[go: up one dir, main page]

JP2010224189A - Optical module and method of controlling the same - Google Patents

Optical module and method of controlling the same Download PDF

Info

Publication number
JP2010224189A
JP2010224189A JP2009070920A JP2009070920A JP2010224189A JP 2010224189 A JP2010224189 A JP 2010224189A JP 2009070920 A JP2009070920 A JP 2009070920A JP 2009070920 A JP2009070920 A JP 2009070920A JP 2010224189 A JP2010224189 A JP 2010224189A
Authority
JP
Japan
Prior art keywords
optical
phase shifter
thermo
control
waveguide circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009070920A
Other languages
Japanese (ja)
Inventor
Koichi Suzuki
耕一 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2009070920A priority Critical patent/JP2010224189A/en
Publication of JP2010224189A publication Critical patent/JP2010224189A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Optical Integrated Circuits (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve the power efficiency of a TO (thermo-optic) phase shifter in an optical control system using a PLC (planar lightwave circuit). <P>SOLUTION: An optical module includes: a planar lightwave circuit; a thermo-optic phase shifter for heating the planar lightwave circuit at a prescribed position; a photodetector for detecting optical output of optical signals which have passed through the planar lightwave circuit; and a control part for performing pulse width modulation control of the thermo-optic phase shifter so that the optical output detected by the photodetector gets close to a set value. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は光モジュールとその制御方法に関する。   The present invention relates to an optical module and a control method thereof.

DWDM(Dense Wavelength Division Multiplexing)光通信システムにおいて波長を制御するPLCのような光制御デバイスの重要性が増している。PLC(Planar Lightwave Circuit)などの光学デバイスを制御する手法として、抵抗熱源を用いたTO(Thermo−Optic)ヒータ駆動方式が挙げられる。光学デバイス材料のほとんどは温度屈折率変動係数を持つため、環境温度を変化させることで屈折率を変化させて所望の光学特性にすることが出来る。   In a DWDM (Dense Wavelength Division Multiplexing) optical communication system, the importance of an optical control device such as a PLC for controlling the wavelength is increasing. As a technique for controlling an optical device such as a PLC (Planar Lightwave Circuit), there is a TO (Thermo-Optic) heater driving system using a resistance heat source. Since most optical device materials have a temperature refractive index variation coefficient, the refractive index can be changed by changing the ambient temperature to achieve desired optical characteristics.

光モジュールの制御の例として特許文献1を挙げる。   Patent Document 1 is given as an example of controlling the optical module.

特開2003−66388号公報JP 2003-66388 A

TOヒータ駆動方式は、熱を使っているため安定的に制御し易いことや材料を選ばないというメリットがある反面、屈折率変動量の電力効率が化合物半導体のEO(Electro−Optic)効果より悪いため比較的大きな電力を必要とする。特にPLCの原料となる石英ガラス材料の温度屈折率感受率が化合物半導体の10倍と大きいため、TOヒータを用いて位相制御する場合の消費電力はサブW程度と大きくなってしまう。このため従来のTOヒータ制御回路は専用のアナログ駆動回路を用意する必要があり、電気エネルギーが回路の発熱に変換されることによる損失などにより電力効率が悪くなってしまう。またTOヒータの抵抗値によっては10Vなど比較的高い電圧を供給する必要があるが、光MDL(光モジュール)では5.0Vや3.3Vなどの標準的な電源電圧しか使われていないことから、DC−DCコンバータなどで所望の電圧を発生させる必要がある。この電圧変換のための回路が追加で必要になるうえ、電圧変換のために電力が無駄に熱に変わってしまうため光モジュールの消費電力・MDLサイズが増大してしまう。このためPLCを用いた光制御システムにおいて光MDLを低消費電力化・小型化するためには、TO位相シフタを効率的な電力で駆動することが重要である。   The TO heater driving method has advantages that it is easy to control stably because it uses heat, and there is a merit that the material is not selected, but the power efficiency of the refractive index fluctuation amount is worse than the EO (Electro-Optic) effect of the compound semiconductor. Therefore, relatively large electric power is required. In particular, since the temperature refractive index susceptibility of quartz glass material, which is a raw material of PLC, is 10 times as large as that of a compound semiconductor, power consumption when phase control is performed using a TO heater is as large as about sub-W. For this reason, it is necessary to prepare a dedicated analog drive circuit for the conventional TO heater control circuit, and power efficiency is deteriorated due to loss due to conversion of electric energy into heat generation of the circuit. Moreover, depending on the resistance value of the TO heater, it is necessary to supply a relatively high voltage such as 10V, but the optical MDL (optical module) uses only a standard power supply voltage such as 5.0V or 3.3V. It is necessary to generate a desired voltage with a DC-DC converter or the like. An additional circuit for voltage conversion is required, and the power is wastefully changed to heat for voltage conversion, which increases the power consumption and MDL size of the optical module. Therefore, in order to reduce the power consumption and size of the optical MDL in the light control system using the PLC, it is important to drive the TO phase shifter with efficient power.

