JP2010230653A - Lightwave interference measuring device - Google Patents
Lightwave interference measuring device Download PDFInfo
- Publication number
- JP2010230653A JP2010230653A JP2009287779A JP2009287779A JP2010230653A JP 2010230653 A JP2010230653 A JP 2010230653A JP 2009287779 A JP2009287779 A JP 2009287779A JP 2009287779 A JP2009287779 A JP 2009287779A JP 2010230653 A JP2010230653 A JP 2010230653A
- Authority
- JP
- Japan
- Prior art keywords
- light source
- wavelength
- wavelength light
- light beam
- optical path
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B9/00—Measuring instruments characterised by the use of optical techniques
- G01B9/02—Interferometers
- G01B9/02001—Interferometers characterised by controlling or generating intrinsic radiation properties
- G01B9/02007—Two or more frequencies or sources used for interferometric measurement
- G01B9/02008—Two or more frequencies or sources used for interferometric measurement by using a frequency comb
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B9/00—Measuring instruments characterised by the use of optical techniques
- G01B9/02—Interferometers
- G01B9/02001—Interferometers characterised by controlling or generating intrinsic radiation properties
- G01B9/02002—Interferometers characterised by controlling or generating intrinsic radiation properties using two or more frequencies
- G01B9/02003—Interferometers characterised by controlling or generating intrinsic radiation properties using two or more frequencies using beat frequencies
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B9/00—Measuring instruments characterised by the use of optical techniques
- G01B9/02—Interferometers
- G01B9/02015—Interferometers characterised by the beam path configuration
- G01B9/02027—Two or more interferometric channels or interferometers
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B9/00—Measuring instruments characterised by the use of optical techniques
- G01B9/02—Interferometers
- G01B9/02055—Reduction or prevention of errors; Testing; Calibration
- G01B9/02062—Active error reduction, i.e. varying with time
- G01B9/02067—Active error reduction, i.e. varying with time by electronic control systems, i.e. using feedback acting on optics or light
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B9/00—Measuring instruments characterised by the use of optical techniques
- G01B9/02—Interferometers
- G01B9/02055—Reduction or prevention of errors; Testing; Calibration
- G01B9/0207—Error reduction by correction of the measurement signal based on independently determined error sources, e.g. using a reference interferometer
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B2290/00—Aspects of interferometers not specifically covered by any group under G01B9/02
- G01B2290/45—Multiple detectors for detecting interferometer signals
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B2290/00—Aspects of interferometers not specifically covered by any group under G01B9/02
- G01B2290/60—Reference interferometer, i.e. additional interferometer not interacting with object
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B2290/00—Aspects of interferometers not specifically covered by any group under G01B9/02
- G01B2290/70—Using polarization in the interferometer
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Automation & Control Theory (AREA)
- Optics & Photonics (AREA)
- Instruments For Measurement Of Length By Optical Means (AREA)
- Length Measuring Devices By Optical Means (AREA)
Abstract
Description
本発明は、光波干渉計測装置に関する。 The present invention relates to a light wave interference measuring apparatus.
従来から、被検信号と参照信号の位相差から光路長差を計測する光波干渉計測装置が提案されている。例えば特許文献1には、周波数間隔と中心周波数の異なる2つの多波長光源(光周波数コム光源)の干渉を用いて被検光路と参照光路の光路長差を計測する光波干渉計測装置が開示されている。特許文献2には、計測信号と基準信号の周波数成分毎の位相差から距離を計算する光波干渉計測装置が開示されている。 Conventionally, an optical interference measuring apparatus that measures an optical path length difference from a phase difference between a test signal and a reference signal has been proposed. For example, Patent Document 1 discloses a light wave interference measuring apparatus that measures the optical path length difference between a test optical path and a reference optical path using interference of two multi-wavelength light sources (optical frequency comb light sources) having different frequency intervals and center frequencies. ing. Patent Document 2 discloses an optical interference measuring apparatus that calculates a distance from a phase difference for each frequency component of a measurement signal and a reference signal.
非特許文献1には、1つの多波長光源から生成された被検光路と参照光路の干渉信号を回折格子で分光する方法が開示されている。本文献に開示された方法では、多波長光源のスペクトルのそれぞれに対応する干渉信号を分離し、周波数に対する光路長差による位相の変化をホモダイン計測する。また、特許文献2には、1つの多波長光源による被検光路と参照光路の干渉信号を回折格子で分光して計測する方法として、被検光路と参照光路のいずれか一方に周波数シフタを挿入してヘテロダイン検出を行う方法が開示されている。 Non-Patent Document 1 discloses a method of dispersing an interference signal between a test optical path and a reference optical path generated from one multi-wavelength light source using a diffraction grating. In the method disclosed in this document, an interference signal corresponding to each spectrum of a multi-wavelength light source is separated, and a change in phase due to an optical path length difference with respect to frequency is homodyne-measured. In Patent Document 2, a frequency shifter is inserted in one of the test optical path and the reference optical path as a method of measuring the interference signal between the test optical path and the reference optical path by a diffraction grating with one multi-wavelength light source. Thus, a method of performing heterodyne detection is disclosed.
しかしながら、周波数間隔と中心周波数の異なる2つの多波長光源を用いた従来の光波干渉計測装置には、次の2つの課題がある。第1に、光波干渉計測装置の計測精度は、2つの多波長光源の周波数安定性、特に多波長光源の周波数間隔の差に敏感であるため、光波干渉計測装置の高精度化が困難である。第2に、従来の光波干渉計測装置では2台の光周波数コム発生器を必要とし、多波長光源間の周波数間隔の差を高精度に安定化するための複雑な基準発振器ユニットを更に必要とするため、光波干渉計測装置が高価になる。 However, the conventional optical interference measuring apparatus using two multi-wavelength light sources having different frequency intervals and center frequencies has the following two problems. First, the measurement accuracy of the optical interference measuring apparatus is sensitive to the frequency stability of the two multi-wavelength light sources, in particular, the difference in the frequency interval between the multiple wavelength light sources, so it is difficult to improve the accuracy of the optical interference measuring apparatus. . Secondly, the conventional optical interference measuring apparatus requires two optical frequency comb generators, and further requires a complicated reference oscillator unit for stabilizing the frequency difference between the multi-wavelength light sources with high accuracy. Therefore, the light wave interference measuring apparatus becomes expensive.
特に、1つの多波長光源を用いた光波干渉計測装置の場合、ホモダイン検出のため干渉信号の位相検出精度が低く、高精度な距離計測は困難である。また、被検光路と参照光路のいずれか一方に周波数シフタを挿入してヘテロダイン検出を行う場合でも、周波数シフタの挿入により被検光路と参照光路の光路長差が広がるため、揺らぎ等の影響を受けることにより装置の高精度化は困難である。さらに、一つの光源に複数の干渉計を設けるような多軸の応用用途を想定すると、干渉計毎に周波数シフタが必要となるため、装置が高価になる。 In particular, in the case of an optical interference measuring apparatus using one multi-wavelength light source, the phase detection accuracy of the interference signal is low because of homodyne detection, and high-precision distance measurement is difficult. In addition, even when heterodyne detection is performed by inserting a frequency shifter in either the test optical path or the reference optical path, the optical path length difference between the test optical path and the reference optical path is widened by the insertion of the frequency shifter. It is difficult to improve the accuracy of the apparatus. Furthermore, assuming a multi-axis application in which a plurality of interferometers are provided in one light source, a frequency shifter is required for each interferometer, so that the apparatus becomes expensive.
そこで、本発明は、安価で高精度な光波干渉計測装置を提供することを目的とする。 Therefore, an object of the present invention is to provide an inexpensive and highly accurate optical interference measuring apparatus.
本発明の一側面としての光波干渉計測装置は、複数のスペクトルを有する光束を射出する第1多波長光源と、前記第1多波長光源からの光束と異なる波長及び直交する偏光成分を有する光束を射出する第2多波長光源と、前記第1多波長光源からの光束と前記第2多波長光源からの光束とを分離する偏光光学素子と、基準位置に設けられ、前記第2多波長光源からの光束を反射する参照面と、被検物体に設けられ、前記第1多波長光源からの光束を反射する被検面と、前記第1多波長光源からの光束と前記第2多波長光源からの光束の干渉信号を分光する分光光学素子と、前記分光光学素子で分光された干渉信号から、前記第1多波長光源からの光束と前記第2多波長光源からの光束の単一波長同士の干渉信号を複数の波長について検出する複数の検出器と、前記検出器からの信号を処理して前記参照面と前記被検面との間の光路長差を算出する解析装置とを有する。 An optical interference measuring apparatus according to one aspect of the present invention includes a first multi-wavelength light source that emits a light beam having a plurality of spectra, and a light beam that has a wavelength different from that of the light beam from the first multi-wavelength light source and orthogonal polarization components. A second multi-wavelength light source that emits; a polarizing optical element that separates a light beam from the first multi-wavelength light source and a light beam from the second multi-wavelength light source; and a reference position; A reference surface that reflects the light beam from the first multi-wavelength light source, a test surface that reflects the light beam from the first multi-wavelength light source, a light beam from the first multi-wavelength light source, and the second multi-wavelength light source. A spectral optical element that spectrally separates the interference signal of the luminous flux, and an interference signal that is spectrally separated by the spectral optical element, from the single wavelength of the luminous flux from the first multi-wavelength light source and the luminous flux from the second multi-wavelength light source. Detect interference signals for multiple wavelengths It has a number of detectors, an analysis apparatus and for calculating an optical path length difference between the reference surface by processing signals from the detector and the test surface.
