[go: up one dir, main page]

JP2010223913A - Non-contact position sensor - Google Patents

Non-contact position sensor Download PDF

Info

Publication number
JP2010223913A
JP2010223913A JP2009074449A JP2009074449A JP2010223913A JP 2010223913 A JP2010223913 A JP 2010223913A JP 2009074449 A JP2009074449 A JP 2009074449A JP 2009074449 A JP2009074449 A JP 2009074449A JP 2010223913 A JP2010223913 A JP 2010223913A
Authority
JP
Japan
Prior art keywords
detection unit
detection
detection coil
coil
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009074449A
Other languages
Japanese (ja)
Inventor
Koji Soshin
耕児 宗進
多津彦 ▲松▼本
Tatsuhiko Matsumoto
Takashi Suma
喬 須磨
Shogo Sagara
彰吾 相良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Panasonic Electric Works Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Electric Works Co Ltd filed Critical Panasonic Electric Works Co Ltd
Priority to JP2009074449A priority Critical patent/JP2010223913A/en
Publication of JP2010223913A publication Critical patent/JP2010223913A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

【課題】検出部Aの温度変動によって生じる、位置情報の検出誤差を抑制する。
【解決手段】非接触位置センサは、検出コイル2に磁性材料から形成されたコア1を貫入し、この貫入量によって検出部2を有する検出部Aのインピーダンスが変化することを利用して、コア1の貫入量を検出する。しかし、この検出部Aのインピーダンスは検出部Aの温度変動によっても変動するため、実際のコア1の貫入量と検出されるコア1の貫入量の間には、この温度変動による誤差が生じるおそれがある。本発明では、検出部Aに、抵抗値が正の温度特性を有する検出コイル2と負の温度特性を有する負性サーミスタ3の直列接続回路を用いた。これによって、従来のように検出部Aとして検出コイル2のみを用いた非接触位置センサよりも、検出部Aの温度変動に対する検出部Aの抵抗値の変動の変動幅が小さくなるため、上記誤差を小さくすることができる。
【選択図】図1
An object of the present invention is to suppress position information detection errors caused by temperature fluctuations of a detector.
A non-contact position sensor penetrates a core made of a magnetic material into a detection coil and utilizes the fact that the impedance of a detection unit having the detection unit changes depending on the penetration amount. 1 penetration amount is detected. However, since the impedance of the detection unit A varies depending on the temperature variation of the detection unit A, an error due to the temperature variation may occur between the actual penetration amount of the core 1 and the detected penetration amount of the core 1. There is. In the present invention, a serial connection circuit of the detection coil 2 having a positive temperature characteristic and the negative thermistor 3 having a negative temperature characteristic is used for the detection unit A. As a result, the variation range of the resistance value variation of the detection unit A with respect to the temperature variation of the detection unit A is smaller than the conventional non-contact position sensor using only the detection coil 2 as the detection unit A. Can be reduced.
[Selection] Figure 1

Description

本発明は、検出コイルとコアの相対的な位置関係を検出する非接触位置センサに関するものである。   The present invention relates to a non-contact position sensor that detects a relative positional relationship between a detection coil and a core.

従来、検出コイル内部の磁束に応じて、検出コイルに所定の交流電流を通電したときに検出コイル両端間に発生する電圧が変化することを利用した、例えば特許文献1に記載されているような非接触位置センサが提供されている。この非接触位置センサは、検出コイルからなる検出部と、磁性材料から形成され検出コイルに貫入されて、外部からの入力に応じてその貫入量が変化するコアと、検出部両端間の電圧を検出する測定回路と、検出部に所定の交流電流を通電する交流電流回路と、検出部両端間の電圧からコアの貫入量を検出する検出回路と、検出された貫入量に基づく検出コイルとコアの相対位置情報を、位置信号として外部に出力する出力回路とを備えている。   Conventionally, for example, as described in Patent Document 1, it is used that a voltage generated between both ends of a detection coil changes when a predetermined alternating current is applied to the detection coil in accordance with the magnetic flux inside the detection coil. A non-contact position sensor is provided. This non-contact position sensor includes a detection unit composed of a detection coil, a core formed of a magnetic material, penetrated into the detection coil, and the amount of penetration changes according to an external input, and a voltage across the detection unit. A measuring circuit for detecting, an alternating current circuit for supplying a predetermined alternating current to the detection unit, a detection circuit for detecting the penetration amount of the core from the voltage across the detection unit, and a detection coil and a core based on the detected penetration amount An output circuit for outputting the relative position information as a position signal to the outside.

