[go: up one dir, main page]

JP2010219499A - R-t-b based rare earth sintered magnet and method for manufacturing the same - Google Patents

R-t-b based rare earth sintered magnet and method for manufacturing the same Download PDF

Info

Publication number
JP2010219499A
JP2010219499A JP2010007011A JP2010007011A JP2010219499A JP 2010219499 A JP2010219499 A JP 2010219499A JP 2010007011 A JP2010007011 A JP 2010007011A JP 2010007011 A JP2010007011 A JP 2010007011A JP 2010219499 A JP2010219499 A JP 2010219499A
Authority
JP
Japan
Prior art keywords
rare earth
mass
sintered magnet
earth sintered
rtb
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010007011A
Other languages
Japanese (ja)
Inventor
Eiji Kato
英治 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2010007011A priority Critical patent/JP2010219499A/en
Publication of JP2010219499A publication Critical patent/JP2010219499A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing an R-T-B based rare earth sintered magnet for manufacturing an R-T-B based rare earth sintered magnet having high magnetic characteristics, especially, an excellent coercive force with a high yield. <P>SOLUTION: This method for manufacturing an R-T-B based rare earth sintered magnet includes: a treatment process for preparing treated alloy by carrying out HDDR treatment to R-T-B based raw material alloy; a crashing process for preparing alloy powder whose mean particle diameter is equal to or less than 2 μm by crushing the treated alloy; and a sintering process for preparing a sintered body by molding and sintering the alloy powder in a magnetic field. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、R−T−B系希土類焼結磁石及びその製造方法に関する。   The present invention relates to an R-T-B rare earth sintered magnet and a method for manufacturing the same.

R−T−B系希土類焼結磁石(RはYを含む希土類元素から選ばれる少なくとも1種の元素であり、TはFe及びCoの少なくとも一方の元素である。)は、磁気特性に優れており、希土類元素の一種であるNdが資源的に豊富で比較的安価であることから、各種電気機器に使用されている。このR−T−B系希土類焼結磁石の主な特性である保磁力(HcJ)は、焼結体組織を微細化することにより向上する。また、焼結体組織を微細化することによって、R−T−B系希土類焼結磁石の耐食性も改善することができる。   An R-T-B rare earth sintered magnet (R is at least one element selected from rare earth elements including Y, and T is at least one element of Fe and Co) has excellent magnetic properties. Since Nd, a kind of rare earth element, is abundant in resources and relatively inexpensive, it is used in various electrical devices. The coercive force (HcJ), which is the main characteristic of this RTB-based rare earth sintered magnet, is improved by making the sintered body texture finer. Moreover, the corrosion resistance of the RTB-based rare earth sintered magnet can be improved by refining the sintered body structure.

R−T−B系希土類焼結磁石は、従来から、粉砕によって調製された平均粒径が5μm程度の合金粉末を成形し、焼結することにより製造されている。R−T−B系希土類焼結磁石の結晶粒径は、焼結前の合金粉末の粒径サイズに大きく左右される。したがって、焼結体組織を微細化するためには、より小さい粒径を有する合金粉末を用いることが必要である。   R-T-B rare earth sintered magnets are conventionally manufactured by molding and sintering an alloy powder having an average particle diameter of about 5 μm prepared by pulverization. The crystal grain size of the RTB-based rare earth sintered magnet greatly depends on the grain size of the alloy powder before sintering. Accordingly, in order to refine the sintered body structure, it is necessary to use an alloy powder having a smaller particle size.

一般に、焼結体の原料である合金粉末は、希土類元素、遷移金属元素、ボロン、その他の添加物を含む融液を回転ロール上で連続的に冷却する、いわゆるストリップキャスト法によって作製された合金を粉砕することによって調製される。ストリップキャスト法では、デンドライト構造を有する300μm程度の厚みを有する合金薄体(R−T−B系希土類化合物)が形成される。   Generally, the alloy powder that is a raw material of the sintered body is an alloy produced by a so-called strip casting method in which a melt containing rare earth elements, transition metal elements, boron, and other additives is continuously cooled on a rotating roll. Is prepared by grinding. In the strip casting method, an alloy thin body (RTB-based rare earth compound) having a dendrite structure and a thickness of about 300 μm is formed.

このデンドライト構造を形成する柱状晶は、短軸方向でも4μm以上の大きさを有する。このため、ストリップキャスト法で調製した合金薄体からは、粉砕により平均粒径が4〜5μm程度の合金粉末を得ることは可能であったものの、それよりも細かい合金粉末を得ることは困難であった。また、平均粒径がより小さい合金粉末を得るために分級機等を用いて分級を行うと、粒径の大きな合金粉末が排除されることとなり、収率が大きく低下してしまうという問題があった。   The columnar crystals forming this dendrite structure have a size of 4 μm or more even in the minor axis direction. For this reason, although it was possible to obtain an alloy powder having an average particle diameter of about 4 to 5 μm by pulverization from an alloy thin body prepared by the strip cast method, it is difficult to obtain an alloy powder finer than that. there were. Further, when classification is performed using a classifier or the like in order to obtain an alloy powder having a smaller average particle diameter, the alloy powder having a larger particle diameter is eliminated, resulting in a significant decrease in yield. It was.

上述のような問題を改善するため、より微細な構造の合金を用いる必要があり、その方法のひとつとしてHDDR法が提案されている(例えば、特許文献1)。   In order to improve the above problems, it is necessary to use an alloy having a finer structure, and the HDDR method has been proposed as one of the methods (for example, Patent Document 1).

従来、HDDR法によって処理された粉末は、そのまま成形、焼結すると粒成長が生じやすいため、最終的に得られるR−T−B系希土類焼結磁石の組織を十分に微細化することができず、保磁力などの磁気特性を改善することが困難であった。そのため、ホットプレスや通電焼結など、特定の焼結方法を用いる必要があった。   Conventionally, powder processed by the HDDR method is prone to grain growth if it is molded and sintered as it is, so that the structure of the R-T-B rare earth sintered magnet finally obtained can be sufficiently refined. However, it was difficult to improve magnetic properties such as coercive force. Therefore, it was necessary to use a specific sintering method such as hot pressing or electric current sintering.

特開平9−63878号公報JP-A-9-63878

そこで、本発明は、高い磁気特性を有し、特に優れた保磁力を有するR−T−B系希土類焼結磁石を高収率で製造することが可能なR−T−B系希土類焼結磁石の製造方法を提供することを目的とする。また、高い磁気特性を有し特に優れた保磁力を有するR−T−B系希土類焼結磁石を提供することを目的とする。   Accordingly, the present invention provides an RTB-based rare earth sintered magnet that can produce an RTB-based rare earth sintered magnet having high magnetic properties and particularly excellent coercive force in a high yield. It aims at providing the manufacturing method of a magnet. It is another object of the present invention to provide an RTB-based rare earth sintered magnet having high magnetic characteristics and particularly excellent coercive force.

上記目的を達成するため、本発明は、R−T−B系原料合金をHDDR処理して処理合金を調製する処理工程と、処理合金を粉砕して平均粒径2μm以下の合金粉末を調製する粉砕工程と、合金粉末を磁場中成形して焼結し、焼結体を調製する焼結工程と、を有するR−T−B系希土類焼結磁石の製造方法を提供する。   In order to achieve the above object, the present invention prepares an alloy powder having an average particle size of 2 μm or less by pulverizing the treated alloy by subjecting the RTB-based raw material alloy to HDDR treatment to prepare the treated alloy. Provided is a method for producing an RTB-based rare earth sintered magnet having a pulverization step and a sintering step in which an alloy powder is molded and sintered in a magnetic field to prepare a sintered body.

本発明によれば、優れた磁気特性を有するR−T−B系希土類焼結磁石を、高収率で製造することができる。このような効果が得られる理由は、以下の通りである。   According to the present invention, an RTB-based rare earth sintered magnet having excellent magnetic properties can be produced with high yield. The reason why such an effect can be obtained is as follows.

