JP2011063739A - Microparticle of near infrared ray shielding material, production method therefor, particle dispersion of near infrared ray shielding material, and near infrared ray shielding body - Google Patents
Microparticle of near infrared ray shielding material, production method therefor, particle dispersion of near infrared ray shielding material, and near infrared ray shielding body Download PDFInfo
- Publication number
- JP2011063739A JP2011063739A JP2009216673A JP2009216673A JP2011063739A JP 2011063739 A JP2011063739 A JP 2011063739A JP 2009216673 A JP2009216673 A JP 2009216673A JP 2009216673 A JP2009216673 A JP 2009216673A JP 2011063739 A JP2011063739 A JP 2011063739A
- Authority
- JP
- Japan
- Prior art keywords
- fine particles
- shielding material
- infrared shielding
- zinc
- resin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
【課題】耐熱・耐湿熱性が改善された近赤外線遮蔽材料微粒子とこの微粒子が分散されて成る近赤外線遮蔽材料微粒子分散体等を提供する。
【解決手段】この近赤外線遮蔽材料微粒子は、一般式ZnxMyWOz(Znは亜鉛、MはCs、Rb、K、Na、Ba、Ca、Sr、Mgの内から選択される1種以上の元素、Wはタングステン、Oは酸素、0.001≦x≦2.0、0.1≦y≦0.5、2.2≦z≦3.0)で表記される亜鉛が固溶した六方晶の結晶構造を有する複合タングステン酸化物Bの微粒子で構成され、かつ、その格子定数の比c/aが、一般式MyWOz(MはCs、Rb、K、Na、Ba、Ca、Sr、Mgの内から選択される1種以上の元素、Wはタングステン、Oは酸素、0.1≦y≦0.5、2.2≦z≦3.0)で表記される複合タングステン酸化物Aの格子定数の比c/aよりも大きく、その数値が1.027300〜1.027700であることを特徴とする。
【選択図】図1Disclosed are a near-infrared shielding material fine particle with improved heat resistance and moist heat resistance, a near-infrared shielding material fine particle dispersion in which the fine particle is dispersed, and the like.
The near-infrared shielding material fine particles have a general formula ZnxMyWOz (Zn is zinc, M is one or more elements selected from Cs, Rb, K, Na, Ba, Ca, Sr, and Mg, W Is tungsten, O is oxygen, 0.001 ≦ x ≦ 2.0, 0.1 ≦ y ≦ 0.5, 2.2 ≦ z ≦ 3.0) composed of fine particles of composite tungsten oxide B having a hexagonal crystal structure in which zinc is solid-solved The lattice constant ratio c / a is represented by the general formula MyWOz (M is one or more elements selected from Cs, Rb, K, Na, Ba, Ca, Sr, and Mg, and W is tungsten. , O is oxygen, larger than the lattice constant ratio c / a of the composite tungsten oxide A expressed by 0.1 ≦ y ≦ 0.5, 2.2 ≦ z ≦ 3.0), and the numerical value is 1.027300 to 1.027700 To do.
[Selection] Figure 1
Description
本発明は、可視光領域においては透明で、近赤外線領域においては吸収を持つ近赤外線遮蔽材料微粒子とその製造方法、および、近赤外線遮蔽材料微粒子が媒体中に分散して成る近赤外線遮蔽材料微粒子分散体とこの近赤外線遮蔽材料微粒子分散体から製造される近赤外線遮蔽体に係り、特に、耐熱・耐湿熱性が改善された近赤外線遮蔽材料微粒子とその製造方法、および、近赤外線遮蔽材料微粒子分散体と近赤外線遮蔽体に関するものである。 The present invention relates to a near-infrared shielding material fine particle that is transparent in the visible light region and absorbs in the near-infrared region, a method for producing the same, and a near-infrared shielding material fine particle in which near-infrared shielding material fine particles are dispersed in a medium. Dispersion and near-infrared shielding material produced from this near-infrared shielding material fine particle dispersion, and in particular, near-infrared shielding material fine particles with improved heat and moisture resistance, a method for producing the same, and near-infrared shielding material fine particle dispersion Body and near-infrared shield.
近年、各種建築物や車両の窓材等の分野において、可視光線を十分に取り入れながら近赤外領域の光を遮蔽し、明るさを維持しつつ室内の温度上昇を抑制することを目的とした近赤外線遮蔽体の需要が急増し、これに伴って近赤外線遮蔽材料や近赤外線遮蔽ガラス等の開発が盛んになされている。 In recent years, in the fields of various buildings and vehicle window materials, etc., it has been aimed to suppress near-infrared light while sufficiently absorbing visible light, and to suppress indoor temperature rise while maintaining brightness. With the rapid increase in demand for near-infrared shields, development of near-infrared shielding materials, near-infrared shielding glass, and the like has been actively conducted.
例えば、特許文献1では、透明なガラス基板上に、基板側より第1層として周期律表のIIIa族、IVa族、Vb族、VIb族およびVIIb族から成る群から選ばれた少なくとも1種の金属イオンを含有する複合酸化タングステン膜を設け、上記第1層上に第2層として透明誘電体膜を設け、第2層の透明誘電体膜上に第3層として周期律表のIIIa族、IVa族、Vb族、VIb族およびVIIb族から成る群から選ばれた少なくとも1種の金属イオンを含有する複合酸化タングステン膜を設け、かつ、上記第2層を構成する透明誘電体膜の屈折率を第1層および第3層の複合酸化タングステン膜の屈折率よりも低くすることにより、高い可視光透過率および良好な熱線遮蔽性能が要求される部位に好適に使用できる熱線遮断ガラスが提案されている。 For example, in Patent Document 1, on a transparent glass substrate, at least one selected from the group consisting of IIIa group, IVa group, Vb group, VIb group and VIIb group of the periodic table as the first layer from the substrate side. A composite tungsten oxide film containing metal ions is provided, a transparent dielectric film is provided as a second layer on the first layer, and a group IIIa of the periodic table is provided as a third layer on the second transparent dielectric film, A composite tungsten oxide film containing at least one metal ion selected from the group consisting of IVa group, Vb group, VIb group and VIIb group is provided, and the refractive index of the transparent dielectric film constituting the second layer Is made lower than the refractive index of the composite tungsten oxide film of the first layer and the third layer, and a heat ray-shielding glass that can be suitably used for a portion requiring high visible light transmittance and good heat ray shielding performance is proposed. ing.
また、特許文献2では、特許文献1と同様の方法で、透明なガラス基板上に、基板側より第1層として第1の誘電体膜を設け、この第1層上に第2層として酸化タングステン膜を設け、この第2層上に第3層として上記第2層の誘電体膜を設けた熱線遮断ガラスが提案されている。
Further, in
また、特許文献3では、特許文献1と同様な方法で、透明な基板上に、基板側より第1層として同様の金属元素を含有する複合酸化タングステン膜を設け、この第1層上に第2層として透明誘電体膜を設けた熱線遮断ガラスが提案されている。 In Patent Document 3, a composite tungsten oxide film containing the same metal element is provided as a first layer from the substrate side on the transparent substrate by the same method as Patent Document 1, and the first layer is formed on the first layer. Heat ray blocking glass having a transparent dielectric film as two layers has been proposed.
更に、特許文献4では、水素、リチウム、ナトリウム、カリウム等の添加元素を含有する三酸化タングステン(WO3)、三酸化モリブデン(MoO3)、五酸化ニオブ(Nb2O5)、五酸化タンタル(Ta2O5)、五酸化バナジウム(V2O5)および二酸化バナジウム(VO2)の1種以上から選択された金属酸化物膜を、CVD法あるいはスプレー法でガラスシートに被覆しかつ250℃程度で熱分解して形成された太陽光遮蔽特性を有する太陽光制御ガラスシートが提案されている。 Further, in Patent Document 4, tungsten trioxide (WO 3 ), molybdenum trioxide (MoO 3 ), niobium pentoxide (Nb 2 O 5 ), and tantalum pentoxide containing additional elements such as hydrogen, lithium, sodium, and potassium. A metal oxide film selected from one or more of (Ta 2 O 5 ), vanadium pentoxide (V 2 O 5 ), and vanadium dioxide (VO 2 ) is coated on a glass sheet by a CVD method or a spray method, and 250 A solar control glass sheet having solar light shielding properties formed by thermal decomposition at about ° C. has been proposed.
特許文献5では、タングステン酸を加水分解して得られたタングステン酸化物を用い、このタングステン酸化物にポリビニルピロリドンという特定の構造の有機ポリマーを添加することにより、太陽光が照射されると光線中の紫外線が上記タングステン酸化物に吸収されて励起電子とホールとが発生し、少量の紫外線量により5価タングステンの出現量が著しく増加して着色反応が速くなり、これに伴って着色濃度が高くなると共に、光を遮断することによって5価タングステンが極めて速やかに6価に酸化されて消色反応が速くなる特性を用い、太陽光に対する着色および消色反応が速く、着色時に近赤外域の波長1250nmに吸収ピークが現れ、太陽光の近赤外線を遮断することができる太陽光可変調光断熱材料が提案されている。 In Patent Document 5, a tungsten oxide obtained by hydrolyzing tungstic acid is used, and an organic polymer having a specific structure called polyvinylpyrrolidone is added to the tungsten oxide, so that when sunlight is irradiated, Is absorbed by the tungsten oxide to generate excited electrons and holes, and the appearance of pentavalent tungsten is remarkably increased by a small amount of ultraviolet light, and the coloring reaction is accelerated. In addition, the property that the pentavalent tungsten is oxidized to hexavalent very quickly by blocking the light and the decoloring reaction becomes fast, and the coloring and decoloring reaction to sunlight is fast. There has been proposed a sunlight-modulable light-insulating material that has an absorption peak at 1250 nm and can block near-infrared rays of sunlight.
また、特許文献6では、六塩化タングステンをアルコールに溶解し、そのまま溶媒を蒸発させるか、または加熱還流した後に溶媒を蒸発させ、その後100℃〜500℃で加熱することにより、三酸化タングステン若しくはその水和物または両者の混合物から成る粉末を得ること、このタングステン酸化物微粒子を用いてエレクトロクロミック素子が得られること、多層の積層体を構成し膜中にプロトンを導入したときに当該膜の光学特性を変化させることができること等が提案されている。 In Patent Document 6, tungsten trichloride or its solvent is obtained by dissolving tungsten hexachloride in alcohol and evaporating the solvent as it is, or evaporating the solvent after heating to reflux, and then heating at 100 ° C. to 500 ° C. Obtaining a powder composed of a hydrate or a mixture of both, obtaining an electrochromic device using the tungsten oxide fine particles, forming a multilayer structure, and introducing an optical film into the film when protons are introduced. It has been proposed that the characteristics can be changed.
また、特許文献7では、メタ型タングステン酸アンモニウムと水溶性の各種金属塩を原料とし、約300〜700℃に加熱しながらその混合水溶液の乾固物に対し、不活性ガス(添加量;約50vol%以上)または水蒸気(添加量;約15vol%以下)が添加された水素ガスを供給することにより、MxWO3(M;アルカリ Ia族、IIa族、希土類等の金属元素、0<x<1)で表記される種々のタングステンブロンズを調製する方法が提案されている。 Further, in Patent Document 7, meta-type ammonium tungstate and various water-soluble metal salts are used as raw materials, and heated to about 300 to 700 ° C., the inert gas (addition amount; about By supplying a hydrogen gas to which 50 vol% or more or water vapor (added amount; about 15 vol% or less) is added, M x WO 3 (M: metal element such as alkali group Ia, group IIa, rare earth, 0 <x Methods for preparing various tungsten bronzes represented by <1) have been proposed.
更に、特許文献8には、タングステン酸化物微粒子または/および複合タングステン酸化物微粒子から成る近赤外線遮蔽材料微粒子を、樹脂、ガラス等の媒体中に分散させて成る近赤外線遮蔽材料微粒子分散体、この分散体から製造される近赤外線遮蔽体、上記近赤外線遮蔽材料微粒子の製造方法、および、近赤外線遮蔽材料微粒子が提案されている。 Further, Patent Document 8 discloses a near-infrared shielding material fine particle dispersion in which near-infrared shielding material fine particles composed of tungsten oxide fine particles and / or composite tungsten oxide fine particles are dispersed in a medium such as resin or glass. A near-infrared shielding body produced from a dispersion, a method for producing the above-mentioned near-infrared shielding material fine particles, and near-infrared shielding material fine particles have been proposed.
ところで、特許文献1〜3に記載の近赤外線遮蔽体(熱線遮断ガラス)は、主にスパッタリング法、蒸着法、イオンプレーティング法および化学気相法(CVD法)等の真空成膜方式による乾式法を用いた方法で製造されるため、大型の製造装置を必要とし、製造コストが高くなるという問題がある。また、上記方法で製造されることから、近赤外線遮蔽体の基材が高温のプラズマに曝されたり、成膜後に加熱を必要としたりすることになるため、ガラスに代えてフィルム等の樹脂を基材とする場合には、別途、設備上、成膜条件の検討を行う必要があった。 By the way, the near-infrared shielding body (heat ray shielding glass) described in Patent Documents 1 to 3 is mainly a dry type by a vacuum film forming method such as a sputtering method, a vapor deposition method, an ion plating method and a chemical vapor deposition method (CVD method). Since it is manufactured by the method using the method, there is a problem that a large manufacturing apparatus is required and the manufacturing cost is increased. In addition, since the near-infrared shielding base material is exposed to high-temperature plasma or requires heating after film formation because it is manufactured by the above method, a resin such as a film is used instead of glass. In the case of using it as a base material, it was necessary to separately examine the film forming conditions on equipment.
また、特許文献4に記載の近赤外線遮蔽体(太陽光制御被覆ガラスシート)は、原料である金属酸化物をCVD法またはスプレー法と熱分解法との併用によりガラス上に被膜形成するが、前駆体となる原料が高価であること、高温で分解すること等から、ガラスシートに代えてフィルム等の樹脂を基材とする場合には、別途、成膜条件の検討を行う必要があった。 Moreover, the near-infrared shielding body (solar control glass sheet) described in Patent Document 4 forms a metal oxide film as a raw material on glass by a CVD method or a combination of a spray method and a thermal decomposition method. Since the precursor raw material is expensive and decomposes at high temperature, it is necessary to separately examine the film forming conditions when using a resin such as a film instead of a glass sheet as a base material. .
また、特許文献5に記載の太陽光可変調光断熱材料や、特許文献6に記載のエレクトロクロミック素子は、紫外線や電位差によりその色調を変化させる材料であるため、膜の構造が複雑であり、色調変化が望まれない用途分野には適用が困難な問題があった。 Moreover, since the sunlight-modulable light heat insulating material described in Patent Document 5 and the electrochromic element described in Patent Document 6 are materials that change their color tone by ultraviolet rays or a potential difference, the structure of the film is complicated, There is a problem that is difficult to apply in the field of use where color change is not desired.
更に、特許文献7にはタングステンブロンズの調製方法が記載されているが、得られた粉体の粒子直径や光学特性の記載は皆無である。これは、特許文献7において、タングステンブロンズの用途としては電解装置や燃料電池の電極材料および有機合成の触媒材料が考えられており、上述した近赤外線遮蔽体を用途としていないためと考えられる。 Furthermore, Patent Document 7 describes a method for preparing tungsten bronze, but there is no description of the particle diameter and optical characteristics of the obtained powder. This is because, in Patent Document 7, tungsten bronze is considered to be an electrolysis device, a fuel cell electrode material, and an organic synthesis catalyst material, and the above-described near-infrared shield is not used.
他方、特許文献1〜7に記載された上述の従来技術と較べ、特許文献8においては近赤外線遮蔽体の製造に用いられるタングステン酸化物微粒子または/および複合タングステン酸化物微粒子が提案され、これ等酸化物微粒子は優れた可視光透過性と良好な近赤外線遮蔽効果を有している。このため、各種建築物や車両の窓材等の分野において好適に利用される近赤外線遮蔽体として注目されている。 On the other hand, compared with the above-described conventional techniques described in Patent Documents 1 to 7, Patent Document 8 proposes tungsten oxide fine particles and / or composite tungsten oxide fine particles used for the production of a near-infrared shield. The oxide fine particles have excellent visible light permeability and good near infrared shielding effect. For this reason, it attracts attention as a near-infrared shield that is suitably used in the fields of various buildings and vehicle window materials.
しかし、これ等複合タングステン酸化物微粒子の耐熱・耐湿熱性については十分満足できない場合があり、未だ改善の余地が残されていた。 However, there are cases where these composite tungsten oxide fine particles are not sufficiently satisfied with respect to heat resistance and heat and moisture resistance, and there is still room for improvement.
本発明はこのような問題点に着目してなされたもので、その課題とするところは、耐熱・耐湿熱性が改善された近赤外線遮蔽材料微粒子(複合タングステン酸化物微粒子)とその製造方法を提供し、合わせてこの近赤外線遮蔽材料微粒子(複合タングステン酸化物微粒子)が媒体中に分散して成る近赤外線遮蔽材料微粒子分散体と近赤外線遮蔽体を提供することにある。 The present invention has been made paying attention to such problems, and the object of the present invention is to provide near-infrared shielding material fine particles (composite tungsten oxide fine particles) with improved heat resistance and heat-and-moisture resistance and a method for producing the same. In addition, another object is to provide a near-infrared shielding material fine particle dispersion in which the near-infrared shielding material fine particles (composite tungsten oxide fine particles) are dispersed in a medium and a near-infrared shielding body.
そこで、上記課題を解決するため、本発明者等が鋭意研究を継続した結果、一般式MyWOz(但し、MはCs、Rb、K、Na、Ba、Ca、Sr、Mgの内から選択される1種以上の元素、Wはタングステン、Oは酸素、0.1≦y≦0.5、2.2≦z≦3.0)で表記される複合タングステン酸化物(以下に述べる亜鉛が固溶された複合タングステン酸化物と区別するため複合タングステン酸化物Aと称する)に、炭酸亜鉛等の亜鉛元素を有する化合物を反応させて製造した、一般式ZnxMyWOz(但し、Znは亜鉛、MはCs、Rb、K、Na、Ba、Ca、Sr、Mgの内から選択される1種以上の元素、Wはタングステン、Oは酸素、0.001≦x≦2.0、0.1≦y≦0.5、2.2≦z≦3.0)で表記される亜鉛が固溶した六方晶の結晶構造を有する複合タングステン酸化物(亜鉛が固溶される前の上記複合タングステン酸化物Aと区別するため複合タングステン酸化物Bと称する)が、耐熱・耐湿熱性に優れていることを発見するに至り、かつ、この複合タングステン酸化物Bが分散されて成る近赤外線遮蔽材料微粒子分散体や近赤外線遮蔽体も、上記耐熱・耐湿熱性に優れていることを発見するに至った。本発明はこのような技術的発見に基づき完成されている。 Therefore, in order to solve the above-mentioned problems, the present inventors have conducted intensive research. As a result, the general formula MyWOz (where M is selected from Cs, Rb, K, Na, Ba, Ca, Sr, and Mg). One or more elements, W is tungsten, O is oxygen, composite tungsten oxide represented by 0.1 ≦ y ≦ 0.5, 2.2 ≦ z ≦ 3.0) In general, ZnxMyWOz (where Zn is zinc, M is Cs, manufactured by reacting a compound having a zinc element such as zinc carbonate) with a compound tungsten oxide A for distinction from the composite tungsten oxide formed. One or more elements selected from Rb, K, Na, Ba, Ca, Sr, and Mg, W is tungsten, O is oxygen, 0.001 ≦ x ≦ 2.0, 0.1 ≦ y ≦ 0 .5, 2.2 ≦ z ≦ 3.0) Is a composite tungsten oxide having a hexagonal crystal structure in which the solid solution is dissolved (referred to as the composite tungsten oxide B in order to distinguish it from the composite tungsten oxide A before the zinc is solid-dissolved), which is excellent in heat resistance and moist heat resistance. In order to discover that the near-infrared shielding material fine particle dispersion in which the composite tungsten oxide B is dispersed and the near-infrared shielding body are also excellent in the heat resistance and moist heat resistance. It came. The present invention has been completed based on such technical findings.