上記従来例の検出部には、交流電流回路から、常時、一定の振幅及び周波数の交流電流が通電されている。このとき、検出部のインピーダンスの絶対値|Z|は、交流電流回路から入力される交流電流の振幅Iと、検出部の両端間に発生する電圧の振幅Vとから、|Z|=V/Iと算出される。上記検出回路は、この関係式に基づいて算出した検出部のインピーダンスの絶対値と、予め一対一に決められた検出部のインピーダンスの絶対値とコアの貫入量との対応関係から、上記インピーダンスの絶対値に対応したコアの貫入量を検出する。本従来例は、上記の動作によってコアの貫入量を検出し、検出された貫入量に基づく位置信号を、外部に出力している。 The detection unit of the conventional example is always supplied with an alternating current having a constant amplitude and frequency from an alternating current circuit. At this time, the absolute value | Z | of the impedance of the detection unit is obtained from the amplitude I 0 of the alternating current input from the alternating current circuit and the amplitude V 0 of the voltage generated between both ends of the detection unit. Calculated as V 0 / I 0 . The detection circuit calculates the impedance of the impedance based on the correspondence between the absolute value of the impedance of the detection unit calculated based on the relational expression and the absolute value of the impedance of the detection unit determined in advance one-to-one and the penetration amount of the core. The core penetration corresponding to the absolute value is detected. In the conventional example, the penetration amount of the core is detected by the above-described operation, and a position signal based on the detected penetration amount is output to the outside.

特許第4135551号公報Japanese Patent No. 4135551

ところで、一般に検出コイルは銅等の金属材料からなる導線から形成されており、そのインピーダンスの抵抗成分は、温度上昇に伴って増加する正の温度特性を有している。また、検出部の温度は、検出コイルや導線から発生した熱や外気温の影響により変動する。よって上記のような位置センサでは、コアの貫入量が同一であっても、発生した熱や外気温の影響で検出部の温度が変動することによって、検出部のインピーダンスが変動する。   By the way, the detection coil is generally formed of a conductive wire made of a metal material such as copper, and the resistance component of the impedance has a positive temperature characteristic that increases as the temperature rises. Further, the temperature of the detection unit varies due to the influence of heat generated from the detection coil and the conductive wire and the outside air temperature. Therefore, in the position sensor as described above, even if the penetration amount of the core is the same, the impedance of the detection unit varies due to the variation of the temperature of the detection unit due to the influence of the generated heat and the outside air temperature.

また、通常は、上記予め決められた検出部のインピーダンスの絶対値とコアの貫入量の対応関係は、基準となる特定の温度で決められたものである。しかし、上述のように検出部のインピーダンスは温度によって変動するため、検出部が上記基準温度以外の温度の時には、実際の貫入量と検出された貫入量の間には、誤差が生じることになる。   Usually, the correspondence between the predetermined absolute value of the impedance of the detection unit and the penetration amount of the core is determined at a specific temperature as a reference. However, as described above, since the impedance of the detection unit varies depending on the temperature, an error occurs between the actual penetration amount and the detected penetration amount when the detection unit is at a temperature other than the reference temperature. .

上記問題を克服するためには、例えば、検出部の温度を測定し、その温度に応じて参照する検出部のインピーダンスの絶対値とコアの貫入量の対応関係を使い分けることや、上記特許文献1に記載されているように、温度補償回路を用いることが考えられる。しかしこれらの方法でも、検出部のインピーダンスの温度特性を完全に再現することは難しいため、較正後の貫入量と実際の貫入量の間には、誤差が残るおそれがある。   In order to overcome the above problem, for example, the temperature of the detection unit is measured, and the correspondence between the absolute value of the impedance of the detection unit to be referred to and the penetration amount of the core is properly used according to the temperature. It is conceivable to use a temperature compensation circuit as described in. However, even with these methods, it is difficult to completely reproduce the temperature characteristic of the impedance of the detection unit, and therefore there may be an error between the penetration amount after calibration and the actual penetration amount.

