JP2011007383A - Aluminum alloy heat exchanger and method for manufacturing refrigerant passage pipe used for the same - Google Patents
Aluminum alloy heat exchanger and method for manufacturing refrigerant passage pipe used for the same Download PDFInfo
- Publication number
- JP2011007383A JP2011007383A JP2009149519A JP2009149519A JP2011007383A JP 2011007383 A JP2011007383 A JP 2011007383A JP 2009149519 A JP2009149519 A JP 2009149519A JP 2009149519 A JP2009149519 A JP 2009149519A JP 2011007383 A JP2011007383 A JP 2011007383A
- Authority
- JP
- Japan
- Prior art keywords
- aluminum alloy
- refrigerant passage
- heat exchanger
- passage tube
- refrigerant
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/22—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
- B23K35/36—Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
- B23K35/3601—Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest with inorganic compounds as principal constituents
- B23K35/3603—Halide salts
- B23K35/3605—Fluorides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/22—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
- B23K35/36—Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
- B23K35/3601—Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest with inorganic compounds as principal constituents
- B23K35/3607—Silica or silicates
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/02—Alloys based on aluminium with silicon as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/10—Alloys based on aluminium with zinc as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/12—Alloys based on aluminium with copper as the next major constituent
- C22C21/14—Alloys based on aluminium with copper as the next major constituent with silicon
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F19/00—Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
- F28F19/02—Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F21/00—Constructions of heat-exchange apparatus characterised by the selection of particular materials
- F28F21/08—Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
- F28F21/081—Heat exchange elements made from metals or metal alloys
- F28F21/084—Heat exchange elements made from metals or metal alloys from aluminium or aluminium alloys
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K2101/00—Articles made by soldering, welding or cutting
- B23K2101/04—Tubular or hollow articles
- B23K2101/14—Heat exchangers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K2103/00—Materials to be soldered, welded or cut
- B23K2103/08—Non-ferrous metals or alloys
- B23K2103/10—Aluminium or alloys thereof
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D21/00—Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
- F28D2021/0019—Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
- F28D2021/008—Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for vehicles
- F28D2021/0084—Condensers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D21/00—Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
- F28D2021/0019—Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
- F28D2021/008—Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for vehicles
- F28D2021/0085—Evaporators
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Extrusion Of Metal (AREA)
Abstract
【目的】ろう付け後の強度、耐食性に優れ、改善された押出性を有するアルミニウム合金の冷媒通路管を用いることにより、高耐食性をそなえ、一層の軽量化と低コスト化を可能とし、とくに自動車用熱交換器として好適なアルミニウム合金製熱交換器を提供する。
【構成】アルミニウム合金製冷媒通路管の表面に、Si粉末とフッ化物系フラックスを含む混合物を塗布し、フィンを組付けて、ろう付けされるアルミニウム合金製熱交換器において、前記冷媒通路管は、Mn0.5〜1.7%を含有し、残部Alと不可避的不純物からなるアルミニウム合金の押出材で構成され、前記フィンは、Zn:0.3〜4.0%、Mn0.8〜1.7%を含有し、残部Alおよび不可避的不純物からなるアルミニウム合金で構成され、前記冷媒通路管の表層部にZn拡散層が形成されていることを特徴とする。
【選択図】なし[Purpose] By using an aluminum alloy refrigerant passage tube with excellent strength and corrosion resistance after brazing and improved extrudability, it has high corrosion resistance and can be further reduced in weight and cost, especially in automobiles. An aluminum alloy heat exchanger suitable as a heat exchanger for use is provided.
[Structure] An aluminum alloy heat exchanger in which a mixture containing Si powder and a fluoride-based flux is applied to the surface of an aluminum alloy refrigerant passage tube, and fins are assembled and brazed. And Mn 0.5 to 1.7%, and is composed of an extruded material of an aluminum alloy composed of the balance Al and inevitable impurities, and the fin is made of Zn: 0.3 to 4.0%, Mn 0.8 to 1 It is characterized in that it is made of an aluminum alloy containing the remaining Al and unavoidable impurities, and a Zn diffusion layer is formed in the surface layer portion of the refrigerant passage tube.
[Selection figure] None
Description
本発明は、アルミニウム合金製熱交換器および該熱交換器に使用する冷媒通路管の製造方法に関する。 The present invention relates to an aluminum alloy heat exchanger and a method for producing a refrigerant passage tube used in the heat exchanger.
エバポレータ、コンデンサ等の自動車用熱交換器には、一般に軽量性と熱伝導性が良好なアルミニウム合金が使用されている。これらの熱交換器では、例えばアルミニウム合金押出チューブを冷媒通路管として、その表面にフッ化物系フラックスを付着させ、フィン材などの部材を所定構造に組み付けた後、不活性ガス雰囲気の加熱炉内においてろう付け接合する方法が一般的に採用されている。 For heat exchangers for automobiles such as an evaporator and a condenser, an aluminum alloy having good lightness and heat conductivity is generally used. In these heat exchangers, for example, an aluminum alloy extruded tube is used as a refrigerant passage tube, and a fluoride-based flux is attached to the surface of the heat exchanger, and after a member such as a fin material is assembled in a predetermined structure, the inside of a heating furnace in an inert gas atmosphere is used. In general, a method of brazing and joining is employed.
一般に、自動車用熱交換器の冷媒流路管としては、複数の仕切によって区画された複数の中空部を有するアルミニウムの押出多穴管が使用されている。近年、環境負荷低減の観点から、自動車の燃費向上のために熱交換器の軽量化が要請され、これに伴い冷媒通路用チューブの薄肉化が進められており、このためチューブ断面積はさらに減少し、押出比(コンテナ断面積/押出材断面積)は数百から数千になっている。従って、これまではチューブ材として押出性を考慮して押出加工性の良好な純アルミニウム系の材料が使用されている。 In general, as a refrigerant flow pipe of a heat exchanger for automobiles, an extruded multi-hole pipe made of aluminum having a plurality of hollow portions partitioned by a plurality of partitions is used. In recent years, from the viewpoint of reducing environmental impact, the heat exchanger has been required to be lighter in order to improve the fuel efficiency of automobiles, and as a result, the refrigerant passage tube has been made thinner. The extrusion ratio (container cross-sectional area / extruded material cross-sectional area) is several hundred to several thousand. Therefore, so far, pure aluminum-based materials having good extrudability have been used as the tube material in consideration of extrudability.
今後、熱交換器のさらなる軽量化が予想され、それに伴ってチューブの薄肉化もさらに進行するものと予想される。この場合、チューブ材料自体の高強度化が必要になる。また近年、地球温暖化防止のため、冷媒に従来使用しているフロンの代わりに自然冷媒のCO2を使用する動きがあり、CO2冷媒は、従来のフロン冷媒よりも作動圧力が高く、この点からもチューブ材料の高強度化が必要となってくる。 In the future, further weight reduction of the heat exchanger is expected, and it is expected that the thinning of the tube will further progress accordingly. In this case, it is necessary to increase the strength of the tube material itself. In recent years, in order to prevent global warming, there has been a movement to use CO 2 which is a natural refrigerant instead of CFC which is conventionally used as a refrigerant. CO 2 refrigerant has a higher operating pressure than conventional CFC refrigerant. From the point of view, it is necessary to increase the strength of the tube material.