すなわち、請求項1に係る発明は、
近赤外線領域において吸収を持つ近赤外線遮蔽材料微粒子において、
一般式ZnxMyWOz(但し、Znは亜鉛、MはCs、Rb、K、Na、Ba、Ca、Sr、Mgの内から選択される1種以上の元素、Wはタングステン、Oは酸素、0.001≦x≦2.0、0.1≦y≦0.5、2.2≦z≦3.0)で表記される亜鉛が固溶した六方晶の結晶構造を有する複合タングステン酸化物Bの微粒子で構成され、その格子定数の比c/aが一般式MyWOz(但し、MはCs、Rb、K、Na、Ba、Ca、Sr、Mgの内から選択される1種以上の元素、Wはタングステン、Oは酸素、0.1≦y≦0.5、2.2≦z≦3.0)で表記される複合タングステン酸化物Aの格子定数の比c/aよりも大きく、その数値が1.027300〜1.027700であることを特徴とし、
請求項2に係る発明は、
請求項1に記載の発明に係る近赤外線遮蔽材料微粒子において、
一般式MyWOz(但し、MはCs、Rb、K、Na、Ba、Ca、Sr、Mgの内から選択される1種以上の元素、Wはタングステン、Oは酸素、0.1≦y≦0.5、2.2≦z≦3.0)で表記される複合タングステン酸化物Aと、亜鉛元素を有する化合物との混合体を、還元性ガス雰囲気中若しくは不活性ガス雰囲気中または還元性ガスと不活性ガスの混合雰囲気中で熱処理して得られることを特徴とし、
請求項3に係る発明は、
請求項2に記載の発明に係る近赤外線遮蔽材料微粒子において、
上記亜鉛元素を有する化合物が炭酸亜鉛又は塩基性炭酸亜鉛であることを特徴とするものである。
That is, the invention according to claim 1
In the near-infrared shielding material fine particles having absorption in the near-infrared region,
General formula ZnxMyWOz (where Zn is zinc, M is one or more elements selected from Cs, Rb, K, Na, Ba, Ca, Sr, Mg, W is tungsten, O is oxygen, 0.001 ≦ x ≦ 2.0, 0.1 ≦ y ≦ 0.5, 2.2 ≦ z ≦ 3.0) Fine particles of composite tungsten oxide B having a hexagonal crystal structure in which zinc represented by solid solution The lattice constant ratio c / a is represented by the general formula MyWOz (where M is one or more elements selected from Cs, Rb, K, Na, Ba, Ca, Sr, Mg, W is Tungsten, O is oxygen, 0.1 ≦ y ≦ 0.5, 2.2 ≦ z ≦ 3.0) is larger than the lattice constant ratio c / a of the composite tungsten oxide A, and the numerical value is 1.027300 to 1.027700,
The invention according to
In the near-infrared shielding material fine particles according to the invention of claim 1,
General formula MyWOz (where M is one or more elements selected from Cs, Rb, K, Na, Ba, Ca, Sr, Mg, W is tungsten, O is oxygen, 0.1 ≦ y ≦ 0 .5, 2.2 ≦ z ≦ 3.0) and a mixture of the compound having a zinc element and a compound having a zinc element in a reducing gas atmosphere, an inert gas atmosphere, or a reducing gas. It is obtained by heat treatment in a mixed atmosphere of inert gas and
The invention according to claim 3
In the near-infrared shielding material fine particles according to the invention of
The compound having the zinc element is zinc carbonate or basic zinc carbonate.
次に、請求項4に係る発明は、
近赤外線領域において吸収を持つ近赤外線遮蔽材料微粒子の製造方法において、
一般式MyWOz(但し、MはCs、Rb、K、Na、Ba、Ca、Sr、Mgの内から選択される1種以上の元素、Wはタングステン、Oは酸素、0.1≦y≦0.5、2.2≦z≦3.0)で表記される複合タングステン酸化物Aの微粒子を原料とし、かつ、一般式ZnxMyWOz(但し、Znは亜鉛、MはCs、Rb、K、Na、Ba、Ca、Sr、Mgの内から選択される1種以上の元素、Wはタングステン、Oは酸素、0.001≦x≦2.0、0.1≦y≦0.5、2.2≦z≦3.0)で表記される組成となるように亜鉛元素を有する化合物を上記原料に添加し、この混合体を、還元性ガス雰囲気中若しくは不活性ガス雰囲気中または還元性ガスと不活性ガスの混合雰囲気中で熱処理して、請求項1に記載の近赤外線遮蔽材料微粒子を製造することを特徴とし、
請求項5に係る発明は、
請求項4に記載の発明に係る近赤外線遮蔽材料微粒子の製造方法において、
上記亜鉛元素を有する化合物が炭酸亜鉛又は塩基性炭酸亜鉛であることを特徴とする。
Next, the invention according to claim 4 is:
In the manufacturing method of near-infrared shielding material fine particles having absorption in the near-infrared region,
General formula MyWOz (where M is one or more elements selected from Cs, Rb, K, Na, Ba, Ca, Sr, Mg, W is tungsten, O is oxygen, 0.1 ≦ y ≦ 0 .5, 2.2 ≦ z ≦ 3.0) as a raw material, and a general formula ZnxMyWOz (where Zn is zinc, M is Cs, Rb, K, Na, One or more elements selected from Ba, Ca, Sr, and Mg, W is tungsten, O is oxygen, 0.001 ≦ x ≦ 2.0, 0.1 ≦ y ≦ 0.5, 2.2 ≦ z ≦ 3.0) is added to the raw material so that the composition is expressed by the following formula, and this mixture is added in a reducing gas atmosphere, an inert gas atmosphere, or a reducing gas and an inert gas. The near-infrared shielding material according to claim 1, which is heat-treated in a mixed atmosphere of active gas. Characterized in that the production of fine particles,
The invention according to claim 5
In the manufacturing method of the near-infrared shielding material fine particles according to the invention of claim 4,
The compound having a zinc element is zinc carbonate or basic zinc carbonate.
また、請求項6に係る発明は、
近赤外線遮蔽材料微粒子が媒体中に分散して成る近赤外線遮蔽材料微粒子分散体において、
上記近赤外線遮蔽材料微粒子が、一般式ZnxMyWOz(但し、Znは亜鉛、MはCs、Rb、K、Na、Ba、Ca、Sr、Mgの内から選択される1種以上の元素、Wはタングステン、Oは酸素、0.001≦x≦2.0、0.1≦y≦0.5、2.2≦z≦3.0)で表記される亜鉛が固溶した六方晶の結晶構造を有する複合タングステン酸化物Bの微粒子で構成され、その格子定数の比c/aが一般式MyWOz(但し、MはCs、Rb、K、Na、Ba、Ca、Sr、Mgの内から選択される1種以上の元素、Wはタングステン、Oは酸素、0.1≦y≦0.5、2.2≦z≦3.0)で表記される複合タングステン酸化物Aの格子定数の比c/aよりも大きく、その数値が1.027300〜1.027700であり、かつ、粒子直径が1nm以上500nm以下であることを特徴とし、
請求項7に係る発明は、
請求項6に記載の発明に係る近赤外線遮蔽材料微粒子分散体において、
近赤外線遮蔽材料微粒子が分散される上記媒体が、樹脂またはガラスであることを特徴とし、
請求項8に係る発明は、
請求項7に記載の発明に係る近赤外線遮蔽材料微粒子分散体において、
上記樹脂が、ポリエチレン樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂、ポリビニルアルコ−ル樹脂、ポリスチレン樹脂、ポリプロピレン樹脂、エチレン酢酸ビニル共重合体、ポリエステル樹脂、ポリエチレンテレフタレート樹脂、フッ素樹脂、ポリカーボネート樹脂、アクリル樹脂、ポリビニルブチラール樹脂の内から選択される1種類以上であることを特徴とする。
The invention according to claim 6
In a near-infrared shielding material fine particle dispersion in which near-infrared shielding material fine particles are dispersed in a medium,
The near-infrared shielding material fine particles have the general formula ZnxMyWOz (where Zn is zinc, M is one or more elements selected from Cs, Rb, K, Na, Ba, Ca, Sr, and Mg, and W is tungsten. , O is oxygen, 0.001 ≦ x ≦ 2.0, 0.1 ≦ y ≦ 0.5, 2.2 ≦ z ≦ 3.0), which is a hexagonal crystal structure in which zinc is dissolved. It is composed of fine particles of composite tungsten oxide B having a lattice constant ratio c / a selected from the general formula MyWOz (where M is selected from Cs, Rb, K, Na, Ba, Ca, Sr, Mg) One or more elements, W is tungsten, O is oxygen, 0.1 ≦ y ≦ 0.5, 2.2 ≦ z ≦ 3.0) Ratio of lattice constant of composite tungsten oxide A c / larger than a, the numerical value is 1.027300 to 1.027700, and Characterized in that the child diameter is 1nm or more 500nm or less,
The invention according to claim 7 provides:
In the near-infrared shielding material fine particle dispersion according to the invention of claim 6,
The medium in which the near-infrared shielding material fine particles are dispersed is a resin or glass,
The invention according to claim 8 provides:
In the near-infrared shielding material fine particle dispersion according to the invention of claim 7,
The above resins are polyethylene resin, polyvinyl chloride resin, polyvinylidene chloride resin, polyvinyl alcohol resin, polystyrene resin, polypropylene resin, ethylene vinyl acetate copolymer, polyester resin, polyethylene terephthalate resin, fluorine resin, polycarbonate resin, acrylic resin. It is one or more types selected from resin and polyvinyl butyral resin.
また、請求項9に係る発明は、
近赤外線遮蔽体において、
請求項6〜8のいずれかに記載の近赤外線遮蔽材料微粒子分散体が、板状、フィルム状若しくは薄膜状に形成されたものであることを特徴とするものである。
The invention according to claim 9 is
In the near-infrared shield,
The near-infrared shielding material fine particle dispersion according to any one of claims 6 to 8 is formed in a plate shape, a film shape, or a thin film shape.
一般式ZnxMyWOz(但し、Znは亜鉛、MはCs、Rb、K、Na、Ba、Ca、Sr、Mgの内から選択される1種以上の元素、Wはタングステン、Oは酸素、0.001≦x≦2.0、0.1≦y≦0.5、2.2≦z≦3.0)で表記される亜鉛が固溶した六方晶の結晶構造を有する複合タングステン酸化物Bの微粒子で構成され、その格子定数の比c/aが一般式MyWOz(但し、MはCs、Rb、K、Na、Ba、Ca、Sr、Mgの内から選択される1種以上の元素、Wはタングステン、Oは酸素、0.1≦y≦0.5、2.2≦z≦3.0)で表記される複合タングステン酸化物Aの格子定数の比c/aよりも大きく、その数値が1.027300〜1.027700である本発明に係る近赤外線遮蔽材料微粒子によれば、従来の近赤外線遮蔽材料と較べて耐熱・耐湿熱性に極めて優れている。 General formula ZnxMyWOz (where Zn is zinc, M is one or more elements selected from Cs, Rb, K, Na, Ba, Ca, Sr, Mg, W is tungsten, O is oxygen, 0.001 ≦ x ≦ 2.0, 0.1 ≦ y ≦ 0.5, 2.2 ≦ z ≦ 3.0) Fine particles of composite tungsten oxide B having a hexagonal crystal structure in which zinc represented by solid solution The lattice constant ratio c / a is represented by the general formula MyWOz (where M is one or more elements selected from Cs, Rb, K, Na, Ba, Ca, Sr, Mg, W is Tungsten, O is oxygen, 0.1 ≦ y ≦ 0.5, 2.2 ≦ z ≦ 3.0) is larger than the lattice constant ratio c / a of the composite tungsten oxide A, and the numerical value is By the near-infrared shielding material fine particles according to the present invention which are 1.027300 to 1.027700 If, it is excellent in heat-wet heat resistance compared with the conventional near-infrared shielding material.
従って、従来の高い可視光透過性能と近赤外線吸収性能を維持したまま、耐熱・耐湿熱性をも発揮することが可能となる。 Accordingly, it is possible to exhibit heat resistance and heat and moisture resistance while maintaining the conventional high visible light transmission performance and near infrared absorption performance.
同様に、一般式ZnxMyWOzで表記される亜鉛が固溶した六方晶の結晶構造を有する上記複合タングステン酸化物Bの微粒子が分散されて成る本発明に係る近赤外線遮蔽材料微粒子分散体、および、この近赤外線遮蔽材料微粒子分散体から製造される本発明に係る近赤外線遮蔽体も、優れた耐熱・耐湿熱性を発揮することが可能となる。 Similarly, a near-infrared shielding material fine particle dispersion according to the present invention, in which fine particles of the composite tungsten oxide B having a hexagonal crystal structure in which zinc represented by the general formula ZnxMyWOz is dissolved, The near-infrared shielding body according to the present invention produced from the near-infrared shielding material fine particle dispersion can also exhibit excellent heat and moisture resistance.
以下、本発明の実施の形態について詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail.
1.近赤外線遮蔽材料微粒子
近赤外線領域において吸収を持つ本発明に係る近赤外線遮蔽材料微粒子は、
一般式ZnxMyWOz(但し、Znは亜鉛、MはCs、Rb、K、Na、Ba、Ca、Sr、Mgの内から選択される1種以上の元素、Wはタングステン、Oは酸素、0.001≦x≦2.0、0.1≦y≦0.5、2.2≦z≦3.0)で表記される亜鉛が固溶した六方晶の結晶構造を有する複合タングステン酸化物Bの微粒子で構成され、その格子定数の比c/aが一般式MyWOz(但し、MはCs、Rb、K、Na、Ba、Ca、Sr、Mgの内から選択される1種以上の元素、Wはタングステン、Oは酸素、0.1≦y≦0.5、2.2≦z≦3.0)で表記される複合タングステン酸化物Aの格子定数の比c/aよりも大きく、その数値が1.027300〜1.027700であることを特徴とするものである。
1. Near-infrared shielding material fine particles Near-infrared shielding material fine particles according to the present invention having absorption in the near-infrared region,
General formula ZnxMyWOz (where Zn is zinc, M is one or more elements selected from Cs, Rb, K, Na, Ba, Ca, Sr, Mg, W is tungsten, O is oxygen, 0.001 ≦ x ≦ 2.0, 0.1 ≦ y ≦ 0.5, 2.2 ≦ z ≦ 3.0) Fine particles of composite tungsten oxide B having a hexagonal crystal structure in which zinc represented by solid solution The lattice constant ratio c / a is represented by the general formula MyWOz (where M is one or more elements selected from Cs, Rb, K, Na, Ba, Ca, Sr, Mg, W is Tungsten, O is oxygen, 0.1 ≦ y ≦ 0.5, 2.2 ≦ z ≦ 3.0) is larger than the lattice constant ratio c / a of the composite tungsten oxide A, and the numerical value is 1.027300 to 1.027700.
まず、一般式ZnxMyWOzと一般式MyWOzで表記される複合タングステン酸化物において、タングステン(W)の組成を1としたときの酸素(O)の組成比zは、各一般式のカッコ中に示されているように2.2以上3.0以下である。組成比zがこの範囲の場合、材料としての化学的安定性を得ることができるため、有効な近赤外線遮蔽材料として適用できる。また、タングステン(W)の組成を1としたときの元素(M)の組成比yは各一般式のカッコ中に示されているように光学特性の観点から0.1以上0.5以下であることを要する。yの値が0.1未満であると、一般式ZnxMyWOzおよび一般式MyWOzで表記される複合タングステン酸化物が化合物として不安定になり、WO3やWO2等の異相が析出する。また、yの値が大きいほど近赤外線吸収特性は向上するが、上記複合タングステン酸化物が化合物として安定に存在する最大の値は0.5以下であり、好ましくは0.33付近である。 First, in the composite tungsten oxide represented by the general formula ZnxMyWOz and the general formula MyWOz, the composition ratio z of oxygen (O) when the composition of tungsten (W) is 1 is shown in parentheses of each general formula. It is 2.2 or more and 3.0 or less. When the composition ratio z is within this range, chemical stability as a material can be obtained, and therefore it can be applied as an effective near-infrared shielding material. The composition ratio y of the element (M) when the composition of tungsten (W) is 1 is 0.1 or more and 0.5 or less from the viewpoint of optical characteristics as shown in parentheses of each general formula. It needs to be. When the value of y is less than 0.1, the composite tungsten oxide represented by the general formula ZnxMyWOz and the general formula MyWOz becomes unstable as a compound, and foreign phases such as WO 3 and WO 2 are precipitated. Moreover, although the near-infrared absorption characteristics improve as the value of y increases, the maximum value at which the composite tungsten oxide stably exists as a compound is 0.5 or less, and preferably around 0.33.
また、一般式ZnxMyWOzおよび一般式MyWOzで表記される複合タングステン酸化物微粒子が六方晶の結晶構造を有する場合、この微粒子の可視光領域での透過性が向上しかつ近赤外域での吸収性が向上する。この六方晶の結晶構造の模式的な平面図である図1を参照して説明する。図1において、符号1で示すWO6単位にて形成される8面体が、6個集合して六角形の空隙(トンネル)が構成され、当該空隙中に、符号2で示す元素(M)が配置して1箇の単位を構成し、この1箇の単位が多数集合して六方晶の結晶構造を構成する。
Further, when the composite tungsten oxide fine particles represented by the general formula ZnxMyWOz and the general formula MyWOz have a hexagonal crystal structure, the transparency of the fine particles is improved in the visible light region and the absorption property in the near infrared region is improved. improves. This will be described with reference to FIG. 1, which is a schematic plan view of the hexagonal crystal structure. In FIG. 1, six octahedrons formed of WO 6 units denoted by reference numeral 1 are assembled to form a hexagonal void (tunnel), and the element (M) denoted by
この六角形の空隙に元素(M)の陽イオンが添加されて存在するとき、近赤外線領域の吸収が向上する。ここで、一般的には、イオン半径の大きな元素(M)を添加したとき当該六方晶が形成されるので好ましい。 When the cation of the element (M) is added to the hexagonal void, the absorption in the near infrared region is improved. Here, generally, when an element (M) having a large ionic radius is added, the hexagonal crystal is formed, which is preferable.
六方晶の結晶構造を有する複合タングステン酸化物粒子が均一な結晶構造を有するとき、元素(M)の添加量yは、上述したように0.1以上0.5以下であり、好ましくは0.33付近である。酸素(O)の組成比z=3のとき、yの値が0.33となることで、元素(M)が六角形の空隙の全てに配置されると考えられる。 When the composite tungsten oxide particles having a hexagonal crystal structure have a uniform crystal structure, the addition amount y of the element (M) is not less than 0.1 and not more than 0.5 as described above, and preferably 0.8. It is around 33. When the composition ratio z = 3 of oxygen (O), the value of y is 0.33, so that the element (M) is considered to be disposed in all hexagonal voids.