本発明は上記事情に鑑みてなされたものであり、簡単な構成で、位置情報の検出精度を向上させることができる非接触位置センサを提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object thereof is to provide a non-contact position sensor that can improve the detection accuracy of position information with a simple configuration.

上記の目的を達成するために、本発明は、検出コイルを含む検出部と、磁性材料から形成され、前記検出コイルの巻線内に貫入し、該検出コイルの巻軸方向へ該検出コイルに対して相対変位するコアと、前記検出部に所定の周波数及び振幅の交流電流を出力する交流電流回路と、該交流電流によって発生する前記検出部両端間の電圧に基づいて、前記検出コイルのインピーダンスの絶対値を算出し、該インピーダンスの絶対値に基づいて前記検出コイル内に貫入している前記コアの貫入量を検出する検出回路と、該貫入量に基づく前記検出コイルと前記コアの相対位置情報を、位置信号として外部に出力する出力回路とを備え、前記検出部は、抵抗値が正の温度特性を有する前記検出コイルと抵抗値が負の温度特性を有するサーミスタを直列に接続してなることを特徴とする。   In order to achieve the above object, the present invention provides a detection unit including a detection coil and a magnetic material, penetrates into the winding of the detection coil, and moves to the detection coil in the winding direction of the detection coil. An impedance of the detection coil based on a voltage between the both ends of the detection unit generated by the AC current, an AC current circuit that outputs an AC current having a predetermined frequency and amplitude to the detection unit A detection circuit for detecting the penetration amount of the core penetrating into the detection coil based on the absolute value of the impedance, and a relative position between the detection coil and the core based on the penetration amount An output circuit that outputs information as a position signal to the outside, and the detection unit includes a series of the detection coil having a positive temperature characteristic and a thermistor having a negative resistance characteristic. And characterized by being connected.

本発明では、温度上昇に伴って抵抗値が増加する検出コイルと温度上昇に伴って抵抗値が減少する負性サーミスタの直列接続回路を検出部に用いている。これによって、検出コイルのみを検出部に用いたときよりも、検出部の温度変動による検出部のインピーダンスの抵抗成分の変動幅が小さくなるため、センサの位置情報の検出精度を向上させることができる。   In the present invention, a detection coil uses a series connection circuit of a detection coil whose resistance value increases as the temperature rises and a negative thermistor whose resistance value decreases as the temperature rises. As a result, since the fluctuation range of the resistance component of the impedance of the detection unit due to the temperature variation of the detection unit is smaller than when only the detection coil is used as the detection unit, the detection accuracy of the position information of the sensor can be improved. .

本発明は、簡単な構成で、位置情報の検出精度を向上させることができる。   The present invention can improve the detection accuracy of position information with a simple configuration.

本発明の実施形態の回路構成を示す図である。It is a figure which shows the circuit structure of embodiment of this invention. 本発明の実施形態の上面図である。It is a top view of the embodiment of the present invention. 本発明の実施形態の、A−A'断面の断面図である。It is sectional drawing of the AA 'cross section of embodiment of this invention. 本発明の実施形態に係る、検出コイルの断面図である。It is sectional drawing of the detection coil based on embodiment of this invention. 本発明の実施形態に係る負性サーミスタの、25℃における抵抗値を1としたときの、各温度における相対的な抵抗値を示す図である。It is a figure which shows the relative resistance value in each temperature when the resistance value in 25 degreeC is set to 1 of the negative thermistor which concerns on embodiment of this invention. 本発明の実施形態に係る、検出コイル、負性サーミスタ、及び両者の直列接続回路の、各温度における相対的な抵抗値を示す図である。It is a figure which shows the relative resistance value in each temperature of the detection coil which concerns on embodiment of this invention, a negative thermistor, and the series connection circuit of both.