本発明では、R−T−B系原料合金をHDDR処理して、原料合金の結晶粒の微細化を行っている。そして、HDDR処理によって得られた処理合金を、さらに粉砕することによって、十分に微細な合金粉末を調製している。このように、十分に微細な合金粉末を用いて焼結を行っているため、R−T−B系希土類焼結磁石の組織を微細化することが可能となり、残留磁束密度を維持しつつ保磁力を向上することができる。また、HDDR処理と粉砕の双方を行っているため、R−T−B系原料合金を有効に使用することができる。したがって、高い磁気特性を有するR−T−B系希土類焼結磁石を高収率で製造することができる。   In the present invention, the R-T-B type raw material alloy is subjected to HDDR treatment to refine crystal grains of the raw material alloy. A sufficiently fine alloy powder is prepared by further pulverizing the processed alloy obtained by the HDDR process. As described above, since sintering is performed using sufficiently fine alloy powder, the structure of the R-T-B rare earth sintered magnet can be refined, and the residual magnetic flux density can be maintained while being maintained. Magnetic force can be improved. Moreover, since both HDDR processing and pulverization are performed, the R-T-B type raw material alloy can be used effectively. Therefore, an R-T-B rare earth sintered magnet having high magnetic properties can be produced with a high yield.

なお、本発明における「R」は、Yを含む希土類元素から選ばれる少なくとも1種の元素であり、「T」はFe及び/又はCoである。すなわち、Rは、Y(イットリウム),La,Ce,Pr,Nd,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb及びLuから選ばれる少なくとも1種の元素である。   In the present invention, “R” is at least one element selected from rare earth elements including Y, and “T” is Fe and / or Co. That is, R is at least one element selected from Y (yttrium), La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu.

本発明の製造方法は、粉砕工程の前に、処理合金に水素を吸蔵させる水素吸蔵工程を有することが好ましい。本発明では、HDDR処理された処理合金及び微細な合金粉末を経てR−T−B系希土類焼結磁石を作製しているが、このような処理合金や合金粉末は活性が高く、容易に窒化または酸化されてしまう傾向がある。このため、上述のような水素吸蔵工程によって、HDDR処理された処理合金に水素を吸蔵させることが有効である。これによって、活性な希土類元素が不活性化され、粉砕工程や焼結工程における窒化物や酸化物の生成を低減することが可能となり、R−T−B系希土類焼結磁石の残留磁束密度を維持しつつ保磁力を一層向上させることができる。   The production method of the present invention preferably has a hydrogen storage step of storing hydrogen in the treated alloy before the pulverization step. In the present invention, an R-T-B rare earth sintered magnet is produced through the HDDR-treated treated alloy and fine alloy powder. However, such treated alloy and alloy powder are highly active and easily nitrided. Or they tend to be oxidized. For this reason, it is effective to store hydrogen in the HDDR-processed alloy by the hydrogen storage process as described above. As a result, the active rare earth element is inactivated, and it becomes possible to reduce the formation of nitrides and oxides in the pulverization process and the sintering process, and the residual magnetic flux density of the R-T-B rare earth sintered magnet can be reduced. The coercive force can be further improved while maintaining.

本発明の製造方法の粉砕工程では、処理合金を粉砕して合金粉末を調製する。これによって、配向性が向上し保磁力及び残留磁束密度などの磁気特性に一層優れるR−T−B系希土類焼結磁石を得ることができる。   In the pulverization step of the production method of the present invention, the treated alloy is pulverized to prepare an alloy powder. As a result, it is possible to obtain an RTB-based rare earth sintered magnet having improved orientation and further excellent magnetic properties such as coercive force and residual magnetic flux density.

本発明ではまた、構成成分として、R(但し、RはYを含む希土類元素から選ばれる少なくとも1種の元素である。)、B、Zr、Co、Fe並びにAl及びCuの1種又は2種を含有し、各元素の含有割合が、
R:25〜37質量%、
B:0.5〜4.5質量%、
Al及びCuの1種又は2種:0.02〜0.5質量%、
Zr:0.03〜0.5質量%、
Co:2質量%以下(但し、0質量%を含まず。)、
Fe:残部、であり、
結晶粒の平均粒径が2μm以下であるR−T−B系希土類焼結磁石を提供する。
In the present invention, the constituent component is R (wherein R is at least one element selected from rare earth elements including Y), B, Zr, Co, Fe, and one or two of Al and Cu. The content of each element is
R: 25-37% by mass,
B: 0.5 to 4.5% by mass,
1 type or 2 types of Al and Cu: 0.02-0.5 mass%,
Zr: 0.03 to 0.5 mass%,
Co: 2% by mass or less (excluding 0% by mass),
Fe: the balance,
An RTB-based rare earth sintered magnet having an average grain size of 2 μm or less is provided.

このようなR−T−B系希土類焼結磁石は、高い磁気特性を実現するために好適な組成を有するうえに、十分に微細化された結晶粒を有するため、優れた保磁力を有するものとなる。   Such an R-T-B rare earth sintered magnet has an excellent coercive force because it has a suitable composition for realizing high magnetic properties and has sufficiently fine crystal grains. It becomes.

本発明によれば、高い磁気特性を有し、特に優れた保磁力を有するR−T−B系希土類焼結磁石を高収率で製造することが可能なR−T−B系希土類焼結磁石の製造方法を提供することができる。また、本発明によれば、高い磁気特性を有し、特に優れた保磁力を有するR−T−B系希土類焼結磁石を提供することができる。   According to the present invention, an RTB-based rare earth sintered magnet having high magnetic properties and capable of producing an RTB-based rare earth sintered magnet having a particularly excellent coercive force with a high yield is provided. A method for manufacturing a magnet can be provided. In addition, according to the present invention, it is possible to provide an RTB-based rare earth sintered magnet having high magnetic characteristics and particularly excellent coercive force.

本実施形態に係るR−T−B系希土類焼結磁石の微細構造の一例を示す電子顕微鏡写真である。It is an electron micrograph which shows an example of the microstructure of the RTB system rare earth sintered magnet which concerns on this embodiment. 従来のR−T−B系希土類焼結磁石の微細構造の一例を示す電子顕微鏡写真である。It is an electron micrograph which shows an example of the microstructure of the conventional RTB system rare earth sintered magnet.

以下、場合により図面を参照しながら、本発明の好適な実施形態について詳細に説明する。本実施形態のR−T−B系希土類焼結磁石の製造方法は、R−T−B系原料合金を準備する準備工程と、R−T−B系原料合金にHDDR処理を施して処理合金であるHDDR粉を調製するHDDR処理工程と、HDDR粉に水素ガスを吸蔵させる水素吸蔵工程と、水素ガスを吸蔵させたHDDR粉を粉砕して平均粒径が2μm以下である合金粉末を得る粉砕工程と、合金粉末を磁場中成形して焼結し、焼結体を得る焼結工程と、焼結体に時効処理を施す時効処理工程とを有する。以下、各工程の詳細について説明する。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings as the case may be. The manufacturing method of the RTB-based rare earth sintered magnet of the present embodiment includes a preparation step of preparing an RTB-based raw material alloy, and an HDDR process applied to the RTB-based raw material alloy. The HDDR treatment process for preparing the HDDR powder, the hydrogen storage process for storing the hydrogen gas in the HDDR powder, and the grinding for obtaining the alloy powder having an average particle size of 2 μm or less by pulverizing the HDDR powder stored with the hydrogen gas. A step, a sintering step in which the alloy powder is molded and sintered in a magnetic field to obtain a sintered body, and an aging treatment step in which an aging treatment is performed on the sintered body. Details of each step will be described below.

準備工程では、例えばストリップキャスト法により、R−T−B系希土類化合物であるR−T−B系原料合金を準備する。R−T−B系原料合金の組成は、最終的に得られるR−T−B系希土類焼結磁石の組成と同じとしてもよい。また、2合金法を採用する場合は、組成の異なる2種類のR−T−B系原料合金を準備してもよい。R−T−B系原料合金の組成や配合比は、目的とするR−T−B系希土類焼結磁石の組成に応じて、適宜変更することができる。   In the preparation step, an RTB-based raw material alloy which is an RTB-based rare earth compound is prepared by, for example, a strip casting method. The composition of the RTB-based raw material alloy may be the same as that of the finally obtained RTB-based rare earth sintered magnet. Moreover, when employ | adopting 2 alloy method, you may prepare two types of RTB type raw material alloys from which a composition differs. The composition and blending ratio of the RTB-based raw material alloy can be changed as appropriate according to the composition of the target RTB-based rare earth sintered magnet.