また、一般式ZnxMyWOzで表記される亜鉛が固溶した複合タングステン酸化物B微粒子が、上述した六方晶以外に、正方晶、立方晶のタングステンブロンズの構造をとるときも近赤外線遮蔽材料として有効である。上記亜鉛が固溶した複合タングステン酸化物B微粒子がとる結晶構造によって、近赤外線領域の吸収位置が変化する傾向があり、この近赤外線領域の吸収位置は、立方晶よりも正方晶のときが長波長側に移動し、更に六方晶のときは正方晶のときよりも長波長側に移動する傾向がある。また、上記吸収位置の変動に付随して、可視光線領域の吸収は六方晶が最も少なく、次に正方晶であり、立方晶はこの中では最も大きい。よって、より可視光領域の光を透過し、より近赤外線領域の光を遮蔽する用途には、上述したように六方晶のタングステンブロンズを用いることが必要である。但し、ここで述べた光学特性の傾向は、あくまで大まかな傾向であり、添加元素の種類や、添加量、酸素量によっても変化するものであり、これに限定されるわけではない。従って、一般式MyWOzで表記される複合タングステン酸化物A微粒子と、炭酸亜鉛等の亜鉛元素を有する化合物を反応させて製造した、一般式ZnxMyWOzで表記される亜鉛が固溶した複合タングステン酸化物B微粒子に、上述した六方晶以外の、正方晶、立方晶のタングステンブロンズ構造が若干含まれていても本発明の近赤外線遮蔽材料として使用することは可能である。 It is also effective as a near-infrared shielding material when the composite tungsten oxide B fine particles in which zinc represented by the general formula ZnxMyWOz has a tetragonal or cubic tungsten bronze structure other than the hexagonal crystal described above. is there. The absorption position in the near infrared region tends to change depending on the crystal structure taken by the composite tungsten oxide B fine particles in which zinc is dissolved, and the absorption position in the near infrared region is longer when it is a tetragonal crystal than a cubic crystal. It moves to the wavelength side, and when it is hexagonal, it tends to move to the longer wavelength side than when it is tetragonal. Further, accompanying the change in the absorption position, the absorption in the visible light region is the smallest in the hexagonal crystal, the next is the tetragonal crystal, and the cubic is the largest among them. Therefore, as described above, it is necessary to use hexagonal tungsten bronze for the purpose of transmitting light in the visible light region and shielding light in the near infrared region. However, the tendency of the optical characteristics described here is merely a rough tendency, and varies depending on the kind of additive element, the amount of addition, and the amount of oxygen, and is not limited to this. Accordingly, a composite tungsten oxide B produced by reacting a composite tungsten oxide A fine particle represented by the general formula MyWOz and a compound having a zinc element such as zinc carbonate, in which zinc represented by the general formula ZnxMyWOz is dissolved. Even if the fine particles contain some tetragonal or cubic tungsten bronze structures other than the hexagonal crystals described above, they can be used as the near-infrared shielding material of the present invention.
次に、一般式ZnxMyWOzで表記される複合タングステン酸化物Bにおいて、タングステン(W)の組成を1としたときの亜鉛(Zn)の組成比xは、一般式のカッコ中に示されているように0.001≦x≦2.0である。六方晶の結晶構造を有する複合タングステン酸化物では、酸素(O)の組成比z=3のとき、上記WO6単位にて形成される8面体が6個集合して構成する六角形の空隙以外に、同じくWO6単位にて形成される8面体が3個集合して三角形の空隙(トンネル)が構成される。すなわち、M元素とは異なるサイトが存在するが、三角形の空隙中に亜鉛が配置すると考えられる。 Next, in the composite tungsten oxide B represented by the general formula ZnxMyWOz, the composition ratio x of zinc (Zn) when the composition of tungsten (W) is 1 is shown in parentheses in the general formula. 0.001 ≦ x ≦ 2.0. In the composite tungsten oxide having a hexagonal crystal structure, when the composition ratio of oxygen (O) is z = 3, other than hexagonal voids formed by assembling six octahedrons formed of the above WO 6 units In addition, three octahedrons that are also formed in units of WO 6 are assembled to form a triangular void (tunnel). That is, although there is a site different from the M element, it is considered that zinc is arranged in a triangular void.
そして、一般式ZnxMyWOzで表記される複合タングステン酸化物Bにおける格子定数の比c/a(図2の模式図で示す六方最密格子の符号a、符号c参照)が、亜鉛元素を有する化合物と反応させる前の一般式MyWOzで表記される複合タングステン酸化物Aの格子定数の比c/aよりも大きいことが確認され、ZnxMyWOzで表記される複合タングステン酸化物Bにおける格子定数の比c/aが大きくなっていることから、亜鉛(Zn)が固溶していると考えられる。具体的に説明すると、一般式ZnxMyWOzで表記される複合タングステン酸化物Bにおける格子定数の比c/aは、出発原料である一般式MyWOzで表記される複合タングステン酸化物Aの格子定数の比c/aに較べて0.000050以上大きくなる。一方、複合タングステン酸化物Bの格子定数の比c/aと出発原料の複合タングステン酸化物Aの格子定数の比c/aとの差の上限は、0.000400以下である。上限が0.000400以下である理由は、複合タングステン酸化物Bの格子定数の比c/aが、出発原料の複合タングステン酸化物Aの格子定数の比c/aより0.000400を超えて大きくなると、格子定数の比c/aが過大になり、後述する元素(M)の脱離が発生し易くなって、耐熱・耐湿熱性が低下するからである。そして、一般式ZnxMyWOzで表記される複合タングステン酸化物Bの格子定数の比c/aは、1.027300〜1.027700であることを要する。 And the ratio c / a of the lattice constant in the composite tungsten oxide B represented by the general formula ZnxMyWOz (see the hexagonal close-packed lattice symbols a and c shown in the schematic diagram of FIG. 2) is a compound containing a zinc element. It is confirmed that the lattice constant ratio c / a of the composite tungsten oxide A represented by the general formula MyWOz before the reaction is larger than the lattice constant ratio c / a of the composite tungsten oxide B represented by ZnxMyWOz. Therefore, it is considered that zinc (Zn) is in solid solution. More specifically, the ratio c / a of the lattice constant in the composite tungsten oxide B represented by the general formula ZnxMyWOz is the ratio c of the lattice constant of the composite tungsten oxide A represented by the general formula MyWOz as the starting material. More than 0.000050 compared to / a. On the other hand, the upper limit of the difference between the lattice constant ratio c / a of the composite tungsten oxide B and the lattice constant ratio c / a of the starting composite tungsten oxide A is 0.000400 or less. The reason why the upper limit is 0.000400 or less is that the lattice constant ratio c / a of the composite tungsten oxide B is larger than the lattice constant ratio c / a of the starting composite tungsten oxide A by more than 0.000400. This is because the lattice constant ratio c / a becomes excessive, the element (M), which will be described later, is easily desorbed, and the heat resistance and moist heat resistance are lowered. The ratio c / a of the lattice constant of the composite tungsten oxide B represented by the general formula ZnxMyWOz needs to be 1.027300 to 1.027700.
更に、一般式ZnxMyWOzで表記される複合タングステン酸化物Bにおける格子定数のc軸も、亜鉛元素を有する化合物と反応させる前の一般式MyWOzで表記される複合タングステン酸化物Aの格子定数のc軸より伸びていることが確認されていることからも亜鉛(Zn)が固溶していると考えられる。ここで、上記亜鉛(Zn)が固溶しているとは、亜鉛元素を有する化合物から供給される添加亜鉛の一部若しくは全てが固溶している状態をいう。 Further, the c-axis of the lattice constant of the composite tungsten oxide B represented by the general formula ZnxMyWOz is also the c-axis of the lattice constant of the composite tungsten oxide A represented by the general formula MyWOz before reacting with the compound containing zinc element. It is considered that zinc (Zn) is in solid solution also from the fact that it has been confirmed that it is more elongated. Here, the zinc (Zn) is in solid solution means a state in which part or all of the added zinc supplied from the compound having a zinc element is in solid solution.
ところで、一般式ZnxMyWOzで表記される亜鉛が固溶した複合タングステン酸化物Bに関し、一般式MyWOzで表記される複合タングステン酸化物Aと比較して耐熱・耐湿熱性が改善される理由は現在のところ不明であるが、本発明者等は以下のように推察している。 By the way, regarding the composite tungsten oxide B in which zinc represented by the general formula ZnxMyWOz is solid solution, the reason why the heat resistance / humidity and heat resistance are improved as compared with the composite tungsten oxide A represented by the general formula MyWOz at present. Although it is unknown, the present inventors infer as follows.
まず、一般式MyWOzで表記される複合タングステン酸化物Aの湿熱条件および高温条件での劣化(耐熱・耐湿熱性)現象には、複合タングステン酸化物Aの雰囲気中における水分の存在が深く係わっていることが本発明者等によって確認されている。一般式MyWOzで表記される複合タングステン酸化物Aは、WO3と同様に酸性酸化物であり、水分中で不安定となる。WO3を水に浸漬するとW成分が溶出し、pHが低下する。一般式MyWOzで表記される複合タングステン酸化物Aを水に浸漬すると、同様にW成分が溶出し、pHが低下する。このとき、元素(M)が、Cs、Rb、K、Na、Ba、Ca、Sr等の塩基性元素である場合、酸性水溶液を中和する形で元素(M)の溶出が促進され、近赤外線吸収能力が低下するものと考えられる。また、水分が関与しない場合でも、高温下に曝された一般式MyWOzで表記される複合タングステン酸化物Aにおいて元素(M)の脱離が発生することが、一般式MyWOzで表記される複合タングステン酸化物Aを高温の乾燥空気雰囲気に曝した前後の格子定数の比c/aの変化により確認されている。一方、一般式ZnxMyWOzで表記される複合タングステン酸化物Bは、複合タングステン酸化物B中に両性元素である亜鉛(Zn)が含まれているため、W(タングステン)成分による酸性を中和するために亜鉛(Zn)が消費され、元素(M)の溶出を抑制しているものと考えられる。このような考えから、一般式ZnxMyWOzで表記される複合タングステン酸化物Bの亜鉛(Zn)組成比xが0.001未満であると、元素(M)の溶出を抑制するZn量が不十分で、複合タングステン酸化物Bの十分な耐久性(耐熱・耐湿熱性)が得られない。他方、亜鉛(Zn)組成比xが2.0を超えると、複合タングステン酸化物Bの上記耐久性(耐熱・耐湿熱性)は維持されるが、ヘイズが高くなる。ヘイズ上昇の理由は、亜鉛(Zn)の増加に伴って、使用している分散剤とのマッチングの問題によるものと推察している。 First, the presence of water in the atmosphere of the composite tungsten oxide A is deeply related to the deterioration (heat resistance / moisture and heat resistance) phenomenon of the composite tungsten oxide A represented by the general formula MyWOz under wet and high temperature conditions. This has been confirmed by the present inventors. The composite tungsten oxide A represented by the general formula MyWOz is an acidic oxide like WO 3 and is unstable in moisture. When WO 3 is immersed in water, the W component is eluted and the pH is lowered. When the composite tungsten oxide A represented by the general formula MyWOz is immersed in water, the W component is similarly eluted and the pH is lowered. At this time, when the element (M) is a basic element such as Cs, Rb, K, Na, Ba, Ca, Sr, etc., the elution of the element (M) is promoted in the form of neutralizing the acidic aqueous solution. It is considered that the infrared absorption ability is lowered. In addition, even when no moisture is involved, the elemental (M) desorption occurs in the composite tungsten oxide A represented by the general formula MyWOz exposed at high temperatures. The composite tungsten represented by the general formula MyWOz This is confirmed by the change in the ratio c / a of the lattice constants before and after the oxide A was exposed to a high-temperature dry air atmosphere. On the other hand, since the composite tungsten oxide B represented by the general formula ZnxMyWOz contains zinc (Zn), which is an amphoteric element, in the composite tungsten oxide B, it neutralizes the acidity caused by the W (tungsten) component. It is considered that zinc (Zn) is consumed in the metal and the elution of the element (M) is suppressed. From such an idea, when the zinc (Zn) composition ratio x of the composite tungsten oxide B represented by the general formula ZnxMyWOz is less than 0.001, the amount of Zn for suppressing elution of the element (M) is insufficient. The sufficient durability (heat resistance / humidity heat resistance) of the composite tungsten oxide B cannot be obtained. On the other hand, when the zinc (Zn) composition ratio x exceeds 2.0, the durability (heat resistance / moisture heat resistance) of the composite tungsten oxide B is maintained, but the haze increases. The reason for the increase in haze is presumed to be due to the problem of matching with the dispersing agent used as zinc (Zn) increases.
ところで、一般式ZnxMyWOzで表記される亜鉛が固溶した複合タングステン酸化物Bで構成される本発明に係る近赤外線遮蔽材料微粒子は、特に波長1000nm付近の光を大きく吸収するためその透過色調は青色系となる。また、本発明に係る近赤外線遮蔽材料微粒子の粒子直径については、近赤外線遮蔽材料微粒子の使用目的によって適宜選定することができる。まず、透明性を保持した目的に使用する場合は500nm以下の粒子直径を有していることが好ましい。この理由は、500nmよりも小さい粒子は散乱により光を完全に遮蔽することが無く、可視光領域の視認性を保持し同時に効率よく透明性を保持することができるからである。特に可視光領域の透明性を重視する場合は、粒子による散乱を更に考慮することが好ましい。 By the way, the near-infrared shielding material fine particles according to the present invention, which is composed of the composite tungsten oxide B in which zinc represented by the general formula ZnxMyWOz is dissolved, absorbs a large amount of light in the vicinity of a wavelength of 1000 nm. Become a system. In addition, the particle diameter of the near-infrared shielding material fine particles according to the present invention can be appropriately selected depending on the intended use of the near-infrared shielding material fine particles. First, when used for the purpose of maintaining transparency, it preferably has a particle diameter of 500 nm or less. This is because particles smaller than 500 nm do not completely block light by scattering, and can maintain visibility in the visible light region and at the same time efficiently maintain transparency. In particular, when importance is attached to transparency in the visible light region, it is preferable to further consider scattering by particles.
上記粒子による散乱の低減を重視するときは、粒子直径は200nm以下、好ましくは100nm以下がよい。この理由は、粒子の粒子直径が小さければ、幾何学散乱若しくはミー散乱による400nm〜780nmの可視光線領域の光の散乱が低減される結果、近赤外線遮蔽体が曇りガラスのようになって鮮明な透明性が得られなくなる弊害を回避できるからである。すなわち、粒子直径が200nm以下になると、上記幾何学散乱若しくはミー散乱が低減しレイリー散乱領域になる。レイリー散乱領域では、散乱光は粒子径の6乗に反比例して低減するため、粒子直径の減少に伴って散乱が低減し透明性が向上するからである。更に、粒子直径が100nm以下になると、散乱光は非常に少なくなり好ましい。光の散乱を回避する観点からは粒子直径が小さい方が好ましく、粒子直径が1nm以上であれば工業的な製造は可能である。 When importance is attached to the reduction of scattering by the particles, the particle diameter is 200 nm or less, preferably 100 nm or less. The reason for this is that if the particle diameter of the particles is small, the scattering of light in the visible light region of 400 nm to 780 nm due to geometric scattering or Mie scattering is reduced. This is because it is possible to avoid the adverse effect that transparency cannot be obtained. That is, when the particle diameter is 200 nm or less, the geometric scattering or Mie scattering is reduced, and a Rayleigh scattering region is obtained. This is because in the Rayleigh scattering region, the scattered light decreases in inverse proportion to the sixth power of the particle diameter, so that the scattering is reduced and the transparency is improved as the particle diameter decreases. Furthermore, when the particle diameter is 100 nm or less, the scattered light is preferably extremely small. From the viewpoint of avoiding light scattering, a smaller particle diameter is preferable, and industrial production is possible if the particle diameter is 1 nm or more.
本発明に係る近赤外線遮蔽材料微粒子の粒子直径を500nm以下に選定することにより、樹脂やガラス等の媒体中に近赤外線遮蔽材料微粒子を分散させて成る近赤外線遮蔽材料微粒子分散体のヘイズ値は、可視光透過率85%以下でヘイズ30%以下とすることができる。尚、ヘイズが30%よりも大きい値であると曇りガラスのようになり、鮮明な透明性が得られない。 By selecting the particle diameter of the near-infrared shielding material fine particles according to the present invention to be 500 nm or less, the haze value of the near-infrared shielding material fine particle dispersion obtained by dispersing the near-infrared shielding material fine particles in a medium such as resin or glass is The visible light transmittance can be 85% or less and the haze can be 30% or less. When the haze is greater than 30%, it becomes like frosted glass, and clear transparency cannot be obtained.
尚、本発明に係る近赤外線遮蔽材料微粒子表面が、Si、Ti、Zr、Alの一種類以上の元素を含有する酸化物で被覆されていることは、近赤外線遮蔽材料微粒子の耐候性を向上させる観点から好ましい。 Note that the near-infrared shielding material fine particle surface according to the present invention is coated with an oxide containing one or more elements of Si, Ti, Zr, and Al, which improves the weather resistance of the near-infrared shielding material fine particles. From the viewpoint of making it.
2.近赤外線遮蔽材料微粒子の製造
(1)一般式ZnxMyWOzで表記される複合タングステン酸化物B微粒子の製造
上記一般式ZnxMyWOz(但し、Znは亜鉛、MはCs、Rb、K、Na、Ba、Ca、Sr、Mgの内から選択される1種以上の元素、Wはタングステン、Oは酸素、0.001≦x≦2.0、0.1≦y≦0.5、2.2≦z≦3.0)で表記される亜鉛が固溶した六方晶の結晶構造を有する複合タングステン酸化物B微粒子を製造するには、まず、一般式MyWOz(但し、MはCs、Rb、K、Na、Ba、Ca、Sr、Mgの内から選択される1種以上の元素、Wはタングステン、Oは酸素、0.1≦y≦0.5、2.2≦z≦3.0)で表記される複合タングステン酸化物Aを合成し、得られた複合タングステン酸化物A微粒子に亜鉛元素を有する化合物を添加し、この混合物を、還元性ガス雰囲気中若しくは不活性ガス雰囲気中または還元性ガスと不活性ガスの混合雰囲気中で焼成(熱処理)して製造することができる。上記複合タングステン酸化物A微粒子と亜鉛元素を有する化合物との混合物を、還元性ガスと不活性ガスの混合雰囲気中で焼成(熱処理)する場合、不活性ガス中における還元性ガスの濃度については、焼成(熱処理)温度に応じて適宜選定すれば特に限定されないが、好ましくは20vol %以下、より好ましくは10vol %以下、更に好ましくは7〜0.01vol %である。不活性ガス中における還元性ガスの濃度が20vol %以下であると、複合タングステン酸化物A微粒子の急速な還元を回避することができるからである。
2. Production of near-infrared shielding material fine particles (1) Production of composite tungsten oxide B fine particles represented by the general formula ZnxMyWOz General formula ZnxMyWOz One or more elements selected from Sr and Mg, W is tungsten, O is oxygen, 0.001 ≦ x ≦ 2.0, 0.1 ≦ y ≦ 0.5, 2.2 ≦ z ≦ 3 0.0) In order to produce a composite tungsten oxide B fine particle having a hexagonal crystal structure in which zinc represented by a solid solution is represented by the general formula MyWOz (where M is Cs, Rb, K, Na, Ba) , Ca, Sr, Mg, one or more elements, W is tungsten, O is oxygen, 0.1 ≦ y ≦ 0.5, 2.2 ≦ z ≦ 3.0) Composite tungsten oxide A was synthesized and composite tungsten obtained Manufactured by adding a compound containing zinc element to ten oxide A fine particles, and firing this mixture in a reducing gas atmosphere, an inert gas atmosphere, or a mixed atmosphere of a reducing gas and an inert gas (heat treatment). can do. When the mixture of the composite tungsten oxide A fine particles and the compound containing zinc element is fired (heat treatment) in a mixed atmosphere of a reducing gas and an inert gas, the concentration of the reducing gas in the inert gas is as follows: Although it will not specifically limit if it selects suitably according to baking (heat processing) temperature, Preferably it is 20 vol% or less, More preferably, it is 10 vol% or less, More preferably, it is 7-0.01 vol%. This is because when the concentration of the reducing gas in the inert gas is 20 vol% or less, rapid reduction of the composite tungsten oxide A fine particles can be avoided.