本発明の他の側面としての光波干渉計測装置は、複数のスペクトルを有する光束を射出する第1多波長光源と、前記第1多波長光源からの光束と直交する偏光成分を有する光束を射出する第2多波長光源と、前記第1多波長光源の有する複数の波長間の周波数間隔を周期的に制御する波長制御部と、前記第1多波長光源からの光束を被検光束と参照光束の2つに分離する偏光光学素子と、基準位置に設けられ、前記参照光束を反射する参照面と、被検物体に設けられ、前記被検光束を反射する被検面と、前記参照光束と前記被検光束の干渉信号を分光する分光光学素子と、前記分光光学素子で分光された干渉信号から、前記参照光束と前記被検光束の単一波長同士の干渉信号を複数の波長について検出する複数の検出器と、前記検出器からの信号を処理して前記参照面と前記被検面との間の光路長差を算出する解析装置とを有する。 An optical interference measuring apparatus according to another aspect of the present invention emits a first multi-wavelength light source that emits a light beam having a plurality of spectra, and a light beam that has a polarization component orthogonal to the light beam from the first multi-wavelength light source. A second multi-wavelength light source; a wavelength control unit that periodically controls a frequency interval between a plurality of wavelengths of the first multi-wavelength light source; and a light flux from the first multi-wavelength light source for a test light flux and a reference light flux. A polarizing optical element that is divided into two; a reference surface that is provided at a reference position and reflects the reference light beam; a test surface that is provided on a test object and reflects the test light beam; the reference light beam; A plurality of spectral optical elements that split the interference signal of the test light beam and a plurality of wavelengths that detect interference signals between single wavelengths of the reference light beam and the test light beam from the interference signal that is spectrally separated by the spectroscopic optical element. Detectors from the detectors Wherein said reference surface by processing the No. and an analyzer for calculating the optical path length difference between the test surface.
本発明の他の目的及び特徴は、以下の実施例において説明される。 Other objects and features of the present invention are illustrated in the following examples.
本発明によれば、安価で高精度な光波干渉計測装置を提供することができる。 According to the present invention, an inexpensive and highly accurate optical interference measuring apparatus can be provided.
以下、本発明の実施例について、図面を参照しながら詳細に説明する。各図において、同一の部材については同一の参照番号を付し、重複する説明は省略する。
〔第1実施形態〕
まず、本発明の第1実施形態における光波干渉計測装置について説明する。図1は、本実施形態における光波干渉計測装置の構成図である。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In each figure, the same members are denoted by the same reference numerals, and redundant description is omitted.
[First Embodiment]
First, the lightwave interference measuring apparatus according to the first embodiment of the present invention will be described. FIG. 1 is a configuration diagram of a lightwave interference measurement apparatus according to this embodiment.
本実施形態の光波干渉計測装置において、第1多波長光源200aは、光源1と光周波数コム発生器2とを備えて構成される。第1多波長光源200aは、複数の狭帯域なスペクトル(複数の狭帯域な波長)を有する光束を射出する。また、第2多波長光源200bは、第1多波長光源200aに周波数シフタ4を加えることにより構成され、第1多波長光源200aからの光束とは異なる複数の狭帯域なスペクトルを有する光束を射出する。また、第2多波長光源200bからの光束は、第1多波長光源200aからの光束の偏光成分に直交する偏光成分を有する。第1多波長光源200a及び第2多波長光源200bは、複数の光周波数成分のそれぞれが均等な光周波数差となる光周波数コム光源である。また、第1多波長光源200a及び第2多波長光源200bは、単一の狭帯域なスペクトルを有する光源からの光束を光学変調素子により変調することで、複数の狭帯域なスペクトルを有する光束を生成する。 In the light wave interference measuring apparatus of the present embodiment, the first multi-wavelength light source 200a is configured to include the light source 1 and the optical frequency comb generator 2. The first multi-wavelength light source 200a emits a light beam having a plurality of narrow-band spectra (a plurality of narrow-band wavelengths). The second multi-wavelength light source 200b is configured by adding the frequency shifter 4 to the first multi-wavelength light source 200a, and emits a light beam having a plurality of narrow-band spectra different from the light beam from the first multi-wavelength light source 200a. To do. The light beam from the second multi-wavelength light source 200b has a polarization component orthogonal to the polarization component of the light beam from the first multi-wavelength light source 200a. The first multi-wavelength light source 200a and the second multi-wavelength light source 200b are optical frequency comb light sources in which each of a plurality of optical frequency components has an equal optical frequency difference. In addition, the first multi-wavelength light source 200a and the second multi-wavelength light source 200b modulate a light beam from a light source having a single narrow band spectrum by an optical modulation element, so that a plurality of light beams having a narrow band spectrum are obtained. Generate.
偏光ビームスプリッタ6は、第1多波長光源200aからの光束と第2多波長光源200bからの光束とを分岐(分離)する偏光光学素子である。参照面7は、所定の基準位置に設けられ、第2多波長光源200bからの光束を反射するように構成されている。被検面8は、被検物体に設けられ、第1多波長光源200aからの光束を反射するように構成されている。 The polarization beam splitter 6 is a polarization optical element that branches (separates) the light beam from the first multi-wavelength light source 200a and the light beam from the second multi-wavelength light source 200b. The reference surface 7 is provided at a predetermined reference position and is configured to reflect the light flux from the second multi-wavelength light source 200b. The test surface 8 is provided on the test object, and is configured to reflect the light beam from the first multi-wavelength light source 200a.
分波器9a、9bは、第1多波長光源200aからの光束と第2多波長光源200bからの光束の干渉信号を分光する分光光学素子である。検出装置10a、10bは複数の検出器を有し、それぞれ、分波器9a、9bで分光された干渉信号から、第1多波長光源200aからの光束と第2多波長光源200bからの光束の単一波長同士の干渉信号を複数の波長について検出する。解析装置11は、検出装置10a、10b(複数の検出器)からの信号を処理して参照面7と被検面8との間の光路長差を算出する。 The demultiplexers 9a and 9b are spectroscopic optical elements that split interference signals between the light flux from the first multi-wavelength light source 200a and the light flux from the second multi-wavelength light source 200b. The detection devices 10a and 10b have a plurality of detectors, and from the interference signals spectrally separated by the demultiplexers 9a and 9b, the light beams from the first multi-wavelength light source 200a and the light beams from the second multi-wavelength light source 200b, respectively. Interference signals between single wavelengths are detected for a plurality of wavelengths. The analysis device 11 processes signals from the detection devices 10 a and 10 b (a plurality of detectors) to calculate an optical path length difference between the reference surface 7 and the test surface 8.
以下、本実施形態の光波干渉計測装置における計測原理について詳述する。単一の狭帯域な線幅を有し、高精度に中心周波数が安定化されて光源1を射出した光束は、光周波数コム発生器2に入射する。光周波数コム発生器2は、光学変調素子を共振器内に配置することにより構成され、発振器3からの周波数fmの変調信号に基づき入射光に対して位相変調を行う。光周波数コム発生器2から射出した光束は、光源1の周波数を中心周波数として間隔fmの櫛歯状のスペクトルとなり、各スペクトルの周波数間隔が発振器3により高精度に制御された多波長光源となる。光周波数コム発生器2を射出した光束は、ハーフミラーにより一部透過し、第1多波長光源200aとして用いられる。ここで、多波長光源の生成手段として、光周波数コム発生器2の代わりに電気光学変調素子や音響光学変調素子を用いてサイドバンドを発生させてもかまわない。この場合、検出信号数は少なくなることによる精度低下を許容することができれば、コストの面で優位となる。 Hereinafter, the measurement principle in the optical interference measuring apparatus of this embodiment will be described in detail. A light beam having a single narrow bandwidth and having a center frequency stabilized with high accuracy and emitted from the light source 1 enters the optical frequency comb generator 2. The optical frequency comb generator 2 is configured by disposing an optical modulation element in a resonator, and performs phase modulation on incident light based on a modulation signal having a frequency fm from the oscillator 3. The light beam emitted from the optical frequency comb generator 2 becomes a comb-like spectrum with the frequency of the light source 1 as a center frequency and an interval fm, and becomes a multi-wavelength light source whose frequency interval is controlled with high accuracy by the oscillator 3. . The light beam emitted from the optical frequency comb generator 2 is partially transmitted by the half mirror and used as the first multi-wavelength light source 200a. Here, as a means for generating a multi-wavelength light source, a sideband may be generated using an electro-optic modulation element or an acousto-optic modulation element instead of the optical frequency comb generator 2. In this case, if a reduction in accuracy due to a decrease in the number of detection signals can be tolerated, it is advantageous in terms of cost.
ハーフミラーを反射した光束は、周波数シフタ4に入射する。周波数シフタ4では、音響光学変調素子を用いて光周波数コム発生器2で生成されたスペクトルの全てを一律の周波数dfだけシフトさせ、多波長光源200aから射出した光束と直交するように偏光を90度回転させて射出する。周波数シフタ4ではスペクトルの相対関係に変化を与えないため、周波数シフタ4を射出した光束も、第1多波長光源200aと同様、各スペクトルの周波数間隔が発振器3により高精度に制御された多波長光源となる。周波数シフタ4を射出した光束は、第2多波長光源200bとして用いられる。 The light beam reflected by the half mirror enters the frequency shifter 4. In the frequency shifter 4, all of the spectrum generated by the optical frequency comb generator 2 is shifted by a uniform frequency df using an acousto-optic modulation element, and the polarization is changed so as to be orthogonal to the light beam emitted from the multi-wavelength light source 200 a. Rotate and inject. Since the frequency shifter 4 does not change the relative relationship of the spectrum, the luminous flux emitted from the frequency shifter 4 is also a multiwavelength in which the frequency interval of each spectrum is controlled with high accuracy by the oscillator 3 as in the first multiwavelength light source 200a. It becomes a light source. The light beam emitted from the frequency shifter 4 is used as the second multi-wavelength light source 200b.
第1多波長光源200a及び第2多波長光源200bからの光束は、それぞれ、無偏光ビームスプリッタ5により2つに分岐される。以下、無偏光ビームスプリッタ5で分岐されて分波器9aに入射する光路を基準光路、また、無偏光ビームスプリッタ5で分岐されて偏光ビームスプリッタ6へ入射する光路を計測光路と称す。 The light beams from the first multi-wavelength light source 200a and the second multi-wavelength light source 200b are branched into two by the non-polarizing beam splitter 5, respectively. Hereinafter, an optical path branched by the non-polarizing beam splitter 5 and incident on the branching filter 9a is referred to as a reference optical path, and an optical path branched by the non-polarizing beam splitter 5 and incident on the polarizing beam splitter 6 is referred to as a measurement optical path.