チューブ材料の高強度化には、Si、Cu、Mn、Mgなどの添加が有効であるが、ろう付けを行う材料中にMgが含有されていると、加熱過程で溶融したフッ化物系フラックスが材料中のMgと反応し、MgF2及びKMgF3などの化合物を生成し、フラックスの活性度が低下してろう付け性が著しく低下する。また、CO2冷媒を使用した熱交換器においては、作動温度が150℃付近の高温になるため、材料中にCuが含有されていると、粒界腐食感受性が顕著に高まり、粒界腐食が発生すると早期に冷媒洩れが発生し、熱交換器のチューブとしての機能を果たすことができなくなる。 The addition of Si, Cu, Mn, Mg, etc. is effective for increasing the strength of the tube material. However, if Mg is contained in the material to be brazed, the fluoride flux melted during the heating process It reacts with Mg in the material to produce compounds such as MgF 2 and KMgF 3, and the activity of the flux is lowered and the brazing property is remarkably lowered. In addition, in a heat exchanger using a CO 2 refrigerant, the operating temperature is as high as about 150 ° C. Therefore, if Cu is contained in the material, the intergranular corrosion sensitivity is remarkably increased, and intergranular corrosion is reduced. If it occurs, the refrigerant leaks early and cannot function as a tube of the heat exchanger.
従って、高強度化への方針としては、SiおよびMnの添加に依らざるを得ない。しかしながら、Mn、Siを高濃度に添加した合金は、母相中に固溶したMn、Siが変形抵抗を増大させ、例えば前記の押出多穴管のように押出比が数百から数千に及ぶものでは、従来の純Al系の材料に比べて押出性が極端に劣る。この場合の押出性とは、押出に必要なラム圧力や、多穴管の中空部の仕切の欠損が生じないで得られる最大の押出速度(限界押出速度)を評価の指標として、ラム圧力が高いものほどあるいは限界押出速度が低いものほど押出性が劣り、Mn、Siを高濃度に添加した合金では、従来の純Al系の材料と比べて、ラム圧力が上昇しダイスの破損や磨耗が生じ易くなるとともに、限界押出速度も低下するため、生産性が低下する。 Therefore, the policy for increasing the strength must be dependent on the addition of Si and Mn. However, in an alloy in which Mn and Si are added at a high concentration, Mn and Si dissolved in the matrix phase increase the deformation resistance. For example, the extrusion ratio increases from several hundred to several thousand like the extruded multi-hole tube. As far as this is concerned, the extrudability is extremely inferior compared to conventional pure Al-based materials. In this case, extrudability refers to the ram pressure required for extrusion and the maximum extrusion speed (limit extrusion speed) that can be obtained without causing the loss of the partition of the hollow part of the multi-hole tube. The higher the material or the lower the critical extrusion speed, the poorer the extrudability. In the alloy with Mn and Si added at a high concentration, the ram pressure rises and the die breaks and wears compared to the conventional pure Al material. It becomes easy to occur, and the limit extrusion speed is also lowered, so that productivity is lowered.
押出合金の高強度化および押出性向上への方針として、例えば、高強度化のためにSi、Mnを添加し、押出性向上のために高温の均質化処理と低温の均質化処理を組み合わせて実施することにより、母相中の溶質元素の固溶量を減少させ、変形抵抗を低下させる方法が提唱されているが、この場合、元々の溶質元素の添加量が多い分、高強度は狙えるが押出性の向上、特に押出速度の向上には限界があり、高強度と押出性すなわち生産性を完全に両立することは困難である。 As a policy for increasing the strength and extrudability of extruded alloys, for example, adding Si and Mn to increase strength, combining high-temperature homogenization processing and low-temperature homogenization processing to improve extrudability A method has been proposed to reduce the solid solution amount of the solute element in the matrix and to reduce the deformation resistance, but in this case, the amount of the original solute element added is high, so high strength can be aimed at However, there is a limit to improving the extrudability, in particular, the extrusion speed, and it is difficult to achieve both high strength and extrudability, that is, productivity.
また、自動車熱交換器の冷媒通路管は、使用中に腐食による貫通が生じた場合、冷媒漏れが発生し熱交換器としての機能を果たすことができなくなる。このため、従来は冷媒通路用押出チューブの表面にあらかじめ溶射などによりZnを付着させておき、ろう付けによりZnを拡散させ、その際チューブ表層に形成されたZn拡散層が、それより深部に対して犠牲陽極として働き、板厚方向への腐食を抑制し貫通寿命を延ばしている。この場合、チューブを押し出した後にZn溶射など、Zn付着工程が必要となり、さらにその後に、ろう付けに必要となるフッ化物系フラックスの塗布工程、あるいは熱交換器コアに組付けられた後にコア全体へのフラックス塗布工程が必要となることから、製造コストの上昇を招くこととなる。さらに、そのチューブにはろう材が付与されていないため、組み付けるフィン材にはろう材がクラッドされたブレージングフィンが必要となる。このことも、ろう材がクラッドされていないベアフィン材を使用する場合と比べてコストの上昇につながる。 In addition, if the refrigerant passage pipe of the automobile heat exchanger is penetrated by corrosion during use, refrigerant leakage occurs and the function as the heat exchanger cannot be achieved. For this reason, conventionally, Zn is adhered to the surface of the extruded tube for refrigerant passage in advance by thermal spraying or the like, and Zn is diffused by brazing, and at that time, the Zn diffusion layer formed on the tube surface layer is deeper than that. It acts as a sacrificial anode and suppresses corrosion in the thickness direction, extending the penetration life. In this case, after the tube is extruded, a Zn deposition process such as Zn spraying is required, and then the entire process of the fluoride core flux application process necessary for brazing, or after being assembled to the heat exchanger core. Since a flux coating process is required, the manufacturing cost increases. Further, since no brazing material is applied to the tube, brazing fins clad with the brazing material are required for the fin material to be assembled. This also leads to an increase in cost compared to the case where a bare fin material in which the brazing material is not clad is used.
これらの難点を解決する手段として、純アルミニウム系のA1050合金あるいはAl−0.4%Cu合金からなる押出冷媒通路管の表面にSi粉末とフッ化物系フラックスを塗布し、Znを含有するベアフィンと組付けて熱交換器を製造することが提唱されているが、冷媒通路管が純アルミニウム系合金の場合は強度を確保することができず、薄肉化の要請にこたえることができず、CO2冷媒を用いる熱交換器のように高強度を必要とする熱交換器には適用できない。冷媒通路管がAl−0.4%Cu合金の場合は純アルミニウム系合金に比べれば高強度は得られるが、Cuを含有するため、CO2冷媒を用いる熱交換器に適用した場合には高温粒界腐食性が懸念される。 As a means for solving these difficulties, Si powder and fluoride-based flux are applied to the surface of an extruded refrigerant passage tube made of pure aluminum-based A1050 alloy or Al-0.4% Cu alloy, Although possible to produce a heat exchanger assembly has been proposed, when the refrigerant tube is pure aluminum-based alloy can not be ensured strength, we can not meet the demand for thinning, CO 2 It cannot be applied to a heat exchanger that requires high strength, such as a heat exchanger using a refrigerant. Although the refrigerant tube is in the case of Al-0.4% Cu alloy high strength compared to pure aluminum-based alloy can be obtained, for containing Cu, high temperatures when applied to a heat exchanger using a CO 2 refrigerant There is concern about intergranular corrosion.