R−T−B系原料合金の調製方法は、ストリップキャスト法に限定されるものではなく、例えば、公知の溶解法等で行ってもよい。   The method for preparing the RTB-based material alloy is not limited to the strip casting method, and for example, a known melting method may be used.

HDDR処理工程では、準備工程で調製したR−T−B系原料合金にHDDR処理を施してHDDR粉(処理合金)を調製する。HDDR(Hydrogenation Decomposition Desorption Recombination、水素化相分解・脱水素再結合)は、例えば(i)水素吸蔵処理、(ii)脱水素処理の2段階で行うことができる。   In the HDDR processing step, HDDR powder (treated alloy) is prepared by subjecting the RTB-based material alloy prepared in the preparation step to HDDR processing. HDDR (Hydrogenation Decomposition Resorption Recombination) can be performed in two stages, for example, (i) hydrogen storage treatment and (ii) dehydrogenation treatment.

(i)水素吸蔵処理では、R−T−B系原料合金を、水素ガス雰囲気中、700〜900℃の温度で0.5〜5時間保持する。これにより、R−T−B系原料合金が相分解する。   (I) In the hydrogen storage treatment, the RTB-based raw material alloy is held in a hydrogen gas atmosphere at a temperature of 700 to 900 ° C. for 0.5 to 5 hours. As a result, the RTB-based raw material alloy undergoes phase decomposition.

(ii)脱水素処理では、窒素ガスを導入することにより、水素ガスの分圧を例えば100Pa以下にまで低下させ、相分解したR−T−B系原料合金から、水素を除去する。脱水素処理により、R−T−B系原料合金が再結晶組織化される。   (Ii) In the dehydrogenation treatment, nitrogen gas is introduced to lower the partial pressure of the hydrogen gas to, for example, 100 Pa or less, and hydrogen is removed from the phase-decomposed RTB-based material alloy. By the dehydrogenation treatment, the RTB-based material alloy is recrystallized.

上述の(i)水素吸蔵処理、(ii)脱水素処理の温度及び時間等の処理条件は、R−T−B系原料合金の組成に応じて調整することができる。なお、組成が互いに異なる2種類以上のHDDR粉を用いる場合は、別々にHDDR処理を行ってもよく、一緒にHDDR処理を行ってもよい。HDDR処理によって得られるHDDR粉は、粒径が1μm以下の再結晶粒子が複数集合した集合組織となっている。   The processing conditions such as the temperature and time of the above (i) hydrogen storage treatment and (ii) dehydrogenation treatment can be adjusted according to the composition of the RTB-based material alloy. In addition, when using two or more types of HDDR powders having different compositions, the HDDR process may be performed separately or the HDDR process may be performed together. The HDDR powder obtained by the HDDR process has a texture in which a plurality of recrystallized particles having a particle size of 1 μm or less are gathered.

水素吸蔵工程では、HDDR粉を水素ガス雰囲気下で保持することによって、HDDR粉に水素を吸蔵させる。水素吸蔵工程は、水素ガス雰囲気下、圧力0.05〜0.25MPaの圧力、温度20〜100℃、保持時間0.5〜5時間の条件で行うことが好ましい。   In the hydrogen occlusion process, the HDDR powder is occluded with hydrogen by holding the HDDR powder in a hydrogen gas atmosphere. The hydrogen storage step is preferably performed under the conditions of a pressure of 0.05 to 0.25 MPa, a temperature of 20 to 100 ° C., and a holding time of 0.5 to 5 hours in a hydrogen gas atmosphere.

粉砕工程では、水素吸蔵工程で得られたHDDR粉を粉砕して合金粉末を調製する。粉砕工程では、低酸素雰囲気下で、HDDR粉を平均粒径2μm以下になるまで粉砕する。粉砕後の合金粉末の平均粒径は、2μm以下であり、好ましくは1.8μm以下である。合金粉末の平均粒径の下限に特に制限はないが、工程短縮の観点から、好ましくは0.5μm以上であり、より好ましくは1.0μm以上である。なお、本実施形態における合金粉末の平均粒径は、市販の粒度分布計を用いて測定される体積平均粒子径である。   In the pulverization step, the HDDR powder obtained in the hydrogen storage step is pulverized to prepare an alloy powder. In the pulverization step, the HDDR powder is pulverized in a low oxygen atmosphere until the average particle size becomes 2 μm or less. The average particle diameter of the pulverized alloy powder is 2 μm or less, preferably 1.8 μm or less. Although there is no restriction | limiting in particular in the minimum of the average particle diameter of alloy powder, From a viewpoint of process shortening, Preferably it is 0.5 micrometer or more, More preferably, it is 1.0 micrometer or more. In addition, the average particle diameter of the alloy powder in this embodiment is a volume average particle diameter measured using a commercially available particle size distribution meter.

粉砕は、ステアリン酸亜鉛やオレイン酸アミド等の添加剤を、HDDR粉を基準として0.01〜0.3質量%程度添加して粉砕することが好ましい。これによって、合金粉末を成形する際の配向性を向上させることができる。粉砕には、ジェットミル、ボールミル(乾式・湿式)、振動ミル、湿式アトライター等を用いることができる。   The pulverization is preferably performed by adding an additive such as zinc stearate or oleic acid amide in an amount of about 0.01 to 0.3% by mass based on the HDDR powder. Thereby, the orientation at the time of shaping | molding alloy powder can be improved. For the pulverization, a jet mill, ball mill (dry / wet), vibration mill, wet attritor or the like can be used.

例えば、ジェットミルを用いる場合、分級機を備えたジェットミルを用いることによって、粗粒分級を行うことができる。これによって、所望の平均粒径を有する合金粉末を容易に調製することができる。ジェットミルによる粉砕方法は、高圧の不活性ガス(例えば窒素ガス)を狭いノズルより開放して高速のガス流を発生させ、この高速のガス流により粗粒であるHDDR粉を加速し、HDDR粉同士の衝突やターゲット又は容器壁との衝突を発生させて粉砕する方法である。   For example, when using a jet mill, coarse grain classification can be performed by using a jet mill equipped with a classifier. Thereby, an alloy powder having a desired average particle size can be easily prepared. In the pulverization method using a jet mill, a high-pressure inert gas (for example, nitrogen gas) is released from a narrow nozzle to generate a high-speed gas flow, and the high-speed gas flow accelerates coarse HDDR powder. This is a method of pulverizing by generating a collision between each other or a target or a container wall.

粉砕工程において、組成が互いに異なる複数種類のHDDR粉を別々に粉砕する場合、粉砕後の合金粉末を例えばナウターミル等を用いて混合することが好ましい。   In the pulverization step, when plural types of HDDR powders having different compositions are pulverized separately, the pulverized alloy powder is preferably mixed using, for example, a Nauter mill.

焼結工程では、まず、粉砕工程で調製した合金粉末を磁場中で成形して成形体を作製する。磁場中成形は、例えば、955〜1353kA/m(12.0〜17.0kOe)の磁場中で、69〜196MPa(0.7〜2.0t/cm)で加圧して行えばよい。 In the sintering process, first, the alloy powder prepared in the pulverization process is molded in a magnetic field to produce a compact. Molding in a magnetic field may be performed by pressing at 69 to 196 MPa (0.7 to 2.0 t / cm 2 ) in a magnetic field of 955 to 1353 kA / m (12.0 to 17.0 kOe), for example.