計測光路において、第1多波長光源200aの光束は、偏光ビームスプリッタ6の反射面を透過する。一方、第1多波長光源200aと直交する偏光成分を有する第2多波長光源200bの光束は、偏光ビームスプリッタ6の反射面にて反射する。偏光ビームスプリッタ6で反射された第2多波長光源200bの光束は、複数の反射面からなるコーナキューブによって構成される参照面7で反射される。参照面7で反射された光束は、偏光ビームスプリッタ6で再度反射されて分波器9bに入射する。ここで、参照面7は、距離計測の基準となる基準位置上に固定されているものとする。 In the measurement optical path, the light beam of the first multi-wavelength light source 200 a passes through the reflection surface of the polarization beam splitter 6. On the other hand, the light beam of the second multi-wavelength light source 200 b having a polarization component orthogonal to the first multi-wavelength light source 200 a is reflected by the reflecting surface of the polarization beam splitter 6. The light beam of the second multi-wavelength light source 200b reflected by the polarization beam splitter 6 is reflected by the reference surface 7 constituted by a corner cube composed of a plurality of reflection surfaces. The light beam reflected by the reference surface 7 is reflected again by the polarization beam splitter 6 and enters the branching filter 9b. Here, it is assumed that the reference surface 7 is fixed on a reference position that is a reference for distance measurement.
一方、偏光ビームスプリッタ6を透過した第1多波長光源200aの光束は、被検物体上に固定された被検面8において反射される。被検面8は、参照面7と同様にコーナキューブで構成される。被検面8で反射された光束は、再び偏光ビームスプリッタ6を透過して分波器9bに入射する。このように、基準光路及び計測光路の両方において、第1多波長光源200a及び第2多波長光源200bの光束は、分波器9a、9bにより分光される。 On the other hand, the light beam of the first multi-wavelength light source 200a that has passed through the polarization beam splitter 6 is reflected on the test surface 8 fixed on the test object. The test surface 8 is formed of a corner cube like the reference surface 7. The light beam reflected by the test surface 8 passes through the polarization beam splitter 6 again and enters the branching filter 9b. Thus, in both the reference optical path and the measurement optical path, the light beams of the first multi-wavelength light source 200a and the second multi-wavelength light source 200b are split by the demultiplexers 9a and 9b.
分波器9a、9bとしては、例えばアレイ導波路回折型波長分波器が用いられる。以下の説明において、アレイ導波路回折型分波器をAWGと称す。AWGは、光路長差の異なるアレイ上の導波路射出後の回折により分波する素子であり、小型で安価に入手可能である。分波器9a、9bは、第1多波長光源200a及び第2多波長光源200bの波長間隔以上の波長分解能を有することが要求される。分波器9a、9bはAWGに限定されるものではなく、例えばバルク型の回折格子を用いてもよい。光周波数コムの周波数間隔に対して回折格子の分解能が不足する場合には、回折格子の前にエタロン等の追加の分散素子を挿入することで実効的な分解能を高めることができる。仕様波長や帯域によっては、AWGよりもバルク型の分光器の方が低コストで構成できる場合がある。また、本実施形態の分波器として、バンドパスの干渉フィルターを用いてもよい。このような干渉フィルターを用いると、多波長光源のスペクトルの数が少なくて計測対象の波長の数が少ない場合に、分波器の構成が簡単になるという利点がある。 As the demultiplexers 9a and 9b, for example, arrayed waveguide diffraction type wavelength demultiplexers are used. In the following description, the arrayed waveguide diffraction type duplexer is referred to as AWG. The AWG is an element that demultiplexes by diffraction after emission of waveguides on an array having different optical path length differences, and is small and available at low cost. The duplexers 9a and 9b are required to have a wavelength resolution equal to or greater than the wavelength interval of the first multi-wavelength light source 200a and the second multi-wavelength light source 200b. The duplexers 9a and 9b are not limited to AWG, and for example, a bulk type diffraction grating may be used. When the resolution of the diffraction grating is insufficient with respect to the frequency interval of the optical frequency comb, the effective resolution can be increased by inserting an additional dispersion element such as an etalon in front of the diffraction grating. Depending on the specification wavelength and band, a bulk-type spectroscope may be configured at a lower cost than AWG. Further, a band-pass interference filter may be used as the duplexer of the present embodiment. When such an interference filter is used, there is an advantage that the configuration of the duplexer is simplified when the number of spectra of the multi-wavelength light source is small and the number of wavelengths to be measured is small.
分波器9a、9bから多波長光源のスペクトル毎に分岐された出力は、それぞれの分岐に対応して複数個の検出器を備えて構成された検出装置10a、10bにて受光される。検出装置10a、10bにて受光された光は、第1多波長光源200aと第2多波長光源200bの干渉信号として、解析装置11へ伝送される。ここで、第1多波長光源200aと第2多波長光源200bの干渉信号を得るため、両光源の共通偏光成分を抽出する手段としての偏光子(不図示)が分波器9a、9bの入射前に配置されている。 The outputs branched for each spectrum of the multi-wavelength light source from the demultiplexers 9a and 9b are received by detection devices 10a and 10b each having a plurality of detectors corresponding to the respective branches. The light received by the detection devices 10a and 10b is transmitted to the analysis device 11 as an interference signal between the first multi-wavelength light source 200a and the second multi-wavelength light source 200b. Here, in order to obtain an interference signal between the first multi-wavelength light source 200a and the second multi-wavelength light source 200b, a polarizer (not shown) as means for extracting a common polarization component of both light sources is incident on the demultiplexers 9a and 9b. Placed in front.
なお本実施形態では、所定の方向の偏光成分のみが検出されるが、検出される偏光成分と直交する成分に関しても同様に、分波器9a、9b及び検出装置10a、10bで干渉信号を検出してもよい。このとき、検出装置10a、10bの両方で検出される信号の位相が互いに反転するように波長板を偏光子前に挿入することで、差動検出が可能となる。このため、さらに高精度な計測が可能となる。 In the present embodiment, only the polarization component in a predetermined direction is detected, but the interference signal is similarly detected by the duplexers 9a and 9b and the detection devices 10a and 10b for the component orthogonal to the detected polarization component. May be. At this time, differential detection is possible by inserting a wave plate in front of the polarizer so that the phases of the signals detected by both of the detection devices 10a and 10b are inverted. For this reason, measurement with higher accuracy is possible.
次に、本実施形態の解析装置11で実行される解析の内容について説明する。図2は、本実施形態における解析装置11により実行される計測方法のフローチャートである。 Next, the content of the analysis performed by the analysis apparatus 11 of this embodiment is demonstrated. FIG. 2 is a flowchart of a measurement method executed by the analysis apparatus 11 in this embodiment.
まず解析装置11は、ステップS101において、基準光路及び計測光路のそれぞれに対してスペクトル毎(周波数毎)に得られる干渉信号の位相(干渉位相)を計測する。すなわち解析装置11は、複数の周波数についての各干渉信号から参照面7と被検面8との間の干渉位相を計測する。干渉位相の計測は、位相計を構成することにより可能となる。分波器9a、9bで分岐されたp番目の波長を検出するため、検出装置10a、10b中のp番目の検出器で計測される干渉信号は、基準光路の干渉信号をIref p、計測光路の干渉信号をItest pとすると、式(1)及び式(2)のように表される。 First, in step S101, the analysis apparatus 11 measures the phase (interference phase) of the interference signal obtained for each spectrum (for each frequency) with respect to each of the reference optical path and the measurement optical path. That is, the analyzer 11 measures the interference phase between the reference surface 7 and the test surface 8 from each interference signal for a plurality of frequencies. The interference phase can be measured by configuring a phase meter. In order to detect the p-th wavelength branched by the demultiplexers 9a and 9b, the interference signal measured by the p-th detector in the detection devices 10a and 10b is measured by I ref p as the interference signal of the reference optical path. If the interference signal of the optical path is I test p , it is expressed as in equations (1) and (2).
ここで、a1p、a2pは、それぞれ第1多波長光源200aと第2多波長光源200bのp番目の周波数成分の振幅である。n1L1は、無偏光ビームスプリッタ5以前における第1多波長光源200aの光路と第2多波長光源200bの光路の光路長差を表す。n2L2は、基準光路に対する測定光路の第2多波長光源の光路の光路長差である。また、nDは、偏光ビームスプリッタ6以降における第1多波長光源200a及び第2多波長光源200bからの光束の光路長差である。周波数dfの信号を位相計で検出した場合の位相は、基準光路及び計測光路における信号の位相をそれぞれφref p、φtest pとすると、以下の式(3)及び式(4)で表される。 Here, a1 p and a2 p are the amplitudes of the p-th frequency component of the first multi-wavelength light source 200a and the second multi-wavelength light source 200b, respectively. n 1 L 1 represents the optical path length difference between the optical path of the first multi-wavelength light source 200a and the optical path of the second multi-wavelength light source 200b before the non-polarizing beam splitter 5. n 2 L 2 is the optical path length difference of the optical path of the second multi-wavelength light source in the measurement optical path with respect to the reference optical path. Further, nD is the optical path length difference between the light beams from the first multi-wavelength light source 200a and the second multi-wavelength light source 200b after the polarizing beam splitter 6. Phase when the signal of frequency df detected by the phase meter, the phase of the signal in the reference optical path and the measurement optical path, respectively phi ref p, when the phi test p, is represented by the following formula (3) and (4) The
次に、解析装置11は、ステップS102において計測光路及び基準光路の信号間の位相差を計算する。位相差は、上記の式(3)と式(4)の差を算出することにより以下の式(5)のように得られる。 Next, the analyzer 11 calculates the phase difference between the signals on the measurement optical path and the reference optical path in step S102. The phase difference is obtained as shown in the following expression (5) by calculating the difference between the above expressions (3) and (4).
次に、解析装置11は、ステップS103において参照面7と被検面8との間の光路長差nDの1回目の計算を行う。屈折率の分散が無視できるものとすると、光路長差nDは、複数の周波数に対する基準光路と計測光路との間の位相差(干渉位相)の変化率を用いて、以下の式(6)で表される。 Next, the analysis apparatus 11 performs the first calculation of the optical path length difference nD between the reference surface 7 and the test surface 8 in step S103. Assuming that the refractive index dispersion is negligible, the optical path length difference nD is expressed by the following equation (6) using the change rate of the phase difference (interference phase) between the reference optical path and the measurement optical path for a plurality of frequencies. expressed.