常温で使用する従来の冷媒を用いる熱交換器については、Zn含有フィンの一部が溶融して冷媒通路管表層に形成されたZn拡散層では、そのZn濃度が低く、かつ冷媒通路管にCuが含有されているために冷媒通路管表面の電位が十分に卑化せず、このため冷媒管の板厚方向には、冷媒通路管そのものを防食するために必要な、表層が卑で深部が貴となるような電位勾配が十分に形成されない。これはZn濃度が低く、かつCuと共存している場合は、Znによる電位卑化効果よりもCuによる電位貴化効果の方が顕著に働くためである。さらに、冷媒通路管表層に予め塗布されたSiがろう付けにより拡散して拡散層を形成し、この拡散層も表層の電位を貴化させる方向に働き、余計に前記の電位勾配の形成を阻害する。 For a heat exchanger using a conventional refrigerant used at room temperature, in the Zn diffusion layer formed on the surface of the refrigerant passage tube by melting a part of the Zn-containing fin, the Zn concentration is low, and Cu is contained in the refrigerant passage tube. Therefore, the surface potential of the refrigerant passage tube is not sufficiently reduced, and therefore, in the thickness direction of the refrigerant tube, the surface layer is necessary to prevent corrosion of the refrigerant passage tube itself, and the surface layer is base and the deep portion is not deep. A sufficient potential gradient is not formed. This is because, when the Zn concentration is low and coexists with Cu, the potential noble effect by Cu works more significantly than the potential base effect by Zn. Furthermore, Si applied in advance on the surface layer of the refrigerant passage tube diffuses by brazing to form a diffusion layer, and this diffusion layer also works in a direction to make the surface layer potential noble, and additionally obstructs the formation of the potential gradient. To do.
Si拡散層は冷媒通路管の電位を貴化するために、Si拡散層がない冷媒通路管に比べて耐食性向上が図れるというCASS試験による耐食性評価もあるが、CASS試験のように試験中常時試験液が噴霧され、供試体が常時高導電率の液膜で覆われている場合には、陰極防食効果がより広範囲に作用するため、フィンよりも冷媒通路管の電位を貴化することにより冷媒通路管を陰極防食することができるのであり、実際の使用環境では乾湿の繰返し環境になることがほとんどであるから、陰極防食効果の作用する範囲が極めて狭い範囲に限定されるため、冷媒通路管の電位をフィンよりも貴化させることによる陰極防食だけでは、冷媒通路管を防食することは困難である。とくにエバポレータでは結露による凝縮水に覆われることになり、この凝縮水はCASS試験液と比べて極めて低導電率であるため、常時覆われていたとしても、陰極防食効果の広い範囲に作用することができなくなり、冷媒通路管を陰極防食することは困難である。これらの環境でも冷媒通路管を防食するには、冷媒通路管自体に表層が卑で深部が貴となるような十分な電位勾配を付与させる必要がある。 Since the Si diffusion layer makes the potential of the refrigerant passage tube noble, there is also a corrosion resistance evaluation by the CASS test that can improve the corrosion resistance compared to the refrigerant passage tube without the Si diffusion layer. When the liquid is sprayed and the specimen is always covered with a liquid film having a high conductivity, the cathodic protection effect acts more widely. Since the passage tube can be subjected to cathodic protection, and in most cases, it becomes a dry and wet repetitive environment in an actual use environment, so the range in which the cathodic protection effect acts is limited to a very narrow range. It is difficult to prevent corrosion of the refrigerant passage tube only by cathodic protection by making the potential of the current higher than that of the fin. In particular, the evaporator is covered with condensed water due to condensation, and this condensed water has a very low conductivity compared to the CASS test solution, so that it acts on a wide range of the cathodic protection effect even if it is always covered. Therefore, it is difficult to cathodic-protect the refrigerant passage tube. In order to prevent corrosion of the refrigerant passage pipe even in these environments, it is necessary to give a sufficient potential gradient to the refrigerant passage pipe itself so that the surface layer is base and the deep portion is noble.
最大粒子径が30μm以下のSi粉末を、Znを含有しないフラックスと共に塗布したチューブと、フィンをそなえ、ろう付け後のチューブの電位がフィンよりも50mV以上貴であることにより、フィレットの耐食性を向上させた熱交換器が提案されているが、卑なフィンを用いることによる防食に頼っているため、フィンの自己腐食が大きいという問題がある。加えて、前記のように実際の使用環境では乾湿の繰返し環境になることや、特にエバポレータでは低導電率の凝縮水に覆われるため、陰極防食効果の作用する範囲が極めて狭くなり、フィンによる防食だけでは冷媒通路管を陰極防食することはできない。 The tube is coated with Si powder with a maximum particle size of 30 μm or less together with a flux that does not contain Zn and fins, and the potential of the tube after brazing is no less than 50 mV higher than the fins, improving the corrosion resistance of the fillet. Although a heat exchanger is proposed, there is a problem that self-corrosion of the fin is large because it relies on corrosion prevention by using a base fin. In addition, as described above, in the actual use environment, it becomes a repeated dry and wet environment, and in particular, the evaporator is covered with low-conductivity condensed water. It is not possible to cathodic-protect the refrigerant passage tube by itself.
本発明は、自動車用熱交換器およびアルミニウム冷媒通路管における上記従来の問題を解消する手法として、Znを含有するフィンを用い、ろう付け時にフィン表面から蒸発したZnが冷媒通路管表面に付着し、冷媒通路管内に拡散して冷媒通路管の表層部に濃度勾配を有するZn拡散層を形成させた場合、冷媒通路管の耐孔食性が顕著に改善されることを見出したことに基づいてなされたものであり、その目的は、高耐食性をそなえ、一層の軽量化と低コスト化を可能とし、とくに自動車用熱交換器として好適なアルミニウム合金製熱交換器を提供することにある。また、本発明の他の目的は、当該熱交換器に使用する冷媒通路管を構成するアルミニウム合金の押出性を向上させるための冷媒通路管の製造方法を提供することにある。 The present invention uses a fin containing Zn as a technique for solving the above-mentioned conventional problems in a heat exchanger for an automobile and an aluminum refrigerant passage tube, and Zn evaporated from the fin surface during brazing adheres to the surface of the refrigerant passage tube. The pitting corrosion resistance of the refrigerant passage pipe was found to be remarkably improved when a Zn diffusion layer having a concentration gradient is formed in the surface portion of the refrigerant passage pipe by diffusing into the refrigerant passage pipe. An object of the present invention is to provide an aluminum alloy heat exchanger that has high corrosion resistance, can be further reduced in weight and cost, and is particularly suitable as a heat exchanger for automobiles. Moreover, the other object of this invention is to provide the manufacturing method of the refrigerant path pipe | tube for improving the extrudability of the aluminum alloy which comprises the refrigerant path pipe | tube used for the said heat exchanger.