次に、成形体を真空又は不活性ガス雰囲気中で焼結して焼結体を作製する。焼結温度及び焼結時間は、例えば、それぞれ900〜1100℃及び1〜5時間とすることができる。焼結工程における焼結条件は、R−T−B系希土類焼結磁石の保磁力(HcJ)に大きく影響するため、組成、粉砕方法、粒度、粒度分布などに応じて、焼結条件を適宜設定することが好ましい。   Next, the compact is sintered in a vacuum or an inert gas atmosphere to produce a sintered body. For example, the sintering temperature and the sintering time can be set to 900 to 1100 ° C. and 1 to 5 hours, respectively. Since the sintering conditions in the sintering process greatly affect the coercive force (HcJ) of the R-T-B rare earth sintered magnet, the sintering conditions are appropriately selected according to the composition, pulverization method, particle size, particle size distribution, and the like. It is preferable to set.

時効処理工程では、焼結体を真空又は不活性ガス雰囲気下、所定温度で所定時間保持することによって、R−T−B系希土類焼結磁石を得る。時効処理は、約800℃及び約500℃の温度において、それぞれ所定時間(例えば0.1〜5時間)保持する2段階処理としてもよく、約500℃の温度で所定時間(例えば0.1〜5時間)保持する1段階処理としてもよい。時効処理を施すことによって、R−T−B系希土類焼結磁石の保磁力を一層向上させることができる。   In the aging treatment step, an R-T-B rare earth sintered magnet is obtained by holding the sintered body at a predetermined temperature in a vacuum or an inert gas atmosphere for a predetermined time. The aging treatment may be a two-stage treatment that is held at a temperature of about 800 ° C. and about 500 ° C. for a predetermined time (for example, 0.1 to 5 hours), respectively. (5 hours) It is good also as a 1 step process to hold | maintain. By performing the aging treatment, the coercive force of the RTB-based rare earth sintered magnet can be further improved.

上述の製造方法によって得られるR−T−B系希土類焼結磁石は、十分に組織が微細化されており、優れた磁気特性(特に保磁力)を有している。上述の実施形態の製造方法では、磁気特性に優れるR−T−B系希土類焼結磁石を高収率で得ることができる。このため、上記実施形態に係る製造方法は、歩留まりがよく、量産化に特に適している。なお、本実施形態のR−T−B系希土類焼結磁石の製造方法では、上述のHDDR処理工程から焼結工程までの各工程における雰囲気は、酸素濃度が100ppm未満である低酸素雰囲気とすることが好ましい。   The RTB-based rare earth sintered magnet obtained by the above-described manufacturing method has a sufficiently fine structure and has excellent magnetic properties (particularly coercive force). In the manufacturing method of the above-described embodiment, an RTB-based rare earth sintered magnet having excellent magnetic properties can be obtained with a high yield. For this reason, the manufacturing method according to the above embodiment has a good yield and is particularly suitable for mass production. In addition, in the manufacturing method of the R-T-B type rare earth sintered magnet of the present embodiment, the atmosphere in each process from the HDDR treatment process to the sintering process is a low oxygen atmosphere having an oxygen concentration of less than 100 ppm. It is preferable.

次に、本発明のR−T−B系希土類焼結磁石の好適な実施形態について説明する。本実施形態のR−T−B系希土類焼結磁石は、上述の製造方法によって得ることができる。本実施形態に係るR−T−B系希土類焼結磁石は、構成成分として、R(但し、RはYを含む希土類元素から選ばれる少なくとも1種の元素である。)、B、Zr、Co、Fe並びにAl及びCuの1種又は2種を含有する。ここで、「構成成分」とは、R−T−B系希土類焼結磁石に含まれる主要な成分であり、磁気特性の向上に寄与している成分をいう。すなわち、本実施形態のR−T−B系希土類焼結磁石は、優れた保磁力を有するという効果が損なわれない範囲で、上記構成成分とは異なる不可避不純物を含んでいてもよい。   Next, a preferred embodiment of the RTB-based rare earth sintered magnet of the present invention will be described. The RTB-based rare earth sintered magnet of this embodiment can be obtained by the above-described manufacturing method. The RTB-based rare earth sintered magnet according to the present embodiment has R as a constituent component (where R is at least one element selected from rare earth elements including Y), B, Zr, and Co. Fe, and one or two of Al and Cu. Here, the “constituent component” is a main component included in the RTB-based rare earth sintered magnet and refers to a component that contributes to the improvement of magnetic properties. That is, the RTB-based rare earth sintered magnet according to the present embodiment may contain inevitable impurities different from the above-described constituents as long as the effect of having an excellent coercive force is not impaired.

このR−T−B系希土類焼結磁石における、Rの含有量は25〜37質量%であり、好ましくは28〜35質量%であり、より好ましくは29〜33質量%である。なお、R−T−B系希土類焼結磁石における各元素の「質量%」は、R−T−B系希土類焼結磁石全体に対する質量割合である。   In this R-T-B rare earth sintered magnet, the content of R is 25 to 37% by mass, preferably 28 to 35% by mass, and more preferably 29 to 33% by mass. In addition, “mass%” of each element in the RTB-based rare earth sintered magnet is a mass ratio with respect to the entire RTB-based rare earth sintered magnet.

Rの含有量が25質量%未満であると、R−T−B系希土類焼結磁石の主な結晶相であるR14B相の生成量が減って、軟磁性を有するα−Feなどが析出しやすくなり、優れた保磁力が損なわれる。一方、Rが37質量%を超えると主な結晶相であるR14B相の体積比率が低下し、残留磁束密度が低下する。また、Rと酸素との反応によって酸素含有量が増加し、これに伴って保磁力の向上に有効なRリッチ相が減少する傾向がある。 When the content of R is less than 25% by mass, the amount of R 2 T 14 B phase, which is the main crystal phase of the R-T-B rare earth sintered magnet, decreases, and α-Fe having soft magnetism Etc. are likely to precipitate, and the excellent coercive force is impaired. On the other hand, when R exceeds 37% by mass, the volume ratio of the R 2 T 14 B phase, which is the main crystal phase, decreases, and the residual magnetic flux density decreases. In addition, the oxygen content increases due to the reaction between R and oxygen, and accordingly, the R-rich phase effective for improving the coercive force tends to decrease.

Nd、Prは資源的に豊富で比較的安価であることから、R−T−B系希土類焼結磁石は、RとしてNd及びPrの少なくとも一方の元素を含むことが好ましく、特にNdを含むことが好ましい。また、保磁力向上の観点から、RとしてTb、Dy、Ho、Er、Tm、Yb及びLuから選ばれる1種以上の重希土類元素を含むことが好ましい。   Since Nd and Pr are abundant in resources and relatively inexpensive, the R-T-B rare earth sintered magnet preferably contains at least one element of Nd and Pr as R, and particularly contains Nd. Is preferred. From the viewpoint of improving the coercive force, it is preferable that R includes one or more heavy rare earth elements selected from Tb, Dy, Ho, Er, Tm, Yb, and Lu.

R−T−B系希土類焼結磁石におけるホウ素(B)の含有量は、0.5〜4.5質量%であり、好ましくは0.5〜1.5質量%であり、より好ましくは0.8〜1.2質量%である。Bが0.5質量%未満であると、優れた保磁力が損なわれ、Bが4.5質量%を超えると残留磁束密度が低下する。   The content of boron (B) in the R-T-B rare earth sintered magnet is 0.5 to 4.5 mass%, preferably 0.5 to 1.5 mass%, more preferably 0. .8 to 1.2% by mass. When B is less than 0.5% by mass, excellent coercive force is impaired, and when B exceeds 4.5% by mass, the residual magnetic flux density is lowered.

R−T−B系希土類焼結磁石におけるZrの含有量は、0.03〜0.50質量%であり、好ましくは0.05〜0.2質量%であり、より好ましくは0.1〜0.15質量%である。Zrは、焼結工程での結晶粒の異常粒成長を抑制する作用を有するため、組織の微細化に寄与する。Zrが0.03質量%未満であると粒成長抑制効果が得られず、Zr0.50質量%を超えると、高い磁気特性が得られない。   The content of Zr in the R-T-B rare earth sintered magnet is 0.03 to 0.50 mass%, preferably 0.05 to 0.2 mass%, more preferably 0.1 to 0.1 mass%. 0.15% by mass. Zr contributes to the refinement of the structure because it has the effect of suppressing abnormal grain growth in the sintering process. If Zr is less than 0.03% by mass, the effect of suppressing grain growth cannot be obtained, and if it exceeds 0.50% by mass, high magnetic properties cannot be obtained.