図3は、本実施形態における干渉信号の位相差と周波数との関係図(実測値)である。図3における複数の基準光路と計測光路との位相差を周波数に対して線形近似した場合の傾き(変化率)を算出することにより、光路長差nDが算出される。ところが、上記の式(6)で得られる光路長差nDの計測精度は、位相計の10−5rad程度の計測精度を考慮すると、10GHz程度の周波数fmでも数100nm程度になる。この精度は、最終的な出力として用いるには不十分である。このため、以下において、より高精度に光路長差nDを算出するための解析手段について説明する。 FIG. 3 is a relationship diagram (actually measured value) between the phase difference of the interference signal and the frequency in the present embodiment. The optical path length difference nD is calculated by calculating the slope (rate of change) when the phase difference between the plurality of reference optical paths and the measurement optical path in FIG. 3 is linearly approximated with respect to the frequency. However, the measurement accuracy of the optical path length difference nD obtained by the above equation (6) is about several hundred nm even at a frequency fm of about 10 GHz, considering the measurement accuracy of about 10 −5 rad of the phase meter. This accuracy is insufficient for use as the final output. Therefore, in the following, an analysis unit for calculating the optical path length difference nD with higher accuracy will be described.
まず、解析装置11は、ステップS105において基準光路と計測光路との間の光路長差n2L2を計算する。光路長差n2L2は通常変化する値ではないため、毎回計算する必要はない。このため、図2に示されるように、光路長差n2L2の計算を行うか否かはステップS104にて判定される。上記の式(5)から、式(6)の光路長差nDmeas1を用いて光路長差n2L2を表すと、以下の式(7)を得る。 First, the analysis apparatus 11 calculates the optical path length difference n 2 L 2 between the reference optical path and the measurement optical path in step S105. Since the optical path length difference n 2 L 2 is not a value that normally changes, it is not necessary to calculate each time. For this reason, as shown in FIG. 2, whether or not to calculate the optical path length difference n 2 L 2 is determined in step S104. From the above equation (5), when the optical path length difference n 2 L 2 is expressed using the optical path length difference nD meas1 of the equation (6), the following equation (7) is obtained.
ここで、式(7)中のオーバーラインはpに対する平均値を意味する。上述のとおり、光路長差n2L2の計算頻度は低いため、十分な時間をかけて平均化することにより光路長差n2L2 meas1を高精度に算出しておくことが望ましい。また、式(7)の光路長差nDmeas1に関しても、後述の式(9)で得られる光路長差nDを利用して反復計算を行うことにより精度を高めることができる。 Here, the overline in the equation (7) means an average value for p. As described above, since the calculation frequency of the optical path length difference n 2 L 2 is low, it is desirable to calculate the optical path length difference n 2 L 2 meas1 with high accuracy by averaging over a sufficient time. In addition, regarding the optical path length difference nD meas1 in Expression (7), it is possible to improve the accuracy by performing iterative calculation using the optical path length difference nD obtained in Expression (9) described later.
次に、解析装置11は、ステップS106において、算出された光路長差から干渉信号の干渉次数を算出する。ここで干渉次数とは、干渉信号で検出される位相の2πの整数倍の成分において、2πに乗じられる整数を意味する。p番目のスペクトルにおける計測光路と参照光路との位相差に着目すれば、p番目の干渉信号の干渉次数Npは、以下の式(8)で表される。 Next, in step S106, the analysis apparatus 11 calculates the interference order of the interference signal from the calculated optical path length difference. Here, the interference order means an integer that is multiplied by 2π in a component that is an integral multiple of 2π of the phase detected in the interference signal. paying attention to the phase difference between the p-th reference optical path and the measurement optical path in the spectrum of the interference order N p of p-th interference signal is represented by the following equation (8).
ここで、「round()」は引数を丸める関数を表す。 Here, “round ()” represents a function for rounding an argument.
最後に、解析装置11は、ステップS107において参照面7と被検面8との間の光路長差nDを再度算出する。光路長差nDは、それぞれのスペクトル(複数の周波数毎)について、上述の干渉次数と、計測光路と参照光路との間の位相差(干渉位相)とを用いて算出される。このため、高精度化のために全てのスペクトルに対して平均化を行うことにより、光路長差nDは以下の式(9)のように表される。 Finally, the analysis apparatus 11 calculates again the optical path length difference nD between the reference surface 7 and the test surface 8 in step S107. The optical path length difference nD is calculated for each spectrum (for each of a plurality of frequencies) using the above-described interference order and the phase difference (interference phase) between the measurement optical path and the reference optical path. For this reason, the optical path length difference nD is expressed by the following equation (9) by averaging all the spectra for high accuracy.
式(9)は光路長差nDに対する計算式であるが、必要に応じて屈折率nで除算することにより、幾何学的距離Dを算出するようにしてもよい。屈折率nは、光波干渉計測装置の近傍において気圧、温度、湿度等の環境状態を計測し、計測周波数に応じて屈折率の分散式からの計算により得られる。式(9)によれば、式(6)と比較して、同一の位相差の計測精度においてf:fmの比で高精度に幾何学的距離Dを算出することが可能となる。 Equation (9) is a calculation formula for the optical path length difference nD, but the geometric distance D may be calculated by dividing by the refractive index n as necessary. The refractive index n is obtained by measuring environmental conditions such as atmospheric pressure, temperature, and humidity in the vicinity of the optical interference measuring apparatus and calculating from the refractive index dispersion formula according to the measurement frequency. According to Expression (9), it is possible to calculate the geometric distance D with high accuracy at the ratio of f: fm with the same phase difference measurement accuracy as compared with Expression (6).
本実施形態では、光源1に対して光波干渉計が一つの場合について説明したが、複数軸を同時に計測する場合には一つの光源1に対し複数個の光波干渉計を構成してもよい。この場合、無偏光ビームスプリッタ5以降で必要数だけ光束を分岐し、偏光ビームスプリッタ6、参照面7、被検面8を備えて構成される干渉計を計測軸毎に配置し、干渉計毎に分波器9a、9bと検出装置10a、10bを追加すればよい。 In the present embodiment, the case where there is one light wave interferometer for the light source 1 has been described, but a plurality of light wave interferometers may be configured for one light source 1 when measuring a plurality of axes simultaneously. In this case, a necessary number of light beams are branched after the non-polarizing beam splitter 5, and an interferometer including the polarizing beam splitter 6, the reference surface 7, and the test surface 8 is arranged for each measurement axis. It is sufficient to add the demultiplexers 9a and 9b and the detection devices 10a and 10b.
以上のとおり、本実施形態によれば、安価で高精度な測距が可能な光波干渉計測装置を提供することができる。
〔第2実施形態〕
次に、本発明の第2実施形態における光波干渉計測装置について説明する。図4は、本実施形態における光波干渉計測装置の構成図である。
As described above, according to the present embodiment, it is possible to provide an optical interference measuring apparatus that can perform distance measurement at low cost and with high accuracy.
[Second Embodiment]
Next, an optical interference measuring apparatus according to the second embodiment of the present invention will be described. FIG. 4 is a configuration diagram of the light wave interference measuring apparatus in the present embodiment.
本実施形態の光波干渉計測装置は、図4に示されるように、光源部の構成が第1実施形態とは異なる。本実施形態においては、第1多波長光源として複数の狭帯域なスペクトルを広帯域にわたって有する広帯域多波長光源100aが用いられる。また、広帯域多波長光源100aとしては、キャリアエンベロープオフセット周波数及び周波数間隔が高精度に安定化されたフェムト秒レーザが用いられる。広帯域な光源の場合、帯域全域にわたって良好な変換効率を示す周波数シフタが存在しない。このため、別の独立したフェムト秒レーザが第2多波長光源である広帯域多波長光源100bとして用いられる。 As shown in FIG. 4, the light wave interference measuring apparatus of the present embodiment is different from the first embodiment in the configuration of the light source unit. In the present embodiment, a broadband multi-wavelength light source 100a having a plurality of narrow-band spectra over a wide band is used as the first multi-wavelength light source. As the broadband multi-wavelength light source 100a, a femtosecond laser in which the carrier envelope offset frequency and the frequency interval are stabilized with high accuracy is used. In the case of a broadband light source, there is no frequency shifter that exhibits good conversion efficiency over the entire band. For this reason, another independent femtosecond laser is used as the broadband multi-wavelength light source 100b which is the second multi-wavelength light source.
ここで、広帯域多波長光源100bのキャリアエンベロープオフセット周波数は、広帯域多波長光源100aに対して、一定の周波数dfの差を安定して維持するように制御される。また、発振器3は、広帯域多波長光源100a、100bの両方の周波数間隔を制御する基準発振器である。このように、広帯域多波長光源100a、100bの周波数間隔は、同一の発振器3により制御される。このため、本実施形態によれば、距離測定誤差の主要因の一つである光源間の周波数間隔誤差の発振器起因成分を補償することができる。なお本実施形態において、光源以降の構成は第1実施形態と同様であるため省略する。また、解析装置11による解析処理に関しても、図2で示されるフローチャートに基づいて参照面7と被検面8との間の光路長差が算出される。 Here, the carrier envelope offset frequency of the broadband multi-wavelength light source 100b is controlled so as to stably maintain a constant frequency df difference with respect to the broadband multi-wavelength light source 100a. The oscillator 3 is a reference oscillator that controls the frequency interval of both the broadband multi-wavelength light sources 100a and 100b. As described above, the frequency interval between the broadband multi-wavelength light sources 100 a and 100 b is controlled by the same oscillator 3. Therefore, according to the present embodiment, it is possible to compensate for the oscillator-derived component of the frequency interval error between the light sources, which is one of the main causes of the distance measurement error. In the present embodiment, the configuration after the light source is the same as that in the first embodiment, and is omitted. Also for the analysis processing by the analysis apparatus 11, the optical path length difference between the reference surface 7 and the test surface 8 is calculated based on the flowchart shown in FIG.