上記の目的を達成するための請求項1によるアルミニウム合金製熱交換器は、アルミニウム合金製冷媒通路管の表面に、Si粉末とフッ化物系フラックスを含む混合物を塗布し、フィンを組付けて、ろう付けされるアルミニウム合金製熱交換器において、前記冷媒通路管は、Mn0.5〜1.7%(質量%、以下同じ)を含有し、残部Alと不可避的不純物からなるアルミニウム合金の押出材で構成され、前記フィンは、Zn:0.3〜4.0%、Mn0.8〜1.7%を含有し、残部Alおよび不可避的不純物からなるアルミニウム合金で構成され、前記冷媒通路管の表層部にZn拡散層が形成されていることを特徴とする。 To achieve the above object, an aluminum alloy heat exchanger according to claim 1, a mixture containing Si powder and a fluoride-based flux is applied to the surface of an aluminum alloy refrigerant passage tube, and fins are assembled. In the aluminum alloy heat exchanger to be brazed, the refrigerant passage tube contains 0.5 to 1.7% (mass%, hereinafter the same) of Mn, and the extruded material of the aluminum alloy consisting of the balance Al and inevitable impurities The fin is composed of an aluminum alloy containing Zn: 0.3 to 4.0%, Mn 0.8 to 1.7%, the balance Al and unavoidable impurities, A Zn diffusion layer is formed in the surface layer portion.
請求項2によるアルミニウム合金製熱交換器は、請求項1において、前記冷媒通路管は、さらにTi0.30%以下、Sr0.10%以下、Zr0.30%以下のうちの1種または2種以上を含有するアルミニウム合金押出材であることを特徴とする。 An aluminum alloy heat exchanger according to claim 2 is the heat exchanger made of aluminum alloy according to claim 1, wherein the refrigerant passage tube further includes one or more of Ti 0.30% or less, Sr 0.10% or less, Zr 0.30% or less. An aluminum alloy extruded material containing
請求項3によるアルミニウム合金製熱交換器は、請求項1または2において、前記冷媒通路管は、Cuの含有量を0.10%未満に規制したアルミニウム合金押出材であることを特徴とする。 An aluminum alloy heat exchanger according to a third aspect is characterized in that, in the first or second aspect, the refrigerant passage tube is an aluminum alloy extruded material in which the Cu content is regulated to less than 0.10%.
請求項4によるアルミニウム合金製熱交換器は、請求項1〜3のいずれかにおいて、前記冷媒通路管は、Siの含有量を0.10%未満に規制したアルミニウム合金押出材であることを特徴とする。 An aluminum alloy heat exchanger according to a fourth aspect of the present invention is characterized in that, in any one of the first to third aspects, the refrigerant passage tube is an aluminum alloy extruded material in which the Si content is regulated to less than 0.10%. And
請求項5によるアルミニウム合金製熱交換器は、請求項1〜4のいずれかにおいて、前記フィンは、Zn0.3〜4.0%、Mn0.8〜1.7%を含有し、さらに、Si0.2〜0.6%、Fe0.1〜0.7%、Mg0.05〜0.3%、Cu0.5以下、Cr0.3%以下、Zr0.3%以下、Ti0.3%以下の1種または2種以上を含有し、残部Alと不可避的不純物からなることを特徴とする。 An aluminum alloy heat exchanger according to claim 5 is the aluminum alloy heat exchanger according to any one of claims 1 to 4, wherein the fin contains 0.3 to 4.0% Zn, 0.8 to 1.7% Mn, and further contains Si0. 2 to 0.6%, Fe 0.1 to 0.7%, Mg 0.05 to 0.3%, Cu 0.5 or less, Cr 0.3% or less, Zr 0.3% or less, Ti 0.3% or less It contains seeds or two or more, and is composed of the balance Al and inevitable impurities.
請求項6によるアルミニウム合金製熱交換器は、請求項1〜5において、前記フィン材が、さらにIn0.001〜0.10%、Sn0.001〜0.10%の1種または2種を含有することを特徴とする。 An aluminum alloy heat exchanger according to claim 6 is the heat exchanger made of aluminum alloy according to claims 1 to 5, wherein the fin material further contains one or two of In 0.001 to 0.10% and Sn 0.001 to 0.10%. It is characterized by doing.
請求項7による冷媒通路管の製造方法は、請求項1〜6のいずれかに記載のアルミニウム製熱交換器に使用する前記冷媒通路管を製造する方法であって、請求項1〜3のいずれかに記載の冷媒通路管を構成するアルミニウム合金の鋳塊に400℃〜650℃の温度で4時間以上保持する均質化熱処理を施した後、熱間押出加工することを特徴とする。 A method of manufacturing a refrigerant passage tube according to claim 7 is a method of manufacturing the refrigerant passage tube used in the aluminum heat exchanger according to any one of claims 1 to 6, wherein The aluminum alloy ingot constituting the refrigerant passage tube described above is subjected to a homogenization heat treatment at a temperature of 400 ° C. to 650 ° C. for 4 hours or more and then hot extrusion.
請求項8による冷媒通路管の製造方法は、請求項1〜6のいずれかに記載のアルミニウム製熱交換器に使用する前記冷媒通路管を製造する方法であって、請求項1〜3のいずれかに記載の冷媒通路管を構成するアルミニウム合金の鋳塊に570℃〜650℃の温度で2時間以上保持する第一段熱処理と、その後400℃〜550℃の温度に降温して3時間以上保持する第二段熱処理からなる均質化熱処理を施した後、熱間押出加工することを特徴とする。 The manufacturing method of the refrigerant path pipe | tube by Claim 8 is a method of manufacturing the said refrigerant | coolant path pipe | tube used for the aluminum heat exchanger in any one of Claims 1-6, Comprising: Any of Claims 1-3 First-stage heat treatment in which the aluminum alloy ingot constituting the refrigerant passage tube is kept at a temperature of 570 ° C. to 650 ° C. for 2 hours or more, and then lowered to a temperature of 400 ° C. to 550 ° C. for 3 hours or more. A hot-extrusion process is performed after the homogenization heat treatment including the second-stage heat treatment to be held.
請求項9による冷媒通路管の製造方法は、請求項1〜6のいずれかに記載のアルミニウム製熱交換器に使用する前記冷媒通路管を製造する方法であって、請求項1〜3のいずれかに記載の冷媒通路管を構成するアルミニウム合金の鋳塊に570℃〜650℃の温度で2時間以上保持する第一段熱処理と、その後一旦常温まで降温した後、400℃〜550℃の温度で3時間以上保持する第二段熱処理からなる均質化熱処理を施した後、熱間押出加工することを特徴とする。 A method of manufacturing a refrigerant passage pipe according to claim 9 is a method of manufacturing the refrigerant passage pipe used in the aluminum heat exchanger according to any one of claims 1 to 6, wherein The first-stage heat treatment in which the aluminum alloy ingot constituting the refrigerant passage tube is kept at a temperature of 570 ° C. to 650 ° C. for 2 hours or more, and then the temperature is lowered to room temperature, and then the temperature of 400 ° C. to 550 ° C. The material is characterized by being subjected to hot extrusion after being subjected to a homogenization heat treatment comprising a second-stage heat treatment for 3 hours or more.