PLCを用いた光制御システムにおいて、TO位相シフタの電力効率の向上を可能とする技術が望まれる。   In a light control system using a PLC, a technique that can improve the power efficiency of the TO phase shifter is desired.

本発明の一側面による光モジュールは、平面光導波回路と、その平面光導波回路を所定位置において加熱する熱光学位相シフタと、平面光導波回路を通過した光信号の光出力を検出する光検出器と、その光検出器が検出した光出力が設定値に近づくように熱光学位相シフタをパルス幅変調制御する制御部とを備える。   An optical module according to an aspect of the present invention includes a planar optical waveguide circuit, a thermo-optic phase shifter that heats the planar optical waveguide circuit at a predetermined position, and optical detection that detects the optical output of the optical signal that has passed through the planar optical waveguide circuit. And a controller that performs pulse width modulation control of the thermo-optic phase shifter so that the light output detected by the photodetector approaches the set value.

本発明の一側面による光モジュールの制御方法は、平面光導波回路を通過した光信号の光出力を検出する工程と、光出力が設定値に近づくように、平面光導波回路を所定位置において加熱する熱光学位相シフタをパルス幅変調制御する工程とを備える。   An optical module control method according to one aspect of the present invention includes a step of detecting an optical output of an optical signal that has passed through a planar optical waveguide circuit, and heating the planar optical waveguide circuit at a predetermined position so that the optical output approaches a set value. And a step of controlling the pulse width modulation of the thermo-optic phase shifter.

PLCを用いた光制御システムにおいて、TO位相シフタの電力効率の向上を可能とする技術が提供される。   In an optical control system using a PLC, a technique that can improve the power efficiency of a TO phase shifter is provided.

図1は、光モジュールの構成を示す。FIG. 1 shows a configuration of an optical module. 図2Aは、PWM制御について説明するための図である。FIG. 2A is a diagram for explaining PWM control. 図2Bは、PWM制御について説明するための図である。FIG. 2B is a diagram for explaining PWM control. 図3Aは、PWM制御について説明するための図である。FIG. 3A is a diagram for explaining PWM control. 図3Bは、PWM制御について説明するための図である。FIG. 3B is a diagram for explaining PWM control.

以下、図面を参照して本発明の実施形態を説明する。図1は、本実施形態における光モジュールを示す。光モジュールは、基板1上に形成されたPLC(平面光導波回路)2、3を有する。基板1上には更に、PLCによってリング共振器4が形成される。PLC2は、第1の入力端IN1と第2の入力端IN2を有する。PLC3は、第1の出力端OUT1と第2の出力端OUT2とを有する。第2の出力端OUT2から出力する光信号は、光検出器7によって検出される。光検出器7としては、光出力を検出するPD(フォトダイオード)を用いることが望ましい。本実施形態の光モジュールは、波長分散検出器等の高価な装置を用いなくても、PDによって十分な効果を得ることができる。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows an optical module according to this embodiment. The optical module includes PLCs (planar optical waveguide circuits) 2 and 3 formed on the substrate 1. A ring resonator 4 is further formed on the substrate 1 by PLC. The PLC 2 has a first input terminal IN1 and a second input terminal IN2. The PLC 3 has a first output terminal OUT1 and a second output terminal OUT2. The optical signal output from the second output terminal OUT2 is detected by the photodetector 7. As the photodetector 7, it is desirable to use a PD (photodiode) that detects light output. The optical module of the present embodiment can obtain a sufficient effect by PD without using an expensive device such as a wavelength dispersion detector.