また、上記亜鉛元素を有する化合物としては、酸化亜鉛、炭酸亜鉛、または、塩基性炭酸亜鉛を適用することができ、これ等の中で、特に炭酸亜鉛(ZnCO3)または塩基性炭酸亜鉛[2ZnCO3・3Zn(OH)2]の適用が望ましい。これ等炭酸亜鉛や塩基性炭酸亜鉛の適用が望ましいのは、上述した還元性ガス雰囲気、不活性ガス雰囲気、または、還元性ガスと不活性ガスの混合雰囲気下で焼成(熱処理)することで、上記複合タングステン酸化物Aに亜鉛が固溶した複合タングステン酸化物Bの微粒子を製造し易いからである。尚、工業的には炭酸亜鉛と水酸化亜鉛で構成される塩基性炭酸亜鉛の組成は不定で、上記[2ZnCO3・3Zn(OH)2]の組成は塩基性炭酸亜鉛の代表組成を示しているに過ぎないため、塩基性炭酸亜鉛の組成が[2ZnCO3・3Zn(OH)2]に限定されるものではない。 In addition, zinc oxide, zinc carbonate, or basic zinc carbonate can be applied as the compound having the zinc element. Among these, zinc carbonate (ZnCO 3 ) or basic zinc carbonate [2ZnCO application of 3 · 3Zn (OH) 2] is desirable. It is desirable to apply these zinc carbonate and basic zinc carbonate by firing (heat treatment) in the reducing gas atmosphere, the inert gas atmosphere, or the mixed atmosphere of the reducing gas and the inert gas described above. This is because it is easy to produce fine particles of composite tungsten oxide B in which zinc is dissolved in the composite tungsten oxide A. Industrially, the composition of basic zinc carbonate composed of zinc carbonate and zinc hydroxide is indefinite, and the composition of the above [2ZnCO 3 .3Zn (OH) 2 ] represents a representative composition of basic zinc carbonate. Therefore, the composition of the basic zinc carbonate is not limited to [2ZnCO 3 .3Zn (OH) 2 ].
次に、上記焼成(熱処理)温度は雰囲気に応じて適宜選定すればよいが、雰囲気が不活性ガス単独の場合は、製造時間の短縮と単相性の観点から、200℃を超え600℃未満、好ましくは300℃を超え500℃未満、より好ましくは350℃を超え450℃未満である。焼成(熱処理)温度が低すぎると亜鉛原子の拡散に時間を要するため生産的ではない。反対に焼成(熱処理)温度が高すぎると異相が生成してしまう。一方、上記雰囲気が不活性ガスと還元性ガスの混合雰囲気中の場合は、還元性ガス濃度に応じてWO2が生成しない温度を適宜選定すればよい。このときの焼成(熱処理)時間は温度に応じて適宜選択すればよい。但し、処理時間が長時間に及ぶと、一般式ZnxMyWOzで表記される複合タングステン酸化物Bの格子定数の比c/aが、上限である1.027700を超えることがあるので留意する必要がある。例えば、処理温度が350℃を超え450℃未満であれば、処理時間は10時間以下である。 Next, the firing (heat treatment) temperature may be appropriately selected according to the atmosphere. However, when the atmosphere is an inert gas alone, it is more than 200 ° C. and less than 600 ° C. from the viewpoint of shortening the manufacturing time and single phase. Preferably it exceeds 300 degreeC and less than 500 degreeC, More preferably, it exceeds 350 degreeC and is less than 450 degreeC. If the calcination (heat treatment) temperature is too low, it takes time to diffuse zinc atoms, which is not productive. Conversely, if the firing (heat treatment) temperature is too high, a heterogeneous phase is generated. On the other hand, when the atmosphere is a mixed atmosphere of an inert gas and a reducing gas, a temperature at which WO 2 is not generated may be appropriately selected according to the reducing gas concentration. The firing (heat treatment) time at this time may be appropriately selected according to the temperature. However, it should be noted that when the treatment time is extended for a long time, the lattice constant ratio c / a of the composite tungsten oxide B represented by the general formula ZnxMyWOz may exceed the upper limit of 1.027700. . For example, if processing temperature exceeds 350 degreeC and less than 450 degreeC, processing time is 10 hours or less.
(2)一般式MyWOzで表記される複合タングステン酸化物A微粒子の製造
次に、上記一般式ZnxMyWOz(但し、Znは亜鉛、MはCs、Rb、K、Na、Ba、Ca、Sr、Mgの内から選択される1種以上の元素、Wはタングステン、Oは酸素、0.001≦x≦2.0、0.1≦y≦0.5、2.2≦z≦3.0)で表記される亜鉛が固溶した六方晶の結晶構造を有する複合タングステン酸化物Bを得るための原料、すなわち、一般式MyWOz(但し、MはCs、Rb、K、Na、Ba、Ca、Sr、Mgの内から選択される1種以上の元素、Wはタングステン、Oは酸素、0.1≦y≦0.5、2.2≦z≦3.0)で表記される複合タングステン酸化物Aの製造方法について説明する。
(2) Production of Composite Tungsten Oxide A Fine Particles Represented by General Formula MyWOz Next, the above general formula ZnxMyWOz (where Zn is zinc, M is Cs, Rb, K, Na, Ba, Ca, Sr, Mg) 1 or more elements selected from the above, W is tungsten, O is oxygen, 0.001 ≦ x ≦ 2.0, 0.1 ≦ y ≦ 0.5, 2.2 ≦ z ≦ 3.0) A raw material for obtaining a composite tungsten oxide B having a hexagonal crystal structure in which zinc represented in solid solution is expressed, that is, a general formula MyWOz (where M is Cs, Rb, K, Na, Ba, Ca, Sr, One or more elements selected from Mg, W is tungsten, O is oxygen, 0.1 ≦ y ≦ 0.5, 2.2 ≦ z ≦ 3.0) The manufacturing method will be described.
タングステン化合物として、タングステン酸(H2WO4)、タングステン酸アンモニウム、六塩化タングステン、アルコールに溶解した六塩化タングステンに水を添加して加水分解させた後に溶媒を蒸発させたタングステンの水和物から選ばれる1種以上のタングステン化合物と、M元素(Cs、Rb、K、Na、Ba、Ca、Sr、Mg)を有する化合物として、タングステン酸塩、塩化物塩、硝酸塩、硫酸塩、シュウ酸塩、酸化物、炭酸塩、水酸化物等のM元素を有する化合物とを乾式混合し、得られた混合粉体を、不活性ガス単独または不活性ガスと還元性ガスの混合ガス雰囲気下において1ステップで1段焼成して製造するか、あるいは、上記混合粉体を、1ステップ目の不活性ガスと還元性ガスの混合ガス雰囲気下で焼成しかつ2ステップ目の不活性ガス雰囲気下において焼成する2段焼成して製造する方法が例示される。尚、上記タングステン化合物に替えてタングステン酸化物微粒子を用いてもよい。 Tungsten acid (H 2 WO 4 ), ammonium tungstate, tungsten hexachloride, tungsten hydrate obtained by adding water to tungsten hexachloride dissolved in alcohol and hydrolyzing it, and then evaporating the solvent. As a compound having at least one selected tungsten compound and M element (Cs, Rb, K, Na, Ba, Ca, Sr, Mg), tungstate, chloride, nitrate, sulfate, oxalate , Oxides, carbonates, hydroxides, and other compounds having M element are dry-mixed, and the resulting mixed powder is mixed with an inert gas alone or in a mixed gas atmosphere of an inert gas and a reducing gas. It can be manufactured by one-step firing in steps, or the mixed powder can be fired in a mixed gas atmosphere of inert gas and reducing gas in the first step. An example is a method of producing by two-stage firing in an inert gas atmosphere in the second step. Note that tungsten oxide fine particles may be used instead of the tungsten compound.
また、上記方法とは異なる製造方法として以下の方法が例示される。 Moreover, the following method is illustrated as a manufacturing method different from the said method.
すなわち、タングステン化合物として、タングステン酸(H2WO4)、タングステン酸アンモニウム、六塩化タングステン、アルコールに溶解した六塩化タングステンに水を添加して加水分解させた後に溶媒を蒸発させたタングステンの水和物から選ばれる1種以上のタングステン化合物と、上記M元素の塩を含む水溶液とを湿式混合して調製された混合液を乾燥して乾燥粉を得、得られた乾燥粉を、不活性ガス単独または不活性ガスと還元性ガスの混合ガス雰囲気下において1ステップで1段焼成して製造するか、あるいは、上記乾燥粉を、1ステップ目の不活性ガスと還元性ガスの混合ガス雰囲気下で焼成しかつ2ステップ目の不活性ガス雰囲気下において焼成する2段焼成して製造する方法が例示される。尚、上記タングステン化合物に替えてタングステン酸化物微粒子を用いてもよい。また、上記M元素の塩としては特に限定されるものでなく、例えば、硝酸塩、硫酸塩、塩化物、炭酸塩等が挙がられる。また、湿式混合して調製された上記混合液を乾燥させる際の乾燥温度や時間は、特に限定されるものでない。 That is, as a tungsten compound, hydration of tungsten obtained by adding water to tungstic acid (H 2 WO 4 ), ammonium tungstate, tungsten hexachloride, tungsten hexachloride dissolved in alcohol, hydrolyzing it, and then evaporating the solvent. The mixture prepared by wet-mixing one or more tungsten compounds selected from the above and an aqueous solution containing the M element salt is dried to obtain a dried powder, and the resulting dried powder is converted into an inert gas. It is manufactured by firing in one step in a single step or in a mixed gas atmosphere of an inert gas and a reducing gas, or the dried powder is mixed in an inert gas and reducing gas atmosphere in the first step. And a method of producing by performing two-stage firing in which the second step is performed in an inert gas atmosphere. Note that tungsten oxide fine particles may be used instead of the tungsten compound. The salt of the M element is not particularly limited, and examples thereof include nitrates, sulfates, chlorides and carbonates. Moreover, the drying temperature and time at the time of drying the said liquid mixture prepared by wet mixing are not specifically limited.
そして、上記混合粉体または乾燥粉を不活性ガスと還元性ガスの混合ガス雰囲気下で焼成する場合、不活性ガス中における還元性ガスの濃度については、焼成温度に応じて適宜選定すれば特に限定されないが、好ましくは20vol %以下、より好ましくは10vol %以下、更に好ましくは7〜0.01vol %である。不活性ガス中における還元性ガスの濃度が20vol %以下であると、上記タングステン化合物の急速な還元を回避することができるからである。 When the mixed powder or dry powder is fired in a mixed gas atmosphere of an inert gas and a reducing gas, the concentration of the reducing gas in the inert gas can be selected as appropriate depending on the firing temperature. Although not limited, Preferably it is 20 vol% or less, More preferably, it is 10 vol% or less, More preferably, it is 7-0.01 vol%. This is because when the concentration of the reducing gas in the inert gas is 20 vol% or less, rapid reduction of the tungsten compound can be avoided.
焼成温度については雰囲気に応じて適宜選定すればよいが、上記混合粉体または乾燥粉を不活性ガス単独の雰囲気下で焼成する場合は、一般式MyWOzで表記される複合タングステン酸化物A微粒子としての結晶性や着色力の観点から500℃を超え1200℃以下、好ましくは1100℃以下、より好ましくは1000℃以下である。一方、上記混合粉体または乾燥粉を不活性ガスと還元性ガスとの混合ガス雰囲気下で焼成する場合は、還元性ガス濃度に応じてWO2が生成しない温度を適宜選定すればよい。更に、2段焼成して複合タングステン酸化物A微粒子を製造する場合は、1ステップ目の不活性ガスと還元性ガスの混合ガス雰囲気下において100℃以上650℃以下で焼成し、2ステップ目の不活性ガス雰囲気下において500℃を超え1200℃以下で焼成する条件が、近赤外線遮蔽特性の観点から好ましい条件として例示される。このときの焼成処理時間は、焼成温度に応じて適宜選択すればよいが、5分以上10時間以下で十分である。 The firing temperature may be appropriately selected depending on the atmosphere, but when the mixed powder or dry powder is fired in an atmosphere of an inert gas alone, the composite tungsten oxide A fine particles represented by the general formula MyWOz are used. From the viewpoint of the crystallinity and coloring power, it exceeds 500 ° C. and is 1200 ° C. or less, preferably 1100 ° C. or less, more preferably 1000 ° C. or less. On the other hand, when the mixed powder or the dried powder is fired in a mixed gas atmosphere of an inert gas and a reducing gas, a temperature at which WO 2 is not generated may be appropriately selected according to the reducing gas concentration. Furthermore, when producing composite tungsten oxide A fine particles by two-stage firing, firing is performed at 100 ° C. or more and 650 ° C. or less in a mixed gas atmosphere of an inert gas and a reducing gas at the first step. The conditions for firing at over 500 ° C. and below 1200 ° C. in an inert gas atmosphere are exemplified as preferred conditions from the viewpoint of near-infrared shielding properties. The firing treatment time at this time may be appropriately selected according to the firing temperature, but 5 minutes or more and 10 hours or less is sufficient.
ここで、タングステン酸(H2WO4)、タングステン酸アンモニウム、六塩化タングステン、アルコールに溶解した六塩化タングステンに水を添加して加水分解させた後に溶媒を蒸発させたタングステンの水和物、および、タングステン酸化物微粒子から選ばれる1種以上のタングステン化合物に対し、タングステン酸塩、塩化物塩、硝酸塩、硫酸塩、シュウ酸塩、酸化物、炭酸塩、水酸化物等のM元素を有する化合物を上述した乾式混合法を用いて添加するとき、M元素を有する化合物としては酸化物、水酸化物が好ましい。 Here, tungstic acid (H 2 WO 4 ), ammonium tungstate, tungsten hexachloride, tungsten hydrate obtained by adding water to tungsten hexachloride dissolved in alcohol and hydrolyzing it, and then evaporating the solvent, and A compound having M element such as tungstate, chloride, nitrate, sulfate, oxalate, oxide, carbonate, hydroxide, etc., for one or more tungsten compounds selected from tungsten oxide fine particles Is added using the dry mixing method described above, the compound having the element M is preferably an oxide or hydroxide.
また、上記乾式混合は、市販の擂潰機、ニーダー、ボールミル、サンドミル、ペイントシェーカー等で行えばよい。 The dry mixing may be performed with a commercially available grinder, kneader, ball mill, sand mill, paint shaker, or the like.
3.近赤外線遮蔽材料微粒子分散体と近赤外線遮蔽体
ZnxMyWOz(但し、Znは亜鉛、MはCs、Rb、K、Na、Ba、Ca、Sr、Mgの内から選択される1種以上の元素、Wはタングステン、Oは酸素、0.001≦x≦2.0、0.1≦y≦0.5、2.2≦z≦3.0)で表記される亜鉛が固溶した六方晶の結晶構造を有する複合タングステン酸化物Bの微粒子で構成される本発明に係る近赤外線遮蔽材料微粒子の適用方法としては、この微粒子を適宜媒体中に分散し所望の基材表面に形成する方法がある。この方法は、予め高温で焼成した近赤外線遮蔽材料微粒子を、基材中若しくはバインダーによって基材表面に結着させることが可能なため、樹脂材料等の耐熱温度の低い基材材料への応用が可能であり、形成の際に大型の装置を必要とせず安価であるという利点を有している。
3. Near-infrared shielding material fine particle dispersion and near-infrared shielding body ZnxMyWOz (where Zn is zinc, M is one or more elements selected from Cs, Rb, K, Na, Ba, Ca, Sr, Mg, W Is tungsten, O is oxygen, 0.001 ≦ x ≦ 2.0, 0.1 ≦ y ≦ 0.5, 2.2 ≦ z ≦ 3.0). As a method for applying the near-infrared shielding material fine particles according to the present invention composed of fine particles of composite tungsten oxide B having a structure, there is a method in which the fine particles are appropriately dispersed in a medium and formed on a desired substrate surface. This method can be applied to a base material having a low heat-resistant temperature such as a resin material because the near-infrared shielding material fine particles fired at a high temperature in advance can be bound to the base material surface in the base material or by a binder. It is possible and has the advantage of being inexpensive and does not require a large device for formation.
尚、複合タングステン酸化物Bの微粒子で構成される本発明に係る近赤外線遮蔽材料微粒子は導電性を有するため、連続的な膜として使用した場合、携帯電話等の電波を吸収反射して妨害する恐れがある。しかし、上記近赤外線遮蔽材料微粒子をマトリックス中に分散させた場合は、粒子一つ一つが孤立した状態で分散しているため電波透過性を発揮することから汎用性を有する。 In addition, since the near-infrared shielding material fine particles according to the present invention composed of fine particles of composite tungsten oxide B have conductivity, when used as a continuous film, they absorb and interfere with radio waves from mobile phones and the like. There is a fear. However, when the near-infrared shielding material fine particles are dispersed in the matrix, since each particle is dispersed in an isolated state, it has radio wave permeability and thus has versatility.
以下、上記近赤外線遮蔽材料微粒子が媒体中に分散して成る本発明に係る近赤外線遮蔽材料微粒子分散体と、この近赤外線遮蔽材料微粒子分散体を用いて製造される本発明に係る近赤外線遮蔽体について説明する。 Hereinafter, the near-infrared shielding material fine particle dispersion according to the present invention in which the above-mentioned near-infrared shielding material fine particles are dispersed in a medium, and the near-infrared shielding according to the present invention produced using this near-infrared shielding material fine particle dispersion Explain the body.
(1)微粒子を液体媒体中に分散し、基材表面に薄膜状に形成する方法
本発明に係る近赤外線遮蔽材料を微粒子化した近赤外線遮蔽材料微粒子を適宜液体媒体中に分散させて近赤外線遮蔽材料微粒子の分散液を得るか、あるいは、上記近赤外線遮蔽材料微粒子を適宜溶媒と混合して得られた混合物を湿式粉砕して近赤外線遮蔽材料微粒子の分散液を得る。
(1) Method of dispersing fine particles in a liquid medium and forming a thin film on the surface of the substrate Near-infrared shielding material fine particles obtained by finely pulverizing the near-infrared shielding material according to the present invention are appropriately dispersed in a liquid medium to obtain near-infrared rays. A dispersion liquid of shielding material fine particles is obtained, or a mixture obtained by appropriately mixing the near infrared shielding material fine particles with a solvent is wet pulverized to obtain a dispersion of near infrared shielding material fine particles.
そして、得られた近赤外線遮蔽材料微粒子の分散液に樹脂媒体を添加した後、適宜基材表面にコーティングして塗膜を形成し、然る後に溶媒を蒸発させて所定方法により樹脂を硬化させることにより、近赤外線遮蔽材料微粒子が樹脂媒体中に分散した薄膜(近赤外線遮蔽体)の形成が可能となる。尚、コーティングの方法は、近赤外線遮蔽材料微粒子を含有する樹脂膜(塗膜)を基材表面上に均一にコートできれば特に限定されず、バーコート法、グラビヤコート法、スプレーコート法、ディップコート法等が例示される。また、近赤外線遮蔽材料微粒子を直接バインダー樹脂中に分散させたものは、基材表面に塗布後、溶媒を蒸発させる必要がないため、環境的、工業的に好ましい。 Then, after adding a resin medium to the obtained dispersion liquid of the near-infrared shielding material fine particles, a coating film is formed by appropriately coating on the surface of the substrate, and then the solvent is evaporated and the resin is cured by a predetermined method. This makes it possible to form a thin film (near-infrared shielding body) in which near-infrared shielding material fine particles are dispersed in a resin medium. The coating method is not particularly limited as long as a resin film (coating film) containing fine particles of near-infrared shielding material can be uniformly coated on the substrate surface. Bar coating method, gravure coating method, spray coating method, dip coating Laws are exemplified. Further, those in which the near-infrared shielding material fine particles are directly dispersed in the binder resin do not need to evaporate the solvent after being applied to the surface of the substrate, and therefore are environmentally and industrially preferable.