本実施形態では、広帯域多波長光源100a、100bの広帯域な特性を用いて、計測光路の屈折率変動の補正を含めて参照面7と被検面8との間の光路長差における幾何学的距離を算出する解析処理が実行される。周波数fpに対する光路長差nD(fp)は、参照面7で反射された光束と被検面8で反射された光束の光路の幾何学的距離をDとすると、以下の式(10)で表される。 In this embodiment, using the broadband characteristics of the broadband multi-wavelength light sources 100a and 100b, the geometrical difference in the optical path length difference between the reference surface 7 and the test surface 8 including correction of the refractive index variation of the measurement optical path is included. Analysis processing for calculating the distance is executed. The optical path length difference nD (f p ) with respect to the frequency f p is expressed by the following equation (10), where D is the geometric distance between the light beam reflected by the reference surface 7 and the light beam reflected by the test surface 8. It is represented by
式(10)において、Ntpは参照面7と被検面8との間の非同一光路における媒質の密度に依存する成分であり、B(fp)は波長のみに依存する関数である。なお、式(10)で表されるように、参照面7と被検面8との間の媒質の既知の分散特性は、媒質の密度に依存する成分と光周波数成分に依存する成分との積、及び、媒質の真空中の屈折率の和で近似される。 In Expression (10), N tp is a component that depends on the density of the medium in the non-identical optical path between the reference surface 7 and the test surface 8, and B (f p ) is a function that depends only on the wavelength. Note that, as expressed by the equation (10), the known dispersion characteristic of the medium between the reference surface 7 and the test surface 8 is a component that depends on the density of the medium and a component that depends on the optical frequency component. It is approximated by the product and the sum of the refractive indices of the medium in vacuum.
関数B(f)は、参照面7と被検面8との間の非同一光路における媒質が湿度0の空気である場合、Edlenの式を用いて以下の式(11)で表される。 When the medium in the non-identical optical path between the reference surface 7 and the test surface 8 is air having a humidity of 0, the function B (f) is expressed by the following equation (11) using Edlen's equation.
なお、参照面7と被検面8との間の媒質が上述の条件と異なる場合には、適切な関数を設定すればよい。 In addition, what is necessary is just to set an appropriate function, when the medium between the reference surface 7 and the to-be-tested surface 8 differs from the above-mentioned conditions.
本実施形態の解析装置11は、多数の周波数に対する光路長差の測定結果から媒質密度の変化分を補正するために、光路長差の計測結果に対して所定の関数をフィッティングさせることにより幾何学的距離Dを算出する。ここで所定の関数は、幾何学的距離Dと、参照面7と被検面8との間の媒質の屈折率によって変化する光路長差の変化分の和で表される。光路長差の変化分は、参照面7と被検面8との間の既知の分散特性を有する媒質の屈折率に幾何学的距離Dを乗算して得られる。光路長差の計測結果をnDmeas(fp)とし、所定の関数をD+Ntp・D・B(fp)とすると、フィッティング残差の平方和は式(12)のように表される。 In order to correct the change in the medium density from the measurement result of the optical path length difference for a large number of frequencies, the analysis device 11 of the present embodiment fits a predetermined function to the measurement result of the optical path length difference to perform geometric analysis. The target distance D is calculated. Here, the predetermined function is represented by the sum of the change in the optical path length difference that varies depending on the geometric distance D and the refractive index of the medium between the reference surface 7 and the test surface 8. The change in the optical path length difference is obtained by multiplying the refractive index of a medium having a known dispersion characteristic between the reference surface 7 and the test surface 8 by the geometric distance D. When the measurement result of the optical path length difference is nD meas (f p ) and the predetermined function is D + N tp · D · B (f p ), the sum of squares of the fitting residuals is expressed as in equation (12).
式(12)を最小化する幾何学的距離DとNtp・Dは、正規方程式を解くことにより決定される。 The geometric distance D and N tp · D that minimize Equation (12) are determined by solving a normal equation.
図5は、本実施形態における光路長と計測波長との関係図であり、計測される光路長に対してフィッティングを行った結果を示している。図5を参照するに、「○」で表される離散的な光路長の計測結果に対して、一点鎖線で表される式(12)を最適化近似することで、幾何学的距離D及びNtp・Dを得ることができる。また、参照面7と被検面8との間の媒質の屈折率が必要な場合、光周波数毎の光路長の計測結果を参照面7と被検面8との間の幾何学的距離Dで除算することで屈折率を算出することができる。 FIG. 5 is a relationship diagram between the optical path length and the measurement wavelength in this embodiment, and shows the result of fitting to the measured optical path length. Referring to FIG. 5, the geometrical distance D and the equation (12) represented by the alternate long and short dash line are optimized by approximation to the measurement result of the discrete optical path length represented by “◯”. N tp · D can be obtained. When the refractive index of the medium between the reference surface 7 and the test surface 8 is necessary, the measurement result of the optical path length for each optical frequency is used as the geometric distance D between the reference surface 7 and the test surface 8. The refractive index can be calculated by dividing by.
このように、本実施形態によれば、独立の周波数間隔制御が必要な多波長光源を用いる場合でも、同一の発振器を基準として多波長光源を制御することで安価で高精度な同期が可能となる。このため、複雑な基準発振器ユニットを用いることなく、屈折率変動の影響を補正した高精度な測距が可能な光波干渉計測装置を提供することができる。
〔第3実施形態〕
次に、本発明の第3実施形態における光波干渉計測装置について説明する。図6は、本実施形態における光波干渉計測装置の構成図である。本実施形態の光波干渉計測装置は、3つの半導体レーザ30a、30b、30cからなる多波長光源300aを計測用光源として用いる。また、半導体レーザ30a、30b、30cは、単一の波長基準素子としてのエタロン31により安定化されている。
As described above, according to the present embodiment, even when a multi-wavelength light source that requires independent frequency interval control is used, it is possible to perform synchronization with low cost and high accuracy by controlling the multi-wavelength light source based on the same oscillator. Become. Therefore, it is possible to provide a light wave interference measuring apparatus capable of performing high-precision distance measurement in which the influence of refractive index fluctuation is corrected without using a complicated reference oscillator unit.
[Third Embodiment]
Next, an optical interference measuring apparatus according to a third embodiment of the present invention will be described. FIG. 6 is a configuration diagram of a lightwave interference measuring apparatus in the present embodiment. The light wave interference measuring apparatus of this embodiment uses a multi-wavelength light source 300a including three semiconductor lasers 30a, 30b, and 30c as a measurement light source. Further, the semiconductor lasers 30a, 30b, 30c are stabilized by an etalon 31 as a single wavelength reference element.
半導体レーザ30a、30b、30cは、互いに異なる発振波長を有する単一縦モードレーザである。このような半導体レーザとしてDFBレーザを用いることにより、比較的安価に安定した単一モード発振を実現することができる。ただし、本実施形態はこれに限定されるものではなく、外部共振器型半導体レーザ(ECLD)や面発光レーザ(VCSEL)を用いてもよい。また、それぞれ独立のレーザ素子である必要はなく、光通信用のDFBレーザのように多波長が集積化されたタイプのものを用いてもよい。 The semiconductor lasers 30a, 30b, and 30c are single longitudinal mode lasers having different oscillation wavelengths. By using a DFB laser as such a semiconductor laser, stable single mode oscillation can be realized at a relatively low cost. However, the present embodiment is not limited to this, and an external resonator type semiconductor laser (ECLD) or a surface emitting laser (VCSEL) may be used. Further, it is not necessary that the laser elements are independent from each other, and a type in which multiple wavelengths are integrated, such as a DFB laser for optical communication, may be used.
半導体レーザ30a,30b、30cからの出力は偏波面保存ファイバで射出され、偏波面保存タイプの合波器により合波された後、2つに分波される。分波された光束の一方は、コリメータで平行光束に変換された後、波長基準素子としてのエタロン31に入射する。エタロン31は、媒質分散の影響を避けるために真空ギャップタイプとし、その温度は温度コントローラ32で高精度に制御される。結果として、エタロン31の透過スペクトルの真空波長及び周波数間隔は、高精度に補償される。 Outputs from the semiconductor lasers 30a, 30b, and 30c are emitted by polarization-maintaining fibers, combined by a polarization-maintaining type multiplexer, and then split into two. One of the demultiplexed light beams is converted into a parallel light beam by a collimator and then enters an etalon 31 as a wavelength reference element. The etalon 31 is a vacuum gap type in order to avoid the influence of medium dispersion, and its temperature is controlled with high accuracy by the temperature controller 32. As a result, the vacuum wavelength and frequency interval of the transmission spectrum of the etalon 31 are compensated with high accuracy.
本実施形態ではエタロン31を真空ギャップとしているが、分散を補償することにより、ソリッドギャップのエタロン31を用いることもできる。この場合、ニオブ酸リチウムのエタロンを採用すれば、電気光学効果により光路長変調が可能となる。このため、温度制御に比較して高速なエタロン周波数間隔の制御が可能となり、後述のエタロン周波数間隔の変調の際に有利である。エタロン31の周波数間隔の補償方法としては、後述のように、エタロン31の隣接する透過スペクトルに安定化した2つのレーザ間のビート信号を計測し、そのビート周波数が基準発振器と一致するようにエタロン31の周波数間隔を制御してもよい。この場合、応力開放等による長期的なエタロン31の変化に依存することなく高精度な周波数間隔の補償が可能となる。 In this embodiment, the etalon 31 is used as a vacuum gap. However, a solid gap etalon 31 can be used by compensating for dispersion. In this case, if an etalon of lithium niobate is employed, the optical path length can be modulated by the electro-optic effect. Therefore, it is possible to control the etalon frequency interval at a higher speed than temperature control, which is advantageous when modulating the etalon frequency interval described later. As a method of compensating the frequency interval of the etalon 31, as will be described later, a beat signal between two lasers stabilized in the adjacent transmission spectrum of the etalon 31 is measured, and the etalon is adjusted so that the beat frequency matches the reference oscillator. The frequency interval of 31 may be controlled. In this case, it is possible to compensate the frequency interval with high accuracy without depending on the long-term change of the etalon 31 due to stress release or the like.