(実施形態)
本実施形態は、図1に示すように、検出部A及びASIC4からなる。
(Embodiment)
As shown in FIG. 1, this embodiment includes a detection unit A and an ASIC 4.

検出部Aは、図1〜4に示すように、断面コの字型で、絶縁性材料から一定の曲率で湾曲して形成されたボビン10と、ボビン10に巻回された検出コイル2と、絶縁性材料から形成された、検出コイル2の曲率変化を矯正するための曲率矯正用部材11と、円弧状に湾曲した検出コイル2の円弧の中心を中心軸とする円柱体12a及び円柱体12aの外側に形成された突部12bからなる可動ブロック12と、突部12bに一端を固定され、検出コイル2の中空部分に貫入し、磁性材料から検出コイル2の中空部分と同一の曲率に湾曲して形成されたコア1と、上記各部材をその面上に配置して固定するハウジング13と、一端が検出コイル2に直列に接続され他端が接地された、負性サーミスタ3とを備えている。そして、可動ブロック12は回転軸Cを中心として回転し、図2に示す角度θが大きくなるに従って検出コイル2に貫入しているコア1の貫入量が少なくなる構成となっている。   As shown in FIGS. 1 to 4, the detection unit A has a U-shaped cross section and is formed by bending an insulating material with a certain curvature, and a detection coil 2 wound around the bobbin 10. A curvature correcting member 11 made of an insulating material for correcting the curvature change of the detection coil 2, and a cylindrical body 12 a and a cylindrical body centering on the center of the arc of the detection coil 2 curved in an arc shape A movable block 12 formed of a protrusion 12b formed on the outer side of 12a, one end of which is fixed to the protrusion 12b, penetrates into the hollow portion of the detection coil 2, and has the same curvature as the hollow portion of the detection coil 2 from a magnetic material. A curved core 1, a housing 13 for placing and fixing each member on the surface, and a negative thermistor 3 having one end connected in series to the detection coil 2 and the other end grounded. I have. The movable block 12 rotates about the rotation axis C, and the penetration amount of the core 1 penetrating the detection coil 2 decreases as the angle θ shown in FIG. 2 increases.

負性サーミスタ3は、検出コイル2と空間的に近接して配設される。また本実施形態における負性サーミスタ3の抵抗値は、図5に示すように、180℃以下では温度上昇に伴って減少する負の温度特性を有している。   The negative thermistor 3 is disposed in spatial proximity to the detection coil 2. Further, as shown in FIG. 5, the resistance value of the negative thermistor 3 in the present embodiment has a negative temperature characteristic that decreases as the temperature rises at 180 ° C. or lower.

ASIC4は、検出部Aに所定の振幅及び周波数の交流電流を通電する交流電流回路と、検出部A両端間の電圧を検出する測定回路と、交流電流の振幅及び、測定回路で検出された検出部A両端間の電圧の振幅に基づいて検出部Aのインピーダンスの絶対値を算出し、このインピーダンスの絶対値から、予め決められた検出部Aのインピーダンスの絶対値とコア1の貫入量の対応関係に基づいて、検出コイル2内に貫入しているコア1の貫入量を検出する検出回路と、検出コイル2とコア1の相対位置情報として、上記貫入量を示す位置信号を外部に出力する出力回路とを集積したものである。   The ASIC 4 includes an alternating current circuit that supplies an alternating current having a predetermined amplitude and frequency to the detection unit A, a measurement circuit that detects a voltage across the detection unit A, an amplitude of the alternating current, and a detection detected by the measurement circuit. Based on the amplitude of the voltage across the part A, the absolute value of the impedance of the detection part A is calculated, and from this absolute value of the impedance, a predetermined absolute value of the impedance of the detection part A and the amount of penetration of the core 1 Based on the relationship, a detection circuit for detecting the penetration amount of the core 1 penetrating into the detection coil 2 and a position signal indicating the penetration amount are output to the outside as relative position information of the detection coil 2 and the core 1. An output circuit is integrated.