上記樹脂媒体としては、例えば、UV硬化型樹脂、熱硬化型樹脂、電子線硬化型樹脂、常温硬化型樹脂、熱可塑性樹脂等が目的に応じて適宜選定可能である。具体的には、ポリエチレン樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂、ポリビニルアルコール樹脂、ポリスチレン樹脂、ポリプロピレン樹脂、エチレン酢酸ビニル共重合体、ポリエステル樹脂、ポリエチレンテレフタレート樹脂、フッ素樹脂、ポリカーボネート樹脂、アクリル樹脂、ポリビニルブチラール樹脂等が挙げられる。これ等の樹脂は、単独使用であっても混合使用であってもよい。また、金属アルコキシドを用いたバインダーの利用も可能である。上記金属アルコキシドとしては、Si、Ti、Al、Zr等のアルコキシドが代表的である。これ等の金属アルコキシドを用いたバインダーは、加熱等により加水分解・縮重合させることで、酸化物膜を形成することが可能である。 As the resin medium, for example, a UV curable resin, a thermosetting resin, an electron beam curable resin, a room temperature curable resin, a thermoplastic resin, and the like can be appropriately selected according to the purpose. Specifically, polyethylene resin, polyvinyl chloride resin, polyvinylidene chloride resin, polyvinyl alcohol resin, polystyrene resin, polypropylene resin, ethylene vinyl acetate copolymer, polyester resin, polyethylene terephthalate resin, fluorine resin, polycarbonate resin, acrylic resin And polyvinyl butyral resin. These resins may be used alone or in combination. Also, a binder using a metal alkoxide can be used. Representative examples of the metal alkoxide include alkoxides such as Si, Ti, Al, and Zr. Binders using these metal alkoxides can form oxide films by hydrolysis and polycondensation by heating or the like.
また、近赤外線遮蔽材料微粒子の分散液等が塗布される上記基材としては、所望によりフィルムでもボードでもよく、形状は限定されない。透明の基材材料としては、PET、アクリル、ウレタン、ポリカーボネート、ポリエチレン、エチレン酢酸ビニル共重合体、塩化ビニル、フッ素樹脂等が、各種目的に応じて使用可能である。また、樹脂以外ではガラスを用いることができる。 Moreover, as said base material with which the dispersion liquid of near-infrared shielding material microparticles | fine-particles etc. are apply | coated, a film or a board may be used if desired, and a shape is not limited. As the transparent base material, PET, acrylic, urethane, polycarbonate, polyethylene, ethylene vinyl acetate copolymer, vinyl chloride, fluororesin, and the like can be used according to various purposes. Moreover, glass other than resin can be used.
(2)固体媒体中に微粒子を分散させ、板(ボード)状、フィルム状に形成する方法
次に、本発明に係る近赤外線遮蔽材料微粒子を用いる別の方法として、微粒子を固体媒体(基材)中に直接分散させてもよい。微粒子を固体媒体(基材)中に分散させるには、基材表面から浸透させてもよいし、基材の溶融温度以上に温度を上げて基材を溶融させた後、微粒子と基材とを混合してもよい。このようにして得られた近赤外線遮蔽材料微粒子を含有する樹脂(近赤外線遮蔽材料微粒子分散体)を、所定の方法でフィルムや板(ボード)状に成形し、近赤外線遮蔽体として応用が可能である。
(2) Method of Dispersing Fine Particles in Solid Medium and Forming into Plate (Board) Shape or Film Shape Next, as another method using the near-infrared shielding material fine particles according to the present invention, fine particles are treated as a solid medium (substrate ) May be directly dispersed therein. In order to disperse the fine particles in the solid medium (base material), the fine particles may be permeated from the surface of the base material, or after the base material is melted by raising the temperature to a temperature higher than the melting temperature of the base material, May be mixed. The resin containing near-infrared shielding material fine particles obtained in this way (near-infrared shielding material fine particle dispersion) can be formed into a film or board shape by a predetermined method and applied as a near-infrared shielding body. It is.
例えば、固体媒体としてのPET樹脂に近赤外線遮蔽材料微粒子を分散する方法として、上述した方法により上記微粒子が分散された分散液をまず調製し、かつ、上記PET樹脂とこの微粒子分散液とを混合した後、分散液を蒸発させてからPET樹脂の溶融温度である300℃程度に加熱し、更に、PET樹脂を溶融させて混合し、冷却することで、微粒子が分散したPET樹脂の作製が可能となる。 For example, as a method for dispersing near-infrared shielding material fine particles in a PET resin as a solid medium, a dispersion in which the fine particles are dispersed is first prepared by the above-described method, and the PET resin and the fine particle dispersion are mixed. After that, the dispersion liquid is evaporated and then heated to about 300 ° C., which is the melting temperature of the PET resin, and further, the PET resin is melted, mixed, and cooled to produce a PET resin in which fine particles are dispersed. It becomes.
そして、上記近赤外線遮蔽材料微粒子を粉砕しあるいは分散させる方法は、特に限定されず、例えば、超音波照射、ビーズミル、サンドミル等を使用することができる。また、均一な分散体を得るために、各種添加剤や分散剤を添加したり、pHを調整したりしてもよい。分散剤は用途に合わせて適宜選定可能であり、例えば、高分子系分散剤やシラン系カップリング剤、チタネート系カップリング剤、アルミニウム系カップリング剤、等が挙げられるが、これ等に限定されるものではない。 And the method of grind | pulverizing or disperse | distributing the said near-infrared shielding material microparticles | fine-particles is not specifically limited, For example, ultrasonic irradiation, a bead mill, a sand mill etc. can be used. Moreover, in order to obtain a uniform dispersion, various additives and dispersants may be added, or the pH may be adjusted. The dispersant can be appropriately selected according to the use, and examples thereof include a polymer dispersant, a silane coupling agent, a titanate coupling agent, and an aluminum coupling agent, but are not limited thereto. It is not something.
以下、本発明の実施例について比較例を挙げて具体的に説明するが、本発明は以下の実施例に限定されるものではない。 Hereinafter, examples of the present invention will be specifically described with reference to comparative examples, but the present invention is not limited to the following examples.
ここで、各実施例において、近赤外線遮蔽体の可視光透過率と日射透過率は、日立製作所(株)製の「分光光度計U−4000」を用いて測定し、JIS R 3106に基づいて算出した。また、膜評価(すなわち、亜鉛が固溶した複合タングステン酸化物微粒子Bが分散した近赤外線遮蔽材料微粒子分散体の評価)は、近赤外線遮蔽材料微粒子と紫外線硬化樹脂を有する混合液(塗布液)を用いかつ線径の異なる3種のバーコーターにより成膜し、かつ、得られた膜厚が相違する3種類の近赤外線遮蔽材料微粒子分散体についてその可視光透過率、日射透過率を測定すると共に、可視光(波長域380nm〜780nm)透過率70%のときの日射(波長域200nm〜2600nm)透過率を上記膜(近赤外線遮蔽材料微粒子分散体)の3点プロットから求めている。 Here, in each Example, the visible light transmittance and the solar radiation transmittance of the near-infrared shield were measured using “Spectrophotometer U-4000” manufactured by Hitachi, Ltd., and based on JIS R 3106. Calculated. In addition, film evaluation (that is, evaluation of a near-infrared shielding material fine particle dispersion in which composite tungsten oxide fine particles B in which zinc is solid-dissolved) is dispersed is a mixed liquid (coating liquid) having near-infrared shielding material fine particles and an ultraviolet curable resin. Measure the visible light transmittance and solar radiation transmittance of three kinds of near-infrared shielding material fine particle dispersions obtained by using three types of bar coaters with different wire diameters and having different film thicknesses. In addition, the solar radiation (wavelength range 200 nm to 2600 nm) transmittance when the visible light (wavelength range 380 nm to 780 nm) transmittance is 70% is obtained from the three-point plot of the film (near-infrared shielding material fine particle dispersion).
[実施例1]
タングステン酸(H2WO4)34.57kgに対し、炭酸セシウム7.43kgを水6.70kgに溶解させた水溶液を添加し、混合した後、100℃で攪拌しながら水分を除去して乾燥粉を得た。
[Example 1]
An aqueous solution in which 7.43 kg of cesium carbonate was dissolved in 6.70 kg of water was added to 34.57 kg of tungstic acid (H 2 WO 4 ). After mixing, water was removed while stirring at 100 ° C. to dry powder. Got.
次に、N2ガスをキャリアーとした5%のH2ガスを供給しながら(すなわち、不活性ガスと還元性ガスの混合ガス雰囲気下において)上記乾燥粉を加熱し、800℃の温度条件で5.5時間焼成して、Cs0.33WO3微粒子(すなわち、複合タングステン酸化物A微粒子)を得た。尚、焼成処理して得られた焼成粉のX線回折による結晶相の同定の結果、Cs0.33WO3単相であり、格子定数の比c/aは1.027547であった。 Next, while supplying 5% H 2 gas with N 2 gas as a carrier (that is, in a mixed gas atmosphere of an inert gas and a reducing gas), the dry powder is heated and heated at a temperature of 800 ° C. After baking for 5.5 hours, Cs 0.33 WO 3 fine particles (that is, composite tungsten oxide A fine particles) were obtained. As a result of identifying the crystal phase of the calcined powder obtained by the calcining treatment by X-ray diffraction, it was Cs 0.33 WO 3 single phase, and the lattice constant ratio c / a was 1.027547.
次に、上記Cs0.33WO3微粒子10gと、塩基性炭酸亜鉛4.05gを、擂潰機で十分混合し、N2ガス雰囲気下において400℃の条件で1時間熱処理することによって、Zn1.0Cs0.33WO3微粒子(すなわち、複合タングステン酸化物B微粒子)を製造した。尚、上記焼成粉のX線回折による結晶相の同定の結果、Cs0.33WO3に帰属するピークとZnOに帰属する微弱なピ−クが認められた。また、Cs2O等のセシウム化合物やCs金属のピークは認められないので、CsとZnの置換やCs原子の遊離は発生していない。また、Zn1.0Cs0.33WO3微粒子の格子定数c/aは1.027678で、亜鉛を含まないCs0.33WO3微粒子の格子定数の比c/a(1.027547)に比べて大きくなっており、添加した亜鉛の一部が固溶していることが確認された。更に、化学分析でも、Zn1.0Cs0.33WO3の構成比であることが確認された。 Next, 10 g of the above-mentioned Cs 0.33 WO 3 fine particles and 4.05 g of basic zinc carbonate are sufficiently mixed by a crusher, and heat-treated at 400 ° C. for 1 hour in an N 2 gas atmosphere. 1.0 Cs 0.33 WO 3 fine particles (ie, composite tungsten oxide B fine particles) were produced. As a result of identifying the crystal phase of the calcined powder by X-ray diffraction, a peak attributed to Cs 0.33 WO 3 and a weak peak attributed to ZnO were observed. In addition, since no peak of Cs 2 compound such as Cs 2 O or Cs metal is observed, substitution of Cs and Zn and liberation of Cs atoms do not occur. Further, the lattice constant c / a of Zn 1.0 Cs 0.33 WO 3 fine particles was 1.027678, and the ratio c / a (1.027547) of the lattice constant of Cs 0.33 WO 3 fine particles not containing zinc was 1.027678. It was larger than that, and it was confirmed that a part of the added zinc was dissolved. Furthermore, it was also confirmed by chemical analysis that the composition ratio was Zn 1.0 Cs 0.33 WO 3 .
次に、上記Zn1.0Cs0.33WO3微粒子10.37重量%(Cs0.33WO3換算で8重量%)、高分子系分散剤(固型分40%)8重量%、トルエン81.62重量%を秤量し、0.3mmφZrO2ビーズを入れたペイントシェーカーで9時間粉砕・分散処理して、Zn1.0Cs0.33WO3微粒子(複合タングステン酸化物B微粒子)が分散された分散液(A液)を得た。尚、上記分散液(A液)中におけるZn1.0Cs0.33WO3微粒子の粒子直径は、TEM観察の結果、10〜50nmであった。 Next, 10.37% by weight of the above Zn 1.0 Cs 0.33 WO 3 fine particles (8% by weight in terms of Cs 0.33 WO 3 ), 8% by weight of a polymeric dispersant (solid content 40%), Zn 1.0 Cs 0.33 WO 3 fine particles (composite tungsten oxide B fine particles) were obtained by weighing 81.62% by weight of toluene and pulverizing and dispersing for 9 hours with a paint shaker containing 0.3 mmφZrO 2 beads. A dispersed dispersion (liquid A) was obtained. In addition, the particle diameter of the Zn 1.0 Cs 0.33 WO 3 fine particles in the dispersion (liquid A) was 10 to 50 nm as a result of TEM observation.
次に、上記分散液(A液)66.7重量%と、紫外線硬化樹脂〔東亜合成(株)社製UV3701〕33.3重量%をよく混合してZn1.0Cs0.33WO3微粒子(複合タングステン酸化物B微粒子)を含有する塗布液を調製し、線径の異なる3種のバーコーター(すなわち、番手14、24、30のバー)を用い、厚さ50μmのPET(ポリエチレンテレフタレート)フィルム上に上記塗布液を塗布して膜厚が異なる3種の塗膜(近赤外線遮蔽材料微粒子分散体)を形成し、かつ、70℃で1分間乾燥して溶媒を蒸発させた後、高圧水銀ランプにより紫外線を塗膜へ照射して実施例1に係る近赤外線遮蔽体を得た。 Next, 66.7% by weight of the above dispersion (liquid A) and 33.3% by weight of UV curable resin [UV3701 manufactured by Toa Gosei Co., Ltd.] were mixed well, and Zn 1.0 Cs 0.33 WO 3 A coating liquid containing fine particles (composite tungsten oxide B fine particles) was prepared, and PET (polyethylene terephthalate) having a thickness of 50 μm was used using three types of bar coaters (that is, bars of counts 14, 24 and 30) having different wire diameters. ) After coating the coating solution on the film to form three kinds of coating films (near infrared shielding material fine particle dispersion) having different film thicknesses, and drying at 70 ° C. for 1 minute to evaporate the solvent, A near-infrared shield according to Example 1 was obtained by irradiating the coating film with ultraviolet rays using a high-pressure mercury lamp.
そして、実施例1に係る近赤外線遮蔽体(PETフィルムとこのフィルム上に形成された複合タングステン酸化物B微粒子を有する皮膜とで構成される)の光学特性を測定したところ、可視光透過率70%のときの日射透過率は31.6%、ヘイズは1.2%であった。従って、実施例1に係る近赤外線遮蔽体は、可視光領域においては透明で、近赤外線領域においては吸収を持つ近赤外線遮蔽体として好適に利用できるものであった。 And when the optical characteristic of the near-infrared shielding body (consisting of a PET film and a film having composite tungsten oxide B fine particles formed on this film) according to Example 1 was measured, a visible light transmittance of 70 was obtained. %, The solar radiation transmittance was 31.6%, and the haze was 1.2%. Therefore, the near-infrared shield according to Example 1 can be suitably used as a near-infrared shield that is transparent in the visible light region and has absorption in the near-infrared region.
次に、実施例1に係る近赤外線遮蔽体の耐熱性を調べるため加速劣化試験を行った。 Next, in order to investigate the heat resistance of the near-infrared shield according to Example 1, an accelerated deterioration test was performed.
すなわち、上記塗布液を用いて、初期の可視光透過率が70%となるように上記PETフィルム上に成膜した後、該フィルムを80℃、95%RH雰囲気下に暴露し、72時間後の可視光透過率の変化率(以下、ΔVLTと記す)を調べた。同様に、上記塗布液を用いて、820nmの透過率が17%となるように上記PETフィルム上に成膜した後、該フィルムを80℃、95%RH雰囲気下に暴露し、72時間後の820nmの透過率の変化率(以下、ΔT820nmと記す)を調べた。以下、80℃、95%HR雰囲気下に暴露した加速劣化試験を耐湿熱試験と略称し、かつ、表1において「耐湿熱」と表記する。 That is, after forming a film on the PET film so that the initial visible light transmittance is 70% using the coating solution, the film is exposed to an atmosphere of 80 ° C. and 95% RH, and 72 hours later. The change rate of the visible light transmittance (hereinafter referred to as ΔVLT) was examined. Similarly, after forming a film on the PET film so that the transmittance at 820 nm is 17% using the coating solution, the film is exposed to an atmosphere of 80 ° C. and 95% RH, and 72 hours later. The change rate of transmittance at 820 nm (hereinafter referred to as ΔT820 nm) was examined. Hereinafter, the accelerated deterioration test exposed in an atmosphere of 80 ° C. and 95% HR is abbreviated as a heat-and-moisture resistance test, and is represented as “heat-and-heat resistance” in Table 1.
その結果、耐湿熱試験における72時間後のΔVLTは1.29%、72時間後のΔT820nmは2.35%であり、以下に記載する比較例1と較べて耐湿熱性の向上が確認された。 As a result, ΔVLT after 72 hours in the heat and humidity resistance test was 1.29%, and ΔT820 nm after 72 hours was 2.35%, confirming the improvement in heat and humidity resistance as compared with Comparative Example 1 described below.
更に、上記塗布液を用いて、厚さ3mmのガラス基板上に初期の可視光透過率が70%となるように成膜した後、このガラス基板を120℃大気雰囲気下に暴露して72時間後の△VTLとΔT820nmを測定した。以下、120℃の大気雰囲気下に暴露した加速劣化試験を耐熱試験と略称し、かつ、表1において「耐熱」と表記する。 Furthermore, after forming a film on the glass substrate having a thickness of 3 mm so as to have an initial visible light transmittance of 70% using the coating solution, the glass substrate was exposed to 120 ° C. air atmosphere for 72 hours. Later ΔVTL and ΔT820 nm were measured. Hereinafter, the accelerated deterioration test exposed to an air atmosphere at 120 ° C. is abbreviated as a heat resistance test and is expressed as “heat resistance” in Table 1.
その結果、耐熱試験における72時間後のΔVLTは0.75%で、72時間後のΔT820nmは2.23%であり、以下に記載する比較例1と較べて耐熱性の向上が確認された。 As a result, ΔVLT after 72 hours in the heat resistance test was 0.75%, and ΔT820 nm after 72 hours was 2.23%, confirming improvement in heat resistance as compared with Comparative Example 1 described below.
[実施例2]
Cs0.33WO3微粒子10gに対し、塩基性炭酸亜鉛を4.05g添加した実施例1の条件に代えて、塩基性炭酸亜鉛を2.03g添加したことを除いて実施例1と同様にして、実施例2に係るZn0.5Cs0.33WO3微粒子(複合タングステン酸化物B微粒子)を製造し、かつ、実施例1と同様にして実施例2に係る近赤外線遮蔽体を製造した。
[Example 2]
The same procedure as in Example 1 except that 2.03 g of basic zinc carbonate was added instead of the condition of Example 1 in which 4.05 g of basic zinc carbonate was added to 10 g of Cs 0.33 WO 3 fine particles. Then, Zn 0.5 Cs 0.33 WO 3 fine particles (composite tungsten oxide B fine particles) according to Example 2 are manufactured, and a near-infrared shield according to Example 2 is manufactured in the same manner as in Example 1. did.
尚、実施例2に係る焼成粉のX線回折による結晶相の同定の結果、Cs0.33WO3に帰属するピークとZnOに帰属する微弱なピ−クが認められた。また、Cs2O等のセシウム化合物やCs金属のピークは認められないので、CsとZnの置換やCs原子の遊離は発生していない。また、Zn0.5Cs0.33WO3微粒子の格子定数c/aは、1.027646であり、亜鉛を含まないCs0.33WO3微粒子の格子定数の比c/a(1.027547)に比べて大きくなっており、添加した亜鉛の一部が固溶していることが確認された。更に、化学分析でも、Zn0.5Cs0.33WO3の構成比であることが確認された。 As a result of identifying the crystal phase of the calcined powder according to Example 2 by X-ray diffraction, a peak attributed to Cs 0.33 WO 3 and a weak peak attributed to ZnO were observed. In addition, since no peak of Cs 2 compound such as Cs 2 O or Cs metal is observed, substitution of Cs and Zn and liberation of Cs atoms do not occur. Further, the lattice constant c / a of Zn 0.5 Cs 0.33 WO 3 fine particles is 1.027646, and the ratio c / a of the lattice constant of Cs 0.33 WO 3 fine particles not containing zinc (1.027547). ), And it was confirmed that a part of the added zinc was dissolved. Furthermore, it was also confirmed by chemical analysis that the composition ratio was Zn 0.5 Cs 0.33 WO 3 .
