[go: up one dir, main page]

JP2011097080A - Method of manufacturing semiconductor device - Google Patents

Method of manufacturing semiconductor device Download PDF

Info

Publication number
JP2011097080A
JP2011097080A JP2010292463A JP2010292463A JP2011097080A JP 2011097080 A JP2011097080 A JP 2011097080A JP 2010292463 A JP2010292463 A JP 2010292463A JP 2010292463 A JP2010292463 A JP 2010292463A JP 2011097080 A JP2011097080 A JP 2011097080A
Authority
JP
Japan
Prior art keywords
region
semiconductor
type
forming
conductivity type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010292463A
Other languages
Japanese (ja)
Inventor
Tomoko Matsudai
知子 末代
Norio Yasuhara
紀夫 安原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2010292463A priority Critical patent/JP2011097080A/en
Publication of JP2011097080A publication Critical patent/JP2011097080A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

【課題】高耐圧な半導体装置の製造方法を提供する。
【解決手段】半導体層に対してマスクを用いて選択的にイオン注入を行い、半導体層に第1導電型の第1の半導体領域と、前記第1の半導体領域よりも第1導電型不純物濃度が低い第1導電型の第2の半導体領域とを同時に形成する工程と、第1の半導体領域上に第2導電型のソース領域を形成する工程と、第2の半導体領域上であってソース領域との間にゲート電極を挟む位置に第2導電型のドレイン領域を形成する工程と、半導体層におけるゲート電極とドレイン領域との間の表層部にドレイン領域に接しドレイン領域よりも不純物濃度が低い第2導電型のドリフト領域を形成する工程とを備えている。
【選択図】図3
A method of manufacturing a high breakdown voltage semiconductor device is provided.
A semiconductor layer is selectively ion-implanted using a mask, a first semiconductor region of a first conductivity type is formed in the semiconductor layer, and a first conductivity type impurity concentration is higher than that of the first semiconductor region. Forming a first conductive type second semiconductor region having a low conductivity at the same time, forming a second conductive type source region on the first semiconductor region, and forming a source on the second semiconductor region A step of forming a drain region of the second conductivity type at a position sandwiching the gate electrode between the region and the region of the semiconductor layer between the gate electrode and the drain region in contact with the drain region and having an impurity concentration higher than that of the drain region Forming a low drift region of the second conductivity type.
[Selection] Figure 3

Description

本発明は、半導体装置の製造方法に関する。   The present invention relates to a method for manufacturing a semiconductor device.

要求される用途に応じた様々な耐圧系にて横方向拡散型MOS(LDMOS:Lateral Diffusion Metal-Oxide-Semiconductor)構造が知られている(例えば特許文献1)。近年、LDMOSに対しても、低オン抵抗化、高速化を図るため、CMOS(Complementary Metal-Oxide-Semiconductor)同様の微細プロセス、微細設計ルールを適用することが増えてきた。微細設計ルールを適用することで、CMOS並みの短チャネルのLDMOSや、素子全体のサイズを縮小したり、低電圧駆動のLDMOSを設計することができるほか、微細CMOSとLDMOSとを混載した回路設計も可能となる。   There are known lateral diffusion metal-oxide-semiconductor (LDMOS) structures in various breakdown voltage systems according to required applications (for example, Patent Document 1). In recent years, in order to achieve low on-resistance and high speed for LDMOS, the same fine process and fine design rules as CMOS (Complementary Metal-Oxide-Semiconductor) have been increasingly applied. By applying fine design rules, it is possible to design an LDMOS with a short channel comparable to CMOS, the size of the entire device, and an LDMOS with low voltage drive, as well as a circuit design that incorporates fine CMOS and LDMOS together. Is also possible.

特開2007−53257号公報JP 2007-53257 A

本発明は、高耐圧な半導体装置の製造方法を提供する。   The present invention provides a method for manufacturing a high breakdown voltage semiconductor device.

本発明の一態様によれば、半導体層に対してマスクを用いて選択的にイオン注入を行い、前記半導体層に第1導電型の第1の半導体領域と、前記第1の半導体領域よりも第1導電型不純物濃度が低い第1導電型の第2の半導体領域とを同時に形成する工程と、前記半導体層上に絶縁膜を介してゲート電極を形成する工程と、前記第1の半導体領域上に第2導電型のソース領域を形成する工程と、前記第2の半導体領域上であって、前記ソース領域との間に前記ゲート電極を挟む位置に第2導電型のドレイン領域を形成する工程と、前記半導体層における前記ゲート電極と前記ドレイン領域との間の表層部に、前記ドレイン領域に接し前記ドレイン領域よりも不純物濃度が低い第2導電型のドリフト領域を形成する工程と、を備えたことを特徴とする半導体装置の製造方法が提供される。
また、本発明の他の一態様によれば、半導体層に対してマスクを用いて選択的にイオン注入を行い、前記半導体層に第2導電型の第1の半導体領域と、前記第1の半導体領域よりも第2導電型不純物濃度が高い第2導電型の第2の半導体領域とを同時に形成する工程と、前記第1の半導体領域及び前記第2の半導体領域の全面に均一にイオン注入を行い、第1導電型の第3の半導体領域の前記第1の半導体領域上への形成と、前記第3の半導体領域よりも第1導電型不純物濃度が低い第1導電型の第4の半導体領域の前記第2の半導体領域上への形成とを同時に行う工程と、前記半導体層上に絶縁膜を介してゲート電極を形成する工程と、前記第3の半導体領域上に第2導電型のソース領域を形成する工程と、前記第4の半導体領域上であって、前記ソース領域との間に前記ゲート電極を挟む位置に第2導電型のドレイン領域を形成する工程と、前記半導体層における前記ゲート電極と前記ドレイン領域との間の表層部に、前記ドレイン領域に接し前記ドレイン領域よりも不純物濃度が低い第2導電型のドリフト領域を形成する工程と、を備えたことを特徴とする半導体装置の製造方法が提供される。
According to one embodiment of the present invention, ion implantation is selectively performed on a semiconductor layer using a mask, and the first conductivity type first semiconductor region and the first semiconductor region are formed in the semiconductor layer. A step of simultaneously forming a second semiconductor region of a first conductivity type having a low first conductivity type impurity concentration, a step of forming a gate electrode on the semiconductor layer via an insulating film, and the first semiconductor region Forming a second conductivity type source region thereon; and forming a second conductivity type drain region on the second semiconductor region at a position sandwiching the gate electrode with the source region. Forming a drift region of a second conductivity type in contact with the drain region and having a lower impurity concentration than the drain region in a surface layer portion between the gate electrode and the drain region in the semiconductor layer. Features provided The method of manufacturing a semiconductor device that is provided.
According to another aspect of the present invention, the semiconductor layer is selectively ion-implanted using a mask, and the second conductive type first semiconductor region is formed in the semiconductor layer. A step of simultaneously forming a second conductivity type second semiconductor region having a second conductivity type impurity concentration higher than that of the semiconductor region; and ion implantation uniformly over the entire surface of the first semiconductor region and the second semiconductor region And forming a first conductivity type third semiconductor region on the first semiconductor region, and a first conductivity type fourth impurity having a first conductivity type impurity concentration lower than that of the third semiconductor region. A step of simultaneously forming a semiconductor region on the second semiconductor region, a step of forming a gate electrode on the semiconductor layer via an insulating film, and a second conductivity type on the third semiconductor region. Forming a source region of the second semiconductor region and a step of forming the source region on the fourth semiconductor region. Forming a drain region of a second conductivity type at a position sandwiching the gate electrode between the source region and the drain region in a surface layer portion of the semiconductor layer between the gate electrode and the drain region. Forming a second conductivity type drift region having an impurity concentration lower than that of the drain region. The method for manufacturing a semiconductor device is provided.

本発明によれば、高耐圧な半導体装置の製造方法が提供される。   According to the present invention, a method for manufacturing a high breakdown voltage semiconductor device is provided.

本発明の実施形態に係る半導体装置の要部断面構造を示す模式図。The schematic diagram which shows the principal part cross-section of the semiconductor device which concerns on embodiment of this invention. 同半導体装置におけるLDMOSの第1実施形態を示す模式図。The schematic diagram which shows 1st Embodiment of LDMOS in the semiconductor device. 図2に示すLDMOSの製造方法を示す模式図。The schematic diagram which shows the manufacturing method of LDMOS shown in FIG. 図3に続く工程を示す模式図。FIG. 4 is a schematic diagram illustrating a process following FIG. 3. 図4に続く工程を示す模式図。The schematic diagram which shows the process of following FIG. 本実施形態で用いられるイオン注入用マスクの平面パターン例を示す模式図。The schematic diagram which shows the example of a plane pattern of the mask for ion implantation used by this embodiment. LDMOSの第2実施形態を示す模式図。The schematic diagram which shows 2nd Embodiment of LDMOS. 図7に示すLDMOSの製造方法を示す模式図。FIG. 8 is a schematic diagram showing a method for manufacturing the LDMOS shown in FIG. 7. 図8に続く工程を示す模式図。FIG. 9 is a schematic diagram illustrating a process following FIG. 8. 図7に示すLDMOSの他の製造方法を示す模式図。FIG. 8 is a schematic diagram showing another method for manufacturing the LDMOS shown in FIG. 7. 図10に続く工程を示す模式図。FIG. 11 is a schematic diagram illustrating a process following FIG. 10. LDMOSの第3実施形態を示す模式図。The schematic diagram which shows 3rd Embodiment of LDMOS. 図12に示すLDMOSの製造方法を示す模式図。The schematic diagram which shows the manufacturing method of LDMOS shown in FIG. 図12に示すLDMOSの他の製造方法を示す模式図。FIG. 13 is a schematic diagram showing another method for manufacturing the LDMOS shown in FIG. 12. LDMOSのさらに他の実施形態を示す模式図。The schematic diagram which shows other embodiment of LDMOS. LDMOSのさらに他の実施形態を示す模式図。The schematic diagram which shows other embodiment of LDMOS.