R−T−B系希土類焼結磁石は、Al及びCuの少なくとも一方を、合計で0.02〜0.5質量%含有する。この範囲でAl及びCuの少なくとも一方を含有すると、保磁力を高くすることが可能となり、また、耐食性、温度特性を向上させることが可能となる。Alを含有する場合、Alの含有量は好ましくは0.03〜0.3質量%であり、より好ましくは、0.05〜0.25質量%である。また、Cuを含有する場合、Cuの含有量は、好ましくは0.15質量%以下(0を含まず)であり、より好ましくは0.03〜0.12質量%である。   The RTB-based rare earth sintered magnet contains 0.02 to 0.5 mass% in total of at least one of Al and Cu. When at least one of Al and Cu is contained within this range, the coercive force can be increased, and the corrosion resistance and temperature characteristics can be improved. When Al is contained, the content of Al is preferably 0.03 to 0.3% by mass, and more preferably 0.05 to 0.25% by mass. Moreover, when it contains Cu, content of Cu becomes like this. Preferably it is 0.15 mass% or less (0 is not included), More preferably, it is 0.03-0.12 mass%.

R−T−B系希土類焼結磁石におけるCoの含有量は、2質量%以下(0を含まず)であり、好ましくは0.1〜1.0質量%であり、より好ましくは0.3〜0.7質量%である。CoはFeと同様の相を形成するが、Coを含有することによって、キュリー温度及び粒界相の耐食性を向上することができる。   The content of Co in the RTB-based rare earth sintered magnet is 2% by mass or less (not including 0), preferably 0.1 to 1.0% by mass, more preferably 0.3. It is -0.7 mass%. Co forms the same phase as Fe, but by containing Co, the Curie temperature and the corrosion resistance of the grain boundary phase can be improved.

本実施形態に係るR−T−B系希土類焼結磁石は、必須元素である、上述のR、B、Zr、Co、Fe並びにAl及びCuの1種又は2種の他に、不可避的不純物を含んでいてもよい。   The RTB-based rare earth sintered magnet according to the present embodiment is an inevitable impurity in addition to one or two of the above-described R, B, Zr, Co, Fe and Al and Cu, which are essential elements. May be included.

R−T−B系希土類焼結磁石における酸素(O)の含有量は低いほど好ましく、R−T−B系希土類焼結磁石は酸素を全く含んでいないことがより好ましい。ただし、製造プロセス上、酸素を全く含んでいないR−T−B系希土類焼結磁石を製造することは困難である。このような観点から、酸素の含有量は、好ましくは0.2質量%以下であり、より好ましくは0.15質量%以下であり、さらに好ましくは0.1質量%以下である。   The content of oxygen (O) in the RTB-based rare earth sintered magnet is preferably as low as possible, and it is more preferable that the RTB-based rare earth sintered magnet does not contain any oxygen. However, it is difficult to manufacture an RTB-based rare earth sintered magnet that does not contain oxygen at all in the manufacturing process. From such a viewpoint, the oxygen content is preferably 0.2% by mass or less, more preferably 0.15% by mass or less, and further preferably 0.1% by mass or less.

R−T−B系希土類焼結磁石は、優れた保磁力を有するという効果が損なわれない範囲で、上述の必須元素とは異なる他の元素を含有していてもよい。例えば、Gaを0.1〜0.5質量%含有することによって、保磁力を一層向上することができる。Ga以外の他の元素としては、Ti、Bi、Sn、Nb、Ta、Si、V、Ag、Ge等の元素を挙げることができる。ただし、高い磁気特性を維持する観点から、Ga以外の他の元素の含有量は、総量で好ましくは1質量%以下であり、より好ましくは0.5質量%以下である。   The RTB-based rare earth sintered magnet may contain another element different from the above-mentioned essential elements as long as the effect of having an excellent coercive force is not impaired. For example, the coercive force can be further improved by containing Ga in an amount of 0.1 to 0.5% by mass. Examples of elements other than Ga include elements such as Ti, Bi, Sn, Nb, Ta, Si, V, Ag, and Ge. However, from the viewpoint of maintaining high magnetic properties, the content of elements other than Ga is preferably 1% by mass or less, more preferably 0.5% by mass or less, in total.

本実施形態のR−T−B系希土類焼結磁石の結晶粒の平均粒径は、2μm以下であり、より好ましくは1.8μm以下である。R−T−B系希土類焼結磁石の結晶粒の平均粒径の下限に特に制限はないが、製造の容易性の観点から、好ましくは0.5μm以上である。本実施形態のR−T−B系希土類焼結磁石の結晶粒の平均粒径は、2000倍に拡大した走査型電子顕微鏡の観察画面において、50μm×50μmの視野における結晶粒の粒径の平均値として求めることができる。   The average grain size of the crystal grains of the RTB-based rare earth sintered magnet of the present embodiment is 2 μm or less, more preferably 1.8 μm or less. The lower limit of the average grain size of the crystal grains of the R-T-B rare earth sintered magnet is not particularly limited, but is preferably 0.5 μm or more from the viewpoint of ease of manufacture. The average grain size of the R-T-B rare earth sintered magnet of the present embodiment is the average grain size of the crystal grains in a 50 μm × 50 μm field of view on the observation screen of a scanning electron microscope magnified 2000 times. It can be obtained as a value.

図1は、本実施形態に係るR−T−B系希土類焼結磁石の微細構造の一例を示す電子顕微鏡写真である。このR−T−B系希土類焼結磁石は、上述の製造方法によって製造されるものであり、結晶粒の平均粒径が2μm以下である。   FIG. 1 is an electron micrograph showing an example of the microstructure of the RTB-based rare earth sintered magnet according to the present embodiment. This RTB-based rare earth sintered magnet is manufactured by the above-described manufacturing method, and the average grain size of crystal grains is 2 μm or less.

図2は、従来のR−T−B系希土類焼結磁石の微細構造の一例を示す電子顕微鏡写真である。図2のR−T−B系希土類焼結磁石は、HDDR処理を行わずに、ジェットミルによる粉砕によって得られた平均粒径3μmの合金粉末を用いて製造されたものであり、結晶粒の平均粒径が2μmを超えている。   FIG. 2 is an electron micrograph showing an example of the microstructure of a conventional RTB-based rare earth sintered magnet. The R-T-B rare earth sintered magnet shown in FIG. 2 is manufactured using an alloy powder having an average particle diameter of 3 μm obtained by pulverization with a jet mill without performing HDDR treatment. The average particle size exceeds 2 μm.

図1と図2とを比較すると、本実施形態のR−T−B系希土類焼結磁石は、従来のものよりも十分に微細化された結晶粒で構成されている。このような微細構造を有することから、本実施形態のR−T−B系希土類焼結磁石は優れた保磁力を有している。   Comparing FIG. 1 and FIG. 2, the RTB-based rare earth sintered magnet of the present embodiment is composed of crystal grains that are sufficiently finer than the conventional one. Since it has such a fine structure, the RTB-based rare earth sintered magnet of this embodiment has an excellent coercive force.

以上、本発明の好適な実施形態について説明したが、本発明は上記実施形態に何ら限定されるものではない。例えば、水素吸蔵工程を行わずに、HDDR処理工程に引き続いて粉砕工程を行ってもよい。   The preferred embodiment of the present invention has been described above, but the present invention is not limited to the above embodiment. For example, the pulverization step may be performed subsequent to the HDDR treatment step without performing the hydrogen storage step.

実施例及び比較例を用いて本発明の内容をより詳細に説明するが、本発明は以下の実施例に限定されるものではない。   The content of the present invention will be described in more detail using examples and comparative examples, but the present invention is not limited to the following examples.