本発明によれば、ろう付け後の強度、耐食性に優れ、改善された押出性を有するアルミニウム合金の冷媒通路管を用いることにより、高耐食性をそなえ、一層の軽量化と低コスト化を可能とし、とくに自動車用熱交換器として好適なアルミニウム合金製熱交換器が提供される。また、当該熱交換器に使用する冷媒通路管を構成するアルミニウム合金の押出性を向上させるための冷媒通路管の製造方法が提供される。 According to the present invention, by using a refrigerant passage tube made of an aluminum alloy having excellent strength and corrosion resistance after brazing and improved extrudability, it is possible to achieve high corrosion resistance and further reduce weight and cost. In particular, an aluminum alloy heat exchanger suitable as an automotive heat exchanger is provided. Moreover, the manufacturing method of the refrigerant path pipe | tube for improving the extrudability of the aluminum alloy which comprises the refrigerant path pipe | tube used for the said heat exchanger is provided.
本発明のアルミニウム合金製熱交換器の冷媒通路管を構成するアルミニウム合金の押出材における合金成分の意義および限定理由について説明する。
Mn:
Mnは、熱交換器をろう付け加熱接合した後に母相中に固溶し、従来の自動車熱交換器用押出多穴管を構成する純アルミニウム系合金と比べて高強度化が可能になる。また、Mnの添加は、同じ量のSi、CuあるいはMgを添加した場合と比べて、押出性、特に限界押出速度の低下が著しく小さい。同じ強度になるようにSi、CuあるいはMgを添加した場合と比較しても、Mn添加の場合が最も限界押出速度の低下が小さく、高強度と押出性すなわち生産性を両立できる合金成分である。好ましい含有量は0.5〜1.7%の範囲であり、0.5%未満では高強度化効果は小さく、1.7%を超えて含有すると押出性の低下が認められる。より好ましい含有範囲は0.6%〜1.5%である。
The significance and reasons for limitation of the alloy components in the aluminum alloy extruded material constituting the refrigerant passage tube of the aluminum alloy heat exchanger of the present invention will be described.
Mn:
Mn is solid-dissolved in the parent phase after brazing and heat-bonding the heat exchanger, and it becomes possible to increase the strength compared to a pure aluminum alloy that constitutes a conventional extruded multi-hole tube for an automobile heat exchanger. Further, when Mn is added, the decrease in extrudability, particularly the limit extrusion speed, is remarkably small as compared with the case where the same amount of Si, Cu or Mg is added. Compared to the case where Si, Cu, or Mg is added so as to have the same strength, the addition of Mn has the smallest decrease in the limit extrusion speed, and is an alloy component that can achieve both high strength and extrudability, that is, productivity. . The preferable content is in the range of 0.5 to 1.7%, and if it is less than 0.5%, the effect of increasing the strength is small, and if it exceeds 1.7%, a decrease in extrudability is observed. A more preferable content range is 0.6% to 1.5%.
Si:
Siは0.10%未満に制限する。これにより以下の効果が得られる。冷媒通路管の表面に塗布されたSi粉末はろう付け加熱により冷媒通路管内に拡散し、冷媒通路管を構成するアルミニウム合金中のMnとAl−Mn−Si系金属間化合物を形成して析出する。この析出により、冷媒通路管のSi拡散層内ではMnとSiの固溶度が低下し、Si拡散層よりも深い部位、すなわちSiが未拡散の部位と比べて、Si拡散層の電位が卑化する。この結果、表面からSi拡散層深さまでは、それより深い部位に対して犠牲陽極層として作用し、深さ方向への腐食貫通寿命を向上させることができる。
Si:
Si is limited to less than 0.10%. As a result, the following effects are obtained. The Si powder applied to the surface of the refrigerant passage tube diffuses into the refrigerant passage tube by brazing heating, and forms and precipitates Mn in the aluminum alloy constituting the refrigerant passage tube and an Al-Mn-Si intermetallic compound. . Due to this precipitation, the solid solubility of Mn and Si decreases in the Si diffusion layer of the refrigerant passage tube, and the potential of the Si diffusion layer is lower than that of a portion deeper than the Si diffusion layer, that is, a portion where Si is not diffused. Turn into. As a result, from the surface to the depth of the Si diffusion layer, it acts as a sacrificial anode layer for deeper portions, and the corrosion penetration life in the depth direction can be improved.
Si量が0.10%以上では、冷媒通路管を構成するアルミニウム合金中に最初からAl−Mn−Si系金属化合物が存在するため、合金中のMn固溶度も低下してしまう。この場合、ろう付け加熱により表面に塗布されたSi粉末が合金中に拡散しても、それによるAl−Mn−Si系金属間化合物の析出が少なくなり、Si拡散層における電位が卑になる効果が低下するため、表面からSi拡散層深さまでが犠牲陽極層として作用せず、腐食貫通寿命は向上しない。上記の効果を得るためのより好ましいSi量は0.05%以下の範囲である。 When the amount of Si is 0.10% or more, since an Al—Mn—Si based metal compound is present in the aluminum alloy constituting the refrigerant passage tube from the beginning, the Mn solid solubility in the alloy also decreases. In this case, even if the Si powder applied to the surface by brazing heating diffuses into the alloy, the precipitation of Al-Mn-Si intermetallic compounds is reduced, and the potential in the Si diffusion layer becomes lower. Therefore, from the surface to the depth of the Si diffusion layer does not act as a sacrificial anode layer, and the corrosion penetration life is not improved. A more preferable amount of Si for obtaining the above effect is in the range of 0.05% or less.
Cu:
Cuは0.10%未満に制限する。これにより、以下の(1)〜(3)の効果が得られる。(1)ろう付け加熱接合した自動車用熱交換器の使用時において、とくに高温使用時における粒界腐食を抑制することが可能になる。Cu量を0.10%以上含有すると、とくにCO2冷媒サイクルなどでの使用においては、作動温度が150℃付近の高温になって粒界にCuなどの析出が顕著に生じ、粒界腐食感受性が大きくなる。(2)Cuの添加は前記のようにMnと比べて著しく押出性を低下させる。この点からも添加量は制限する必要がある。
Cu:
Cu is limited to less than 0.10%. Thereby, the following effects (1) to (3) are obtained. (1) It is possible to suppress intergranular corrosion during use of a heat exchanger for automobiles that has been brazed and heat-joined, particularly during use at high temperatures. When the amount of Cu is 0.10% or more, particularly when used in a CO 2 refrigerant cycle, the operating temperature becomes a high temperature of around 150 ° C., and precipitation of Cu or the like occurs remarkably at the grain boundaries, and the intergranular corrosion sensitivity. Becomes larger. (2) Addition of Cu significantly reduces the extrudability as compared with Mn as described above. From this point as well, the amount added must be limited.