以下、図面を参照し本発明の実施形態について説明する。なお、以下の実施形態では第1導電型をP型、第2導電型をN型として説明するが、第1導電型をN型、第2導電型をP型としても本発明は実現可能である。   Embodiments of the present invention will be described below with reference to the drawings. In the following embodiments, the first conductivity type is described as P type and the second conductivity type is described as N type. However, the present invention can be realized even when the first conductivity type is N type and the second conductivity type is P type. is there.

本実施形態に係る半導体装置は、LDMOS(Lateral Diffusion Metal-Oxide-Semiconductor)構造のFET(Field Effect Transistor)と、CMOS(Complementary Metal-Oxide-Semiconductor)構造のFETとが同じ基板上に混載されて1チップ化された構造を有する。図1に、その要部断面構造を示す。   In the semiconductor device according to this embodiment, a FET (Field Effect Transistor) having a LDMOS (Lateral Diffusion Metal-Oxide-Semiconductor) structure and a FET (Complementary Metal-Oxide-Semiconductor) structure FET are mixedly mounted on the same substrate. It has a one-chip structure. FIG. 1 shows a cross-sectional structure of the main part.

例えばP型の基板11における第1のトランジスタ形成領域101にLDMOS10が形成され、第2のトランジスタ形成領域102にCMOS40が形成されている。基板11における第1のトランジスタ形成領域101には、高濃度P型ウェル領域41と低濃度P型ウェル領域42が形成されている。基板11における第1のトランジスタ形成領域101には、高濃度P型ウェル領域41と低濃度P型ウェル領域42とを有する半導体層50が形成されている。基板11における第2のトランジスタ形成領域102には、P型ウェル領域12とN型ウェル領域13が形成されている。   For example, the LDMOS 10 is formed in the first transistor formation region 101 on the P-type substrate 11, and the CMOS 40 is formed in the second transistor formation region 102. A high concentration P-type well region 41 and a low concentration P-type well region 42 are formed in the first transistor formation region 101 of the substrate 11. A semiconductor layer 50 having a high concentration P-type well region 41 and a low concentration P-type well region 42 is formed in the first transistor formation region 101 of the substrate 11. A P-type well region 12 and an N-type well region 13 are formed in the second transistor formation region 102 in the substrate 11.

P型ウェル領域12とN型ウェル領域13とは、例えばSTI(Shallow Trench Isolation)構造の絶縁層6によって素子分離されている。これらP型ウェル領域12及びN型ウェル領域13に対して、第1のトランジスタ形成領域101の半導体層50もSTI構造の絶縁層6によって素子分離されている。   The P-type well region 12 and the N-type well region 13 are isolated from each other by an insulating layer 6 having an STI (Shallow Trench Isolation) structure, for example. With respect to the P-type well region 12 and the N-type well region 13, the semiconductor layer 50 of the first transistor formation region 101 is also element-isolated by the insulating layer 6 having the STI structure.

CMOS40は、P型ウェル領域12上に設けられたNチャネル型MOS20と、N型ウェル領域13上に設けられたPチャネル型MOS30を有する。   The CMOS 40 has an N-channel MOS 20 provided on the P-type well region 12 and a P-channel MOS 30 provided on the N-type well region 13.

P型ウェル領域12の表層部には、N型のソース領域14と、N型のドレイン領域16とが互いに離間して設けられている。また、P型ウェル領域12の表層部には、ソース領域14よりもN型不純物濃度が低いN型のLDD(Lightly Doped Drain)領域15がソース領域14に隣接して設けられ、さらにドレイン領域16よりもN型不純物濃度が低いN型のLDD領域17がドレイン領域16に隣接して設けられている。 In the surface layer portion of the P-type well region 12, an N + -type source region 14 and an N + -type drain region 16 are provided separately from each other. Further, an N-type LDD (Lightly Doped Drain) region 15 having an N-type impurity concentration lower than that of the source region 14 is provided adjacent to the source region 14 in the surface layer portion of the P-type well region 12. An N-type LDD region 17 having a lower N-type impurity concentration is provided adjacent to the drain region 16.

LDD領域15とLDD領域17との間のP型ウェル領域12上には、絶縁膜5を介してゲート電極18が設けられている。ゲート電極18の側壁には、サイドウォール絶縁膜19が設けられている。LDD領域15及びLDD領域17は、サイドウォール絶縁膜19の下に位置する。   A gate electrode 18 is provided on the P-type well region 12 between the LDD region 15 and the LDD region 17 with the insulating film 5 interposed therebetween. A sidewall insulating film 19 is provided on the sidewall of the gate electrode 18. The LDD region 15 and the LDD region 17 are located under the sidewall insulating film 19.

ソース領域14上には、ソース領域14に対して例えばオーミック接触して電気的に接続されたソース電極21が設けられている。ドレイン領域16上には、ドレイン領域16に対して例えばオーミック接触して電気的に接続されたドレイン電極22が設けられている。   On the source region 14, a source electrode 21 is provided that is electrically connected to the source region 14 through, for example, ohmic contact. On the drain region 16, a drain electrode 22 is provided that is electrically connected to the drain region 16 through, for example, ohmic contact.

ゲート電極18に所望のゲート電圧が印加されると、ゲート電極18下のP型ウェル領域12表層部にN型のチャネルが形成され、ソース−ドレイン間が電気的に導通する。   When a desired gate voltage is applied to the gate electrode 18, an N-type channel is formed in the surface layer portion of the P-type well region 12 below the gate electrode 18, and the source and drain are electrically connected.

一方、N型ウェル領域13の表層部には、P型のソース領域24と、P型のドレイン領域26とが互いに離間して設けられている。また、N型ウェル領域13の表層部には、ソース領域24よりもP型不純物濃度が低いP型のLDD領域25がソース領域24に隣接して設けられ、さらにドレイン領域26よりもP型不純物濃度が低いP型のLDD領域27がドレイン領域26に隣接して設けられている。 On the other hand, in the surface layer portion of the N-type well region 13, a P + -type source region 24 and a P + -type drain region 26 are provided apart from each other. Further, a P-type LDD region 25 having a P-type impurity concentration lower than that of the source region 24 is provided adjacent to the source region 24 in the surface layer portion of the N-type well region 13, and further, P-type impurities are more than the drain region 26. A P-type LDD region 27 having a low concentration is provided adjacent to the drain region 26.

LDD領域25とLDD領域27との間のN型ウェル領域13上には、絶縁膜5を介してゲート電極28が設けられている。ゲート電極28の側壁には、サイドウォール絶縁膜19が設けられている。LDD領域25及びLDD領域27は、サイドウォール絶縁膜19の下に位置する。   A gate electrode 28 is provided on the N-type well region 13 between the LDD region 25 and the LDD region 27 via the insulating film 5. A sidewall insulating film 19 is provided on the side wall of the gate electrode 28. The LDD region 25 and the LDD region 27 are located under the sidewall insulating film 19.

ソース領域24上には、ソース領域24に対して例えばオーミック接触して電気的に接続されたソース電極31が設けられている。ドレイン領域26上には、ドレイン領域26に対して例えばオーミック接触して電気的に接続されたドレイン電極32が設けられている。   On the source region 24, a source electrode 31 that is electrically connected to the source region 24 through, for example, ohmic contact is provided. A drain electrode 32 is provided on the drain region 26 and is electrically connected to the drain region 26 in, for example, ohmic contact.

ゲート電極28に所望のゲート電圧が印加されると、ゲート電極28下のN型ウェル領域13表層部にP型のチャネルが形成され、ソース−ドレイン間が電気的に導通する。   When a desired gate voltage is applied to the gate electrode 28, a P-type channel is formed in the surface layer portion of the N-type well region 13 below the gate electrode 28, and the source and drain are electrically connected.

CMOS40の形成時に同時に、CMOS形成で使っているプロセスを利用してLDMOS10も形成される。   At the same time as the formation of the CMOS 40, the LDMOS 10 is also formed using the process used in the CMOS formation.

以下、LDMOS10の構造について説明する。   Hereinafter, the structure of the LDMOS 10 will be described.

[第1実施形態]
図2は、本発明の第1実施形態に係るLDMOS10の模式断面図を示す。
[First Embodiment]
FIG. 2 is a schematic cross-sectional view of the LDMOS 10 according to the first embodiment of the present invention.

半導体層50の表層部に、P型のコンタクト領域43、N型のソース領域44、N型のLDD領域45、P型のチャネル領域46、N型のドリフト領域47、N型のドレイン領域48の各不純物拡散領域が形成されている。 In the surface layer portion of the semiconductor layer 50, a P + -type contact region 43, an N + -type source region 44, an N-type LDD region 45, a P-type channel region 46, an N -type drift region 47, and an N + -type Each impurity diffusion region of the drain region 48 is formed.

半導体層50は、高濃度P型ウェル領域41と、これよりもP型不純物濃度が低い低濃度P型ウェル領域42を有する。高濃度P型ウェル領域41は、図1に示すNチャネル型MOS20のP型ウェル領域12と同じイオン注入工程で形成され、高濃度P型ウェル領域41とP型ウェル領域12のP型不純物濃度とプロファイルは実質同じである。また、低濃度P型ウェル領域42も、P型ウェル領域12及び高濃度P型ウェル領域41と同じイオン注入工程で形成され、後述するマスクを使うことで、低濃度P型ウェル領域42は、P型ウェル領域12及び高濃度P型ウェル領域41よりもP型不純物濃度が低くされる。   The semiconductor layer 50 has a high-concentration P-type well region 41 and a low-concentration P-type well region 42 having a lower P-type impurity concentration. The high-concentration P-type well region 41 is formed by the same ion implantation process as the P-type well region 12 of the N-channel MOS 20 shown in FIG. 1, and the P-type impurity concentrations in the high-concentration P-type well region 41 and the P-type well region 12 are formed. And the profile is substantially the same. The low concentration P-type well region 42 is also formed by the same ion implantation process as the P-type well region 12 and the high concentration P-type well region 41. By using a mask described later, the low concentration P-type well region 42 is The P-type impurity concentration is made lower than that of the P-type well region 12 and the high concentration P-type well region 41.