[R−T−B系希土類焼結磁石の作製]
(実施例1)
<準備工程>
ストリップキャスト法により、下記組成を有するR−T−B系原料合金aを調製した。
Nd:29質量%
Dy:1.0質量%
Co:1.0質量%
Cu:0.1質量%
Al:0.1質量%
Zr:0.2質量%
B:1.0質量%
Fe及び不可避的不純物:残部
[Production of RTB-based rare earth sintered magnet]
Example 1
<Preparation process>
An RTB-based material alloy a having the following composition was prepared by a strip casting method.
Nd: 29% by mass
Dy: 1.0 mass%
Co: 1.0 mass%
Cu: 0.1% by mass
Al: 0.1% by mass
Zr: 0.2% by mass
B: 1.0% by mass
Fe and inevitable impurities: balance

上述のR−T−B系原料合金aは、不可避的不純物(合計で0.1質量%以下)を含んでいた。   The above-mentioned RTB-based raw material alloy a contained unavoidable impurities (total of 0.1% by mass or less).

<HDDR処理工程>
調製したR−T−B系原料合金aに、HDDR処理を施して、HDDR粉を調製した。具体的には、まず、800℃で水素ガス雰囲気中に1時間保持して、R−T−B系原料合金aを水素化相分解させた。次に、Arガスを導入して雰囲気をArガスに切り替えた後、真空引きを行って処理雰囲気を減圧下にし、800℃で1時間保持して、脱水素処理を行い、再結晶粒子化されたHDDR粉を得た。HDDR粉は0.2〜1μm程度の粒径を有する複数の再結晶粒子からなる集合組織を有していた。
<HDDR processing step>
The prepared R-T-B type raw material alloy a was subjected to HDDR treatment to prepare HDDR powder. Specifically, first, the RTB-based raw material alloy a was hydrophase decomposed by holding in a hydrogen gas atmosphere at 800 ° C. for 1 hour. Next, after introducing Ar gas and switching the atmosphere to Ar gas, evacuation is performed to reduce the processing atmosphere under reduced pressure and hold at 800 ° C. for 1 hour to perform dehydrogenation treatment, thereby recrystallized particles. HDDR powder was obtained. The HDDR powder had a texture composed of a plurality of recrystallized particles having a particle size of about 0.2 to 1 μm.

<水素吸蔵工程>
HDDR粉を、水素ガス雰囲気下、圧力0.1MPa、室温の条件で、2時間保持し、HDDR粉に水素を吸蔵させた。
<Hydrogen storage process>
The HDDR powder was held in a hydrogen gas atmosphere under conditions of a pressure of 0.1 MPa and room temperature for 2 hours, and the HDDR powder was allowed to occlude hydrogen.

<粉砕工程>
水素を吸蔵させたHDDR粉に、ステアリン酸亜鉛を、HDDR粉全体を基準として0.1質量%添加し、高圧窒素ガスを用いる分級機を備えたジェットミルにより微粉砕を行い、平均粒径が1.5μmの合金粉末を得た。合金粉末の平均粒径は、粒度分布測定装置((株)日本レーザー製、商品名:HELOS&RODOS)を用い、体積平均粒子径として測定した。
<Crushing process>
Zinc stearate is added to HDDR powder occluded with hydrogen in an amount of 0.1% by mass based on the entire HDDR powder, and finely pulverized by a jet mill equipped with a classifier using high-pressure nitrogen gas. An alloy powder of 1.5 μm was obtained. The average particle diameter of the alloy powder was measured as a volume average particle diameter using a particle size distribution measuring device (trade name: HELOS & RODOS, manufactured by Nippon Laser Co., Ltd.).

<焼結工程>
得られた合金粉末を1200kA/m(15kOe)の磁場中において、147MPa(1.5ton/cm)で加圧成形して成形体を得た。この成形体を真空中、950〜1050℃で4時間加熱し、焼結体を得た。なお、処理工程から粉砕工程までは、低酸素雰囲気下で行った。
<Sintering process>
The obtained alloy powder was subjected to pressure molding at 147 MPa (1.5 ton / cm 2 ) in a magnetic field of 1200 kA / m (15 kOe) to obtain a compact. This molded body was heated in vacuum at 950 to 1050 ° C. for 4 hours to obtain a sintered body. Note that the processing step to the pulverization step were performed in a low oxygen atmosphere.

得られた焼結体に、Ar雰囲気中、500℃、1時間の条件で時効処理を施し、実施例1のR−T−B系希土類焼結磁石を得た。   The obtained sintered body was subjected to an aging treatment in an Ar atmosphere at 500 ° C. for 1 hour to obtain an RTB-based rare earth sintered magnet of Example 1.

(実施例2)
水素吸蔵工程を行わなかったこと以外は実施例1と同様にして焼結体を調製し、実施例2のR−T−B系希土類焼結磁石を得た。
(Example 2)
A sintered body was prepared in the same manner as in Example 1 except that the hydrogen storage step was not performed, and an RTB-based rare earth sintered magnet of Example 2 was obtained.

(比較例1)
粉砕工程における分級機の分級回転数を変えて、平均粒径が2.5μmの合金粉末を調製し、当該合金粉末を用いて焼結工程を行ったこと以外は実施例1と同様にして、比較例1のR−T−B系希土類焼結磁石を得た。
(Comparative Example 1)
By changing the classification rotation speed of the classifier in the pulverization step, preparing an alloy powder having an average particle size of 2.5 μm, and performing the sintering step using the alloy powder, the same as in Example 1, An R-T-B rare earth sintered magnet of Comparative Example 1 was obtained.

(比較例2)
粉砕工程における分級機の分級回転数を変えて、平均粒径が4.5μmの合金粉末を調製し、当該合金粉末を用いて焼結工程を行ったこと以外は実施例1と同様にして、比較例2のR−T−B系希土類焼結磁石を得た。
(Comparative Example 2)
By changing the classification rotation speed of the classifier in the pulverization step, preparing an alloy powder having an average particle size of 4.5 μm, and performing the sintering step using the alloy powder, the same as in Example 1, An R-T-B rare earth sintered magnet of Comparative Example 2 was obtained.

(比較例3)
HDDR処理を行わず、粉砕工程で分級回転数を変えて、平均粒径が2.1μmの合金粉末を調製し、当該合金粉末を用いて焼結工程を行ったこと以外は実施例1と同様にして、比較例3のR−T−B系希土類焼結磁石を得た。
(Comparative Example 3)
The same as in Example 1 except that the HDDR treatment was not performed, the classification rotation speed was changed in the pulverization step, an alloy powder having an average particle size of 2.1 μm was prepared, and the sintering step was performed using the alloy powder. Thus, an R-T-B rare earth sintered magnet of Comparative Example 3 was obtained.

(比較例4)
HDDR処理を行わず、粉砕工程で分級回転数を変えて、平均粒径が3.2μmの合金粉末を調製し、当該合金粉末を用いて焼結工程を行ったこと以外は実施例1と同様にして、比較例4のR−T−B系希土類焼結磁石を得た。
(Comparative Example 4)
The same as in Example 1 except that the HDDR treatment was not performed, the classification rotation speed was changed in the pulverization step, an alloy powder having an average particle size of 3.2 μm was prepared, and the sintering step was performed using the alloy powder. Thus, an R-T-B rare earth sintered magnet of Comparative Example 4 was obtained.

(比較例5)
HDDR処理を行わず、粉砕工程で分級回転数を変えて、平均粒径が4.3μmの合金粉末を調製し、当該合金粉末を用いて焼結工程を行ったこと以外は実施例1と同様にして、比較例5のR−T−B系希土類焼結磁石を得た。
(Comparative Example 5)
The same as in Example 1 except that the HDDR treatment was not performed, the classification rotation speed was changed in the pulverization step, an alloy powder having an average particle size of 4.3 μm was prepared, and the sintering step was performed using the alloy powder. Thus, an R-T-B rare earth sintered magnet of Comparative Example 5 was obtained.