エタロン31を透過した光束は分波器33に入射し、半導体レーザ30a、30b、30cのそれぞれに対応した透過光量を波長コントローラ34で検出する。波長コントローラ34は、半導体レーザ30a、30b、30cそれぞれの光束のエタロン31に対する透過率が一定となるように、半導体レーザ30a、30b、30cの注入電流を制御する。このような制御により、半導体レーザ30a、30b、30cの波長を安定させることができる。なお、波長を高精度に安定化させるには、エタロン31の透過光量だけでなく入射光量も計測することがより好ましい。また、EOM等の位相変調素子で波長を変調して反射光量を同期検波することにより、エタロン31の透過スペクトルピークを基準としてレーザ波長を安定化させてもよい。この場合、透過スペクトルピークを基準とするため、透過スペクトル形状の変化に依存せずに高精度な安定化が可能となる。 The light beam that has passed through the etalon 31 enters the branching filter 33, and the transmitted light amount corresponding to each of the semiconductor lasers 30 a, 30 b, and 30 c is detected by the wavelength controller 34. The wavelength controller 34 controls the injection current of the semiconductor lasers 30a, 30b, and 30c so that the transmittance of the light beams of the semiconductor lasers 30a, 30b, and 30c to the etalon 31 is constant. By such control, the wavelengths of the semiconductor lasers 30a, 30b, and 30c can be stabilized. In order to stabilize the wavelength with high accuracy, it is more preferable to measure not only the transmitted light amount of the etalon 31 but also the incident light amount. Alternatively, the laser wavelength may be stabilized with reference to the transmission spectrum peak of the etalon 31 by modulating the wavelength with a phase modulation element such as EOM and synchronously detecting the reflected light amount. In this case, since the transmission spectrum peak is used as a reference, highly accurate stabilization is possible without depending on the change in the transmission spectrum shape.
エタロン31は、半導体レーザ30a、30bの周波数を互いに隣接する透過スペクトルに安定化させ、半導体レーザ30a、30cの周波数を互いにN個離れた透過スペクトルに安定化させる。すなわち、エタロン31の透過スペクトルの間隔を第1周波数間隔FSR1、半導体レーザ30aの周波数をf0とすると、半導体レーザ30b、30cの周波数は、それぞれ、f0+FSR1、f0+N×FSR1となる。本実施形態では、以上により得られる多波長光源を第1多波長光源300aとする。 The etalon 31 stabilizes the frequencies of the semiconductor lasers 30a and 30b in adjacent transmission spectra, and stabilizes the frequencies of the semiconductor lasers 30a and 30c in transmission spectra separated from each other by N. That is, if the transmission spectrum interval of the etalon 31 is the first frequency interval FSR 1 and the frequency of the semiconductor laser 30a is f 0 , the frequencies of the semiconductor lasers 30b and 30c are f 0 + FSR 1 and f 0 + N × FSR 1 , respectively. It becomes. In the present embodiment, the multi-wavelength light source obtained as described above is the first multi-wavelength light source 300a.
第1多波長光源300aを射出した光束は2つに分岐され、一方の光束は周波数シフタ4を透過し、半導体レーザ30a、30b、30cの周波数をdfだけシフトさせる。周波数シフタ4を射出した光束は、図示されない波長板により、入射光束に対して直交する偏光に回転させられる。周波数シフタ4を透過した光束は、第2多波長光源300bとして用いられる。第1多波長光源300aと第2多波長光源300bを用いて被検面8と参照面7との間の干渉位相を計測することは、実施形態1と同様である。 The light beam emitted from the first multi-wavelength light source 300a is branched into two, one light beam is transmitted through the frequency shifter 4, and the frequencies of the semiconductor lasers 30a, 30b, 30c are shifted by df. The light beam emitted from the frequency shifter 4 is rotated to polarized light orthogonal to the incident light beam by a wave plate (not shown). The light beam that has passed through the frequency shifter 4 is used as the second multi-wavelength light source 300b. The interference phase between the test surface 8 and the reference surface 7 is measured using the first multiwavelength light source 300a and the second multiwavelength light source 300b, as in the first embodiment.
半導体レーザ30a、30b、30cのそれぞれの波長で計測される位相φref、φtestの差(位相差)をφa1、φb1、φc1とすると、被検面8と参照面7との間の光路長差nDは、以下の3つの式(13)で表される。 Semiconductor lasers 30a, 30b, the phase phi ref, the difference phi test (phase difference) phi a1 that is measured at each wavelength of 30c, φ b1, when the phi c1, between the reference surface 7 and the test surface 8 Is expressed by the following three formulas (13).
式(13)の第1式〜第3式では、波長をc/f0、c/(N・FSR1)、c/FSR1として表現し、位相を干渉次数N、N13、N12と端数位相φa1、φc1−φa1、φb1−φa1との和として表現している。ここで第2式と第3式は、それぞれ、半導体レーザ30a、30cの2波長、及び半導体レーザ30a、30bの2波長に対して式(6)を適用することで導出可能である。 In Expressions 1 to 3 of Expression (13), the wavelengths are expressed as c / f 0 , c / (N · FSR 1 ), and c / FSR 1 , and the phases are interference orders N, N 13 , and N 12 . It is expressed as the sum of the fractional phases φ a1 , φ c1 −φ a1 , φ b1 −φ a1 . Here, the second formula and the third formula can be derived by applying the formula (6) to the two wavelengths of the semiconductor lasers 30a and 30c and the two wavelengths of the semiconductor lasers 30a and 30b, respectively.
端数位相φa1、φc1−φa1、φb1−φa1の計測精度が同程度であるとすると、光路長の計測精度は波長が短い方が良好である。このため、式(13)の第1式が最も高精度となり、第3式が最も低精度となる。一方、干渉次数の曖昧さより、非曖昧な計測範囲に関しては第3式が最も長く、第1式が最も短くなる。ただし、第3式の波長c/FSR1は、現実的な第1周波数間隔FSR1として数GHzとした場合、100mm程度以下に限定されるという問題がある。 If the measurement accuracy of the fractional phases φ a1 , φ c1 −φ a1 , φ b1 −φ a1 is approximately the same, the measurement accuracy of the optical path length is better when the wavelength is shorter. For this reason, the first expression of Expression (13) has the highest accuracy, and the third expression has the lowest accuracy. On the other hand, the third equation is the longest and the first equation is the shortest in the unambiguous measurement range than the ambiguity of the interference order. However, there is a problem that the wavelength c / FSR 1 of the third equation is limited to about 100 mm or less when the realistic first frequency interval FSR 1 is set to several GHz.
そこで本実施形態では、図7に示されるように、解析装置11は、温度コントローラ32を制御してエタロン31の周波数間隔を微少量だけ変化させる。すなわち、解析装置11及び温度コントローラ32(波長制御部)は、エタロン31の周波数間隔を第1周波数間隔FSR1と第2周波数間隔FSR2との間で周期的に変化させる。第2周波数間隔FSR2は、微小間隔dFSRを用いて以下の式(14)のように表される。 Therefore, in the present embodiment, as shown in FIG. 7, the analysis apparatus 11 controls the temperature controller 32 to change the frequency interval of the etalon 31 by a minute amount. That is, the analysis device 11 and the temperature controller 32 (wavelength control unit) periodically change the frequency interval of the etalon 31 between the first frequency interval FSR 1 and the second frequency interval FSR 2 . The second frequency interval FSR 2 is expressed by the following equation (14) using the minute interval dFSR.
第2周波数間隔FSR2において、半導体レーザ30a、30b、30cのそれぞれの波長で計測される位相φrefとφtestの差(位相差)をφa2、φb2、φc2とすると、光路長差nDは以下の2つの式(15)で表される。 When the difference (phase difference) between the phases φ ref and φ test measured at the respective wavelengths of the semiconductor lasers 30a, 30b, and 30c in the second frequency interval FSR 2 is φ a2 , φ b2 , and φ c2 , the optical path length difference nD is represented by the following two formulas (15).
微小間隔dFSRを1MHz程度とすると、最長波長c/dFSRは数100mに達し、一般的な用途において非曖昧な計測距離が計測範囲全域を網羅することができる。このため、式(15)の第2式では干渉次数を省略している。これは絶対測長が実現することを意味するが、前述のとおり、波長が長いほど計測精度が低い。そこで本実施形態では、式(13)と式(15)の5つの式を組み合わせ、逐次的に式(13)の第1式における干渉次数Nを求める。このため、精度を維持したまま絶対測長の実現が可能となる。具体的な計算式は式(16)で表される。 When the minute interval dFSR is about 1 MHz, the longest wavelength c / dFSR reaches several hundreds of meters, and an unambiguous measurement distance can cover the entire measurement range in general applications. For this reason, the interference order is omitted in the second equation of equation (15). This means that absolute length measurement is realized. As described above, the longer the wavelength, the lower the measurement accuracy. Therefore, in the present embodiment, the five equations (13) and (15) are combined, and the interference order N in the first equation (13) is obtained sequentially. For this reason, it is possible to realize absolute length measurement while maintaining accuracy. A specific calculation formula is represented by Formula (16).
解析装置11は、図7に示されるように、エタロン31の周波数間隔FSRを第1周波数間隔FSR1と第2周波数間隔FSR2との間で変化させる。また解析装置11は、それぞれの周波数計測結果における位相計測結果より、式(16)を用いて絶対測長を行う。すなわち解析装置11は、第1周波数間隔FSR1における光路長差の算出結果及び第2周波数間隔FSR2における光路長差の算出結果から、光路長差を再度算出する。周波数間隔FSRの変調周期を高速にすると、被検光束が頻繁に遮光される場合でも、常時絶対測長が可能となる。 As shown in FIG. 7, the analysis device 11 changes the frequency interval FSR of the etalon 31 between the first frequency interval FSR 1 and the second frequency interval FSR 2 . Moreover, the analysis apparatus 11 performs absolute length measurement using Formula (16) from the phase measurement result in each frequency measurement result. That is, the analysis apparatus 11 calculates the optical path length difference again from the calculation result of the optical path length difference in the first frequency interval FSR 1 and the calculation result of the optical path length difference in the second frequency interval FSR 2 . When the modulation cycle of the frequency interval FSR is made high speed, absolute length measurement can always be performed even when the test light beam is frequently shielded.
なお本実施形態では、エタロン31の周波数間隔FSRを周期的に変化させて常時絶対測長を実現しているが、実施形態1、2においては、発振器の周波数を変化させることにより同等の効果を得ることができる。 In this embodiment, the absolute distance measurement is always realized by periodically changing the frequency interval FSR of the etalon 31. However, in the first and second embodiments, the same effect can be obtained by changing the frequency of the oscillator. Obtainable.
