structure comprising a type valve.
前記回転速度感応式バルブは、ニードルバルブと、
前記ニードルバルブの弁体を前記ニードルバルブの流路が狭まる方向に付勢するコイルばねと、を備え、
前記回転軸の回転に伴い前記弁体に作用する遠心力によって、前記弁体を前記コイルばねの付勢力に抗して移動させ、前記回転速度感応式バルブの開度を前記回転軸の回転速度に応じて連続的に調整することを特徴とする請求項4に記載の回転軸冷却構造。
The rotational speed sensitive valve includes a needle valve,
A coil spring that biases the valve body of the needle valve in a direction in which the flow path of the needle valve narrows,
The valve body is moved against the urging force of the coil spring by the centrifugal force acting on the valve body with the rotation of the rotary shaft, and the opening degree of the rotational speed sensitive valve is set to the rotational speed of the rotary shaft. The rotating shaft cooling structure according to claim 4, wherein the rotating shaft cooling structure is continuously adjusted according to the above.
前記温度感応式バルブは、ニードルバルブと、
温度が上昇したとき伸長し、温度が低下したとき縮長する形状記憶合金で形成され、温度が上昇したとき前記ニードルバルブの弁体を前記ニードルバルブの流路が広まる方向に付勢する第1感熱式コイルばねと、
温度が上昇したとき縮長し、温度が低下したとき伸長する形状記憶合金で形成され、温度が低下したとき前記弁体を前記流路が狭まる方向に付勢する第2感熱式コイルばねと、を備え、
前記転がり軸受の温度に応じて前記第1及び第2感熱式コイルばねを伸縮させ、前記温度感応式バルブの開度を前記転がり軸受の温度に応じて連続的に調整することを特徴とする請求項5に記載の回転軸冷却構造。
The temperature sensitive valve includes a needle valve,
A first shape memory alloy that expands when the temperature rises and contracts when the temperature falls, and biases the valve body of the needle valve in a direction in which the flow path of the needle valve widens when the temperature rises. A thermal coil spring;
A second heat-sensitive coil spring that is formed of a shape memory alloy that contracts when the temperature rises and expands when the temperature drops, and biases the valve body in a direction in which the flow path narrows when the temperature drops; With
The first and second thermal coil springs are expanded and contracted according to the temperature of the rolling bearing, and the opening degree of the temperature sensitive valve is continuously adjusted according to the temperature of the rolling bearing. Item 6. The rotating shaft cooling structure according to Item 5.
JP2010016814A 2009-02-23 2010-01-28 Roller bearing and rotating shaft cooling structure Pending JP2010216651A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010016814A JP2010216651A (en) 2009-02-23 2010-01-28 Roller bearing and rotating shaft cooling structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009039314 2009-02-23
JP2010016814A JP2010216651A (en) 2009-02-23 2010-01-28 Roller bearing and rotating shaft cooling structure

Publications (1)

Publication Number Publication Date
JP2010216651A true JP2010216651A (en) 2010-09-30

Family

ID=42975696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010016814A Pending JP2010216651A (en) 2009-02-23 2010-01-28 Roller bearing and rotating shaft cooling structure

Country Status (1)

Country Link
JP (1) JP2010216651A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013050294A1 (en) * 2011-10-06 2013-04-11 Aktiebolaget Skf Power harvesting bearing configuration
WO2013050292A1 (en) * 2011-10-06 2013-04-11 Aktiebolaget Skf Power harvesting bearing configuration
WO2013050295A1 (en) * 2011-10-06 2013-04-11 Aktiebolaget Skf Power harvesting bearing configuration
JP5291260B1 (en) * 2013-02-01 2013-09-18 巴工業株式会社 Horizontal centrifuge and control method of horizontal centrifuge
JP2014137123A (en) * 2013-01-18 2014-07-28 Toray Ind Inc Method for lubricating bearing part and resin film manufacturing method using the same
KR101514148B1 (en) * 2013-10-31 2015-04-21 현대위아 주식회사 Bearing apparatus for machine tools
JP2015183697A (en) * 2014-03-20 2015-10-22 三菱重工業株式会社 Bearing cooling device
CN106594060A (en) * 2016-11-09 2017-04-26 安徽千禧精密轴承制造有限公司 Bearing module capable of dissipating heat
CN110608283A (en) * 2019-09-27 2019-12-24 吉林大学青岛汽车研究院 Lubricating device for needle roller bearing and lubricating oil supply control method
FR3087826A1 (en) * 2018-10-29 2020-05-01 Safran Aircraft Engines TURBOMACHINE COMPRISING MEANS FOR AXIALLY HOMOGENEIZING THE TEMPERATURE OF AN INNER RING OF A ROLLING BEARING
KR102319290B1 (en) * 2020-07-09 2021-10-28 정병욱 Apparatus for supplying lubricating oil to guide post
CN114718959A (en) * 2022-03-07 2022-07-08 西北工业大学 Rolling bearing lubricating device and method
CN114876959A (en) * 2021-02-05 2022-08-09 中国航发商用航空发动机有限责任公司 Roller bearing and rotating machinery
CN114910193A (en) * 2022-06-02 2022-08-16 河南科技大学 Method for researching thermal field characteristics in lubricating bearing cavity under roller bearing ring
CN116516120A (en) * 2023-06-26 2023-08-01 山西天宝集团有限公司 New energy wind power generation flange spray cooling equipment and method