本実施形態において、コア1の貫入量を導出するための各構成部の動作は、先述の従来例の場合と同様であるので省略する。   In the present embodiment, the operation of each component for deriving the penetration amount of the core 1 is the same as in the case of the above-described conventional example, so that description thereof is omitted.

本実施形態の検出部Aの抵抗値は、検出コイル2の抵抗値と負性サーミスタ3の抵抗値の和で表される。ここで、検出コイル2と負性サーミスタ3は空間的に近接して配設されているため、検出コイル2と負性サーミスタ3の温度はほぼ同一である。よって、検出部Aの抵抗値は、検出コイル2の各温度での抵抗値と負性サーミスタ3の各温度での抵抗値の和で表される。この合成抵抗は、図6に示すように、検出コイル2の抵抗値と比較して、温度変動に対する変動幅が小さくなる。従って本実施形態では、従来のように検出部Aとして検出コイル2のみを用いた非接触位置センサと比較して、検出部Aのインピーダンスが検出部Aの温度変動に対して安定する。よって、コア1の実際の貫入量と検出された貫入量の間の誤差が小さくなり、検出部Aの温度変動に対して、位置情報の検出精度を向上させることができる。   The resistance value of the detection unit A of the present embodiment is represented by the sum of the resistance value of the detection coil 2 and the resistance value of the negative thermistor 3. Here, since the detection coil 2 and the negative thermistor 3 are disposed spatially close to each other, the temperatures of the detection coil 2 and the negative thermistor 3 are substantially the same. Therefore, the resistance value of the detection unit A is represented by the sum of the resistance value at each temperature of the detection coil 2 and the resistance value at each temperature of the negative thermistor 3. As shown in FIG. 6, this combined resistance has a smaller fluctuation range with respect to temperature fluctuation than the resistance value of the detection coil 2. Therefore, in the present embodiment, the impedance of the detection unit A is stabilized against temperature fluctuations of the detection unit A as compared with a non-contact position sensor using only the detection coil 2 as the detection unit A as in the prior art. Therefore, the error between the actual penetration amount of the core 1 and the detected penetration amount is reduced, and the detection accuracy of the position information can be improved with respect to the temperature fluctuation of the detection unit A.

本実施形態では回転型の位置センサで説明を行ったが、直線状に形成された検出コイル2及びコア1からなり、コア1が検出コイル2の中心軸方向に検出コイル2と相対的に移動する、直線型の非接触位置センサであってもよい。また、本実施形態では一つの負性サーミスタ3を用いたが、その代わりに、複数の負性サーミスタや抵抗値が正の温度特性を有するサーミスタを直列や並列に接続し、検出コイル2の温度変化による抵抗値の変化を補償するように構成した回路を用いてもよい。   In the present embodiment, the rotary position sensor has been described, but the detection coil 2 and the core 1 are linearly formed, and the core 1 moves relative to the detection coil 2 in the central axis direction of the detection coil 2. A linear non-contact position sensor may be used. In the present embodiment, one negative thermistor 3 is used. Instead, a plurality of negative thermistors and thermistors having a positive temperature characteristic are connected in series or in parallel to detect the temperature of the detection coil 2. A circuit configured to compensate for a change in resistance value due to the change may be used.

また、本実施形態と従来の温度補償回路を組み合わせ、負性サーミスタによって温度変動による変動幅の小さくなった検出部Aのインピーダンスの絶対値を、温度補償回路で補償することによって、さらに検出精度を向上させることもできる。   Further, by combining the present embodiment and a conventional temperature compensation circuit and compensating the absolute value of the impedance of the detection unit A, which has been reduced by a negative thermistor due to temperature fluctuation, with the temperature compensation circuit, further detection accuracy can be achieved. It can also be improved.