また本実施形態では、2つの多波長光源(第1多波長光源300a、第2多波長光源300b)を用いてヘテロダイン検出を行っているが、単一の多波長光源を用いてホモダイン検出を行ってもよい。図8は、ホモダイン検出の場合の光波干渉計測装置の構成図である。図8(a)に示される光波干渉計測装置は、図6に示される光波干渉計測装置と比較して、第2多波長光源300b、基準信号計測用の分波器9a、及び、検出装置10aが削除されている点が異なる。また、計測信号の位相計測部は、ホモダイン検出用に置き換えられる。 In this embodiment, heterodyne detection is performed using two multi-wavelength light sources (first multi-wavelength light source 300a and second multi-wavelength light source 300b), but homodyne detection is performed using a single multi-wavelength light source. May be. FIG. 8 is a configuration diagram of the light wave interference measuring apparatus in the case of homodyne detection. Compared with the optical interference measuring apparatus shown in FIG. 6, the optical interference measuring apparatus shown in FIG. 8A has a second multi-wavelength light source 300b, a branching filter 9a for measuring a reference signal, and a detecting apparatus 10a. The point that is deleted. Also, the phase measurement unit of the measurement signal is replaced for homodyne detection.
図8(a)に示されるように、第1多波長光源301aからの光束は、偏光ビームスプリッタ6により被検光束と参照光束の2つの光束に分離される。被検光束と参照光束は、それぞれの偏光と45度の進相軸角度を有するλ/4板40を透過し、右回り円偏光と左回り円偏光に変換される。その後、分光光学素子41に入射して半導体レーザ30a、30b、30cの波長ごとに光束が分割される。そして、グレーティングビームスプリッタ42で紙面垂直方向に光束を3つに分岐し、偏光子アレイ43を透過後、ディテクタアレイ44でそれぞれの波長に対し3つの光束の光量を独立に検出する。 As shown in FIG. 8A, the light beam from the first multi-wavelength light source 301a is separated by the polarization beam splitter 6 into two light beams, a test light beam and a reference light beam. The test light beam and the reference light beam are transmitted through a λ / 4 plate 40 having a fast axis angle of 45 degrees with each polarized light, and are converted into clockwise circularly polarized light and counterclockwise circularly polarized light. Thereafter, the light enters the spectroscopic optical element 41 and the light flux is divided for each wavelength of the semiconductor lasers 30a, 30b, and 30c. Then, the light beam is split into three light beams in the direction perpendicular to the paper surface by the grating beam splitter 42 and transmitted through the polarizer array 43, and then the light amount of the three light beams is detected independently for each wavelength by the detector array 44.
図8(b)は、1つの半導体レーザの波長に着目したグレーティングビームスプリッタ42以降の詳細な構成図である。偏光子アレイ43は、グレーティングビームスプリッタ42で3つに分岐された光束に対し、透過偏光軸が120度ずつ回転した3つの偏光子を備えて構成される。ディテクタアレイの3つのディテクタ44a、44b、44cは、それぞれの偏光子の透過光量を検出する。計測信号の位相をφとすると、ディテクタ44a、44b、44cで検出される光量Ia、Ib、Icは式(17)で表される。 FIG. 8B is a detailed configuration diagram after the grating beam splitter 42 focusing on the wavelength of one semiconductor laser. The polarizer array 43 includes three polarizers whose transmission polarization axes are rotated by 120 degrees with respect to the light beam branched into three by the grating beam splitter 42. The three detectors 44a, 44b, 44c of the detector array detect the amount of light transmitted through each polarizer. When the phase of the measurement signal is φ, the light amounts I a , I b , and I c detected by the detectors 44a, 44b, and 44c are expressed by Expression (17).
式(17)より、位相φは式(18)で算出される。 From the equation (17), the phase φ is calculated by the equation (18).
解析装置11は、半導体レーザ30a、30b、30cに対して、式(18)を用いて位相φを計算する。位相計算結果からの光路長の算出方法は、ヘテロダイン検出の場合と同様である。以上のとおり、ホモダイン検出を用いた場合でも、エタロン31の周波数間隔を周期的に変化させ、それぞれの周波数間隔における位相計測結果から式(15)を用いて干渉次数を決定することで、常時絶対測長を実現することが可能となる。 The analysis apparatus 11 calculates the phase φ for the semiconductor lasers 30a, 30b, and 30c using the equation (18). The method of calculating the optical path length from the phase calculation result is the same as in the case of heterodyne detection. As described above, even when homodyne detection is used, the frequency interval of the etalon 31 is periodically changed, and the interference order is determined by using the equation (15) from the phase measurement result at each frequency interval. It is possible to realize length measurement.
以上、本発明の好ましい実施形態について説明したが、本発明はこれらの実施形態に限定されず、その要旨の範囲内で種々の変形および変更が可能である。 As mentioned above, although preferable embodiment of this invention was described, this invention is not limited to these embodiment, A various deformation | transformation and change are possible within the range of the summary.
1 光源
2 光周波数コム発生器
3 発振器
4 周波数シフタ
7 参照面
8 被検面
9a、9b 分波器
10a、10b 検出装置
100a、100b 広帯域多波長光源
200a、300a、301a 第1多波長光源
200b、300b 第2多波長光源
DESCRIPTION OF SYMBOLS 1 Light source 2 Optical frequency comb generator 3 Oscillator 4 Frequency shifter 7 Reference surface 8 Test surface 9a, 9b Divider 10a, 10b Detection apparatus 100a, 100b Broadband multi-wavelength light source 200a, 300a, 301a First multi-wavelength light source 200b, 300b Second multi-wavelength light source
Claims (11)
前記第1多波長光源からの光束と異なる波長及び直交する偏光成分を有する光束を射出する第2多波長光源と、
前記第1多波長光源からの光束と前記第2多波長光源からの光束とを分離する偏光光学素子と、
基準位置に設けられ、前記第2多波長光源からの光束を反射する参照面と、
被検物体に設けられ、前記第1多波長光源からの光束を反射する被検面と、
前記第1多波長光源からの光束と前記第2多波長光源からの光束の干渉信号を分光する分光光学素子と、
前記分光光学素子で分光された干渉信号から、前記第1多波長光源からの光束と前記第2多波長光源からの光束の単一波長同士の干渉信号を複数の波長について検出する複数の検出器と、
前記検出器からの信号を処理して前記参照面と前記被検面との間の光路長差を算出する解析装置と、
を有することを特徴とする光波干渉計測装置。 A first multi-wavelength light source that emits a light beam having a plurality of spectra;
A second multi-wavelength light source that emits a light beam having a wavelength different from that of the light beam from the first multi-wavelength light source and an orthogonal polarization component;
A polarizing optical element that separates a light beam from the first multi-wavelength light source and a light beam from the second multi-wavelength light source;
A reference surface provided at a reference position and reflecting a light beam from the second multi-wavelength light source;
A test surface provided on a test object and reflecting a light beam from the first multi-wavelength light source;
A spectroscopic optical element that splits an interference signal between a light beam from the first multi-wavelength light source and a light beam from the second multi-wavelength light source;
A plurality of detectors for detecting, for a plurality of wavelengths, interference signals having a single wavelength of the light flux from the first multi-wavelength light source and the light flux from the second multi-wavelength light source from the interference signal dispersed by the spectroscopic optical element. When,
An analysis device that processes a signal from the detector to calculate an optical path length difference between the reference surface and the test surface;
An optical interference measuring apparatus characterized by comprising:
複数の周波数について前記干渉信号から前記被検面と前記参照面との間の干渉位相を算出し、
前記複数の周波数に対する前記干渉位相の変化率から前記光路長差を算出することを特徴とする請求項1乃至3のいずれか1項に記載の光波干渉計測装置。 The analysis device includes:
Calculating an interference phase between the test surface and the reference surface from the interference signal for a plurality of frequencies;
4. The optical interference measuring apparatus according to claim 1, wherein the optical path length difference is calculated from a change rate of the interference phase with respect to the plurality of frequencies. 5.
算出された前記光路長差から前記干渉信号の干渉次数を算出し、
前記複数の周波数について前記干渉位相及び前記干渉次数を用いて前記光路長差を再度算出することを特徴とする請求項4に記載の光波干渉計測装置。 The analysis device includes:
Calculate the interference order of the interference signal from the calculated optical path length difference,
The optical wave interference measuring apparatus according to claim 4, wherein the optical path length difference is recalculated using the interference phase and the interference order for the plurality of frequencies.
前記関数は、前記幾何学的距離と、前記参照面と前記被検面との間の媒質の屈折率によって変化する光路長差の変化分との和で表され、
前記光路長差の変化分は、前記参照面と前記被検面との間の既知の分散特性を有する媒質の屈折率に前記幾何学的距離を乗算して得られることを特徴とする請求項1乃至5のいずれか1項に記載の光波干渉計測装置。 The analysis device calculates a geometric distance by fitting a function to the optical path length difference calculated again,
The function is represented by the sum of the geometric distance and a change in optical path length that varies depending on the refractive index of the medium between the reference surface and the test surface;
The change in the optical path length difference is obtained by multiplying a refractive index of a medium having a known dispersion characteristic between the reference surface and the test surface by the geometric distance. The light wave interference measuring apparatus according to any one of 1 to 5.
前記第1多波長光源及び前記第2多波長光源は、それぞれ、前記単一の波長基準素子により安定化されていることを特徴とする請求項1乃至6のいずれか1項に記載の光波干渉計測装置。 Further comprising a single wavelength reference element;
The lightwave interference according to any one of claims 1 to 6, wherein each of the first multiwavelength light source and the second multiwavelength light source is stabilized by the single wavelength reference element. Measuring device.
前記第1多波長光源及び前記第2多波長光源の周波数間隔を、第1周波数間隔と第2周波数間隔との間で周期的に変化させ、
前記第1周波数間隔における前記光路長差の算出結果及び前記第2周波数間隔における該光路長差の算出結果から、該光路長差を再度算出することを特徴とする請求項1乃至9のいずれか1項に記載の光波干渉計測装置。 The analysis device includes:
The frequency interval between the first multi-wavelength light source and the second multi-wavelength light source is periodically changed between a first frequency interval and a second frequency interval,
The optical path length difference is calculated again from the calculation result of the optical path length difference at the first frequency interval and the calculation result of the optical path length difference at the second frequency interval. 2. The light wave interference measuring apparatus according to item 1.