コンタクト領域43、ソース領域44、LDD領域45およびチャネル領域46は、高濃度P型ウェル領域41の表層部に形成されている。ドリフト領域47とドレイン領域48は、低濃度P型ウェル領域42の表層部に形成されている。   The contact region 43, the source region 44, the LDD region 45 and the channel region 46 are formed in the surface layer portion of the high concentration P-type well region 41. The drift region 47 and the drain region 48 are formed in the surface layer portion of the low concentration P-type well region 42.

高濃度P型ウェル領域41と低濃度P型ウェル領域42との間におけるP型不純物濃度の変曲点箇所を、図2において点線で模式的に表す。すなわち、点線よりもソース領域44側はドレイン領域48側よりも実効的なP型の不純物濃度が高く、逆に、点線よりもドレイン領域48側はソース領域44側よりも実効的なP型の不純物濃度が低い。   The inflection point of the P-type impurity concentration between the high-concentration P-type well region 41 and the low-concentration P-type well region 42 is schematically represented by a dotted line in FIG. That is, the source region 44 side has a higher effective P-type impurity concentration than the drain region 48 side than the dotted line, and conversely, the drain region 48 side more effective than the source region 44 side than the dotted line. Impurity concentration is low.

ソース領域44とドレイン領域48との間に、ソース領域44側から順に、LDD領域45、チャネル領域46、ドリフト領域47が形成されている。LDD領域45はソース領域44に接し、チャネル領域46はソース領域44の反対側でLDD領域45に接している。LDD領域45は、ソース領域44及びドレイン領域48よりもN型不純物濃度が低い。ソース領域44におけるLDD領域45と接する部分の反対側にコンタクト領域43が接して設けられている。ドリフト領域47は、ソース領域44及びドレイン領域48よりもN型不純物濃度が低く、ドレイン領域48に接している。   An LDD region 45, a channel region 46, and a drift region 47 are formed in this order from the source region 44 side between the source region 44 and the drain region 48. The LDD region 45 is in contact with the source region 44, and the channel region 46 is in contact with the LDD region 45 on the opposite side of the source region 44. The LDD region 45 has a lower N-type impurity concentration than the source region 44 and the drain region 48. A contact region 43 is provided in contact with the source region 44 on the opposite side of the portion in contact with the LDD region 45. The drift region 47 has a lower N-type impurity concentration than the source region 44 and the drain region 48 and is in contact with the drain region 48.

コンタクト領域43及びソース領域44の上にはソース電極51が設けられている。ソース電極51は、コンタクト領域43及びソース領域44と例えばオーミック接触して電気的に接続されている。高濃度P型ウェル領域41は、コンタクト領域43を介してソース電位とされる。ドレイン領域48上にはドレイン電極52が設けられ、ドレイン電極52はドレイン領域48と例えばオーミック接触して電気的に接続されている。   A source electrode 51 is provided on the contact region 43 and the source region 44. The source electrode 51 is electrically connected, for example, in ohmic contact with the contact region 43 and the source region 44. The high concentration P-type well region 41 is set to the source potential via the contact region 43. A drain electrode 52 is provided on the drain region 48, and the drain electrode 52 is electrically connected to the drain region 48 in, for example, ohmic contact.

ソース領域44とドリフト領域47との間における半導体層50表面上には、絶縁膜5を介してゲート電極53が設けられている。ゲート電極53の側壁には、サイドウォール絶縁膜19が設けられている。チャネル領域46はゲート電極53の下に位置し、LDD領域45はサイドウォール絶縁膜19の下に位置する。   A gate electrode 53 is provided on the surface of the semiconductor layer 50 between the source region 44 and the drift region 47 with the insulating film 5 interposed therebetween. A sidewall insulating film 19 is provided on the side wall of the gate electrode 53. The channel region 46 is located under the gate electrode 53, and the LDD region 45 is located under the sidewall insulating film 19.

各不純物拡散領域やゲート電極53は、例えば紙面を貫く方向に延在するストライプ状のパターンで形成されている。あるいは、コンタクト領域43とソース領域44は、紙面を貫く方向に交互もしくはある間隔を保って並んだ構造であってもよい。   Each impurity diffusion region and the gate electrode 53 are formed in, for example, a stripe pattern extending in a direction penetrating the paper surface. Alternatively, the contact region 43 and the source region 44 may have a structure in which the contact region 43 and the source region 44 are arranged alternately or at a certain interval in a direction penetrating the paper surface.

ゲート電極53に所望のゲート電圧が印加されると、チャネル領域46に反転層が形成され、ソース領域44、LDD領域45、反転層、ドリフト領域47およびドレイン領域48を介して、ソース電極51とドレイン電極52間が電気的に導通し、オン状態とされる。チャネル領域46の不純物濃度の制御により、しきい値電圧が調整される。   When a desired gate voltage is applied to the gate electrode 53, an inversion layer is formed in the channel region 46, and the source electrode 51 is connected to the source electrode 51 through the source region 44, the LDD region 45, the inversion layer, the drift region 47 and the drain region 48. The drain electrodes 52 are electrically connected and turned on. The threshold voltage is adjusted by controlling the impurity concentration of the channel region 46.

そして、LDMOSにおいては、比較的N型不純物濃度が低いドリフト領域47を設けることで、ドレインとソース間に逆バイアスが印加された場合、ドリフト領域47が空乏化することで電界を緩和し、素子耐圧を維持する。また、素子に必要とされる耐圧に応じて、ドリフト領域47のN型不純物濃度や横方向長さを調整することで、所望の耐圧を実現できる。   In the LDMOS, by providing the drift region 47 having a relatively low N-type impurity concentration, when a reverse bias is applied between the drain and the source, the drift region 47 is depleted, thereby relaxing the electric field, Maintain pressure resistance. Further, a desired breakdown voltage can be realized by adjusting the N-type impurity concentration and the lateral length of the drift region 47 in accordance with the breakdown voltage required for the element.

本実施形態では、CMOS40とLDMOS10とが同じ基板11に形成され1チップ化されている。例えば、CMOS40はLDMOS10のゲートを駆動するドライバ回路として機能する。CMOS40とLDMOS10との混載チップを製造するにあたって、工程数削減による低コスト化を図るため、CMOS製造で使っているプロセスを利用してLDMOSもあわせて形成する。   In this embodiment, the CMOS 40 and the LDMOS 10 are formed on the same substrate 11 and made into one chip. For example, the CMOS 40 functions as a driver circuit that drives the gate of the LDMOS 10. In manufacturing a mixed chip of the CMOS 40 and the LDMOS 10, in order to reduce the cost by reducing the number of processes, the LDMOS is also formed using the process used in the CMOS manufacturing.

その場合、LDMOSのウェル領域はCMOSのウェル領域と同じイオン注入工程で形成される。CMOSのウェル領域の不純物濃度が高い場合、LDMOSのドレイン領域と高不純物濃度ウェル領域との接合部の耐圧でLDMOSの素子耐圧が決まってしまう。換言すると、LDMOSの耐圧がCMOSに設定された耐圧で決まってしまうことになる。すなわち、CMOS以上の耐圧が要求されることの多いLDMOSにとって、ドレイン領域下がCMOSと同様の高不純物濃度ウェル領域となるのは適切でない。また、通常LDMOSはドリフト領域のドーズ量と長さによって素子耐圧を決めるのに対し、ドレイン領域直下にて耐圧が決まる構造では、自在に素子耐圧を設計することができなくなる。   In this case, the LDMOS well region is formed by the same ion implantation process as that of the CMOS well region. When the impurity concentration of the CMOS well region is high, the element breakdown voltage of the LDMOS is determined by the breakdown voltage of the junction between the drain region of the LDMOS and the high impurity concentration well region. In other words, the breakdown voltage of the LDMOS is determined by the breakdown voltage set in the CMOS. That is, it is not appropriate for the LDMOS that often requires a breakdown voltage higher than that of the CMOS to be a high impurity concentration well region under the drain region similar to the CMOS. In general, an LDMOS determines an element withstand voltage depending on a dose amount and a length of a drift region, whereas a structure in which an withstand voltage is determined immediately below a drain region cannot freely design an element withstand voltage.

これに対して本実施形態では、相対的に不純物濃度が異なる高濃度P型ウェル領域41と低濃度P型ウェル領域42をLDMOS形成領域に形成し、LDMOS10のドレイン領域48を低濃度P型ウェル領域42上に形成するようにしている。これにより、ドレイン領域48とその下の低濃度P型ウェル領域42との接合部の耐圧低下を抑制できる。すなわち、LDMOS10の耐圧が、CMOS40の耐圧で決まってしまうことがなく、ドリフト領域47のN型不純物濃度や横方向長さを調整することで、CMOS40よりも高い所望の耐圧を実現できる。   In contrast, in the present embodiment, the high concentration P-type well region 41 and the low concentration P-type well region 42 having relatively different impurity concentrations are formed in the LDMOS formation region, and the drain region 48 of the LDMOS 10 is formed in the low concentration P-type well. It is formed on the region 42. As a result, it is possible to suppress a decrease in breakdown voltage at the junction between the drain region 48 and the underlying low concentration P-type well region 42. That is, the breakdown voltage of the LDMOS 10 is not determined by the breakdown voltage of the CMOS 40, and a desired breakdown voltage higher than that of the CMOS 40 can be realized by adjusting the N-type impurity concentration and the lateral length of the drift region 47.