(3)一般的にZnを添加すると電位は卑化し、Cuを添加すると電位は貴化することが知られているが、発明者らは、ZnとCuが共存する場合において、とくにZn含有量が少ない場合にはCuによる電位貴化効果の方が顕著に作用することを見出した。本発明において、ろう付け時にフィンから蒸発したZnの冷媒通路管表面への付着、拡散により形成されたZn拡散層は、従来のZn溶射などにより冷媒通路管表面に形成されるZn拡散層に比べて表層Zn濃度が低い。このため、冷媒通路管にCuが0.10%以上含有されていると、前記フィンから蒸発したZnにより形成されたZn拡散層による電位卑化効果を含有Cuの電位貴化効果が相殺してしまい、Zn拡散層が存在するにもかかわらず、冷媒通路管表層の電位が卑化せず、冷媒通路管の板厚方向に対して表層が卑で深部が貴になる電位勾配を形成することができず、冷媒通路管自体で表層を犠牲陽極にして深部を防食し、貫通寿命を向上させることができない。また、実際には塗布されたSi粉末により冷媒通路管表層にはSi拡散層が存在し、これも表層電位を貴化する方向に働く。さらにCu含有量が多い場合では、Zn拡散層による電位卑化効果よりもCuによる電位貴化効果の方が完全に支配的となり、前記Si拡散層による電位貴化効果と相まって、冷媒通路管の板厚方向で表層が貴、深部が卑となる電位勾配が形成される。この場合には冷媒通路管の表層に対して深部の方がアノードとなるため、より早期に貫通に至ってしまう。一方、Cuを0.10%未満に制限した場合は、前記の低濃度のZn拡散層でも冷媒通路管の表層が卑化し、表層が卑で深部が貴となり、冷媒通路管表層を犠牲陽極として深部を防食するに十分な板厚方向の電位分布を形成することができる。さらに好ましいCuの含有範囲は0.05%以下であり、さらに好適には0.03%以下である。 (3) Generally, it is known that when Zn is added, the potential is reduced, and when Cu is added, the potential becomes noble. It has been found that when the amount is small, the potential noble effect due to Cu acts more remarkably. In the present invention, the Zn diffusion layer formed by the adhesion and diffusion of Zn evaporated from the fin during brazing to the surface of the refrigerant passage tube is compared with the Zn diffusion layer formed on the surface of the refrigerant passage tube by conventional Zn spraying or the like. The surface Zn concentration is low. For this reason, if Cu is contained in the refrigerant passage tube by 0.10% or more, the potential noble effect of Cu contained in the potential diffusion effect due to the Zn diffusion layer formed by Zn evaporated from the fin is offset. Thus, despite the presence of the Zn diffusion layer, the potential of the surface layer of the refrigerant passage tube does not become lower, and a potential gradient is formed in which the surface layer is lower and the deep portion is noble with respect to the thickness direction of the refrigerant passage tube. It is not possible to prevent the deep portion from being corroded by using the surface layer as a sacrificial anode in the refrigerant passage tube itself, and the penetration life cannot be improved. In practice, there is a Si diffusion layer on the surface of the refrigerant passage tube due to the applied Si powder, and this also works in the direction of making the surface potential noble. In addition, when the Cu content is large, the potential nomination effect due to Cu is completely more dominant than the potential neutralization effect due to the Zn diffusion layer, and coupled with the potential noble effect due to the Si diffusion layer, A potential gradient is formed in which the surface layer is noble and the deep part is base in the thickness direction. In this case, since the deeper part becomes the anode with respect to the surface layer of the refrigerant passage pipe, the penetration becomes earlier. On the other hand, when the Cu content is limited to less than 0.10%, the surface layer of the refrigerant passage tube is obscured even in the low-concentration Zn diffusion layer, the surface layer is base and the deep portion is noble, and the surface of the refrigerant passage tube is used as a sacrificial anode. It is possible to form a potential distribution in the thickness direction sufficient to prevent corrosion at the deep part. A more preferable Cu content range is 0.05% or less, and more preferably 0.03% or less.
Ti、Sr、Zr:
Tiの添加は、合金中にTiの高濃度の領域と低濃度の領域を形成させ、これらの領域が材料の肉厚方向に交互に層状に分布し、Tiが低濃度の領域は高濃度の領域に比べて優先的に腐食するために、腐食形態が層状になり肉厚方向への腐食の進行が抑制され、これにより耐孔食性および耐粒界腐食性が向上する。さらに、Ti添加により常温及び高温での強度が向上する。好ましいTiの含有量は0.30%以下の範囲であり、0.30%を超えると、鋳造時に巨大晶出物が生成し、健全な冷媒通路管の製造が困難となる。
Ti, Sr, Zr:
The addition of Ti forms a high-concentration region and a low-concentration region in the alloy, and these regions are distributed alternately in the thickness direction of the material, and the low-concentration region is a high-concentration region. Since corrosion preferentially compared to the region, the corrosion form is layered and progress of corrosion in the thickness direction is suppressed, thereby improving pitting corrosion resistance and intergranular corrosion resistance. Further, the addition of Ti improves the strength at normal temperature and high temperature. The preferable Ti content is in the range of 0.30% or less, and if it exceeds 0.30%, a giant crystallized product is produced at the time of casting, making it difficult to produce a healthy refrigerant passage tube.
Srの添加は、予め冷媒通路管の表面に塗布されたSi粉末がろう付け加熱時に母材のAlと反応してAl−Si合金液相ろうを生じ、冷却時に凝固する際、晶出する共晶組織を微細化、分散させるよう機能する。材料表面のアノードサイトとなる共晶組織が分散されると、腐食が均一に分散し面状の腐食形態になり耐食性が向上する。好ましいSrの含有量は0.10%以下の範囲であり、0.10%を超えると、Al−Si−Sr系化合物が晶出し共晶組織が微細化しない。 The addition of Sr is caused by the fact that the Si powder previously applied to the surface of the refrigerant passage tube reacts with Al of the base material during brazing heating to form an Al-Si alloy liquid phase brazing and crystallizes when solidified during cooling. Functions to refine and disperse the crystal structure. When the eutectic structure serving as the anode site on the surface of the material is dispersed, the corrosion is uniformly dispersed to form a planar corrosion form and the corrosion resistance is improved. The preferred Sr content is in the range of 0.10% or less, and if it exceeds 0.10%, the Al—Si—Sr compound is crystallized and the eutectic structure is not refined.
Zrの添加は、ろう付け加熱に冷媒通路管合金が再結晶する際、再結晶粒を粗大化させる。粗大化により、母材の粒界密度を低下させることができ、冷媒通路管の表面に予め塗布したSi粉末により生じるAl−Si合金液相ろうが、母材の結晶粒径へ浸透することを抑制でき、粒界への優先的な腐食が生じることを抑制することができる。Zrの好ましい含有量は0.30%以下の範囲であり、0.30%を超えると、鋳造時に巨大晶出物が生成し、健全な冷媒通路管の製造が困難となる。また、Ti、Sr、Zrの各元素を複合添加した場合は、その効果も複合的に得られる。 The addition of Zr coarsens the recrystallized grains when the refrigerant passage tube alloy is recrystallized by brazing heating. By coarsening, the grain boundary density of the base material can be reduced, and the Al-Si alloy liquid phase brazing generated by the Si powder previously applied to the surface of the refrigerant passage tube penetrates into the crystal grain size of the base material. It can suppress and it can suppress that the preferential corrosion to a grain boundary arises. The preferable content of Zr is in the range of 0.30% or less, and if it exceeds 0.30%, a giant crystallized product is generated at the time of casting, making it difficult to produce a sound refrigerant passage tube. In addition, when the elements of Ti, Sr, and Zr are added in combination, the effect can be obtained in combination.