(実施例3)
ストリップキャスト法により、下記組成を有するR−T−B系原料合金bを調製した。
Nd:31.0質量%
Co:1.0質量%
Cu:0.1質量%
Al:0.1質量%
Zr:0.2質量%
B:1.0質量%
Fe及び不可避的不純物:残部
Example 3
An RTB-based material alloy b having the following composition was prepared by a strip casting method.
Nd: 31.0% by mass
Co: 1.0 mass%
Cu: 0.1% by mass
Al: 0.1% by mass
Zr: 0.2% by mass
B: 1.0% by mass
Fe and inevitable impurities: balance

上述のR−T−B系原料合金bは、不可避的不純物(合計で0.1質量%以下)を含んでいた。このR−T−B系原料合金bを用いてHDDR処理工程を行ったこと、及び平均粒径が1.3μmの合金粉末を用いて焼結工程を行ったこと以外は、実施例1と同様にして実施例3のR−T−B系希土類焼結磁石を作製した。なお、合金粉末の平均粒径は、粉砕工程における分級回転数を変えることによって調整した。   The above-described RTB-based material alloy b contained inevitable impurities (total of 0.1% by mass or less). The same as in Example 1 except that the HDDR treatment process was performed using this RTB-based material alloy b and the sintering process was performed using an alloy powder having an average particle size of 1.3 μm. Thus, the RTB-based rare earth sintered magnet of Example 3 was produced. The average particle size of the alloy powder was adjusted by changing the classification rotation speed in the pulverization step.

(実施例4)
粉砕工程における分級機の分級回転数を変えて、平均粒径が1.7μmの合金粉末を調製し、当該合金粉末を用いて焼結工程を行ったこと以外は、実施例3と同様にして、実施例4のR−T−B系希土類焼結磁石を作製した。
Example 4
In the same manner as in Example 3 except that the classifying rotation speed of the classifier in the pulverizing process was changed to prepare an alloy powder having an average particle size of 1.7 μm and the sintering process was performed using the alloy powder. The RTB system rare earth sintered magnet of Example 4 was produced.

(実施例5)
ストリップキャスト法により、下記組成を有するR−T−B系原料合金cを調製した。
Nd:31.2質量%
Co:1.0質量%
Cu:0.1質量%
Al:0.2質量%
Zr:0.2質量%
B:1.0質量%
Ga:0.3質量%
Fe及び不可避的不純物:残部
(Example 5)
An RTB-based material alloy c having the following composition was prepared by a strip casting method.
Nd: 31.2% by mass
Co: 1.0 mass%
Cu: 0.1% by mass
Al: 0.2 mass%
Zr: 0.2% by mass
B: 1.0% by mass
Ga: 0.3% by mass
Fe and inevitable impurities: balance

上述のR−T−B系原料合金cは、不可避的不純物(合計で0.1質量%以下)を含んでいた。このR−T−B系原料合金cを用いてHDDR処理工程を行ったこと、及び平均粒径が1.24μmの合金粉末を用いて焼結工程を行ったこと以外は、実施例1と同様にして実施例5のR−T−B系希土類焼結磁石を作製した。なお、合金粉末の平均粒径は、粉砕工程における分級回転数を変えることによって調整した。   The above-mentioned RTB-based raw material alloy c contained inevitable impurities (total of 0.1% by mass or less). The same as Example 1 except that the HDDR treatment process was performed using this RTB-based material alloy c and the sintering process was performed using an alloy powder having an average particle size of 1.24 μm. Thus, the RTB-based rare earth sintered magnet of Example 5 was produced. The average particle size of the alloy powder was adjusted by changing the classification rotation speed in the pulverization step.

(実施例6)
ストリップキャスト法により、下記組成を有するR−T−B系原料合金dを調製した。
Nd:31.0質量%
Co:1.0質量%
Cu:0.1質量%
Al:0.3質量%
Zr:0.2質量%
B:1.0質量%
Fe及び不可避的不純物:残部
(Example 6)
An RTB-based material alloy d having the following composition was prepared by a strip casting method.
Nd: 31.0% by mass
Co: 1.0 mass%
Cu: 0.1% by mass
Al: 0.3% by mass
Zr: 0.2% by mass
B: 1.0% by mass
Fe and inevitable impurities: balance

上述のR−T−B系原料合金dは、不可避的不純物(合計で0.1質量%以下)を含んでいた。このR−T−B系原料合金dを用いてHDDR処理工程を行ったこと、及び平均粒径が1.25μmの合金粉末を用いて焼結工程を行ったこと以外は、実施例1と同様にして実施例6のR−T−B系希土類焼結磁石を作製した。なお、合金粉末の平均粒径は、粉砕工程における分級回転数を変えることによって調整した。   The above-described RTB-based material alloy d contained inevitable impurities (total of 0.1% by mass or less). The same as Example 1 except that the HDDR treatment process was performed using this R-T-B system raw material alloy d and the sintering process was performed using an alloy powder having an average particle diameter of 1.25 μm. Thus, the RTB-based rare earth sintered magnet of Example 6 was produced. The average particle size of the alloy powder was adjusted by changing the classification rotation speed in the pulverization step.

[微細組織の評価]
上述の通り調製した各実施例及び各比較例のR−T−B系希土類焼結磁石の断面を、走査型電子顕微鏡(SEM,倍率:2000倍)で観察した。SEM観察画面において、50μm×50μmの視野中の粒子の粒径を測定し、測定値の平均値をそれぞれのR−T−B系希土類焼結磁石の結晶粒径とした。結果を表1に示す。
[Evaluation of microstructure]
The cross sections of the R-T-B rare earth sintered magnets of Examples and Comparative Examples prepared as described above were observed with a scanning electron microscope (SEM, magnification: 2000 times). On the SEM observation screen, the particle size of particles in a 50 μm × 50 μm field of view was measured, and the average value of the measured values was used as the crystal particle size of each R-T-B rare earth sintered magnet. The results are shown in Table 1.

[磁気特性の評価]
B−Hトレーサーを用いて、各実施例及び各比較例で得られた希土類焼結磁石のBr(残留磁束密度)及びHcJ(保磁力)をそれぞれ測定した。得られた結果を表1にまとめて示す。
[Evaluation of magnetic properties]
Using a B—H tracer, Br (residual magnetic flux density) and HcJ (coercive force) of the rare earth sintered magnets obtained in the respective Examples and Comparative Examples were measured. The obtained results are summarized in Table 1.

表1に示す結果から、実施例1〜6のR−T−B系希土類焼結磁石は、微細な結晶粒を有しており、十分な残留磁束密度を維持しつつ優れた保磁力を有していた。また、実施例1〜6では、十分に高い収率でR−T−B系希土類焼結磁石を得ることができた。なお、ここでいう収率とは、使用した原料(R−T−B系原料合金)に対する最終製品(R−T−B系希土類焼結磁石)の質量比率として計算される値である。   From the results shown in Table 1, the R-T-B rare earth sintered magnets of Examples 1 to 6 have fine crystal grains and have an excellent coercive force while maintaining a sufficient residual magnetic flux density. Was. Moreover, in Examples 1-6, the RTB system rare earth sintered magnet was able to be obtained with a sufficiently high yield. Here, the yield is a value calculated as a mass ratio of the final product (R-T-B system rare earth sintered magnet) to the used material (R-T-B system material alloy).

一方、比較例1及び2のR−T−B系希土類焼結磁石は、結晶粒径が大きく、保磁力が実施例1及び2よりも劣っていた。また、HDDR処理を行わずに合金粉末を調製してR−T−B系希土類焼結磁石を作製した比較例3〜5では、合金粉末を十分に微細化することが困難であり、結晶粒径が実施例1〜6よりも大きくなった。また、粉砕工程で排除される合金粉末の量が多かったため、収率も低かった。   On the other hand, the RTB-based rare earth sintered magnets of Comparative Examples 1 and 2 had a large crystal grain size, and the coercive force was inferior to those of Examples 1 and 2. Further, in Comparative Examples 3 to 5 in which the alloy powder was prepared without performing the HDDR process to produce the RTB-based rare earth sintered magnet, it is difficult to sufficiently refine the alloy powder. The diameter became larger than Examples 1-6. Moreover, since the amount of the alloy powder excluded in the pulverization process was large, the yield was low.