また、LDMOS10におけるソース領域44側の下を比較的高不純物濃度の高濃度P型ウェル領域41とすることで逆バイアス印加時のパンチスルーを抑制することができる。   In addition, by forming a high-concentration P-type well region 41 having a relatively high impurity concentration below the source region 44 side in the LDMOS 10, punch-through during reverse bias application can be suppressed.

なお、図1、2に示す例では、高濃度P型ウェル領域41と低濃度P型ウェル領域42との不純物濃度変曲点(点線で示す)は、ゲート電極53下に位置するが、これに限らず、例えばドリフト領域47下に位置していてもよい。要するに、CMOS用に設計された高不純物濃度の高濃度P型ウェル領域41がドレイン領域48に接しなければよい。   In the example shown in FIGS. 1 and 2, the impurity concentration inflection point (indicated by a dotted line) between the high concentration P-type well region 41 and the low concentration P-type well region 42 is located below the gate electrode 53. For example, it may be located under the drift region 47. In short, the high-concentration high-concentration P-type well region 41 designed for CMOS need not be in contact with the drain region 48.

次に、図3〜5を参照して、LDMOS10の製造方法について説明する。   Next, a method for manufacturing the LDMOS 10 will be described with reference to FIGS.

まず、イオン注入法により、基板11にP型不純物を導入して高濃度P型ウェル領域41と低濃度P型ウェル領域42を同時に形成する。具体的には、図3(a)に示すように、マスク60を用いてイオン注入を行う。   First, a high-concentration P-type well region 41 and a low-concentration P-type well region 42 are formed simultaneously by introducing a P-type impurity into the substrate 11 by ion implantation. Specifically, as shown in FIG. 3A, ion implantation is performed using a mask 60.

マスク60の平面図を図6(a)に示す。マスク60は、第1の開口形成領域60aと、第1の開口形成領域60aよりも単位面積あたりの開口率が低い第2の開口形成領域60bとを有する。第2の開口形成領域60bには例えばストライプ状の遮蔽部61が形成され、その第2の開口形成領域60bにおける他の部分は開口62となっている。なお、遮蔽部パターンは、ストライプ状に限らず、図6(b)に示すように格子状であってもよいし、図6(c)に示すように複数の島状であってもよい。   A plan view of the mask 60 is shown in FIG. The mask 60 includes a first opening formation region 60a and a second opening formation region 60b having a lower opening ratio per unit area than the first opening formation region 60a. For example, a stripe-shaped shielding part 61 is formed in the second opening formation region 60 b, and the other part in the second opening formation region 60 b is an opening 62. The shielding portion pattern is not limited to a stripe shape, and may be a lattice shape as shown in FIG. 6B, or may be a plurality of island shapes as shown in FIG.

イオン注入のドーズ量は面方向で略均一である。そのイオン注入を、マスク60を用いて行うことで、第2の開口形成領域60bの下の部分へのイオン注入量が相対的に少なくなり、第2の開口形成領域60bの隣で広く開口された第1の開口形成領域60aの下の部分へのイオン注入量が相対的に多くなる。すなわち、図3(b)に示すように、相対的に不純物濃度が高い高濃度P型ウェル領域41と、相対的に不純物濃度が低い低濃度P型ウェル領域42とが一度のイオン注入工程で同時に形成される。   The dose of ion implantation is substantially uniform in the surface direction. By performing the ion implantation using the mask 60, the amount of ion implantation into the lower portion of the second opening formation region 60b is relatively small, and a wide opening is formed next to the second opening formation region 60b. In addition, the amount of ion implantation into the lower portion of the first opening formation region 60a is relatively increased. That is, as shown in FIG. 3B, a high concentration P-type well region 41 having a relatively high impurity concentration and a low concentration P-type well region 42 having a relatively low impurity concentration are formed in one ion implantation step. Formed simultaneously.

高濃度P型ウェル領域41と低濃度P型ウェル領域42との間でP型不純物濃度が大きく変わる不純物濃度変曲点(図3(b)において点線で表す)の位置は、前述した図6(a)に示すマスク60における第2の開口形成領域60bと第1の開口形成領域60aとの境界近傍となる。   The position of the impurity concentration inflection point (represented by the dotted line in FIG. 3B) where the P-type impurity concentration greatly changes between the high-concentration P-type well region 41 and the low-concentration P-type well region 42 is shown in FIG. In the mask 60 shown in (a), the vicinity of the boundary between the second opening formation region 60b and the first opening formation region 60a.

上記イオン注入は、異なる加速電圧で異なる深さに複数回(複数段)行われ、このイオン注入後、熱処理を行うことで、注入された不純物が基板11中にて活性化・拡散する。したがって、高濃度P型ウェル領域41と低濃度P型ウェル領域42は、それぞれ、膜厚方向に複数の不純物濃度ピークを有する。そして、高濃度P型ウェル領域41と低濃度P型ウェル領域42は、同じイオン注入工程で形成されるため、加速エネルギーも同じとなり高濃度P型ウェル領域41と低濃度P型ウェル領域42は、ほぼ同じ深さに不純物濃度ピークを有する。   The ion implantation is performed a plurality of times (in a plurality of stages) at different acceleration voltages and at different depths, and the implanted impurities are activated and diffused in the substrate 11 by performing heat treatment after the ion implantation. Therefore, each of the high concentration P-type well region 41 and the low concentration P-type well region 42 has a plurality of impurity concentration peaks in the film thickness direction. Since the high-concentration P-type well region 41 and the low-concentration P-type well region 42 are formed by the same ion implantation process, the acceleration energy is also the same, and the high-concentration P-type well region 41 and the low-concentration P-type well region 42 , Have impurity concentration peaks at substantially the same depth.

なお、高濃度P型ウェル領域41と低濃度P型ウェル領域42を形成するイオン注入時には同時に、図1に示すCMOS40におけるNチャネル型MOS20のP型ウェル領域12も形成される。このP型ウェル領域12は、LDMOS10の高濃度P型ウェル領域41と同様に遮蔽部で覆われず、したがってLDMOS10の高濃度P型ウェル領域41とNチャネル型MOS20のP型ウェル領域12とは、比較的高濃度のほぼ同じ不純物濃度とされる。   At the same time as the ion implantation for forming the high-concentration P-type well region 41 and the low-concentration P-type well region 42, the P-type well region 12 of the N-channel MOS 20 in the CMOS 40 shown in FIG. 1 is also formed. The P-type well region 12 is not covered with a shielding portion, like the high-concentration P-type well region 41 of the LDMOS 10, and therefore, the high-concentration P-type well region 41 of the LDMOS 10 and the P-type well region 12 of the N-channel type MOS 20 are different from each other. The impurity concentration is relatively high and almost the same.

また、上記P型不純物のイオン注入時、基板11におけるPチャネル型MOS30を形成する部分はマスクで覆われP型不純物が注入されない。そして、Pチャネル型MOS30のN型ウェル領域13は、上記P型不純物の注入を行う前あるいは後に、基板11におけるN型ウェル領域13を形成する部分以外をマスクで覆った上でN型不純物の注入を行うことで形成される。   Further, at the time of the ion implantation of the P-type impurity, the portion of the substrate 11 where the P-channel MOS 30 is formed is covered with a mask and the P-type impurity is not implanted. The N-type well region 13 of the P-channel MOS 30 is covered with a mask before or after the implantation of the P-type impurity, except for the portion of the substrate 11 where the N-type well region 13 is to be formed. It is formed by injection.

以上説明したように、本実施形態によれば、マスク60を用いたイオン注入により、微細ルールで適用されるCMOSのウェル領域濃度条件を変えずに、LDMOS用の低不純物濃度ウェル領域を同時に形成できる。すなわち、CMOSのウェル領域を形成する工程時にあわせてLDMOS用については実効的な不純物濃度が相対的に異なる2つのウェル領域を形成できる。この結果、CMOSと、これよりも耐圧が高いLDMOSとの混載チップの製造にあたって、CMOS用のプロセスを適用でき、LDMOS用に別途工程を追加することがなくコスト低減を図れる。しかも、LDMOSについては、CMOSの設定耐圧に依存しない、所望の高耐圧設計を行うことができる。   As described above, according to the present embodiment, the low impurity concentration well region for LDMOS is formed simultaneously by ion implantation using the mask 60 without changing the CMOS well region concentration condition applied by the fine rule. it can. That is, two well regions having relatively different effective impurity concentrations can be formed for LDMOS in accordance with the step of forming the CMOS well region. As a result, a CMOS process can be applied to manufacture a mixed chip of CMOS and LDMOS having a higher withstand voltage than this, and costs can be reduced without additional steps for LDMOS. Moreover, the LDMOS can be designed with a desired high breakdown voltage that does not depend on the set breakdown voltage of the CMOS.

高濃度P型ウェル領域41と低濃度P型ウェル領域42を形成した後、次に、図3(c)に示すように、高濃度P型ウェル領域41の表層部に、LDMOSのチャネル領域となるP型領域46を選択的なイオン注入及びその後の熱処理により形成する。このP型領域46におけるP型不純物濃度は、所望のゲートしきい値を得るべく設定される。このP型領域46の形成時に、同時にCMOS40におけるPチャネル型MOS30のP型LDD領域25、27も形成される。   After the high-concentration P-type well region 41 and the low-concentration P-type well region 42 are formed, next, as shown in FIG. A P-type region 46 is formed by selective ion implantation and subsequent heat treatment. The P-type impurity concentration in the P-type region 46 is set so as to obtain a desired gate threshold value. At the same time as the formation of the P-type region 46, the P-type LDD regions 25 and 27 of the P-channel MOS 30 in the CMOS 40 are also formed.