光モジュールには更に、ヒータによって光信号の位相シフトを実現するTO(Thermo−Optic、熱光学)位相シフタ5を備える。TO位相シフタ5は、制御部6から受信する制御信号に応答した量の熱を生成する。この熱により、リング共振器4を形成する光導波路の所定位置での温度が変化する。その結果、リング共振器4における光信号の位相が制御された量でシフトする。制御部6は、光検出器7が検出した光出力の検出値に基づいて、その検出値が設定値に近づくように、PWM(パルス幅変調)制御によりTO位相シフタ5を制御する。   The optical module further includes a TO (Thermo-Optic) phase shifter 5 that realizes a phase shift of an optical signal by a heater. The TO phase shifter 5 generates an amount of heat in response to a control signal received from the control unit 6. This heat changes the temperature at a predetermined position of the optical waveguide forming the ring resonator 4. As a result, the phase of the optical signal in the ring resonator 4 is shifted by a controlled amount. The control unit 6 controls the TO phase shifter 5 by PWM (pulse width modulation) control based on the detection value of the optical output detected by the photodetector 7 so that the detection value approaches the set value.

リング共振器4は、第1の入力端IN1からそれぞれλ1〜λnの波長を有する複数の光信号を入力し、第2の入力端IN2から波長λ1の光信号を入力する。制御部6は、このような光信号が入力したときに光検出器7が検出する光出力が最大値となるようにTO位相シフタを調整する。このような制御により、第1の入力端IN1に入力した複数の光信号の中から波長λ1を有する光信号のみを第1の出力端OUT1から取り出すことができる。このようにPWMによる電力制御回路とPDのような受光回路を組み合わせてフィードバック制御を実施することで、PLCを用いた光回路において所望の特性を得る事ができる。   The ring resonator 4 receives a plurality of optical signals having wavelengths of λ1 to λn from the first input terminal IN1, and receives an optical signal of wavelength λ1 from the second input terminal IN2. The controller 6 adjusts the TO phase shifter so that the optical output detected by the photodetector 7 becomes the maximum value when such an optical signal is input. By such control, only the optical signal having the wavelength λ1 can be extracted from the first output terminal OUT1 from the plurality of optical signals input to the first input terminal IN1. Thus, by performing feedback control by combining a power control circuit using PWM and a light receiving circuit such as a PD, desired characteristics can be obtained in an optical circuit using a PLC.

以下、PWM制御について説明する。昨今の光INF_MDL(光インターフェースモジュール)では小型化・省電力化が強く求められている。従来のようなアナログ制御回路でTOヒータのような回路を駆動していては小型化を進めることが次第に難しくなってきている。TOヒータは金属薄膜を用いた電熱ヒータであり、印加した電力を熱に変換して光デバイスを局所的に暖める事ができる。   Hereinafter, the PWM control will be described. In recent optical INF_MDL (optical interface module), downsizing and power saving are strongly demanded. When a circuit like a TO heater is driven by a conventional analog control circuit, it is becoming increasingly difficult to reduce the size. The TO heater is an electric heater using a metal thin film, and can convert the applied electric power into heat to locally warm the optical device.

一方、TOヒータの低消費電力化の技術が進んできている。そのため、昨今モータ制御などで用いられているPWM制御をTOヒータに適用することが出来れば、無駄な電力を発生させることなく光学デバイスを制御することができ、小型化や低消費電力化を実現することが出来る。   On the other hand, techniques for reducing the power consumption of TO heaters are advancing. Therefore, if PWM control currently used for motor control etc. can be applied to the TO heater, the optical device can be controlled without generating wasteful power, and miniaturization and low power consumption are realized. I can do it.