また、Zn0.5Cs0.33WO3微粒子がCs0.33WO3換算で8重量%となるように実施例1と同様にして調製した分散液(A液)中のZn0.5Cs0.33WO3微粒子の粒子直径は、TEM観察の結果、10〜50nmであった。 Further, Zn 0.5 Cs 0.33 WO 3 Zn 0.5 fine particles dispersion was prepared in the same manner as in Example 1 so as to be 8% by weight Cs 0.33 WO 3 terms (A solution) in The particle diameter of the Cs 0.33 WO 3 fine particles was 10 to 50 nm as a result of TEM observation.
そして、実施例1と同様、実施例2に係る近赤外線遮蔽体の光学特性を測定したところ、可視光透過率70%のときの日射透過率は32.9%、ヘイズは1.1%であった。 And as in Example 1, when the optical characteristics of the near-infrared shield according to Example 2 were measured, the solar radiation transmittance was 32.9% and the haze was 1.1% when the visible light transmittance was 70%. there were.
また、上記耐湿熱試験における72時間後のΔVLTは2.43%、72時間後のΔT820nmは4.99%であり、以下に記載する比較例1と較べて耐湿熱性の向上が確認された。尚、実施例2において上記耐熱試験は実施しなかった。 Moreover, ΔVLT after 72 hours in the above-mentioned wet heat resistance test was 2.43%, and ΔT820 nm after 72 hours was 4.99%, confirming improvement in wet heat resistance as compared with Comparative Example 1 described below. In Example 2, the heat resistance test was not performed.
[実施例3]
Cs0.33WO3微粒子10gに対し、塩基性炭酸亜鉛を4.05g添加した実施例1の条件に代えて、塩基性炭酸亜鉛を2.07g添加したことを除いて実施例1と同様にして、実施例3に係るZn0.7Cs0.33WO3微粒子(複合タングステン酸化物B微粒子)を製造し、かつ、実施例1と同様にして実施例3に係る近赤外線遮蔽体を製造した。
[Example 3]
The same procedure as in Example 1 except that 2.07 g of basic zinc carbonate was added instead of the condition of Example 1 in which 4.05 g of basic zinc carbonate was added to 10 g of Cs 0.33 WO 3 fine particles. Then, Zn 0.7 Cs 0.33 WO 3 fine particles (composite tungsten oxide B fine particles) according to Example 3 are manufactured, and a near-infrared shield according to Example 3 is manufactured in the same manner as in Example 1. did.
尚、実施例3に係る焼成粉のX線回折による結晶相の同定の結果、Cs0.33WO3に帰属するピークとZnOに帰属する微弱なピ−クが認められた。また、Cs2O等のセシウム化合物やCs金属のピークは認められないので、CsとZnの置換やCs原子の遊離は発生していない。また、Zn0.7Cs0.33WO3微粒子の格子定数c/aは、1.027673であり、亜鉛を含まないCs0.33WO3微粒子の格子定数の比c/a(1.027547)に比べて大きくなっており、添加した亜鉛の一部が固溶していることが確認された。更に、化学分析でも、Zn0.7Cs0.33WO3の構成比であることが確認された。 As a result of identifying the crystal phase of the calcined powder according to Example 3 by X-ray diffraction, a peak attributed to Cs 0.33 WO 3 and a weak peak attributed to ZnO were observed. In addition, since no peak of Cs 2 compound such as Cs 2 O or Cs metal is observed, substitution of Cs and Zn and liberation of Cs atoms do not occur. Further, the lattice constant c / a of Zn 0.7 Cs 0.33 WO 3 fine particles is 1.027673, and the ratio c / a of the lattice constant of Cs 0.33 WO 3 fine particles not containing zinc (1.027547) ), And it was confirmed that a part of the added zinc was dissolved. Furthermore, it was also confirmed by chemical analysis that the composition ratio was Zn 0.7 Cs 0.33 WO 3 .
また、Zn0.7Cs0.33WO3微粒子がCs0.33WO3換算で8重量%となるように実施例1と同様にして調製した分散液(A液)中のZn0.7Cs0.33WO3微粒子の粒子直径は、TEM観察の結果、10〜50nmであった。 Further, Zn 0.7 Cs 0.33 WO 3 Zn 0.7 fine particles dispersion was prepared in the same manner as in Example 1 so as to be 8% by weight Cs 0.33 WO 3 terms (A solution) in The particle diameter of the Cs 0.33 WO 3 fine particles was 10 to 50 nm as a result of TEM observation.
そして、実施例1と同様、実施例3に係る近赤外線遮蔽体の光学特性を測定したところ、可視光透過率70%のときの日射透過率は31.6%、ヘイズは1.1%であった。 And like Example 1, when the optical characteristic of the near-infrared shield which concerns on Example 3 was measured, the solar radiation transmittance | permeability at the time of visible light transmittance | permeability 70% is 31.6%, and a haze is 1.1%. there were.
また、上記耐湿熱試験における72時間後のΔVLTは1.63%、72時間後のΔT820nmは3.24%であり、以下に記載する比較例1と較べて耐湿熱性の向上が確認された。尚、実施例3において上記耐熱試験は実施しなかった。 Further, ΔVLT after 72 hours in the above-mentioned wet heat resistance test was 1.63%, and ΔT820 nm after 72 hours was 3.24%, confirming improvement in heat and humidity resistance as compared with Comparative Example 1 described below. In Example 3, the heat resistance test was not performed.
[実施例4]
Cs0.33WO3微粒子10gに対し、塩基性炭酸亜鉛を4.05g添加した実施例1の条件に代えて、塩基性炭酸亜鉛を2.66g添加したことを除いて実施例1と同様にして、実施例4に係るZn0.9Cs0.33WO3微粒子(複合タングステン酸化物B微粒子)を製造し、かつ、実施例1と同様にして実施例4に係る近赤外線遮蔽体を製造した。
[Example 4]
The same procedure as in Example 1 except that 2.66 g of basic zinc carbonate was added instead of the condition of Example 1 in which 4.05 g of basic zinc carbonate was added to 10 g of Cs 0.33 WO 3 fine particles. Then, Zn 0.9 Cs 0.33 WO 3 fine particles (composite tungsten oxide B fine particles) according to Example 4 are manufactured, and a near-infrared shield according to Example 4 is manufactured in the same manner as in Example 1. did.
尚、実施例4に係る焼成粉のX線回折による結晶相の同定の結果、Cs0.33WO3に帰属するピークとZnOに帰属する微弱なピ−クが認められた。また、Cs2O等のセシウム化合物やCs金属のピークは認められないので、CsとZnの置換やCs原子の遊離は発生していない。また、Zn0.9Cs0.33WO3微粒子の格子定数c/aは、1.027685であり、亜鉛を含まないCs0.33WO3微粒子の格子定数の比c/a(1.027547)に比べて大きくなっており、添加した亜鉛の一部が固溶していることが確認された。更に、化学分析でも、Zn0.9Cs0.33WO3の構成比であることが確認された。 As a result of identifying the crystal phase of the calcined powder according to Example 4 by X-ray diffraction, a peak attributed to Cs 0.33 WO 3 and a weak peak attributed to ZnO were observed. In addition, since no peak of Cs 2 compound such as Cs 2 O or Cs metal is observed, substitution of Cs and Zn and liberation of Cs atoms do not occur. The lattice constant c / a of Zn 0.9 Cs 0.33 WO 3 fine particles is 1.027685, and the ratio c / a of the lattice constant of Cs 0.33 WO 3 fine particles not containing zinc (1.027547) ), And it was confirmed that a part of the added zinc was dissolved. Furthermore, it was also confirmed by chemical analysis that the composition ratio was Zn 0.9 Cs 0.33 WO 3 .
また、Zn0.9Cs0.33WO3微粒子がCs0.33WO3換算で8重量%となるように実施例1と同様にして調製した分散液(A液)中のZn0.9Cs0.33WO3微粒子の粒子直径は、TEM観察の結果、10〜50nmであった。 Further, Zn 0.9 in Zn 0.9 Cs 0.33 WO 3 fine particles were prepared in the same manner as in Example 1 so as to be 8% by weight Cs 0.33 WO 3 in terms dispersion (A solution) The particle diameter of the Cs 0.33 WO 3 fine particles was 10 to 50 nm as a result of TEM observation.
そして、実施例1と同様、実施例4に係る近赤外線遮蔽体の光学特性を測定したところ、可視光透過率70%のときの日射透過率は31.6%、ヘイズは1.2%であった。 And like Example 1, when the optical characteristic of the near-infrared shield which concerns on Example 4 was measured, the solar radiation transmittance | permeability in case of visible light transmittance | permeability 70% is 31.6%, and a haze is 1.2%. there were.
また、上記耐湿熱試験における72時間後のΔVLTは1.27%、72時間後のΔT820nmは2.65%であり、以下に記載する比較例1と較べて耐湿熱性の向上が確認された。尚、実施例4において上記耐熱試験は実施しなかった。 Further, ΔVLT after 72 hours in the above heat and heat resistance test was 1.27%, and ΔT820nm after 72 hours was 2.65%, confirming an improvement in heat and humidity resistance as compared with Comparative Example 1 described below. In Example 4, the heat resistance test was not performed.
[実施例5]
Cs0.33WO3微粒子10gに対し、塩基性炭酸亜鉛を4.05g添加した実施例1の条件に代えて、塩基性炭酸亜鉛を6.08×10-2g添加し、かつ、N2ガス雰囲気下において400℃の条件で1時間熱処理した実施例1の条件に代えてN2ガス雰囲気下において400℃の条件で3時間熱処理したことを除いて実施例1と同様にして、実施例5に係るZn0.015Cs0.33WO3微粒子(複合タングステン酸化物B微粒子)を製造し、かつ、実施例1と同様にして実施例5に係る近赤外線遮蔽体を製造した。
[Example 5]
Instead of the condition of Example 1 in which 4.05 g of basic zinc carbonate was added to 10 g of Cs 0.33 WO 3 fine particles, 6.08 × 10 −2 g of basic zinc carbonate was added, and N 2 In the same manner as in Example 1, except that the heat treatment was performed for 3 hours under the condition of 400 ° C. under N 2 gas atmosphere instead of the condition of Example 1 where the heat treatment was performed for 1 hour under the condition of 400 ° C. under the gas atmosphere. Zn 0.015 Cs 0.33 WO 3 fine particles (composite tungsten oxide B fine particles) according to No. 5 were produced, and a near-infrared shield according to Example 5 was produced in the same manner as in Example 1.
尚、実施例5に係る焼成粉のX線回折による結晶相の同定の結果、Cs0.33WO3に帰属するピークのみが認められた。また、Cs2O等のセシウム化合物やCs金属のピークは認められないので、CsとZnの置換やCs原子の遊離は発生していない。また、Zn0.015Cs0.33WO3微粒子の格子定数c/aは、1.027630であり、亜鉛を含まないCs0.33WO3微粒子の格子定数の比c/a(1.027547)に比べて大きくなっており、添加した亜鉛の全てが固溶していることが確認された。更に、化学分析でも、Zn0.015Cs0.33WO3の構成比であることが確認された。 In addition, as a result of identification of the crystal phase by X-ray diffraction of the baked powder according to Example 5, only a peak attributed to Cs 0.33 WO 3 was observed. In addition, since no peak of Cs 2 compound such as Cs 2 O or Cs metal is observed, substitution of Cs and Zn and liberation of Cs atoms do not occur. The lattice constant c / a of Zn 0.015 Cs 0.33 WO 3 fine particles is 1.027630, and the ratio c / a of the lattice constant of Cs 0.33 WO 3 fine particles not containing zinc (1.027547) ), And it was confirmed that all of the added zinc was dissolved. Furthermore, it was also confirmed by chemical analysis that the composition ratio was Zn 0.015 Cs 0.33 WO 3 .
また、Zn0.015Cs0.33WO3微粒子がCs0.33WO3換算で8重量%となるように実施例1と同様にして調製した分散液(A液)中のZn0.015Cs0.33WO3微粒子の粒子直径は、TEM観察の結果、10〜50nmであった。 Further, Zn 0.015 Cs 0.33 WO 3 Zn 0.015 fine particles dispersion was prepared in the same manner as in Example 1 so as to be 8% by weight Cs 0.33 WO 3 terms (A solution) in The particle diameter of the Cs 0.33 WO 3 fine particles was 10 to 50 nm as a result of TEM observation.
そして、実施例1と同様、実施例5に係る近赤外線遮蔽体の光学特性を測定したところ、可視光透過率70%のときの日射透過率は33.1%、ヘイズは1.0%であった。 And as in Example 1, when the optical characteristics of the near-infrared shield according to Example 5 were measured, the solar radiation transmittance was 33.1% and the haze was 1.0% when the visible light transmittance was 70%. there were.
また、上記耐湿熱試験における72時間後のΔVLTは2.92%、72時間後のΔT820nmは6.00%であり、以下に記載する比較例1と較べて耐湿熱性の向上が確認された。尚、実施例5において上記耐熱試験は実施しなかった。 Moreover, ΔVLT after 72 hours in the above-described wet heat resistance test was 2.92%, and ΔT820 nm after 72 hours was 6.00%, confirming improvement in wet heat resistance as compared with Comparative Example 1 described below. In Example 5, the heat resistance test was not performed.
[実施例6]
Zn1.0Cs0.33WO3微粒子10.37重量%(Cs0.33WO3換算で8重量%)、高分子系分散剤(固型分40%)8重量%、トルエン81.62重量%を秤量し、0.3mmφZrO2ビーズを入れたペイントシェーカーで9時間粉砕・分散処理した実施例1の条件に代えて、ペイントシェーカーでの分散時間を7時間とした以外は実施例1と同様にして、Zn1.0Cs0.33WO3微粒子(複合タングステン酸化物B微粒子)が分散された実施例6に係る分散液(A液)を調製した。
[Example 6]
Zn 1.0 Cs 0.33 WO 3 fine particles 10.37% by weight (8% by weight in terms of Cs 0.33 WO 3 ), polymer dispersant (solid content 40%) 8% by weight, toluene 81.62 Example 1 except that the dispersion time in the paint shaker was changed to 7 hours instead of the conditions of Example 1 in which the weight% was weighed and pulverized and dispersed in the paint shaker containing 0.3 mmφZrO 2 beads for 9 hours. Similarly, a dispersion liquid (liquid A) according to Example 6 in which Zn 1.0 Cs 0.33 WO 3 fine particles (composite tungsten oxide B fine particles) were dispersed was prepared.
尚、実施例1と同様にして調製した分散液(A液)中のZn1.0Cs0.33WO3微粒子の粒子直径は、TEM観察の結果、70〜110nmであった。 The particle diameter of the Zn 1.0 Cs 0.33 WO 3 fine particles in the dispersion (liquid A) prepared in the same manner as in Example 1 was 70 to 110 nm as a result of TEM observation.
そして、実施例1と同様、実施例6に係る近赤外線遮蔽体の光学特性を測定したところ、可視光透過率70%のときの日射透過率は32.0%、ヘイズは1.3%であった。 And like Example 1, when the optical characteristic of the near-infrared shield which concerns on Example 6 was measured, the solar radiation transmittance | permeability at the time of visible light transmittance | permeability 70% is 32.0%, and a haze is 1.3%. there were.
また、上記耐湿熱試験における72時間後のΔVLTは1.25%、72時間後のΔT820nmは2.42%であり、以下に記載する比較例1と較べて耐湿熱性の向上が確認された。尚、実施例6において上記耐熱試験は実施しなかった。 Further, ΔVLT after 72 hours in the above heat and heat resistance test was 1.25%, and ΔT820 nm after 72 hours was 2.42%, confirming an improvement in moisture and heat resistance as compared with Comparative Example 1 described below. In Example 6, the heat resistance test was not performed.
[実施例7]
Zn1.0Cs0.33WO3微粒子10.37重量%(Cs0.33WO3換算で8重量%)、高分子系分散剤(固型分40%)8重量%、トルエン81.62重量%を秤量し、0.3mmφZrO2ビーズを入れたペイントシェーカーで9時間粉砕・分散処理した実施例1の条件に代えて、ペイントシェーカーでの分散時間を5時間とした以外は実施例1と同様にして、Zn1.0Cs0.33WO3微粒子(複合タングステン酸化物B微粒子)が分散された実施例7に係る分散液(A液)を調製した。
[Example 7]
Zn 1.0 Cs 0.33 WO 3 fine particles 10.37% by weight (8% by weight in terms of Cs 0.33 WO 3 ), polymer dispersant (solid content 40%) 8% by weight, toluene 81.62 The weight% was weighed and Example 1 was used except that the dispersion time in the paint shaker was changed to 5 hours instead of the conditions in Example 1 where the dispersion was performed for 9 hours in the paint shaker containing 0.3 mmφZrO 2 beads. Similarly, a dispersion (solution A) according to Example 7 in which Zn 1.0 Cs 0.33 WO 3 fine particles (composite tungsten oxide B fine particles) were dispersed was prepared.
尚、実施例1と同様にして調製した分散液(A液)中のZn1.0Cs0.33WO3微粒子の粒子直径は、TEM観察の結果、150〜200nmであった。 In addition, the particle diameter of Zn 1.0 Cs 0.33 WO 3 fine particles in the dispersion (liquid A) prepared in the same manner as in Example 1 was 150 to 200 nm as a result of TEM observation.
そして、実施例1と同様、実施例7に係る近赤外線遮蔽体の光学特性を測定したところ、可視光透過率70%のときの日射透過率は33.8%、ヘイズは1.8%であった。 And as in Example 1, when the optical characteristics of the near-infrared shield according to Example 7 were measured, the solar radiation transmittance was 33.8% and the haze was 1.8% when the visible light transmittance was 70%. there were.
また、上記耐湿熱試験における72時間後のΔVLTは1.12%、72時間後のΔT820nmは2.21%であり、以下に記載する比較例1と較べて耐湿熱性の向上が確認された。尚、実施例7において上記耐熱試験は実施しなかった。 In addition, ΔVLT after 72 hours in the above-described wet heat resistance test was 1.12%, and ΔT820 nm after 72 hours was 2.21%, confirming improvement in wet heat resistance as compared with Comparative Example 1 described below. In Example 7, the heat resistance test was not performed.
[比較例1]
実施例1において製造したCs0.33WO3微粒子(複合タングステン酸化物A微粒子)を近赤外線遮蔽材料微粒子として適用した以外は実施例1と同様にして、比較例1に係る近赤外線遮蔽体を製造した。
[Comparative Example 1]
The near-infrared shielding material according to Comparative Example 1 was obtained in the same manner as in Example 1 except that the Cs 0.33 WO 3 fine particles (composite tungsten oxide A fine particles) produced in Example 1 were applied as the near-infrared shielding material fine particles. Manufactured.
尚、比較例1に係るCs0.33WO3微粒子は、実施例1と同様、Cs0.33WO3単相であり、格子定数の比c/aは1.027547であった。 The Cs 0.33 WO 3 fine particles according to Comparative Example 1 were Cs 0.33 WO 3 single phase as in Example 1, and the lattice constant ratio c / a was 1.027547.