次に、図4(a)に示すように、半導体層50の表面上に絶縁膜5を形成し、その絶縁膜5上にゲート電極材を形成し、その後ゲート電極材を所望の位置に残るように所望の形状に加工してゲート電極53を形成する。このとき、同時に、CMOS40における絶縁膜5及びゲート電極18、28も形成される。   Next, as shown in FIG. 4A, an insulating film 5 is formed on the surface of the semiconductor layer 50, a gate electrode material is formed on the insulating film 5, and then the gate electrode material remains at a desired position. Thus, the gate electrode 53 is formed by processing into a desired shape. At the same time, the insulating film 5 and the gate electrodes 18 and 28 in the CMOS 40 are also formed.

次に、図4(b)に示すように、低濃度P型ウェル領域42上、およびゲート電極53におけるドレイン側の一部をマスク71で覆い、その状態でP型領域46にN型不純物をイオン注入法で注入して、LDD領域となるN型領域45を形成する。N型領域45とP型領域46との境界(PN接合部)は、ゲート電極53におけるソース側の端部付近に位置する。このとき、同時に、CMOS40におけるNチャネル型MOS20のLDD領域15、17も形成される。   Next, as shown in FIG. 4B, a part of the drain side of the gate electrode 53 on the low concentration P-type well region 42 is covered with a mask 71, and in this state, an N-type impurity is added to the P-type region 46. Implantation is performed by an ion implantation method to form an N-type region 45 to be an LDD region. The boundary (PN junction) between the N-type region 45 and the P-type region 46 is located in the vicinity of the end of the gate electrode 53 on the source side. At the same time, LDD regions 15 and 17 of the N-channel MOS 20 in the CMOS 40 are also formed.

次に、図4(c)に示すように、N型領域45が形成された部分、およびゲート電極53におけるソース側の一部をマスク72で覆い、その状態で低濃度P型ウェル領域42の表層部に、N型不純物をイオン注入法で注入してドリフト領域となるN型領域47を形成する。 Next, as shown in FIG. 4C, a portion where the N-type region 45 is formed and a portion on the source side of the gate electrode 53 are covered with a mask 72, and in this state, the low-concentration P-type well region 42 is covered. In the surface layer portion, N-type impurities 47 are implanted by an ion implantation method to form an N -type region 47 serving as a drift region.

次に、図5(a)に示すように、ゲート電極53におけるゲート長方向の両側壁にサイドウォール絶縁膜19を形成する。このとき、同時に、CMOS40におけるゲート電極18、28の側壁にもサイドウォール絶縁膜19が形成される。   Next, as shown in FIG. 5A, sidewall insulating films 19 are formed on both side walls of the gate electrode 53 in the gate length direction. At the same time, the sidewall insulating film 19 is also formed on the side walls of the gate electrodes 18 and 28 in the CMOS 40.

次に、図5(b)に示すように、N型領域45の一部、ゲート電極53におけるN型領域47側の一部、N型領域47側のサイドウォール絶縁膜19、およびN型領域47の一部をマスク73で覆う。そして、マスク73で覆われていないN型領域45およびN型領域47にN型不純物をイオン注入法で注入して、図5(c)に示すようにソース領域44及びドレイン領域48を形成する。このとき、同時に、CMOS40におけるNチャネル型MOS20のソース領域14とドレイン領域16も形成される。 Next, as shown in FIG. 5 (b), a portion of the N-type region 45, N in the gate electrode 53 - Some -type region 47 side, N - -type region 47 of the side wall insulating film 19, and N - covering a part of the type region 47 in the mask 73. Then, an N-type impurity is implanted into the N-type region 45 and the N -type region 47 that are not covered with the mask 73 by ion implantation to form the source region 44 and the drain region 48 as shown in FIG. To do. At the same time, the source region 14 and the drain region 16 of the N-channel MOS 20 in the CMOS 40 are also formed.

その後、図示しないマスクで必要な部分を覆った上で、ソース領域44にP型不純物の選択的イオン注入を行いコンタクト領域43を形成する。このとき、同時に、CMOS40におけるPチャネル型MOS30のソース領域24とドレイン領域26も形成される。   Thereafter, a necessary portion is covered with a mask (not shown), and then selective ion implantation of a P-type impurity is performed in the source region 44 to form a contact region 43. At the same time, the source region 24 and the drain region 26 of the P-channel MOS 30 in the CMOS 40 are also formed.

その後、LDMOS10及びCMOS40について、ソース電極51、21、31と、ドレイン電極52、22、32を同時に形成して、図1に示す構造が得られる。   Thereafter, for the LDMOS 10 and the CMOS 40, the source electrodes 51, 21, 31 and the drain electrodes 52, 22, 32 are simultaneously formed to obtain the structure shown in FIG.

[第2実施形態]
図7は、LDMOS10の第2実施形態を示す模式図である。なお、上記第1実施形態と同じ要素については同じ符号を付し、その詳細な説明は省略する。
[Second Embodiment]
FIG. 7 is a schematic diagram showing a second embodiment of the LDMOS 10. In addition, the same code | symbol is attached | subjected about the same element as the said 1st Embodiment, and the detailed description is abbreviate | omitted.

本実施形態では、半導体層50を支持する基板11上にN型層80を設け、そのN型層80の上に、高濃度P型ウェル領域41と低濃度P型ウェル領域42とを有する半導体層50が設けられている。   In the present embodiment, an N-type layer 80 is provided on the substrate 11 that supports the semiconductor layer 50, and a semiconductor having a high-concentration P-type well region 41 and a low-concentration P-type well region 42 on the N-type layer 80. A layer 50 is provided.

N型層80は、素子終端で比較的高不純物濃度のN層(図示せず)を介して任意の電極に接続されている。これにより、N型層80より上の素子部分は、任意の電位が与えられるN型層80で囲まれ、基板11側電位と分離された構造となる。 The N-type layer 80 is connected to an arbitrary electrode via an N + layer (not shown) having a relatively high impurity concentration at the element end. Thus, the element portion above the N-type layer 80 is surrounded by the N-type layer 80 to which an arbitrary potential is applied, and is separated from the substrate 11 side potential.

図8、9は、本実施形態のLDMOSの製造方法を示す。   8 and 9 show a method for manufacturing the LDMOS of this embodiment.

まず、図8(a)に示すようにイオン注入法で基板11にN型不純物を導入して、その後熱処理を行うことで図8(b)に示すようにN型層80を形成する。このイオン注入にはマスクは使われず、基板11面方向に均一なドーズ量で不純物が導入される。   First, as shown in FIG. 8A, an N-type impurity is introduced into the substrate 11 by ion implantation, and then heat treatment is performed to form an N-type layer 80 as shown in FIG. 8B. A mask is not used for this ion implantation, and impurities are introduced with a uniform dose in the direction of the surface of the substrate 11.

次に、イオン注入法により、N型層80にP型不純物を導入して高濃度P型ウェル領域41と低濃度P型ウェル領域42を同時に形成する。具体的には、図9(a)に示すように、前述した第1実施形態と同様にマスク60を用いてイオン注入を行う。   Next, a high-concentration P-type well region 41 and a low-concentration P-type well region 42 are formed simultaneously by introducing a P-type impurity into the N-type layer 80 by ion implantation. Specifically, as shown in FIG. 9A, ion implantation is performed using a mask 60 as in the first embodiment.

このマスク60を用いて基板11にイオン注入を行うことで、相対的に不純物濃度が高い高濃度P型ウェル領域41と、相対的に不純物濃度が低い低濃度P型ウェル領域42とが一度のイオン注入工程で同時に形成される。このときも、同時に、図1に示すCMOS40におけるNチャネル型MOS20のP型ウェル領域12も形成される。   By performing ion implantation into the substrate 11 using the mask 60, the high concentration P-type well region 41 having a relatively high impurity concentration and the low concentration P-type well region 42 having a relatively low impurity concentration are formed at a time. They are formed simultaneously in the ion implantation process. At the same time, the P-type well region 12 of the N-channel MOS 20 in the CMOS 40 shown in FIG. 1 is also formed.

その後、前述した図3(c)以降と同様の工程が続けられ、図7に示す構造が得られる。   Thereafter, the same steps as those in FIG. 3C and subsequent steps are continued, and the structure shown in FIG. 7 is obtained.

また、図8、9の方法の代わりに、図10、11に示す方法を用いてもよい。   Further, instead of the methods shown in FIGS. 8 and 9, the methods shown in FIGS. 10 and 11 may be used.

この方法では、まず、イオン注入法により基板11にN型不純物を導入して、低濃度N型領域81と高濃度N型領域82とを有するN型層80を形成する。具体的には、図10(a)に示すように、前述したマスク60を用いてイオン注入を行う。   In this method, first, an N-type impurity is introduced into the substrate 11 by ion implantation to form an N-type layer 80 having a low-concentration N-type region 81 and a high-concentration N-type region 82. Specifically, as shown in FIG. 10A, ion implantation is performed using the mask 60 described above.

このマスク60を用いて基板11にイオン注入を行うことで、相対的に不純物濃度が低い低濃度N型領域81と、相対的に不純物濃度が高い高濃度N型領域82とが一度のイオン注入工程で同時に形成される。   By performing ion implantation into the substrate 11 using the mask 60, a low concentration N-type region 81 having a relatively low impurity concentration and a high concentration N-type region 82 having a relatively high impurity concentration are implanted once. Simultaneously formed in the process.