PWMは、High電圧とLow電圧の2値のレベルの電圧を時系列的に切り替えて供給するデジタル制御方法である。一定の時間内でHigh電圧が供給される時間の割合を示すデューティー比を制御することにより、平均的な出力が制御される。例えばモータの制御において、図2Bに示すような電圧が与えられる。横軸は時間を、縦軸は印加電圧を示す。図2Bに示すようにデューティー比が小さいと、図2Aに示すようにモータは低速で回転する。図3Bに示すように印加電圧のデューティー比が大きいと、図3Aに示すようにモータは高速で回転する。このモータと同様に、デューティー比が小さいときはTOヒータの温度が少しだけ上昇し、逆にデューティー比が大きいときはTOヒータの温度がより大きく上昇する。このように制御部6は、デューティー比の制御によりTOヒータの温度を制御することができる。   PWM is a digital control method that supplies two levels of voltage, a high voltage and a low voltage, by switching in time series. The average output is controlled by controlling the duty ratio indicating the ratio of the time during which the high voltage is supplied within a certain time. For example, in the control of the motor, a voltage as shown in FIG. 2B is applied. The horizontal axis represents time, and the vertical axis represents applied voltage. When the duty ratio is small as shown in FIG. 2B, the motor rotates at a low speed as shown in FIG. 2A. When the duty ratio of the applied voltage is large as shown in FIG. 3B, the motor rotates at a high speed as shown in FIG. 3A. Similarly to this motor, when the duty ratio is small, the temperature of the TO heater slightly increases, and conversely, when the duty ratio is large, the temperature of the TO heater increases more greatly. Thus, the control unit 6 can control the temperature of the TO heater by controlling the duty ratio.

PWM制御では、必要な最大電力が時系列上の領域で供給される時間帯と供給されない時間帯とを切り替えることにより平均電力が制御される。必要な最大電圧は常に一定であり、通常のアナログ制御のように制御スイッチング回路で失う電圧が存在しない。そのため電力効率が大幅に改善する。   In PWM control, the average power is controlled by switching between a time zone in which the required maximum power is supplied in a time-series region and a time zone in which it is not supplied. The maximum voltage required is always constant and there is no voltage lost in the control switching circuit as in normal analog control. Therefore, power efficiency is greatly improved.

従来のTOヒータでは特に駆動電圧が10V程度と大きかったためPWM制御をそのまま用いることは難しかった。しかし近年、より低電力・低電圧のTOヒータの研究開発が進んできたため、5.2Vや3.3VでのTOヒータの駆動が視野に入ってきている。そこで本実施形態ではヒータを駆動する回路である制御部6がPWM制御を行なうことで、システム全体の消費電力を低減することが可能となる。   In the conventional TO heater, since the drive voltage is particularly large as about 10V, it is difficult to use the PWM control as it is. However, in recent years, research and development of lower power and lower voltage TO heaters has progressed, and driving of TO heaters at 5.2V and 3.3V has come into the field of view. Therefore, in the present embodiment, the control unit 6 which is a circuit for driving the heater performs PWM control, so that the power consumption of the entire system can be reduced.

1 基板
2 PLC(平面光導波回路)
3 PLC(平面光導波回路)
4 リング共振器
5 TO(熱光学)位相シフタ
6 制御部
7 検出部
1 Substrate 2 PLC (planar optical waveguide circuit)
3 PLC (planar optical waveguide circuit)
4 ring resonator 5 TO (thermo-optic) phase shifter 6 control unit 7 detection unit

Claims (3)

平面光導波回路と、
前記平面光導波回路を所定位置において加熱する熱光学位相シフタと、
前記平面光導波回路を通過した光信号の光出力を検出する光検出器と、
前記光検出器が検出した前記光出力が設定値に近づくように前記熱光学位相シフタをパルス幅変調制御する制御部
とを具備する光モジュール。
A planar optical waveguide circuit;
A thermo-optic phase shifter that heats the planar optical waveguide circuit in place;
A photodetector for detecting an optical output of an optical signal that has passed through the planar optical waveguide circuit;
An optical module comprising: a controller that performs pulse width modulation control on the thermo-optic phase shifter so that the optical output detected by the photodetector approaches a set value.
請求項1に記載された光モジュールであって、
前記平面光導波回路はリング共振器を含み、
前記所定位置は前記リング共振器上に設定される
光モジュール。
The optical module according to claim 1,
The planar optical waveguide circuit includes a ring resonator;
The predetermined position is set on the ring resonator.
平面光導波回路を通過した光信号の光出力を検出する工程と、
前記光出力が設定値に近づくように、前記平面光導波回路を所定位置において加熱する熱光学位相シフタをパルス幅変調制御する工程
とを具備する光モジュールの制御方法。
Detecting the optical output of the optical signal that has passed through the planar optical waveguide circuit;
And a pulse width modulation control of a thermo-optic phase shifter that heats the planar optical waveguide circuit at a predetermined position so that the optical output approaches a set value.
JP2009070920A 2009-03-23 2009-03-23 Optical module and method of controlling the same Withdrawn JP2010224189A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009070920A JP2010224189A (en) 2009-03-23 2009-03-23 Optical module and method of controlling the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009070920A JP2010224189A (en) 2009-03-23 2009-03-23 Optical module and method of controlling the same