また、Cs0.33WO3微粒子が8重量%となるように実施例1と同様にして調製した分散液(A液)中のCs0.33WO3微粒子の粒子直径は、TEM観察の結果、10〜50nmであった。 Further, the particle diameter of the Cs 0.33 WO 3 fine particles in the dispersion (liquid A) prepared in the same manner as in Example 1 so that the amount of Cs 0.33 WO 3 fine particles is 8% by weight is the result of TEM observation. 10 to 50 nm.
そして、実施例1と同様、比較例1に係る近赤外線遮蔽体の光学特性を測定したところ、可視光透過率70%のときの日射透過率は33.3%、ヘイズは1.2%であった。 And as in Example 1, when the optical characteristics of the near-infrared shield according to Comparative Example 1 were measured, the solar radiation transmittance was 33.3% and the haze was 1.2% when the visible light transmittance was 70%. there were.
また、上記耐湿熱試験における72時間後のΔVLTは4.78%、72時間後のΔT820nmは9.82%であり、また、上記耐熱試験における72時間後のΔVLTは2.22%、72時間後のΔT820nmは5.49%であり、実施例1〜7と較べて耐湿熱性に劣り、かつ、実施例1と較べて耐熱性にも劣ることが確認された。 In addition, ΔVLT after 72 hours in the heat and humidity test was 4.78%, ΔT820nm after 72 hours was 9.82%, and ΔVLT after 72 hours in the heat test was 2.22% and 72 hours. The later ΔT820 nm was 5.49%, which was confirmed to be inferior in heat-and-moisture resistance as compared with Examples 1 to 7 and inferior in heat resistance as compared with Example 1.
[比較例2]
Cs0.33WO3微粒子10gに対し、塩基性炭酸亜鉛を4.05g添加した実施例1の条件に代えて塩基性炭酸亜鉛を2.43g添加し、かつ、N2ガス雰囲気下において400℃の条件で1時間熱処理した実施例1の条件に代えてN2ガス雰囲気下において400℃の条件で24時間熱処理したことを除いて実施例1と同様にして、比較例2に係るZn0.6Cs0.33WO3微粒子(複合タングステン酸化物B微粒子)を製造し、かつ、実施例1と同様にして比較例2に係る近赤外線遮蔽体を製造した。
[Comparative Example 2]
Instead of the conditions of Example 1 in which 4.05 g of basic zinc carbonate was added to 10 g of Cs 0.33 WO 3 fine particles, 2.43 g of basic zinc carbonate was added, and 400 ° C. in an N 2 gas atmosphere. In the same manner as in Example 1 except that the heat treatment was performed for 24 hours under the condition of 400 ° C. in an N 2 gas atmosphere instead of the condition of Example 1 where the heat treatment was performed for 1 hour under the conditions of Zn 0. 6 Cs 0.33 WO 3 fine particles (composite tungsten oxide B fine particles) were produced, and a near-infrared shield according to Comparative Example 2 was produced in the same manner as in Example 1.
尚、比較例2に係る焼成粉のX線回折による結晶相の同定の結果、Cs0.33WO3に帰属するピークとZnOに帰属する微弱なピ−クが認められた。また、Cs2O等のセシウム化合物やCs金属のピークは認められないので、CsとZnの置換やCs原子の遊離は発生していない。また、Zn0.6Cs0.33WO3微粒子の格子定数c/aは、1.027712(すなわち、本発明の上記「1.027300〜1.027700」範囲外)であり、亜鉛を含まないCs0.33WO3微粒子の格子定数の比c/a(1.027547)に比べて大きくなっており、添加した亜鉛の一部が固溶していることが確認された。更に、化学分析でも、Zn0.6Cs0.33WO3の構成比であることが確認された。 As a result of identifying the crystal phase of the fired powder according to Comparative Example 2 by X-ray diffraction, a peak attributed to Cs 0.33 WO 3 and a weak peak attributed to ZnO were observed. In addition, since no peak of Cs 2 compound such as Cs 2 O or Cs metal is observed, substitution of Cs and Zn and liberation of Cs atoms do not occur. The lattice constant c / a of the Zn 0.6 Cs 0.33 WO 3 fine particles is 1.027712 (that is, outside the above-mentioned “1.027300 to 1.027700” range of the present invention), and does not contain zinc. It was larger than the lattice constant ratio c / a (1.027547) of Cs 0.33 WO 3 fine particles, and it was confirmed that a part of the added zinc was dissolved. Furthermore, it was confirmed by chemical analysis that the composition ratio was Zn 0.6 Cs 0.33 WO 3 .
また、Zn0.6Cs0.33WO3微粒子がCs0.33WO3換算で8重量%となるように実施例1と同様にして調製した分散液(A液)中のZn0.6Cs0.33WO3微粒子の粒子直径は、TEM観察の結果、10〜50nmであった。 Further, Zn 0.6 Cs 0.33 WO 3 Zn 0.6 fine particles dispersion was prepared in the same manner as in Example 1 so as to be 8% by weight Cs 0.33 WO 3 terms (A solution) in The particle diameter of the Cs 0.33 WO 3 fine particles was 10 to 50 nm as a result of TEM observation.
そして、実施例1と同様、比較例2に係る近赤外線遮蔽体の光学特性を測定したところ、可視光透過率70%のときの日射透過率は33.1%、ヘイズは1.1%であった。 And like Example 1, when the optical characteristic of the near-infrared shield according to Comparative Example 2 was measured, the solar radiation transmittance was 33.1% and the haze was 1.1% when the visible light transmittance was 70%. there were.
また、上記耐湿熱試験における72時間後のΔVLTは6.29%、72時間後のΔT820nmは12.92%であり、上記実施例1〜7と較べて耐湿熱性に劣るものであることが確認された。尚、比較例2において上記耐熱試験は実施しなかった。 In addition, ΔVLT after 72 hours in the above heat and heat resistance test was 6.29%, and ΔT820 nm after 72 hours was 12.92%, which was confirmed to be inferior in heat and humidity resistance compared to Examples 1-7. It was done. In Comparative Example 2, the heat resistance test was not performed.
[比較例3]
Cs0.33WO3微粒子10gに対し、塩基性炭酸亜鉛を4.05g添加した実施例1の条件に代えて塩基性炭酸亜鉛を4.05×10-1g添加し、かつ、N2ガス雰囲気下において400℃の条件で1時間熱処理した実施例1の条件に代えてN2ガス雰囲気下において400℃の条件で24時間熱処理したことを除いて実施例1と同様にして、比較例3に係るZn0.1Cs0.33WO3微粒子(複合タングステン酸化物B微粒子)を製造し、かつ、実施例1と同様にして比較例3に係る近赤外線遮蔽体を製造した。
[Comparative Example 3]
Instead of the condition of Example 1 in which 4.05 g of basic zinc carbonate was added to 10 g of Cs 0.33 WO 3 fine particles, 4.05 × 10 −1 g of basic zinc carbonate was added, and N 2 gas was added. Comparative Example 3 in the same manner as in Example 1 except that the heat treatment was performed for 24 hours under the condition of 400 ° C. in an N 2 gas atmosphere instead of the condition of Example 1 where the heat treatment was performed for 1 hour under the condition of 400 ° C. in the atmosphere. Zn 0.1 Cs 0.33 WO 3 fine particles (composite tungsten oxide B fine particles) according to the present invention were produced, and a near infrared shielding material according to Comparative Example 3 was produced in the same manner as in Example 1.
尚、比較例3に係る焼成粉のX線回折による結晶相の同定の結果、Cs0.33WO3に帰属するピークとZnOに帰属する微弱なピ−クが認められた。また、Cs2O等のセシウム化合物やCs金属のピークは認められないので、CsとZnの置換やCs原子の遊離は発生していない。また、Zn0.1Cs0.33WO3微粒子の格子定数c/aは、1.027728(すなわち、本発明の上記「1.027300〜1.027700」範囲外)であり、亜鉛を含まないCs0.33WO3微粒子の格子定数の比c/a(1.027547)に比べて大きくなっており、添加した亜鉛の一部が固溶していることが確認された。更に、化学分析でも、Zn0.1Cs0.33WO3の構成比であることが確認された。 As a result of identifying the crystal phase of the fired powder according to Comparative Example 3 by X-ray diffraction, a peak attributed to Cs 0.33 WO 3 and a weak peak attributed to ZnO were observed. In addition, since no peak of Cs 2 compound such as Cs 2 O or Cs metal is observed, substitution of Cs and Zn and liberation of Cs atoms do not occur. The lattice constant c / a of the Zn 0.1 Cs 0.33 WO 3 fine particles is 1.027728 (that is, outside the above-mentioned “1.027300 to 1.027700” range of the present invention), and does not contain zinc. It was larger than the lattice constant ratio c / a (1.027547) of Cs 0.33 WO 3 fine particles, and it was confirmed that a part of the added zinc was dissolved. Furthermore, it was also confirmed by chemical analysis that the composition ratio was Zn 0.1 Cs 0.33 WO 3 .
また、Zn0.1Cs0.33WO3微粒子がCs0.33WO3換算で8重量%となるように実施例1と同様にして調製した分散液(A液)中のZn0.1Cs0.33WO3微粒子の粒子直径は、TEM観察の結果、10〜50nmであった。 Further, Zn 0.1 Cs 0.33 WO 3 Zn 0.1 fine particles dispersion was prepared in the same manner as in Example 1 so as to be 8% by weight Cs 0.33 WO 3 in terms of (A solution) The particle diameter of the Cs 0.33 WO 3 fine particles was 10 to 50 nm as a result of TEM observation.
そして、実施例1と同様、比較例3に係る近赤外線遮蔽体の光学特性を測定したところ、可視光透過率70%のときの日射透過率は33.7%、ヘイズは1.1%であった。 And as in Example 1, when the optical characteristics of the near-infrared shield according to Comparative Example 3 were measured, the solar radiation transmittance was 33.7% and the haze was 1.1% when the visible light transmittance was 70%. there were.
また、上記耐湿熱試験における72時間後のΔVLTは9.75%、72時間後のΔT820nmは20.03%であり、上記実施例1〜7と較べて耐湿熱性に劣るものであることが確認された。尚、比較例3において上記耐熱試験は実施しなかった。 In addition, ΔVLT after 72 hours in the above-mentioned wet heat resistance test was 9.75%, and ΔT820nm after 72 hours was 20.03%, which was confirmed to be inferior to the heat and heat resistance compared to Examples 1-7. It was done. In Comparative Example 3, the heat resistance test was not performed.
[比較例4]
Cs0.33WO3微粒子10gに対し、塩基性炭酸亜鉛を4.05g添加した実施例1の条件に代えて塩基性炭酸亜鉛を8.10×10-2g添加し、かつ、N2ガス雰囲気下において400℃の条件で1時間熱処理した実施例1の条件に代えてN2ガス雰囲気下において400℃の条件で12時間熱処理したことを除いて実施例1と同様にして、比較例4に係るZn0.02Cs0.33WO3微粒子(複合タングステン酸化物B微粒子)を製造し、かつ、実施例1と同様にして比較例4に係る近赤外線遮蔽体を製造した。
[Comparative Example 4]
Instead of the conditions of Example 1 in which 4.05 g of basic zinc carbonate was added to 10 g of Cs 0.33 WO 3 fine particles, 8.10 × 10 −2 g of basic zinc carbonate was added, and N 2 gas was added. Comparative Example 4 in the same manner as in Example 1 except that the heat treatment was performed for 12 hours under the condition of 400 ° C. in an N 2 gas atmosphere instead of the condition of Example 1 that was heat-treated for 1 hour under the condition of 400 ° C. in the atmosphere. Zn 0.02 Cs 0.33 WO 3 fine particles (composite tungsten oxide B fine particles) according to the present invention were produced, and a near-infrared shield according to Comparative Example 4 was produced in the same manner as in Example 1.
尚、比較例4に係る焼成粉のX線回折による結晶相の同定の結果、Cs0.33WO3に帰属するピークとZnOに帰属する微弱なピ−クが認められた。また、Cs2O等のセシウム化合物やCs金属のピークは認められないので、CsとZnの置換やCs原子の遊離は発生していない。また、Zn0.02Cs0.33WO3微粒子の格子定数c/aは、1.027706(すなわち、本発明の上記「1.027300〜1.027700」範囲外)であり、亜鉛を含まないCs0.33WO3微粒子の格子定数の比c/a(1.027547)に比べて大きくなっており、添加した亜鉛の一部が固溶していることが確認された。更に、化学分析でも、Zn0.02Cs0.33WO3の構成比であることが確認された。 As a result of identifying the crystal phase of the fired powder according to Comparative Example 4 by X-ray diffraction, a peak attributed to Cs 0.33 WO 3 and a weak peak attributed to ZnO were observed. In addition, since no peak of Cs 2 compound such as Cs 2 O or Cs metal is observed, substitution of Cs and Zn and liberation of Cs atoms do not occur. The lattice constant c / a of the Zn 0.02 Cs 0.33 WO 3 fine particles is 1.027706 (that is, outside the above-mentioned “1.027300 to 1.027700” range of the present invention), and does not contain zinc. It was larger than the lattice constant ratio c / a (1.027547) of Cs 0.33 WO 3 fine particles, and it was confirmed that a part of the added zinc was dissolved. Furthermore, it was also confirmed by chemical analysis that the composition ratio was Zn 0.02 Cs 0.33 WO 3 .
また、Zn0.02Cs0.33WO3微粒子がCs0.33WO3換算で8重量%となるように実施例1と同様にして調製した分散液(A液)中のZn0.02Cs0.33WO3微粒子の粒子直径は、TEM観察の結果、10〜50nmであった。 Further, Zn 0.02 Cs 0.33 WO 3 Zn 0.02 fine particles dispersion was prepared in the same manner as in Example 1 so as to be 8% by weight Cs 0.33 WO 3 terms (A solution) in The particle diameter of the Cs 0.33 WO 3 fine particles was 10 to 50 nm as a result of TEM observation.
そして、実施例1と同様、比較例4に係る近赤外線遮蔽体の光学特性を測定したところ、可視光透過率70%のときの日射透過率は33.6%、ヘイズは1.1%であった。 And as in Example 1, when the optical characteristics of the near-infrared shield according to Comparative Example 4 were measured, the solar radiation transmittance was 33.6% and the haze was 1.1% when the visible light transmittance was 70%. there were.
また、上記耐湿熱試験における72時間後のΔVLTは7.93%、72時間後のΔT820nmは16.28%であり、上記実施例1〜7と較べて耐湿熱性に劣るものであることが確認された。尚、比較例4において上記耐熱試験は実施しなかった。 Moreover, ΔVLT after 72 hours in the above-mentioned wet heat resistance test was 7.93%, and ΔT820 nm after 72 hours was 16.28%, which was confirmed to be inferior to the heat and heat resistance compared to Examples 1-7. It was done. In Comparative Example 4, the heat resistance test was not performed.
(1)Cs0.33WO3微粒子(複合タングステン酸化物A微粒子)の格子定数の比c/aよりも大きく、その数値が1.027700以下である亜鉛が固溶した「複合タングステン酸化物B微粒子」を近赤外線遮蔽材料微粒子として適用した実施例1〜7に係る近赤外線遮蔽体は、可視光透過率70%のときの日射透過率が全て37%未満であり、かつ、上記耐湿熱試験における72時間後のΔVLTは全て3%未満、72時間後のΔT820nmも7.0%以下、また、実施例1の上記耐熱試験における72時間後のΔVLTは0.75%、72時間後のΔT820nmは2.23%である。
(1) “Compound Tungsten Oxide B” in which zinc having a numerical value larger than the lattice constant ratio c / a of Cs 0.33 WO 3 fine particles (composite tungsten oxide A fine particles) and having a numerical value of 1.027700 or less was dissolved. The near-infrared shields according to Examples 1 to 7 in which the “fine particles” are applied as the near-infrared shielding material fine particles all have a solar radiation transmittance of less than 37% when the visible light transmittance is 70%, and the moisture and heat resistance test is performed. In all, ΔVLT after 72 hours was less than 3%, ΔT820nm after 72 hours was 7.0% or less, and ΔVLT after 72 hours in the heat test of Example 1 was 0.75%, and ΔT820nm after 72 hours. Is 2.23%.
従って、実施例1〜7に係る近赤外線遮蔽体は優れた可視光透過性能と良好な近赤外線遮蔽性能を備えているため各種建築物や車両の窓材等の分野において好適に利用できることが確認され、かつ、耐熱・耐湿熱性にも優れていることが確認される。
(2)他方、Cs0.33WO3微粒子(複合タングステン酸化物A微粒子)を近赤外線遮蔽材料微粒子として適用した比較例1に係る近赤外線遮蔽体は、上記耐湿熱試験における72時間後のΔVLTが4.78%、72時間後のΔT820nmが9.82%であり、かつ、上記耐熱試験における72時間後のΔVLTは2.22%、72時間後のΔT820nmは5.49%であり、実施例1〜7と較べて耐熱・耐湿熱性に問題があることが確認される。
(3)また、製造された複合タングステン酸化物B微粒子の格子定数c/aが、本発明の「1.027300〜1.027700」範囲外である比較例2〜4に係る近赤外線遮蔽体も、上記耐湿熱試験における72時間後のΔVLTが6.29〜9.75%、72時間後のΔT820nmが12.92〜20.03%と各実施例より劣っており、実施例1〜7と較べて耐湿熱性に問題があることが確認される。
Therefore, since the near-infrared shielding bodies according to Examples 1 to 7 have excellent visible light transmission performance and good near-infrared shielding performance, it is confirmed that they can be suitably used in the fields of various buildings and vehicle window materials. In addition, it is confirmed that it is excellent in heat resistance and moist heat resistance.
(2) On the other hand, the near-infrared shielding material according to Comparative Example 1 in which Cs 0.33 WO 3 fine particles (composite tungsten oxide A fine particles) are applied as the near-infrared shielding material fine particles has a ΔVLT after 72 hours in the wet heat resistance test. Was 4.78%, ΔT820nm after 72 hours was 9.82%, ΔVLT after 72 hours in the above heat test was 2.22%, and ΔT820nm after 72 hours was 5.49%. It is confirmed that there is a problem in heat resistance and moist heat resistance as compared with Examples 1-7.
(3) Also, the near-infrared shield according to Comparative Examples 2 to 4 in which the lattice constant c / a of the manufactured composite tungsten oxide B fine particles is outside the range of “1.027300 to 1.027700” of the present invention. The ΔVLT after 72 hours in the above heat and heat resistance test is 6.29 to 9.75%, and the ΔT820nm after 72 hours is 12.92 to 20.03%, which is inferior to each example. It is confirmed that there is a problem with heat and humidity resistance.
本発明に係る近赤外線遮蔽材料微粒子は優れた可視光透過性能と良好な近赤外線遮蔽性能を備え、かつ、耐熱・耐湿熱性にも優れているため、各種建築物や車両の窓材等の分野において広く用いられている近赤外線遮蔽体の構成材料として利用される産業上の利用可能性を有している。 The near-infrared shielding material fine particles according to the present invention have excellent visible light transmission performance and good near-infrared shielding performance, and are also excellent in heat resistance and moisture heat resistance. The present invention has industrial applicability to be used as a constituent material of a near-infrared shield widely used in Japan.