次に、図11(a)に示すように、N型層80に対して、マスクを使わずに面方向に均一なドーズ量でP型不純物をイオン注入法で導入する。その後熱処理を行うと、図11(b)に示すように、低濃度N型領域81上に高濃度P型ウェル領域41が、高濃度N型領域82上に低濃度P型ウェル領域42が形成される。   Next, as shown in FIG. 11A, a P-type impurity is introduced into the N-type layer 80 with a uniform dose in the surface direction without using a mask by an ion implantation method. When heat treatment is performed thereafter, a high concentration P type well region 41 is formed on the low concentration N type region 81 and a low concentration P type well region 42 is formed on the high concentration N type region 82 as shown in FIG. Is done.

すなわち、N型層80に注入されるP型不純物の面方向のドーズ量は均一であるが、低濃度N型領域81におけるP型不純物が導入された部分は相対的にP型不純物濃度が高くなり、高濃度N型領域82におけるP型不純物が導入された部分は相対的にP型不純物濃度が低くなる。   That is, the dose in the surface direction of the P-type impurity implanted into the N-type layer 80 is uniform, but the portion where the P-type impurity is introduced in the low-concentration N-type region 81 has a relatively high P-type impurity concentration. Thus, the P-type impurity concentration in the portion where the P-type impurity is introduced in the high-concentration N-type region 82 is relatively low.

以上説明した第2実施形態においても、微細ルールで適用されるCMOSのウェル領域濃度条件を変えずに、LDMOS用の低不純物濃度ウェル領域を同時に形成できる。すなわち、CMOSのウェル領域を形成する工程時にあわせてLDMOS用については実効的な不純物濃度が相対的に異なる2つのウェル領域を形成できる。この結果、CMOSと、これよりも耐圧が高いLDMOSとの混載チップの製造にあたって、CMOS用のプロセスを適用でき、LDMOS用に別途工程を追加することがなくコスト低減を図れる。しかも、LDMOSについては、CMOSの設定耐圧に依存しない、所望の高耐圧設計を行うことができる。   Also in the second embodiment described above, a low impurity concentration well region for LDMOS can be formed simultaneously without changing the CMOS well region concentration condition applied by the fine rule. That is, two well regions having relatively different effective impurity concentrations can be formed for LDMOS in accordance with the step of forming the CMOS well region. As a result, a CMOS process can be applied to manufacture a mixed chip of CMOS and LDMOS having a higher withstand voltage than this, and costs can be reduced without additional steps for LDMOS. Moreover, the LDMOS can be designed with a desired high breakdown voltage that does not depend on the set breakdown voltage of the CMOS.

[第3実施形態]
次に、図12は、本発明の第3実施形態に係るLDMOSの模式断面図を示す。
[Third Embodiment]
Next, FIG. 12 shows a schematic cross-sectional view of an LDMOS according to a third embodiment of the present invention.

本実施形態では、低濃度P型ウェル領域42は、さらに2つの領域(第1の領域42aと第2の領域42b)を有する。   In the present embodiment, the low concentration P-type well region 42 further includes two regions (a first region 42a and a second region 42b).

第1の領域42aは、高濃度P型ウェル領域41側に設けられ、ドリフト領域47におけるゲート電極53側の部分47aに接する。第2の領域42bは、第1の領域42aを挟んで高濃度P型ウェル領域41の反対側に設けられ、ドリフト領域47におけるドレイン領域48側の部分47b及びドレイン領域48に接する。第2の領域42bは、第1の領域42aよりもP型不純物濃度が低い。   The first region 42 a is provided on the high concentration P-type well region 41 side, and is in contact with the portion 47 a on the gate electrode 53 side in the drift region 47. The second region 42 b is provided on the opposite side of the high-concentration P-type well region 41 with the first region 42 a interposed therebetween, and is in contact with the drain region 48 side portion 47 b and the drain region 48 in the drift region 47. The second region 42b has a lower P-type impurity concentration than the first region 42a.

第1の領域42a及び第2の領域42bの表面に対して、N型不純物イオンが注入され、その後熱処理されることで、ドリフト領域47が形成される。そのN型不純物イオンのドーズ量は第1の領域42a及び第2の領域42bの面方向で略均一であるが、第1の領域42aの方が第2の領域42bよりもP型不純物濃度が高いため、ドリフト領域47には相対的にN型不純物領域の実効的な濃度が異なる2つの部分47a、47bが形成される。   N-type impurity ions are implanted into the surfaces of the first region 42a and the second region 42b, followed by heat treatment, whereby the drift region 47 is formed. The dose amount of the N-type impurity ions is substantially uniform in the plane direction of the first region 42a and the second region 42b, but the P-type impurity concentration in the first region 42a is higher than that in the second region 42b. Since the height is high, two portions 47 a and 47 b having relatively different effective concentrations of the N-type impurity regions are formed in the drift region 47.

第1の領域42aの上で第1の領域42aに接する部分47aは、第2の領域42bの上で第2の領域42bに接する部分47bよりも相対的にN型不純物濃度が低い。   The portion 47a in contact with the first region 42a on the first region 42a has a relatively lower N-type impurity concentration than the portion 47b in contact with the second region 42b on the second region 42b.

ドリフト領域47におけるゲート電極53側の部分47aの不純物濃度を相対的に低くすることで、その部分47aがオフ時(ゲート電極53に閾値以上の電圧が印加されていない時)に完全空乏化して、高いオフ耐圧が得られる。   By relatively reducing the impurity concentration of the portion 47a on the gate electrode 53 side in the drift region 47, the portion 47a is completely depleted when the gate electrode 53 is off (when a voltage higher than the threshold is not applied to the gate electrode 53). High off breakdown voltage can be obtained.

ドリフト領域47におけるドレイン領域48側の部分47bの不純物濃度を相対的に高くすることで、ゲート電極53に閾値以上のフルバイアスが印加されたときに、部分47bの空乏化を抑制して、高いオン耐圧が得られる。本実施形態に係る半導体装置は、例えば、高いオン耐圧が要求されるシステム電源に適している。   By relatively increasing the impurity concentration of the portion 47b on the drain region 48 side in the drift region 47, depletion of the portion 47b is suppressed and high when a full bias higher than the threshold is applied to the gate electrode 53. ON breakdown voltage can be obtained. The semiconductor device according to this embodiment is suitable, for example, for a system power supply that requires a high on-voltage.

図13(a)及び(b)は、本実施形態における高濃度P型ウェル領域41及び低濃度P型ウェル領域42の形成方法を示す模式図である。   FIGS. 13A and 13B are schematic views showing a method of forming the high concentration P-type well region 41 and the low concentration P-type well region 42 in the present embodiment.

図13(a)に示すように、マスク90を用いて、基板11に対してP型不純物のイオン注入を行うことで、高濃度P型ウェル領域41と低濃度P型ウェル領域42が形成される。   As shown in FIG. 13A, a high-concentration P-type well region 41 and a low-concentration P-type well region 42 are formed by ion implantation of P-type impurities into the substrate 11 using a mask 90. The

マスク90は、第1の開口形成領域と第2の開口形成領域とを有し、第1の開口形成領域はほぼ全面にわたって開口され、その下に高濃度P型ウェル領域41が形成される。   The mask 90 has a first opening formation region and a second opening formation region. The first opening formation region is opened over substantially the entire surface, and the high-concentration P-type well region 41 is formed thereunder.

第2の開口形成領域は、図6(a)〜(c)を参照して前述したマスクと同様に、例えばストライプ状、格子状、島状の遮蔽部が形成され、第1の開口形成領域よりも単位面積あたりの開口率が低い。さらに、第2の開口形成領域は、第1の領域91と第2の領域92とを有する。第1の領域91は第1の開口形成領域に隣接している。第2の領域92は、第1の領域91を挟んで第1の開口形成領域の反対側に位置し、第1の領域91よりも単位面積あたりの開口率が低い。   Similar to the mask described above with reference to FIGS. 6A to 6C, the second opening formation region is formed with, for example, a stripe-shaped, lattice-shaped, or island-shaped shielding portion. The aperture ratio per unit area is lower than that. Further, the second opening formation region has a first region 91 and a second region 92. The first region 91 is adjacent to the first opening formation region. The second region 92 is located on the opposite side of the first opening formation region across the first region 91, and has a lower aperture ratio per unit area than the first region 91.

このため、開口率が相対的に高いマスク90の第1の領域91の下には、相対的にP型不純物濃度が高い第1の領域42aが形成され、開口率が相対的に低いマスク90の第2の領域92の下には、相対的にP型不純物濃度が低い第2の領域42bが形成される(図13(b))。   For this reason, the first region 42a having a relatively high P-type impurity concentration is formed under the first region 91 of the mask 90 having a relatively high aperture ratio, and the mask 90 having a relatively low aperture ratio. A second region 42b having a relatively low P-type impurity concentration is formed under the second region 92 (FIG. 13B).

すなわち、本実施形態では、高濃度P型ウェル領域41と、これよりもP型不純物濃度が低い第1の領域42aと、さらにこれよりもP型不純物濃度が低い第2の領域42bとが、同じイオン注入工程にて同時に形成することができる。   That is, in the present embodiment, the high concentration P-type well region 41, the first region 42a having a lower P-type impurity concentration, and the second region 42b having a lower P-type impurity concentration than this, They can be formed simultaneously in the same ion implantation step.

そして、第1の領域42a及び第2の領域42bの表面に一様にN型不純物を注入することで、相対的にN型の実効不純物濃度が異なる部分47a、47bを有するドリフト領域47が得られる。   Then, by uniformly injecting N-type impurities into the surfaces of the first region 42a and the second region 42b, a drift region 47 having portions 47a and 47b having relatively different N-type effective impurity concentrations is obtained. It is done.