本発明のアルミニウム合金製熱交換器の冷媒通路管を構成するアルミニウム合金の押出材の好ましい製造条件について説明すると、前記の組成を有するアルミニウム合金を溶解、鋳造し、得られた鋳塊に400℃〜650℃の温度で4時間以上保持する均質化処理を施した後、熱間押出加工を行う。この均質化処理により、鋳造凝固時に形成される粗大な晶出物を分解あるいは粒状化させ、鋳造時に生じた偏析層などの不均一な組織を均質化させることができる。熱間押出時に粗大な晶出物が残存していたり、鋳造時に形成される偏析層などの不均一組織が残存していると、それらが押出時の抵抗になり押出性を低下させたり、押出後の製品の表面粗度の低下を招く。均質化処理温度が400℃未満では上記の効果が得難く、均質化処理温度は高温であればあるほど上記の効果は促進されるが、高温すぎると溶融するおそれがあるため上限を650℃以下とする。さらに好ましくい均質化処理温度は430〜620℃である。また、処理時間は長い方が効果的であるため、均質化処理時間は10時間以上とするのがよいが、24時間を超えて処理を行っても、それ以上の効果は得難く逆に不経済となるため、10〜24時間とするのが好ましい。 The preferred production conditions of the aluminum alloy extruded material constituting the refrigerant passage tube of the aluminum alloy heat exchanger of the present invention will be described. The aluminum alloy having the above composition is melted and cast, and the obtained ingot is 400 ° C. A hot extrusion process is performed after performing the homogenization process hold | maintained at the temperature of -650 degreeC for 4 hours or more. By this homogenization treatment, a coarse crystallized product formed during casting solidification can be decomposed or granulated, and a non-uniform structure such as a segregation layer generated during casting can be homogenized. If coarse crystals remain during hot extrusion, or if a heterogeneous structure such as a segregation layer formed during casting remains, these will become resistance during extrusion and reduce extrudability. This leads to a reduction in the surface roughness of the subsequent product. If the homogenization treatment temperature is less than 400 ° C, the above effect is difficult to obtain. The higher the homogenization treatment temperature, the more the above effect is promoted, but if the temperature is too high, the upper limit may be 650 ° C or less. And A more preferable homogenization temperature is 430 to 620 ° C. In addition, since a longer treatment time is more effective, the homogenization treatment time should be 10 hours or more. However, even if the treatment is performed for more than 24 hours, it is difficult to obtain a further effect, and conversely, Since it becomes economical, it is preferable to set it as 10 to 24 hours.
鋳塊に高温の均質化処理と低温の均質化処理を組み合わせて実施してもよく、これにより、熱間押出性を一層向上させ、アルミカスの発生を低減させることが可能となる。アルミカスとは、押出時にダイス内に堆積したアルミニウム片がある程度の大きさになった時にダイスから排出され、押出された冷媒通路管用アルミニウム押出材の表面に付着する欠陥のことをいう。高温の均質化処理(第一段熱処理)は、570〜650℃で2時間以上保持する処理であり、この処理により、鋳造凝固時に形成される粗大な晶出物を分解あるいは粒状化させるだけでなく、再固溶させることができる。570℃未満では再固溶が進み難い。均質化処理温度は高温であればあるほど効果的であるが、高温すぎると溶融するおそれがあるため650℃以下とする。さらに好ましい均質処理温度は580〜620℃である。また、処理時間は長い方が好ましいが、24時間を超えて処理しても、それ以上の効果は得難く、逆に不経済となるため、好ましくは5〜24時間処理を行うのがよい。 The ingot may be combined with a high-temperature homogenization treatment and a low-temperature homogenization treatment, which makes it possible to further improve the hot extrudability and reduce the generation of aluminum debris. The aluminum residue refers to a defect that is discharged from the die when the aluminum pieces accumulated in the die during extrusion become a certain size and adheres to the surface of the extruded aluminum material for refrigerant passage tube. The high-temperature homogenization process (first stage heat treatment) is a process of holding at 570 to 650 ° C. for 2 hours or more. By this process, the coarse crystallized product formed at the time of casting solidification is decomposed or granulated. And can be dissolved again. If it is less than 570 ° C., re-dissolution does not proceed easily. The higher the homogenization treatment temperature is, the more effective, but if the temperature is too high, there is a risk of melting, so the temperature is set to 650 ° C. or lower. A more preferable homogeneous treatment temperature is 580 to 620 ° C. Further, the treatment time is preferably longer, but even if the treatment is performed for more than 24 hours, it is difficult to obtain a further effect and, on the contrary, it becomes uneconomical. Therefore, the treatment is preferably performed for 5 to 24 hours.
前記高温の均質化処理(第一段熱処理)を行った後に、これよりも低温での均質化処理(第二段熱処理)を行うと、母相中に固溶しているMnが析出し、Mnの固溶度を低下させることができるために、その後の熱間押出での変形抵抗を低下させ、押出性を向上させることが可能となる。低温での均質化処理(第二段熱処理)温度範囲は400〜550℃である。400℃未満では析出量が少なく、変形抵抗を低下させる効果が不十分となり、550℃を超えると析出が生じ難く変形抵抗を低下させる効果が不十分となる。処理時間は3時間以上とする。3時間未満では、このような析出が十分に生じないため変形抵抗を低下させる効果が不十分である。また、処理時間は長い方が効果的であるが、24時間を超えて処理を行ってもそれ以上の効果は得難く、逆に不経済となる。好ましくは5〜15時間処理を行うのがよい。上記の2段均質化処理は、第一段熱処理により十分に均質固溶したMnを、第二段熱処理により析出させるものであり、これらの2段階の均質化処理を連続的に行うかどうかは特に限定されない。すなわち、第二段熱処理は第一段熱処理後に連続して行ってもよいし、あるいは第一段熱処理後、一旦鋳塊を200℃以下まで冷却した後に再加熱して第二段熱処理を行ってもよい。 After performing the high-temperature homogenization treatment (first-stage heat treatment) and then performing the homogenization treatment at a lower temperature (second-stage heat treatment) than this, Mn dissolved in the matrix phase is precipitated, Since the solid solubility of Mn can be reduced, the deformation resistance in the subsequent hot extrusion can be reduced and the extrudability can be improved. The temperature range of the homogenization treatment (second stage heat treatment) at a low temperature is 400 to 550 ° C. When the temperature is lower than 400 ° C., the amount of precipitation is small, and the effect of reducing deformation resistance is insufficient. When the temperature exceeds 550 ° C., precipitation hardly occurs, and the effect of reducing deformation resistance is insufficient. The processing time is 3 hours or more. If it is less than 3 hours, such precipitation does not occur sufficiently, so that the effect of reducing deformation resistance is insufficient. In addition, a longer treatment time is more effective, but even if the treatment is performed for more than 24 hours, it is difficult to obtain a further effect, which is uneconomical. The treatment is preferably performed for 5 to 15 hours. The above-mentioned two-stage homogenization treatment is for precipitating Mn sufficiently homogeneously dissolved by the first-stage heat treatment by the second-stage heat treatment, and whether or not to perform these two-stage homogenization processes continuously? There is no particular limitation. That is, the second-stage heat treatment may be performed continuously after the first-stage heat treatment, or after the first-stage heat treatment, the ingot is once cooled to 200 ° C. or lower and then reheated to perform the second-stage heat treatment. Also good.