Publications (1)

Publication Number Publication Date
JP2010224189A true JP2010224189A (en) 2010-10-07

Family

ID=43041443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009070920A Withdrawn JP2010224189A (en) 2009-03-23 2009-03-23 Optical module and method of controlling the same

Country Status (1)

Country Link
JP (1) JP2010224189A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013130738A (en) * 2011-12-21 2013-07-04 Fujitsu Ltd Optical switch element, optical demultiplexer and optical demultiplexing method
US10901242B2 (en) 2015-12-21 2021-01-26 National Institute Of Advanced Industrial Science And Technology Driving device and driving method for phase controller, and optical switch
JP2022539111A (en) * 2019-07-02 2022-09-07 ライトマター インコーポレイテッド Photonics stabilization circuit

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013130738A (en) * 2011-12-21 2013-07-04 Fujitsu Ltd Optical switch element, optical demultiplexer and optical demultiplexing method
US9184865B2 (en) 2011-12-21 2015-11-10 Fujitsu Limited Optical switch, optical demodulator, and optical demodulation method having feedback control of temperature regulator based on optical detector output
US10901242B2 (en) 2015-12-21 2021-01-26 National Institute Of Advanced Industrial Science And Technology Driving device and driving method for phase controller, and optical switch
JP2022539111A (en) * 2019-07-02 2022-09-07 ライトマター インコーポレイテッド Photonics stabilization circuit
JP7598889B2 (en) 2019-07-02 2024-12-12 ライトマター インコーポレイテッド Photonics Stabilization Circuit

Similar Documents

Publication Publication Date Title
KR20150109724A (en) Apparatus for driving motor
JP5011914B2 (en) LASER DIODE CONTROL DEVICE AND ATC CIRCUIT DRIVING METHOD
Ribeiro et al. Column-row addressing of thermo-optic phase shifters for controlling large silicon photonic circuits
JP5831206B2 (en) Optical switch element, optical demodulator, and optical demodulation method
JP5896017B2 (en) Optical semiconductor device and method for controlling optical semiconductor device
Thonnart et al. A 10Gb/s Si-photonic transceiver with 150μW 120μs-lock-time digitally supervised analog microring wavelength stabilization for 1Tb/s/mm 2 Die-to-Die Optical Networks
CN103809244A (en) System and method for controlling heating of optical fiber hot stripping device
JP2010224189A (en) Optical module and method of controlling the same
CN102412498A (en) A temperature control system suitable for pump laser
CN103208736B (en) Based on temperature-controlled process and the device of thermoelectric refrigerating unit
WO2005081865A3 (en) Power optimization for operation of optoelectronic device with thermoelectric cooler
JP5735862B2 (en) Optical analyzer with power saving mode function
JP2009194876A (en) Low power wavelength selection device
JP2011138855A (en) Optical transmission module and wavelength control method of the optical transmission module
JP2014078690A (en) Optical module and optical module control method
CN203133636U (en) Automatic temperature-control circuit and optical transceiver module including same
JP2008312038A (en) Optical transmitter
CN102496848B (en) Method for expanding working range of EML (Electlro-absorption Modulated Laser) TOSA (Transmitter Optical Sub Assembly) core temperature
US20160131959A1 (en) Device and method for controlling the temperature of a multi-resonant optoelectronic device
US10901242B2 (en) Driving device and driving method for phase controller, and optical switch
JP5994230B2 (en) Optical communication device
JP2005202832A (en) Temperature control apparatus and temperature control method
JP6069900B2 (en) Optical transceiver and temperature control method for optical transceiver
KR20130045056A (en) Led driving circuit and driving method the same, and led lighting device using the same
JP2008211362A (en) Optical signal transmitter

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20120605