相対的にP型不純物濃度が異なる第1の領域42a及び第2の領域42bを同時に形成するにあたっては、図14(a)に示すように、相対的に膜厚が異なるマスク93、94を用いてもよい。マスク94の方がマスク93よりも膜厚が厚い。P型不純物イオンは、マスク93、94を通過して基板11内に入り込むように加速電圧が制御される。   In simultaneously forming the first region 42a and the second region 42b having relatively different P-type impurity concentrations, masks 93 and 94 having relatively different film thicknesses are used as shown in FIG. May be. The mask 94 is thicker than the mask 93. The acceleration voltage is controlled so that the P-type impurity ions pass through the masks 93 and 94 and enter the substrate 11.

そして、相対的に膜厚が厚いマスク94を通過して基板11に注入されるイオンの方が、相対的に膜厚が薄いマスク93を通過して基板11に注入されるイオンよりも相対的に注入量が少なくなる。この結果、マスク93の下に相対的にP型不純物濃度が高い第1の領域42aが形成され、マスク94の下に相対的にP型不純物濃度が低い第2の領域42bが形成される。   Then, ions implanted into the substrate 11 through the mask 94 having a relatively large film thickness are relative to ions implanted into the substrate 11 through the mask 93 having a relatively small film thickness. The injection amount is reduced. As a result, a first region 42 a having a relatively high P-type impurity concentration is formed under the mask 93, and a second region 42 b having a relatively low P-type impurity concentration is formed under the mask 94.

また、図14(b)に示すように、第1の領域から第2の領域にかけて、徐々に膜厚が増大するマスク95を用いてもよい。マスク95において相対的に膜厚が薄い部分の下には相対的にP型不純物濃度が高い領域が形成され、相対的に膜厚が厚い部分の下には相対的にP型不純物濃度が低い領域が形成される。このマスク95を使った場合、第1の領域42aの端から第2の領域42bの端にかけて、徐々にP型不純物濃度が減少する構造を形成することが可能である。   Further, as shown in FIG. 14B, a mask 95 whose film thickness gradually increases from the first region to the second region may be used. In the mask 95, a region having a relatively high P-type impurity concentration is formed under a portion having a relatively thin film thickness, and a region having a relatively low P-type impurity concentration is formed under a portion having a relatively thick film thickness. A region is formed. When this mask 95 is used, it is possible to form a structure in which the P-type impurity concentration gradually decreases from the end of the first region 42a to the end of the second region 42b.

低濃度P型ウェル領域42は、図15に示すように、3つの領域(第1の領域42a、第2の領域42b及び第3の領域42c)に分けてもよい。   As shown in FIG. 15, the low concentration P-type well region 42 may be divided into three regions (a first region 42a, a second region 42b, and a third region 42c).

第1の領域42aは、高濃度P型ウェル領域41側に設けられ、ドリフト領域47におけるゲート電極53側の部分47aに接する。第2の領域42bは、第1の領域42aを挟んで高濃度P型ウェル領域41の反対側に設けられ、ドリフト領域47におけるドレイン領域48側の部分47bに接する。第3の領域42cは、ドレイン領域48の下に設けられ、ドレイン領域48に接する。   The first region 42 a is provided on the high concentration P-type well region 41 side, and is in contact with the portion 47 a on the gate electrode 53 side in the drift region 47. The second region 42b is provided on the opposite side of the high concentration P-type well region 41 with the first region 42a interposed therebetween, and is in contact with the portion 47b of the drift region 47 on the drain region 48 side. The third region 42 c is provided below the drain region 48 and is in contact with the drain region 48.

第1の領域42aのP型不純物濃度をQd1、第2の領域42bのP型不純物濃度をQd2、第3の領域42cのP型不純物濃度をQd3とすると、Qd1>Qd2>Qd3が成り立つ。   When the P-type impurity concentration of the first region 42a is Qd1, the P-type impurity concentration of the second region 42b is Qd2, and the P-type impurity concentration of the third region 42c is Qd3, Qd1> Qd2> Qd3 holds.

第1の領域42a及び第2の領域42bの表面に対して、N型不純物イオンが注入され、その後熱処理されることで、ドリフト領域47が形成される。そのN型不純物イオンのドーズ量は第1の領域42a及び第2の領域42bの面方向で略均一であるが、第1の領域42aの方が第2の領域42bよりもP型不純物濃度が高いため、ドリフト領域47には相対的に不純物の実効濃度が異なる2つの部分47a、47bが形成される。   N-type impurity ions are implanted into the surfaces of the first region 42a and the second region 42b, followed by heat treatment, whereby the drift region 47 is formed. The dose amount of the N-type impurity ions is substantially uniform in the plane direction of the first region 42a and the second region 42b, but the P-type impurity concentration in the first region 42a is higher than that in the second region 42b. Since the height is high, two portions 47 a and 47 b having relatively different effective concentrations of impurities are formed in the drift region 47.

すなわち、第1の領域42aの上で第1の領域42aに接する部分47aは、第2の領域42bの上で第2の領域42bに接する部分47bよりも相対的にN型不純物濃度が低い。   That is, the portion 47a in contact with the first region 42a on the first region 42a has a relatively lower N-type impurity concentration than the portion 47b in contact with the second region 42b on the second region 42b.

ドリフト領域47におけるゲート電極53側の部分47aの不純物濃度を相対的に低くすることで、その部分47aがオフ時(ゲート電極53に閾値以上の電圧が印加されていない時)に完全空乏化して、高いオフ耐圧が得られる。   By relatively reducing the impurity concentration of the portion 47a on the gate electrode 53 side in the drift region 47, the portion 47a is completely depleted when the gate electrode 53 is off (when a voltage higher than the threshold is not applied to the gate electrode 53). High off breakdown voltage can be obtained.

ドリフト領域47におけるドレイン領域48側の部分47bの不純物濃度を相対的に高くすることで、ゲート電極53に閾値以上のフルバイアスが印加されたときに、部分47bの空乏化を抑制して、高いオン耐圧が得られる。   By relatively increasing the impurity concentration of the portion 47b on the drain region 48 side in the drift region 47, depletion of the portion 47b is suppressed and high when a full bias higher than the threshold is applied to the gate electrode 53. ON breakdown voltage can be obtained.

また、本実施形態では、ドレイン領域48下の第3の領域42cを第2の領域42bよりもさらに低不純物濃度とすることで、ドレイン領域48と第3の領域42cとの接合部の耐圧低下をよりいっそう抑制できる。   In the present embodiment, the breakdown voltage of the junction between the drain region 48 and the third region 42c is lowered by setting the third region 42c below the drain region 48 to a lower impurity concentration than the second region 42b. Can be further suppressed.

本実施形態は、前述した図7に示す第2実施形態の構造にも適用可能である。その構造を図16に示す。   This embodiment is also applicable to the structure of the second embodiment shown in FIG. The structure is shown in FIG.

比較的不純物濃度が高いドレイン領域48とN型層80との間の部分の不純物濃度が高いと、ドレイン領域48とN型層80とがパンチスルーして耐圧を低下させる懸念がある。   If the impurity concentration in the portion between the drain region 48 and the N-type layer 80 having a relatively high impurity concentration is high, there is a concern that the drain region 48 and the N-type layer 80 may punch through and lower the breakdown voltage.

図16に示す構造では、ドレイン領域48とN型層80との間に、不純物濃度をより低下させた第3の領域42cを設けることで、上記パンチスルーを抑制して、高耐圧を得ることができる。   In the structure shown in FIG. 16, by providing the third region 42 c having a lower impurity concentration between the drain region 48 and the N-type layer 80, the punch-through can be suppressed and high breakdown voltage can be obtained. Can do.

以上、具体例を参照しつつ本発明の実施形態について説明した。しかし、本発明は、それらに限定されるものではなく、本発明の技術的思想に基づいて種々の変形が可能である。   The embodiments of the present invention have been described above with reference to specific examples. However, the present invention is not limited to them, and various modifications can be made based on the technical idea of the present invention.

半導体材料としては例えばシリコンを用いることができるが、これに限らず、他の半導体材料を用いてもよい。また、単元素の半導体に限らず、化合物半導体を用いてもよい。   For example, silicon can be used as the semiconductor material, but not limited to this, other semiconductor materials may be used. Further, not only a single element semiconductor but also a compound semiconductor may be used.

10…LDMOS、11…基板、12…P型ウェル領域、13…N型ウェル領域、20…Nチャネル型MOS、30…Pチャネル型MOS、40…CMOS、41…高濃度P型ウェル領域、42…低濃度P型ウェル領域、44…ソース領域、47…ドリフト領域、48…ドレイン領域、51…ソース電極、52…ドレイン電極、53…ゲート電極   DESCRIPTION OF SYMBOLS 10 ... LDMOS, 11 ... Substrate, 12 ... P type well region, 13 ... N type well region, 20 ... N channel type MOS, 30 ... P channel type MOS, 40 ... CMOS, 41 ... High concentration P type well region, 42 ... Low-concentration P-type well region, 44 ... Source region, 47 ... Drift region, 48 ... Drain region, 51 ... Source electrode, 52 ... Drain electrode, 53 ... Gate electrode

Claims (6)