Claims (3)

R−T−B系原料合金(RはYを含む希土類元素から選ばれる少なくとも1種の元素であり、TはFe及びCoの少なくとも一方の元素である。)をHDDR処理して処理合金を調製する処理工程と、
前記処理合金を粉砕して、平均粒径2μm以下の合金粉末を調製する粉砕工程と、
前記合金粉末を磁場中成形して焼結し、焼結体を調製する焼結工程と、を有するR−T−B系希土類焼結磁石の製造方法。
An R-T-B type raw material alloy (R is at least one element selected from rare earth elements including Y, and T is at least one element of Fe and Co) is HDDR processed to prepare a processed alloy. Processing steps to
Crushing the treated alloy to prepare an alloy powder having an average particle size of 2 μm or less;
And a sintering step of preparing the sintered body by forming the alloy powder in a magnetic field and sintering it, and a method for manufacturing the RTB-based rare earth sintered magnet.
前記粉砕工程の前に、前記処理合金に水素を吸蔵させる水素吸蔵工程を有する請求項1に記載の製造方法。   The manufacturing method according to claim 1, further comprising a hydrogen storage step of storing hydrogen in the treated alloy before the crushing step. 構成成分として、R(但し、RはYを含む希土類元素から選ばれる少なくとも1種の元素である。)、B、Zr、Co、Fe並びにAl及びCuの1種又は2種を含有し、各元素の含有割合が、
R:25〜37質量%、
B:0.5〜4.5質量%、
Al及びCuの1種又は2種:0.02〜0.5質量%、
Zr:0.03〜0.5質量%、
Co:2質量%以下(但し、0質量%を含まず。)、
Fe:残部、であり
結晶粒の平均粒径が2μm以下であるR−T−B系希土類焼結磁石。
As a constituent component, R (wherein R is at least one element selected from rare earth elements including Y), B, Zr, Co, Fe, and one or two of Al and Cu, Elemental content is
R: 25-37% by mass,
B: 0.5 to 4.5% by mass,
1 type or 2 types of Al and Cu: 0.02-0.5 mass%,
Zr: 0.03 to 0.5 mass%,
Co: 2% by mass or less (excluding 0% by mass),
Fe: balance, R-T-B rare earth sintered magnet having an average grain size of 2 μm or less.
JP2010007011A 2009-02-18 2010-01-15 R-t-b based rare earth sintered magnet and method for manufacturing the same Pending JP2010219499A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010007011A JP2010219499A (en) 2009-02-18 2010-01-15 R-t-b based rare earth sintered magnet and method for manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009035308 2009-02-18
JP2010007011A JP2010219499A (en) 2009-02-18 2010-01-15 R-t-b based rare earth sintered magnet and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2010219499A true JP2010219499A (en) 2010-09-30

Family

ID=42977975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010007011A Pending JP2010219499A (en) 2009-02-18 2010-01-15 R-t-b based rare earth sintered magnet and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2010219499A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013135097A (en) * 2011-12-27 2013-07-08 Tdk Corp R-T-Zr-B BASED RARE EARTH METAL MAGNET
WO2014142137A1 (en) 2013-03-12 2014-09-18 インターメタリックス株式会社 METHOD FOR PRODUCING RFeB SINTERED MAGNET AND RFeB SINTERED MAGNET PRODUCED THEREBY
WO2016027791A1 (en) * 2014-08-18 2016-02-25 インターメタリックス株式会社 RFeB-BASED SINTERED MAGNET
JP2017157832A (en) * 2016-02-26 2017-09-07 Tdk株式会社 R-T-B permanent magnet
CN110148506A (en) * 2019-04-03 2019-08-20 宁波同创强磁材料有限公司 Widen the method for rare-earth permanent magnet sintering temperature window and the preparation method of rare-earth permanent magnet

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08288113A (en) * 1995-04-11 1996-11-01 Mitsubishi Materials Corp Manufacture of rare-earth magnetic material powder and rare-earth magnet
JP2003264115A (en) * 2002-03-11 2003-09-19 Hitachi Powdered Metals Co Ltd Method for producing rare earth-containing bulk magnet
JP2007134353A (en) * 2005-11-07 2007-05-31 Inter Metallics Kk Method and apparatus for manufacturing magnetically anisotropic rare earth sintered magnet
WO2009004994A1 (en) * 2007-06-29 2009-01-08 Tdk Corporation Rare earth magnet

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08288113A (en) * 1995-04-11 1996-11-01 Mitsubishi Materials Corp Manufacture of rare-earth magnetic material powder and rare-earth magnet
JP2003264115A (en) * 2002-03-11 2003-09-19 Hitachi Powdered Metals Co Ltd Method for producing rare earth-containing bulk magnet
JP2007134353A (en) * 2005-11-07 2007-05-31 Inter Metallics Kk Method and apparatus for manufacturing magnetically anisotropic rare earth sintered magnet
WO2009004994A1 (en) * 2007-06-29 2009-01-08 Tdk Corporation Rare earth magnet

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013135097A (en) * 2011-12-27 2013-07-08 Tdk Corp R-T-Zr-B BASED RARE EARTH METAL MAGNET
WO2014142137A1 (en) 2013-03-12 2014-09-18 インターメタリックス株式会社 METHOD FOR PRODUCING RFeB SINTERED MAGNET AND RFeB SINTERED MAGNET PRODUCED THEREBY
CN105190802A (en) * 2013-03-12 2015-12-23 因太金属株式会社 Method for producing RFeB sintered magnet and RFeB sintered magnet produced thereby
EP2975619A4 (en) * 2013-03-12 2016-03-09 Intermetallics Co Ltd METHOD FOR PRODUCING RFeB SINTERED MAGNET AND RFeB SINTERED MAGNET PRODUCED THEREBY
WO2016027791A1 (en) * 2014-08-18 2016-02-25 インターメタリックス株式会社 RFeB-BASED SINTERED MAGNET
JP2017157832A (en) * 2016-02-26 2017-09-07 Tdk株式会社 R-T-B permanent magnet
CN110148506A (en) * 2019-04-03 2019-08-20 宁波同创强磁材料有限公司 Widen the method for rare-earth permanent magnet sintering temperature window and the preparation method of rare-earth permanent magnet

Similar Documents

Publication Publication Date Title
JP6288076B2 (en) R-T-B sintered magnet
CN105960690B (en) R-T-B system sintered magnet and its manufacturing method
JP4648192B2 (en) R-T-B rare earth permanent magnet
JP4605013B2 (en) R-T-B system sintered magnet and rare earth alloy
JPWO2004029998A1 (en) Method for producing RTB-based rare earth permanent magnet
JP2009302318A (en) RL-RH-T-Mn-B-BASED SINTERED MAGNET
JPWO2004029995A1 (en) R-T-B rare earth permanent magnet
JP4900085B2 (en) Rare earth magnet manufacturing method
JP5910074B2 (en) R-T-Zr-B rare earth metal magnet
JP2016207679A (en) R-t-b series sintered magnet
JP2024023206A (en) Anisotropic rare earth sintered magnet and its manufacturing method
JP3715573B2 (en) Magnet material and manufacturing method thereof
JP2010219499A (en) R-t-b based rare earth sintered magnet and method for manufacturing the same
CN108292562A (en) Rare-earth magnet and its manufacturing method
CN113614864B (en) R-T-B permanent magnet and method for manufacturing same
JPWO2018101410A1 (en) Rare earth permanent magnet
JP4821128B2 (en) R-Fe-B rare earth permanent magnet
JP2024020341A (en) Anisotropic rare earth sintered magnet and its manufacturing method
JP2004303909A (en) Rare earth permanent magnet and manufacturing method thereof
JPWO2018101409A1 (en) Rare earth sintered magnet
JP4955217B2 (en) Raw material alloy for RTB-based sintered magnet and method for manufacturing RTB-based sintered magnet
JP4534553B2 (en) R-T-B system sintered magnet and manufacturing method thereof
JP2018060997A (en) Method for manufacturing r-t-b based sintered magnet
JP4556727B2 (en) Manufacturing method of rare earth sintered magnet
JP2020161692A (en) R-t-b based permanent magnet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121114

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20130424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131022

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140304