1 WO6単位
2 元素(M)
1 WO 6
Claims (9)
一般式ZnxMyWOz(但し、Znは亜鉛、MはCs、Rb、K、Na、Ba、Ca、Sr、Mgの内から選択される1種以上の元素、Wはタングステン、Oは酸素、0.001≦x≦2.0、0.1≦y≦0.5、2.2≦z≦3.0)で表記される亜鉛が固溶した六方晶の結晶構造を有する複合タングステン酸化物Bの微粒子で構成され、その格子定数の比c/aが一般式MyWOz(但し、MはCs、Rb、K、Na、Ba、Ca、Sr、Mgの内から選択される1種以上の元素、Wはタングステン、Oは酸素、0.1≦y≦0.5、2.2≦z≦3.0)で表記される複合タングステン酸化物Aの格子定数の比c/aよりも大きく、その数値が1.027300〜1.027700であることを特徴とする近赤外線遮蔽材料微粒子。 In the near-infrared shielding material fine particles having absorption in the near-infrared region,
General formula ZnxMyWOz (where Zn is zinc, M is one or more elements selected from Cs, Rb, K, Na, Ba, Ca, Sr, Mg, W is tungsten, O is oxygen, 0.001 ≦ x ≦ 2.0, 0.1 ≦ y ≦ 0.5, 2.2 ≦ z ≦ 3.0) Fine particles of composite tungsten oxide B having a hexagonal crystal structure in which zinc represented by solid solution The lattice constant ratio c / a is represented by the general formula MyWOz (where M is one or more elements selected from Cs, Rb, K, Na, Ba, Ca, Sr, Mg, W is Tungsten, O is oxygen, 0.1 ≦ y ≦ 0.5, 2.2 ≦ z ≦ 3.0) is larger than the lattice constant ratio c / a of the composite tungsten oxide A, and the numerical value is Near-infrared shielding material fine particles characterized by being 1.027300 to 1.027700
一般式MyWOz(但し、MはCs、Rb、K、Na、Ba、Ca、Sr、Mgの内から選択される1種以上の元素、Wはタングステン、Oは酸素、0.1≦y≦0.5、2.2≦z≦3.0)で表記される複合タングステン酸化物Aの微粒子を原料とし、かつ、一般式ZnxMyWOz(但し、Znは亜鉛、MはCs、Rb、K、Na、Ba、Ca、Sr、Mgの内から選択される1種以上の元素、Wはタングステン、Oは酸素、0.001≦x≦2.0、0.1≦y≦0.5、2.2≦z≦3.0)で表記される組成となるように亜鉛元素を有する化合物を上記原料に添加し、この混合体を、還元性ガス雰囲気中若しくは不活性ガス雰囲気中または還元性ガスと不活性ガスの混合雰囲気中で熱処理して、請求項1に記載の近赤外線遮蔽材料微粒子を製造することを特徴とする近赤外線遮蔽材料微粒子の製造方法。 In the manufacturing method of near-infrared shielding material fine particles having absorption in the near-infrared region,
General formula MyWOz (where M is one or more elements selected from Cs, Rb, K, Na, Ba, Ca, Sr, Mg, W is tungsten, O is oxygen, 0.1 ≦ y ≦ 0 .5, 2.2 ≦ z ≦ 3.0) as a raw material, and a general formula ZnxMyWOz (where Zn is zinc, M is Cs, Rb, K, Na, One or more elements selected from Ba, Ca, Sr, and Mg, W is tungsten, O is oxygen, 0.001 ≦ x ≦ 2.0, 0.1 ≦ y ≦ 0.5, 2.2 ≦ z ≦ 3.0) is added to the raw material so that the composition is expressed by the following formula, and this mixture is added in a reducing gas atmosphere, an inert gas atmosphere, or a reducing gas and an inert gas. The near-infrared shielding material according to claim 1, which is heat-treated in a mixed atmosphere of active gas. The method of producing the near-infrared shielding material microparticle, characterized by producing fine particles.
上記近赤外線遮蔽材料微粒子が、一般式ZnxMyWOz(但し、Znは亜鉛、MはCs、Rb、K、Na、Ba、Ca、Sr、Mgの内から選択される1種以上の元素、Wはタングステン、Oは酸素、0.001≦x≦2.0、0.1≦y≦0.5、2.2≦z≦3.0)で表記される亜鉛が固溶した六方晶の結晶構造を有する複合タングステン酸化物Bの微粒子で構成され、その格子定数の比c/aが一般式MyWOz(但し、MはCs、Rb、K、Na、Ba、Ca、Sr、Mgの内から選択される1種以上の元素、Wはタングステン、Oは酸素、0.1≦y≦0.5、2.2≦z≦3.0)で表記される複合タングステン酸化物Aの格子定数の比c/aよりも大きく、その数値が1.027300〜1.027700であり、かつ、粒子直径が1nm以上500nm以下であることを特徴とする近赤外線遮蔽材料微粒子分散体。 In a near-infrared shielding material fine particle dispersion in which near-infrared shielding material fine particles are dispersed in a medium,
The near-infrared shielding material fine particles have the general formula ZnxMyWOz (where Zn is zinc, M is one or more elements selected from Cs, Rb, K, Na, Ba, Ca, Sr, and Mg, and W is tungsten. , O is oxygen, 0.001 ≦ x ≦ 2.0, 0.1 ≦ y ≦ 0.5, 2.2 ≦ z ≦ 3.0), which is a hexagonal crystal structure in which zinc is dissolved. It is composed of fine particles of composite tungsten oxide B having a lattice constant ratio c / a selected from the general formula MyWOz (where M is selected from Cs, Rb, K, Na, Ba, Ca, Sr, Mg) One or more elements, W is tungsten, O is oxygen, 0.1 ≦ y ≦ 0.5, 2.2 ≦ z ≦ 3.0) Ratio of lattice constant of composite tungsten oxide A c / larger than a, the numerical value is 1.027300 to 1.027700, and Near-infrared shielding material microparticle dispersion which is characterized in that the child diameter is 1nm or more 500nm or less.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2009216673A JP2011063739A (en) | 2009-09-18 | 2009-09-18 | Microparticle of near infrared ray shielding material, production method therefor, particle dispersion of near infrared ray shielding material, and near infrared ray shielding body |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2009216673A JP2011063739A (en) | 2009-09-18 | 2009-09-18 | Microparticle of near infrared ray shielding material, production method therefor, particle dispersion of near infrared ray shielding material, and near infrared ray shielding body |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JP2011063739A true JP2011063739A (en) | 2011-03-31 |
Family
ID=43950311
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2009216673A Pending JP2011063739A (en) | 2009-09-18 | 2009-09-18 | Microparticle of near infrared ray shielding material, production method therefor, particle dispersion of near infrared ray shielding material, and near infrared ray shielding body |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP2011063739A (en) |
Cited By (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2012229388A (en) * | 2011-04-14 | 2012-11-22 | Sumitomo Metal Mining Co Ltd | Method for manufacturing heat-ray shielding fine particle-containing composition and heat-ray shielding fine particle-containing composition, heat-ray shielding film using the heat-ray shielding fine particle-containing composition and heat-ray shielding transparent laminated substrate using the heat-ray shielding film |
| JP2013526625A (en) * | 2010-05-10 | 2013-06-24 | バイエル・インテレクチュアル・プロパティ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング | Polymer composition having heat absorption characteristics and high stability |
| JP2013173642A (en) * | 2012-02-24 | 2013-09-05 | Sumitomo Metal Mining Co Ltd | Composite tungsten oxide fine particle for forming solar radiation shielding body, method for producing the same, composite tungsten oxide fine particle dispersion liquid for forming solar radiation shielding body, and solar radiation shielding body |
| WO2014010684A1 (en) * | 2012-07-11 | 2014-01-16 | 住友金属鉱山株式会社 | Method for producing heat-ray-shielding dispersion, heat-ray-shielding dispersion, and heat-ray-shielding body |
| JP2015199668A (en) * | 2015-05-18 | 2015-11-12 | 住友金属鉱山株式会社 | Composite tungsten oxide fine particles for formation of solar radiation shield, method for producing the same, composite tungsten oxide fine particle dispersion for formation of solar radiation shield, and solar radiation shield |
| WO2016067905A1 (en) * | 2014-10-30 | 2016-05-06 | 住友金属鉱山株式会社 | Heat-ray-shielding particles, heat-ray-shielding particle liquid dispersion, heat-ray-shielding particle dispersion, heat-ray-shielding particle dispersion laminate transparent substrate, infrared-absorbent transparent substrate, and method for manufacturing heat-ray-shielding particles |
| KR20170047371A (en) * | 2014-09-15 | 2017-05-04 | 생-고뱅 퍼포먼스 플라스틱스 코포레이션 | Optical film including an infrared absorption layer |
| WO2017159791A1 (en) * | 2016-03-16 | 2017-09-21 | 住友金属鉱山株式会社 | Near-infrared shielding material microparticle dispersion, near-infrared shielding body, combination structure for near-infrared shielding, and production method of these |
| WO2017159790A1 (en) * | 2016-03-16 | 2017-09-21 | 住友金属鉱山株式会社 | Near-infrared shielding material microparticles, production method thereof, and near-infrared shielding material microparticle dispersion |
| CN110997572A (en) * | 2017-08-09 | 2020-04-10 | 住友金属矿山株式会社 | Electromagnetic wave absorbing particles, electromagnetic wave absorbing particle dispersion liquid, and method for producing electromagnetic wave absorbing particles |
| CN116715988A (en) * | 2023-05-22 | 2023-09-08 | 武汉理工大学 | MXene/Cs 0.33 WO 3 Composite material, preparation method and application thereof |
-
2009
- 2009-09-18 JP JP2009216673A patent/JP2011063739A/en active Pending
Cited By (27)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2013526625A (en) * | 2010-05-10 | 2013-06-24 | バイエル・インテレクチュアル・プロパティ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング | Polymer composition having heat absorption characteristics and high stability |
| JP2012229388A (en) * | 2011-04-14 | 2012-11-22 | Sumitomo Metal Mining Co Ltd | Method for manufacturing heat-ray shielding fine particle-containing composition and heat-ray shielding fine particle-containing composition, heat-ray shielding film using the heat-ray shielding fine particle-containing composition and heat-ray shielding transparent laminated substrate using the heat-ray shielding film |
| JP2013173642A (en) * | 2012-02-24 | 2013-09-05 | Sumitomo Metal Mining Co Ltd | Composite tungsten oxide fine particle for forming solar radiation shielding body, method for producing the same, composite tungsten oxide fine particle dispersion liquid for forming solar radiation shielding body, and solar radiation shielding body |
| JP2017082221A (en) * | 2012-07-11 | 2017-05-18 | 住友金属鉱山株式会社 | Mixed dispersion |
| WO2014010684A1 (en) * | 2012-07-11 | 2014-01-16 | 住友金属鉱山株式会社 | Method for producing heat-ray-shielding dispersion, heat-ray-shielding dispersion, and heat-ray-shielding body |
| CN104603225A (en) * | 2012-07-11 | 2015-05-06 | 住友金属矿山株式会社 | Method for producing heat-ray-shielding dispersion, heat-ray-shielding dispersion, and heat-ray-shielding body |
| US10450471B2 (en) | 2012-07-11 | 2019-10-22 | Sumitomo Metal Mining Co., Ltd. | Method for producing heat-ray shielding dispersion body, heat-ray shielding dispersion body, and heat-ray shielding body |
| EP2873709A4 (en) * | 2012-07-11 | 2016-01-27 | Sumitomo Metal Mining Co | METHOD FOR PRODUCING A CALORIUM-PROTECTIVE DISPERSION, DISPERSION THUS OBTAINED, AND BODY PROTECTING CALORIC RAYS |
| KR101795191B1 (en) | 2012-07-11 | 2017-11-07 | 스미토모 긴조쿠 고잔 가부시키가이샤 | Method for producing heat-ray-shielding dispersion, heat-ray-shielding dispersion, and heat-ray-shielding body |
| JPWO2014010684A1 (en) * | 2012-07-11 | 2016-06-23 | 住友金属鉱山株式会社 | Heat ray shielding dispersion manufacturing method, heat ray shielding dispersion, and heat ray shielding body |
| KR101959712B1 (en) | 2014-09-15 | 2019-03-19 | 생-고뱅 퍼포먼스 플라스틱스 코포레이션 | Optical film including an infrared absorption layer |
| KR20170047371A (en) * | 2014-09-15 | 2017-05-04 | 생-고뱅 퍼포먼스 플라스틱스 코포레이션 | Optical film including an infrared absorption layer |
| KR102116808B1 (en) | 2014-10-30 | 2020-06-01 | 스미토모 긴조쿠 고잔 가부시키가이샤 | Heat-ray-shielding particles, heat-ray-shielding particle liquid dispersion, heat-ray-shielding particle dispersion, heat-ray-shielding particle dispersion laminate transparent substrate, infrared-absorbent transparent substrate, and method for manufacturing heat-ray-shielding particles |
| WO2016067905A1 (en) * | 2014-10-30 | 2016-05-06 | 住友金属鉱山株式会社 | Heat-ray-shielding particles, heat-ray-shielding particle liquid dispersion, heat-ray-shielding particle dispersion, heat-ray-shielding particle dispersion laminate transparent substrate, infrared-absorbent transparent substrate, and method for manufacturing heat-ray-shielding particles |
| US10787581B2 (en) | 2014-10-30 | 2020-09-29 | Sumitomo Metal Mining Co., Ltd. | Heat ray shielding particles, heat ray shielding particle dispersion liquid, heat ray shielding particle dispersion, heat ray shielding particle dispersion laminated transparent base material, infrared ray absorbing transparent base material, and method of producing heat ray shielding particles |
| JP2016088960A (en) * | 2014-10-30 | 2016-05-23 | 住友金属鉱山株式会社 | Heat ray shielding particles, heat ray shielding particle dispersion, heat ray shielding particle dispersion, heat ray shielding particle dispersion combined transparent base material, infrared absorbing transparent base material, method for producing heat ray shielding particles |
| KR20170064536A (en) * | 2014-10-30 | 2017-06-09 | 스미토모 긴조쿠 고잔 가부시키가이샤 | Heat-ray-shielding particles, heat-ray-shielding particle liquid dispersion, heat-ray-shielding particle dispersion, heat-ray-shielding particle dispersion laminate transparent substrate, infrared-absorbent transparent substrate, and method for manufacturing heat-ray-shielding particles |
| JP2015199668A (en) * | 2015-05-18 | 2015-11-12 | 住友金属鉱山株式会社 | Composite tungsten oxide fine particles for formation of solar radiation shield, method for producing the same, composite tungsten oxide fine particle dispersion for formation of solar radiation shield, and solar radiation shield |
| JPWO2017159791A1 (en) * | 2016-03-16 | 2019-01-31 | 住友金属鉱山株式会社 | Near-infrared shielding material fine particle dispersion, near-infrared shielding body, near-infrared shielding laminated structure, and methods for producing them |
| WO2017159791A1 (en) * | 2016-03-16 | 2017-09-21 | 住友金属鉱山株式会社 | Near-infrared shielding material microparticle dispersion, near-infrared shielding body, combination structure for near-infrared shielding, and production method of these |
| US10562786B2 (en) | 2016-03-16 | 2020-02-18 | Sumitomo Metal Mining Co., Ltd. | Near-infrared shielding material fine particle dispersion body, near-infrared shielding body and near-infrared shielding laminated structure, and method for producing the same |
| JPWO2017159790A1 (en) * | 2016-03-16 | 2019-02-14 | 住友金属鉱山株式会社 | Near-infrared shielding material fine particles, production method thereof, and near-infrared shielding material fine particle dispersion |
| US10533100B2 (en) | 2016-03-16 | 2020-01-14 | Sumitomo Metal Mining Co., Ltd. | Near-infrared shielding material fine particles and method for producing the same, and near-infrared shielding material fine particle dispersion liquid |
| WO2017159790A1 (en) * | 2016-03-16 | 2017-09-21 | 住友金属鉱山株式会社 | Near-infrared shielding material microparticles, production method thereof, and near-infrared shielding material microparticle dispersion |
| AU2017232748B2 (en) * | 2016-03-16 | 2021-08-19 | Sumitomo Metal Mining Co., Ltd. | Near-infrared shielding material fine particle dispersion body, near-infrared shielding body and near-infrared shielding laminated structure, and method for producing the same |
| CN110997572A (en) * | 2017-08-09 | 2020-04-10 | 住友金属矿山株式会社 | Electromagnetic wave absorbing particles, electromagnetic wave absorbing particle dispersion liquid, and method for producing electromagnetic wave absorbing particles |
| CN116715988A (en) * | 2023-05-22 | 2023-09-08 | 武汉理工大学 | MXene/Cs 0.33 WO 3 Composite material, preparation method and application thereof |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP2011063739A (en) | Microparticle of near infrared ray shielding material, production method therefor, particle dispersion of near infrared ray shielding material, and near infrared ray shielding body | |
| KR100701735B1 (en) | Infrared Shielding Material Particles Dispersion, Infrared Shielding Material, and Infrared Shielding Material Particles Manufacturing Method, and Infrared Shielding Material Particles | |
| JP5585812B2 (en) | Near-infrared shielding material fine particle dispersion, near-infrared shielding material, method for producing near-infrared shielding material fine particles, and near-infrared shielding material fine particles | |
| AU2017232748B2 (en) | Near-infrared shielding material fine particle dispersion body, near-infrared shielding body and near-infrared shielding laminated structure, and method for producing the same | |
| US8470212B2 (en) | Infrared shielding nanoparticle, its manufacturing method, infrared shielding nanoparticle dispersion using the same, and infrared shielding base material | |
| KR102371492B1 (en) | Near-infrared shielding material fine particles, method for preparing the same, and near-infrared shielding material fine particle dispersion | |
| JP5034272B2 (en) | Tungsten-containing oxide fine particles, method for producing the same, and infrared shielding body using the same | |
| JP5849766B2 (en) | Composite tungsten oxide fine particles for forming solar radiation shield, composite tungsten oxide fine particle dispersion for forming solar radiation shield, and method for producing solar radiation shield | |
| KR20070048807A (en) | Conductive particles, visible light-transmitting particle dispersed conductor and manufacturing method thereof, transparent conductive thin film and manufacturing method thereof, transparent conductive article using same, infrared shielding article | |
| KR101795191B1 (en) | Method for producing heat-ray-shielding dispersion, heat-ray-shielding dispersion, and heat-ray-shielding body | |
| JP4678225B2 (en) | Infrared shielding material fine particle dispersion and infrared shielding material | |
| JP2011063741A (en) | Heat ray shielding resin sheet material, heat ray shielding resin sheet material laminate and building structure using these | |
| JP6187540B2 (en) | Composite tungsten oxide fine particles for solar radiation shield formation, dispersion thereof, and solar radiation shield | |
| JP2011065000A (en) | Near-infrared absorption filter for plasma display panel, method of manufacturing the same, and the plasma display panel | |
| JP2011063493A (en) | Near-infrared ray shielding material microparticle dispersion, near-infrared ray shielding body and method for producing near-infrared ray shielding material dispersion | |
| JP5387925B2 (en) | Infrared shielding material fine particle dispersion, infrared shielding body, method for producing infrared shielding material fine particles, and infrared shielding material fine particles | |
| JP2011063740A (en) | Heat ray shielding resin sheet material, heat ray shielding resin sheet material laminate and building structure using these | |
| JP2011063484A (en) | Near-infrared ray shielding material microparticle, method for producing the same, near-infrared ray shielding material microparticle dispersion and near-infrared ray shielding body | |
| JP6171733B2 (en) | Heat ray shielding dispersion forming coating solution and heat ray shielding body | |
| AU2019267798B2 (en) | Surface-treated infrared-absorbing fine particle dispersion and infrared-absorbing transparent substrate | |
| JP4904714B2 (en) | Infrared shielding material fine particle dispersion, infrared shielding body, method for producing infrared shielding material fine particles, and infrared shielding material fine particles | |
| JP2015044922A (en) | Heat ray-shielding dispersion material, coating liquid for forming heat ray-shielding dispersion material, and heat ray-shielding body | |
| JP2012082109A (en) | Method for producing tungsten oxide fine particle for forming highly heat-resistant heat ray-shielding material, tungsten oxide fine particle for forming highly heat-resistant heat ray-shielding material and dispersion for forming highly heat-resistant heat ray-shielding material, and highly heat-resistant heat ray-shielding material | |
| JP7673403B2 (en) | Heat shielding resin sheet material | |
| JP7753881B2 (en) | Near-infrared absorbing material particles, near-infrared absorbing material particle dispersion, near-infrared absorbing material particle dispersion |