半導体層に対してマスクを用いて選択的にイオン注入を行い、前記半導体層に第1導電型の第1の半導体領域と、前記第1の半導体領域よりも第1導電型不純物濃度が低い第1導電型の第2の半導体領域とを同時に形成する工程と、
前記半導体層上に絶縁膜を介してゲート電極を形成する工程と、
前記第1の半導体領域上に第2導電型のソース領域を形成する工程と、
前記第2の半導体領域上であって、前記ソース領域との間に前記ゲート電極を挟む位置に第2導電型のドレイン領域を形成する工程と、
前記半導体層における前記ゲート電極と前記ドレイン領域との間の表層部に、前記ドレイン領域に接し前記ドレイン領域よりも不純物濃度が低い第2導電型のドリフト領域を形成する工程と、
を備えたことを特徴とする半導体装置の製造方法。
The semiconductor layer is selectively ion-implanted using a mask, the first semiconductor region of the first conductivity type is formed in the semiconductor layer, and the first conductivity type impurity concentration is lower than that of the first semiconductor region. Simultaneously forming a second semiconductor region of one conductivity type;
Forming a gate electrode on the semiconductor layer via an insulating film;
Forming a second conductivity type source region on the first semiconductor region;
Forming a second conductivity type drain region on the second semiconductor region at a position sandwiching the gate electrode with the source region;
Forming a drift region of a second conductivity type in contact with the drain region and having a lower impurity concentration than the drain region in a surface layer portion between the gate electrode and the drain region in the semiconductor layer;
A method for manufacturing a semiconductor device, comprising:
前記イオン注入のドーズ量は、前記半導体層の面方向で略均一であることを特徴とする請求項1記載の半導体装置の製造方法。   2. The method of manufacturing a semiconductor device according to claim 1, wherein a dose amount of the ion implantation is substantially uniform in a surface direction of the semiconductor layer. 前記マスクは、第1の開口形成領域と、前記第1の開口形成領域よりも単位面積あたりの開口率が低い第2の開口形成領域とを有し、
前記第1の開口形成領域の下の前記半導体層に前記第1の半導体領域が形成され、前記第2の開口形成領域の下の前記半導体層に前記第2の半導体領域が形成されることを特徴とする請求項1または2に記載の半導体装置の製造方法。
The mask has a first opening forming region and a second opening forming region having a lower opening ratio per unit area than the first opening forming region,
The first semiconductor region is formed in the semiconductor layer under the first opening formation region, and the second semiconductor region is formed in the semiconductor layer under the second opening formation region. The method for manufacturing a semiconductor device according to claim 1, wherein the method is a semiconductor device manufacturing method.
前記第2の開口形成領域は、
前記第1の開口形成領域に隣接する第1の領域と、
前記第1の領域を挟んで前記第1の開口形成領域の反対側に位置し、前記第1の領域よりも単位面積あたりの開口率が低い第2の領域と、
をさらに有することを特徴とする請求項3記載の半導体装置の製造方法。
The second opening forming region is
A first region adjacent to the first opening forming region;
A second region located on the opposite side of the first opening formation region across the first region and having a lower aperture ratio per unit area than the first region;
The method of manufacturing a semiconductor device according to claim 3, further comprising:
前記第2の開口形成領域は、
前記第1の開口形成領域に隣接する第1の領域と、
前記第1の領域を挟んで前記第1の開口形成領域の反対側に位置し、前記第1の領域よりも膜厚が厚い第2の領域と、
をさらに有することを特徴とする請求項3記載の半導体装置の製造方法。
The second opening forming region is
A first region adjacent to the first opening forming region;
A second region located on the opposite side of the first opening formation region across the first region and having a thickness greater than that of the first region;
The method of manufacturing a semiconductor device according to claim 3, further comprising:
半導体層に対してマスクを用いて選択的にイオン注入を行い、前記半導体層に第2導電型の第1の半導体領域と、前記第1の半導体領域よりも第2導電型不純物濃度が高い第2導電型の第2の半導体領域とを同時に形成する工程と、
前記第1の半導体領域及び前記第2の半導体領域の全面に均一にイオン注入を行い、第1導電型の第3の半導体領域の前記第1の半導体領域上への形成と、前記第3の半導体領域よりも第1導電型不純物濃度が低い第1導電型の第4の半導体領域の前記第2の半導体領域上への形成とを同時に行う工程と、
前記半導体層上に絶縁膜を介してゲート電極を形成する工程と、
前記第3の半導体領域上に第2導電型のソース領域を形成する工程と、
前記第4の半導体領域上であって、前記ソース領域との間に前記ゲート電極を挟む位置に第2導電型のドレイン領域を形成する工程と、
前記半導体層における前記ゲート電極と前記ドレイン領域との間の表層部に、前記ドレイン領域に接し前記ドレイン領域よりも不純物濃度が低い第2導電型のドリフト領域を形成する工程と、
を備えたことを特徴とする半導体装置の製造方法。
The semiconductor layer is selectively ion-implanted using a mask, and a second conductivity type first semiconductor region and a second conductivity type impurity concentration higher than that of the first semiconductor region are formed in the semiconductor layer. Simultaneously forming a second conductivity type second semiconductor region;
Ion implantation is performed uniformly over the entire surface of the first semiconductor region and the second semiconductor region, a first conductive type third semiconductor region is formed on the first semiconductor region, and the third semiconductor region is formed. Simultaneously forming a first conductivity type fourth semiconductor region having a first conductivity type impurity concentration lower than that of the semiconductor region on the second semiconductor region;
Forming a gate electrode on the semiconductor layer via an insulating film;
Forming a second conductivity type source region on the third semiconductor region;
Forming a second conductivity type drain region on the fourth semiconductor region at a position sandwiching the gate electrode with the source region;
Forming a drift region of a second conductivity type in contact with the drain region and having a lower impurity concentration than the drain region in a surface layer portion between the gate electrode and the drain region in the semiconductor layer;
A method for manufacturing a semiconductor device, comprising:
JP2010292463A 2009-01-15 2010-12-28 Method of manufacturing semiconductor device Pending JP2011097080A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010292463A JP2011097080A (en) 2009-01-15 2010-12-28 Method of manufacturing semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009006880 2009-01-15
JP2010292463A JP2011097080A (en) 2009-01-15 2010-12-28 Method of manufacturing semiconductor device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2010001153A Division JP4703769B2 (en) 2009-01-15 2010-01-06 Semiconductor device and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2011097080A true JP2011097080A (en) 2011-05-12

Family

ID=44113605

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010292463A Pending JP2011097080A (en) 2009-01-15 2010-12-28 Method of manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP2011097080A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014078649A (en) * 2012-10-12 2014-05-01 Mitsubishi Electric Corp Lateral high breakdown voltage transistor and manufacturing method of the same
US8878261B2 (en) 2012-05-29 2014-11-04 Canon Kabushiki Kaisha Semiconductor device and method of manufacturing the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0936248A (en) * 1995-07-18 1997-02-07 Siemens Ag Method of forming two transistors in a semiconductor substrate
JP2003152095A (en) * 2001-11-19 2003-05-23 Fuji Electric Co Ltd High voltage IC and method of manufacturing the same
JP2004228466A (en) * 2003-01-27 2004-08-12 Renesas Technology Corp Integrated semiconductor device and method of manufacturing the same
JP2007081243A (en) * 2005-09-15 2007-03-29 Toshiba Corp Semiconductor device and method for manufacturing semiconductor device
JP2008507140A (en) * 2004-07-15 2008-03-06 フェアチャイルド・セミコンダクター・コーポレーション Asymmetric hetero-doped high voltage MOSFET (AH2MOS)

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0936248A (en) * 1995-07-18 1997-02-07 Siemens Ag Method of forming two transistors in a semiconductor substrate
JP2003152095A (en) * 2001-11-19 2003-05-23 Fuji Electric Co Ltd High voltage IC and method of manufacturing the same
JP2004228466A (en) * 2003-01-27 2004-08-12 Renesas Technology Corp Integrated semiconductor device and method of manufacturing the same
JP2008507140A (en) * 2004-07-15 2008-03-06 フェアチャイルド・セミコンダクター・コーポレーション Asymmetric hetero-doped high voltage MOSFET (AH2MOS)
JP2007081243A (en) * 2005-09-15 2007-03-29 Toshiba Corp Semiconductor device and method for manufacturing semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8878261B2 (en) 2012-05-29 2014-11-04 Canon Kabushiki Kaisha Semiconductor device and method of manufacturing the same
JP2014078649A (en) * 2012-10-12 2014-05-01 Mitsubishi Electric Corp Lateral high breakdown voltage transistor and manufacturing method of the same

Similar Documents

Publication Publication Date Title
JP4703769B2 (en) Semiconductor device and manufacturing method thereof
KR100867574B1 (en) High voltage device and manufacturing method thereof
KR100363353B1 (en) Semiconductor device and manufacturing method thereof
JPH09270466A (en) Semiconductor device and manufacturing method thereof
JP2000260987A (en) Semiconductor device and manufacturing method thereof
JP4387291B2 (en) Horizontal semiconductor device and manufacturing method thereof
JP4727426B2 (en) Semiconductor device and manufacturing method of semiconductor device
JP4308096B2 (en) Semiconductor device and manufacturing method thereof
US9608057B2 (en) Semiconductor device and method for manufacturing semiconductor device
US8604522B2 (en) Field effect type semiconductor device and method for manufacturing the same
KR101781220B1 (en) Semiconductor device having depression type mos transistor
JP2010177292A (en) Semiconductor device and method for manufacturing the same
JP5834200B2 (en) Semiconductor device
JP4800566B2 (en) Semiconductor device and manufacturing method thereof
KR20090021459A (en) Semiconductor device and manufacturing method thereof
JP4907920B2 (en) Semiconductor device and manufacturing method thereof
JP2011097080A (en) Method of manufacturing semiconductor device
JP4091895B2 (en) Semiconductor device and manufacturing method thereof
JP2007027622A (en) Semiconductor device and manufacturing method thereof
JP2009302114A (en) Semiconductor device and manufacturing method thereof
US7335549B2 (en) Semiconductor device and method for fabricating the same
CN102386131B (en) Technology for simultaneously realizing drift drain metal oxide semiconductor (DDMOS) drift region and lateral diffused metal oxide semiconductor (LDMOS) drift region
KR100628241B1 (en) Method for Manufacturing Semiconductor Device
KR20110078867A (en) Semiconductor device and manufacturing method thereof
KR101060704B1 (en) Method for manufacturing horizontal diffusion morph transistor

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130215

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130618