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9103226B2 (en) 2011-10-06 2015-08-11 Aktiebolaget Skf Power harvesting bearing configuration
WO2013050292A1 (en) * 2011-10-06 2013-04-11 Aktiebolaget Skf Power harvesting bearing configuration
WO2013050295A1 (en) * 2011-10-06 2013-04-11 Aktiebolaget Skf Power harvesting bearing configuration
WO2013050294A1 (en) * 2011-10-06 2013-04-11 Aktiebolaget Skf Power harvesting bearing configuration
CN103917791A (en) * 2011-10-06 2014-07-09 Skf公司 Power harvesting bearing configuration
US9109460B2 (en) 2011-10-06 2015-08-18 Aktiebolaget Skf Power harvesting bearing configuration
US9097135B2 (en) 2011-10-06 2015-08-04 Aktiebolaget Skf Power harvesting bearing configuration
JP2014137123A (en) * 2013-01-18 2014-07-28 Toray Ind Inc Method for lubricating bearing part and resin film manufacturing method using the same
JP5291260B1 (en) * 2013-02-01 2013-09-18 巴工業株式会社 Horizontal centrifuge and control method of horizontal centrifuge
KR101514148B1 (en) * 2013-10-31 2015-04-21 현대위아 주식회사 Bearing apparatus for machine tools
JP2015183697A (en) * 2014-03-20 2015-10-22 三菱重工業株式会社 Bearing cooling device
CN106594060A (en) * 2016-11-09 2017-04-26 安徽千禧精密轴承制造有限公司 Bearing module capable of dissipating heat
US11326472B2 (en) 2018-10-29 2022-05-10 Safran Aircraft Engines Turbine engine comprising means for axially homogenising the temperature of an inner ring of a roller bearing
FR3087826A1 (en) * 2018-10-29 2020-05-01 Safran Aircraft Engines TURBOMACHINE COMPRISING MEANS FOR AXIALLY HOMOGENEIZING THE TEMPERATURE OF AN INNER RING OF A ROLLING BEARING
CN110608283A (en) * 2019-09-27 2019-12-24 吉林大学青岛汽车研究院 Lubricating device for needle roller bearing and lubricating oil supply control method
CN110608283B (en) * 2019-09-27 2024-05-03 吉林大学青岛汽车研究院 Needle bearing lubrication device and lubricating oil supply regulation and control method
KR102319290B1 (en) * 2020-07-09 2021-10-28 정병욱 Apparatus for supplying lubricating oil to guide post
CN114876959A (en) * 2021-02-05 2022-08-09 中国航发商用航空发动机有限责任公司 Roller bearing and rotating machinery
CN114876959B (en) * 2021-02-05 2024-02-20 中国航发商用航空发动机有限责任公司 Roller bearing and rotary machine
CN114718959A (en) * 2022-03-07 2022-07-08 西北工业大学 Rolling bearing lubricating device and method
CN114718959B (en) * 2022-03-07 2023-10-20 西北工业大学 Rolling bearing lubricating device and method
CN114910193A (en) * 2022-06-02 2022-08-16 河南科技大学 Method for researching thermal field characteristics in lubricating bearing cavity under roller bearing ring
CN116516120A (en) * 2023-06-26 2023-08-01 山西天宝集团有限公司 New energy wind power generation flange spray cooling equipment and method
CN116516120B (en) * 2023-06-26 2023-09-29 山西天宝集团有限公司 New energy wind power generation flange spray cooling equipment and method

Similar Documents

Publication Publication Date Title
JP2010216651A (en) Roller bearing and rotating shaft cooling structure
US8181632B2 (en) Supercharger
US8668432B2 (en) Bearing arrangement having a double-row roller bearing, turbocharger and method for feeding a lubricant to the rows of rolling bodies of a double-row roller bearing
US7232258B2 (en) Passive bearing clearance control using a pre-swirler
JP2009079628A (en) Rolling bearing device and supercharger using the same
JP2010116956A (en) Journal bearing
JP2014530333A (en) Dynamic lubrication bearing and dynamic lubrication method of bearing
CN102808663A (en) Bearing assembly
CN101415920A (en) Supercharger
JP2007321950A (en) Cylindrical roller bearing
JP6645378B2 (en) Ball bearings and spindle devices for machine tools
JP2009138896A (en) Rolling bearing and its lubrication method
JP2009287678A (en) Roller bearing and bearing structure
JP2009203846A (en) Ball bearing arrangement for turbocharger
JPH1058278A (en) Spindle device with lubricating oil flow control device
JP6729304B2 (en) Spindle device
JP2011106493A (en) Rolling bearing device
JPH09280257A (en) Spindle bearing cooling system
JP2018150988A (en) Rolling bearing
KR20040053385A (en) Bevel gear transmission
JP2014211229A (en) Bearing device
KR20230066570A (en) bearing device
JP6539507B2 (en) Bearing unit
JP2009203845A (en) Bearing device for turbocharger
WO2018025918A1 (en) Ball bearing and main shaft device for machine tool