2 検出コイル
3 負性サーミスタ
4 ASIC
A 検出部
2 Detection coil 3 Negative thermistor 4 ASIC
A detector

Claims (1)

検出コイルを含む検出部と、
磁性材料から形成され、前記検出コイルの巻線内に貫入し、該検出コイルの巻軸方向へ該検出コイルに対して相対変位するコアと、
前記検出部に所定の周波数及び振幅の交流電流を出力する交流電流回路と、該交流電流によって発生する前記検出部両端間の電圧に基づいて、前記検出コイルのインピーダンスの絶対値を算出し、該インピーダンスの絶対値に基づいて前記コイル内に貫入している前記コアの貫入量を検出する検出回路と、該貫入量に基づく前記コイルと前記コアの相対位置情報を、位置信号として外部に出力する出力回路とを備え、
前記検出部は、抵抗値が正の温度特性を有する前記検出コイルと抵抗値が負の温度特性を有するサーミスタを直列に接続してなることを特徴とする非接触位置センサ。
A detection unit including a detection coil;
A core made of a magnetic material, penetrating into the winding of the detection coil, and relatively displaced with respect to the detection coil in the winding axis direction of the detection coil;
Based on an alternating current circuit that outputs an alternating current having a predetermined frequency and amplitude to the detection unit, and a voltage across the detection unit that is generated by the alternating current, an absolute value of the impedance of the detection coil is calculated, A detection circuit for detecting the amount of penetration of the core penetrating into the coil based on the absolute value of impedance, and outputting relative position information of the coil and the core based on the penetration amount to the outside as a position signal. Output circuit,
The non-contact position sensor, wherein the detection unit is formed by connecting the detection coil having a positive temperature characteristic and a thermistor having a negative resistance temperature characteristic in series.
JP2009074449A 2009-03-25 2009-03-25 Non-contact position sensor Withdrawn JP2010223913A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009074449A JP2010223913A (en) 2009-03-25 2009-03-25 Non-contact position sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009074449A JP2010223913A (en) 2009-03-25 2009-03-25 Non-contact position sensor

Publications (1)

Publication Number Publication Date
JP2010223913A true JP2010223913A (en) 2010-10-07

Family

ID=43041239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009074449A Withdrawn JP2010223913A (en) 2009-03-25 2009-03-25 Non-contact position sensor

Country Status (1)

Country Link
JP (1) JP2010223913A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108710019A (en) * 2018-06-11 2018-10-26 宁波星成电子股份有限公司 One kind being based on Hall magnetic balance type voltage sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108710019A (en) * 2018-06-11 2018-10-26 宁波星成电子股份有限公司 One kind being based on Hall magnetic balance type voltage sensor

Similar Documents

Publication Publication Date Title
JP4960767B2 (en) Displacement sensor
US10670437B2 (en) Magnetic-inductive flowmeter and method for operating a magnetic-inductive flowmeter
EP2304447A1 (en) Magnetoresistive sensor arrangement for current measurement
JPH07146315A (en) Ac current sensor
JP2010216863A (en) Proximity sensor
KR102775045B1 (en) Method for limiting the measurement range of an inductive position sensor
DK2475964T3 (en) POSITION DETECTION DEVICE FOR HIGH TEMPERATURE OPERATION
CN105737727A (en) Probe of eddy current sensor and eddy current sensor
JP2017122671A (en) Current detector and current detection method
JP6564384B2 (en) Position detection device
US7812597B2 (en) Inductive magnetic position sensor
JP2010223913A (en) Non-contact position sensor
JP2000337809A (en) Differential eddy current distance meter
JP5914827B2 (en) Force sensor, force detection device using the same, and force detection method
JP4398911B2 (en) Displacement sensor
EP2300783B1 (en) Method for thermally compensating a gaging device and thermally compensated gaging station
JP2018048956A (en) Torque sensor and correction method therefor
KR101607025B1 (en) Fulxgate current sensing unit
JP4810021B2 (en) Position detection device
KR102298349B1 (en) Direct current measuring method and apparatus
JP2006208331A (en) Eddy current type detecting sensor
JP4028559B2 (en) Rotation sensor
US20250314541A1 (en) Method for acquiring correction value for torque sensor, and method for measuring torque of rotating shaft
JP7391591B2 (en) position detection device
US20210356296A1 (en) Displacement sensor having a return core in a housing cavity

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100714

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20120605