前記第1多波長光源の有する複数の波長間の周波数間隔を周期的に制御する波長制御部と、
前記第1多波長光源からの光束を被検光束と参照光束の2つに分離する偏光光学素子と、
基準位置に設けられ、前記参照光束を反射する参照面と、
被検物体に設けられ、前記被検光束を反射する被検面と、
前記参照光束と前記被検光束の干渉信号を分光する分光光学素子と、
前記分光光学素子で分光された干渉信号から、前記参照光束と前記被検光束の単一波長同士の干渉信号を複数の波長について検出する複数の検出器と、
前記検出器からの信号を処理して前記参照面と前記被検面との間の光路長差を算出する解析装置と、
を有することを特徴とする光波干渉計測装置。 A first multi-wavelength light source that emits a light beam having a plurality of spectra;
A wavelength controller that periodically controls frequency intervals between a plurality of wavelengths of the first multi-wavelength light source;
A polarizing optical element for separating a light beam from the first multi-wavelength light source into a test light beam and a reference light beam;
A reference surface provided at a reference position and reflecting the reference light flux;
A test surface provided on the test object and reflecting the test light beam;
A spectroscopic optical element that splits an interference signal between the reference light beam and the test light beam;
A plurality of detectors for detecting interference signals of a single wavelength of the reference light beam and the test light beam for a plurality of wavelengths from the interference signal dispersed by the spectroscopic optical element;
An analysis device that processes a signal from the detector to calculate an optical path length difference between the reference surface and the test surface;
An optical interference measuring apparatus characterized by comprising:
Priority Applications (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2009287779A JP2010230653A (en) | 2009-03-03 | 2009-12-18 | Lightwave interference measuring device |
| EP10154687A EP2228621A3 (en) | 2009-03-03 | 2010-02-25 | Optical interference measuring apparatus |
| US12/716,387 US8363226B2 (en) | 2009-03-03 | 2010-03-03 | Optical interference measuring apparatus |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2009048880 | 2009-03-03 | ||
| JP2009287779A JP2010230653A (en) | 2009-03-03 | 2009-12-18 | Lightwave interference measuring device |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JP2010230653A true JP2010230653A (en) | 2010-10-14 |
Family
ID=42224909
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2009287779A Pending JP2010230653A (en) | 2009-03-03 | 2009-12-18 | Lightwave interference measuring device |
Country Status (3)
| Country | Link |
|---|---|
| US (1) | US8363226B2 (en) |
| EP (1) | EP2228621A3 (en) |
| JP (1) | JP2010230653A (en) |
Cited By (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2012103129A (en) * | 2010-11-10 | 2012-05-31 | Canon Inc | Measurement device |
| KR101198013B1 (en) | 2011-08-22 | 2012-11-07 | 서강대학교산학협력단 | Multi-wavelength heterodyne interferometer using AOTF |
| WO2015045266A1 (en) * | 2013-09-24 | 2015-04-02 | 国立大学法人東京農工大学 | Measurement device |
| JP2015094760A (en) * | 2013-11-08 | 2015-05-18 | ザ・ボーイング・カンパニーTheBoeing Company | Synthetic wave laser ranging sensors and methods |
| JP2016065719A (en) * | 2014-09-22 | 2016-04-28 | 国立大学法人東北大学 | Absolute angle measuring device and absolute angle measuring method |
| JP2017181233A (en) * | 2016-03-30 | 2017-10-05 | 国立大学法人東北大学 | Displacement measuring apparatus and displacement measuring method |
| JP7443156B2 (en) | 2020-05-18 | 2024-03-05 | 株式会社ミツトヨ | Measuring device and method |
Families Citing this family (14)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP5984351B2 (en) * | 2011-09-14 | 2016-09-06 | キヤノン株式会社 | Measuring device |
| DE102012001754B4 (en) * | 2012-01-30 | 2015-05-07 | Karlsruher Institut für Technologie | Multi-scale distance measurement with frequency combs |
| US11803044B2 (en) | 2014-01-18 | 2023-10-31 | Daylight Solutions, Inc. | Low-noise spectroscopic imaging system with steerable substantially coherent illumination |
| US10437033B2 (en) * | 2014-01-18 | 2019-10-08 | Daylight Solutions, Inc. | Modulating spectroscopic imaging system using substantially coherent illumination |
| EP3095003B1 (en) | 2014-01-18 | 2023-04-26 | Daylight Solutions Inc. | Low-noise spectroscopic imaging system |
| US9335414B2 (en) * | 2014-07-11 | 2016-05-10 | Raytheon Company | Frequency agile LADAR |
| WO2016154780A1 (en) * | 2015-03-27 | 2016-10-06 | 浙江理工大学 | Laser interference wavelength lever-type absolute distance measurement apparatus and method |
| CN106290258A (en) * | 2016-09-22 | 2017-01-04 | 天津大学 | The segmentation parallel acquisition system and method for spectral information in Optical coherence tomography |
| WO2018194985A1 (en) * | 2017-04-19 | 2018-10-25 | Drs Network & Imaging Systems, Llc | Active hyperspectral imager |
| CN108801464B (en) * | 2018-04-13 | 2020-06-02 | 中国人民解放军国防科技大学 | Image processing method for calculating polarization direction and polarization degree of light wave |
| DE102020202982B4 (en) * | 2020-03-09 | 2025-05-22 | Carl Zeiss Industrielle Messtechnik Gmbh | Optical device for determining the distance of a measuring object |
| CN111854923B (en) * | 2020-07-31 | 2022-05-24 | 重庆邮电大学 | Acoustic wave measurement system, cantilever beam type optical fiber acoustic wave sensor demodulation system and method |
| DE102021201722A1 (en) * | 2021-02-24 | 2022-08-25 | Dr. Johannes Heidenhain Gmbh | Device for interferometric distance measurement |
| US11658461B1 (en) * | 2022-03-29 | 2023-05-23 | Quantum Valley Ideas Laboratories | Tuning the output of a laser |
Family Cites Families (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP3739987B2 (en) * | 2000-02-18 | 2006-01-25 | 財団法人神奈川科学技術アカデミー | Tomography equipment |
| CN101273261B (en) * | 2005-07-28 | 2012-11-14 | 拜奥普蒂根公司 | Optical coherent imaging system with reduced effective linewidth and method of use |
| US7375819B2 (en) * | 2005-11-01 | 2008-05-20 | Agilent Technologies, Inc. | System and method for generating beams of light using an anisotropic acousto-optic modulator |
| EP1870028A1 (en) * | 2006-06-23 | 2007-12-26 | OPTOPOL Technology Spolka z o.o. | Apparatus and method for frequency domain optical coherence tomography |
| JP2009025245A (en) * | 2007-07-23 | 2009-02-05 | Optical Comb Inc | Device for observing optical interference |
-
2009
- 2009-12-18 JP JP2009287779A patent/JP2010230653A/en active Pending
-
2010
- 2010-02-25 EP EP10154687A patent/EP2228621A3/en not_active Withdrawn
- 2010-03-03 US US12/716,387 patent/US8363226B2/en not_active Expired - Fee Related
Cited By (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2012103129A (en) * | 2010-11-10 | 2012-05-31 | Canon Inc | Measurement device |
| US8830480B2 (en) | 2010-11-10 | 2014-09-09 | Canon Kabushiki Kaisha | Measurement apparatus |
| KR101198013B1 (en) | 2011-08-22 | 2012-11-07 | 서강대학교산학협력단 | Multi-wavelength heterodyne interferometer using AOTF |
| WO2015045266A1 (en) * | 2013-09-24 | 2015-04-02 | 国立大学法人東京農工大学 | Measurement device |
| JP2015094760A (en) * | 2013-11-08 | 2015-05-18 | ザ・ボーイング・カンパニーTheBoeing Company | Synthetic wave laser ranging sensors and methods |
| JP2016065719A (en) * | 2014-09-22 | 2016-04-28 | 国立大学法人東北大学 | Absolute angle measuring device and absolute angle measuring method |
| JP2017181233A (en) * | 2016-03-30 | 2017-10-05 | 国立大学法人東北大学 | Displacement measuring apparatus and displacement measuring method |
| JP7443156B2 (en) | 2020-05-18 | 2024-03-05 | 株式会社ミツトヨ | Measuring device and method |
Also Published As
| Publication number | Publication date |
|---|---|
| US8363226B2 (en) | 2013-01-29 |
| US20100225924A1 (en) | 2010-09-09 |
| EP2228621A3 (en) | 2011-01-26 |
| EP2228621A2 (en) | 2010-09-15 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP2010230653A (en) | Lightwave interference measuring device | |
| KR100951618B1 (en) | Absolute distance measuring method and system using optical frequency generator | |
| JP5550384B2 (en) | Lightwave interference measuring device | |
| JP5567126B2 (en) | Chromatic dispersion measuring apparatus and chromatic dispersion measuring method using the same | |
| JP5711134B2 (en) | Fourier domain mode locking | |
| US8339611B2 (en) | Interferometric distance measurement with harmonic frequency comb generated beams | |
| CN102384716B (en) | Fixed wave length absolute distance interferometer | |
| JP5421013B2 (en) | Positioning device and positioning method | |
| JP6293762B2 (en) | Position monitoring system with reduced noise | |
| EP2634525A1 (en) | Absolute distance measuring multiwavelength interferometer | |
| JP2010261890A (en) | Lightwave interference measuring device | |
| JP5489658B2 (en) | Measuring device | |
| US20130088722A1 (en) | Measurement apparatus | |
| Phillips et al. | Tracking frequency laser distance gauge | |
| JP2014149190A (en) | Measuring device, measuring method, light source device, and article manufacturing method | |
| JP5487149B2 (en) | Chromatic dispersion measuring apparatus and chromatic dispersion measuring method using the same | |
| JP2017090259A (en) | Method for correcting refractive index, and method and device for measuring distance | |
| JP2013057619A (en) | Measurement apparatus and measurement method | |
| JP4600755B2 (en) | Wavelength monitor | |
| JP7329241B2 (en) | Fabry-Perot Etalon, Wavelength Variation Detector Using Same, and Wavelength Meter | |
| JP4835908B2 (en) | Optical property measuring device | |
| JP2024115237A (en) | Optical path difference measuring device and vibration measuring device | |
| CN115560680A (en) | A Measuring System of Absolute Distance and Relative Displacement Fusion of Space Optical Components | |
| Kim et al. | Absolute Distance Measurements Using the Frequency Comb of a Femtosecond Pulse Laser |