Si粉末とフッ化物系フラックス粉末を含む混合物:
本発明において冷媒通路管押出材の表面に塗布するSi粉末とフッ化物系フラックス粉末を含む混合物は、Si粉末の最大粒径が100μm以下、フッ化物系フラックス粉末が平均粒径で5μm程度のものを使用して構成される。Si粉末の最大粒径の好ましい範囲は30μm以下であり、さらに好ましい範囲は15μm以下である。フッ化物系フラックスとしては、KAlF4、K2AlF6、K2AlF5・H2O、K3AlF6、AlF3などのフルオロアルミン酸カリウム系フラックスや、Cs8AlF6、CsAlF4・2H2O、Cs2AlF5・H2Oなどのルオロアルミン酸セシウム系フラックスなどが挙げられる。ZnF2、KZnF3のようにZnを含有する化合物系フラックスは、ろう付け中にZnが冷媒通路管の表面に拡散してZn拡散層を形成するため、犠牲陽極効果の高い冷媒通路管が得られるが、本発明ではZnを含有しないフラックスを用いる場合においても、フィンから蒸発したZnによるZn拡散効果形成により同様の犠牲陽極効果が得られる。
Mixture containing Si powder and fluoride flux powder:
In the present invention, the mixture containing Si powder and fluoride flux powder applied to the surface of the refrigerant passage tube extrusion material has a maximum particle size of Si powder of 100 μm or less and a fluoride flux powder having an average particle size of about 5 μm. Configured using A preferable range of the maximum particle size of the Si powder is 30 μm or less, and a more preferable range is 15 μm or less. Fluoride fluxes include potassium fluoroaluminate fluxes such as KAlF 4 , K 2 AlF 6 , K 2 AlF 5 · H 2 O, K 3 AlF 6 , AlF 3 , Cs 8 AlF 6 , CsAlF 4 · 2H Examples thereof include cesium uroaluminate-based fluxes such as 2 O and Cs 2 AlF 5 .H 2 O. Compound fluxes containing Zn, such as ZnF 2 and KZnF 3 , diffuse Zn on the surface of the refrigerant passage tube during brazing to form a Zn diffusion layer, so that a refrigerant passage tube with a high sacrificial anode effect is obtained. However, in the present invention, even when a flux not containing Zn is used, the same sacrificial anode effect can be obtained by forming the Zn diffusion effect by Zn evaporated from the fin.
Si粉末とフッ化物系フラックス粉末の混合比は、質量比で(Si粉末:フッ化物系フラックス=10:90〜40:60)とする。Si粉末比率が10%未満では、ろう付け時に十分なろうが生成せず、接合不良を生じ易くなる。またSi粉末比率が40%を超えると、フッ化物系フラックス粉末の比率が低下し、ろう付け性が劣る。また、これらの混合粉末を塗布する際、密着性を向上させるためアクリル樹脂などのバインダを添加し、塗装剤として塗布してもよい。バインダの比率は塗装剤全体の5〜40%とする。バインダ比率が塗装剤全体の5%未満では、付着させた混合物の剥離が生じ易くなる。バインダ比率が塗装剤全体の40%を超えると、ろう付け性を低下させる。塗布量は、Si粉末とフッ化物系フラックス粉末の混合物として5〜30g/m2が適正である。5g/m2未満では接合性が低下し、30g/m2を超えると、生成するろう量が多くなりフィンや母材の溶融、溶解を生じ易くなる。 The mixing ratio of the Si powder and the fluoride-based flux powder is a mass ratio (Si powder: fluoride-based flux = 10: 90 to 40:60). When the Si powder ratio is less than 10%, sufficient brazing is not generated at the time of brazing, and bonding failure is likely to occur. On the other hand, when the Si powder ratio exceeds 40%, the ratio of the fluoride-based flux powder decreases, and the brazing property is inferior. Moreover, when applying these mixed powders, a binder such as an acrylic resin may be added and applied as a coating agent in order to improve adhesion. The binder ratio is 5 to 40% of the entire coating agent. When the binder ratio is less than 5% of the entire coating agent, peeling of the adhering mixture tends to occur. When the binder ratio exceeds 40% of the entire coating agent, the brazing property is lowered. The coating amount is appropriately 5 to 30 g / m 2 as a mixture of Si powder and fluoride flux powder. If it is less than 5 g / m 2 , the bondability will be reduced, and if it exceeds 30 g / m 2 , the amount of wax produced will increase, and fins and base metals will be easily melted and dissolved.
本発明による冷媒通路管を用いて熱交換器を製造した場合、冷媒通路管とヘッダ材の嵌合部のろう付け不良を抑制することができる。すなわち、冷媒通路管とヘッダ材との嵌合部は主にヘッダ材に付与されたろう材により接合されるが、冷媒通路管の表面もSi粉末が付着しており、ろう付け時にはSi粉末と冷媒通路管の表層部が溶融して生じた液相ろうに覆われるため、ヘッダ材のろうは冷媒通路管表面の液相ろうとつながり、自由に流動することができる。冷媒通路管にはヘッダと反対側にフィンとの接合部があり、前記ヘッダ材のろうは冷媒通路管表面を伝い、表面張力によりフィン接合部へ引かれる。このため、ヘッダと冷媒通路管勘合部ではろうが不足し、ろう付け不良を生じる。とくに、従来の純アルミニウム系合金やそれにCuを添加した合金で構成される冷媒通路管を使用した場合にはろう付け不良を生じる。これに対して、冷媒通路管を本発明のアルミニウム合金で構成した場合は、前記従来合金の冷媒通路管を使用した場合と同じろう材量のヘッダ材を使用した場合でも、冷媒通路管とヘッダ材の嵌合部でのろう付け不良は生じない。これは、本発明の冷媒通路管用アルミニウム合金では、表面にAl−Mn系の析出物が存在するため、これが抵抗になり、従来の冷媒通路管用合金である純アルミニウム系合金やそれにCuを添加した合金と比べて表面での液相ろうの濡れ広がり性を抑制することができ、ヘッダ材のろうが冷媒通路管表面を伝いフィン接合部へ流入することを抑制できる。さらに、本発明においては、Si粉末とフッ化物系フラックスを含有する混合物を冷媒通路管表面に塗布してフィン材と接合させるため、従来のZn溶射などを冷媒通路管表面に施す場合と比べてフィン材接合部フィレットのZn濃度を低く抑えることができる。そのため、フィン接合部フィレットの優先腐食を抑制でき、フィン剥がれを抑制することができる。 When the heat exchanger is manufactured using the refrigerant passage pipe according to the present invention, it is possible to suppress the brazing failure of the fitting portion between the refrigerant passage pipe and the header material. That is, the fitting portion between the refrigerant passage tube and the header material is joined mainly by the brazing material applied to the header material, but the surface of the refrigerant passage tube is also attached with Si powder. Since the surface layer portion of the passage pipe is covered with the liquid phase wax generated by melting, the wax of the header material is connected to the liquid phase wax on the surface of the refrigerant passage pipe and can flow freely. The refrigerant passage pipe has a joint portion with fins on the opposite side of the header, and the solder of the header material travels along the surface of the refrigerant passage pipe and is pulled to the fin joint portion by surface tension. For this reason, brazing is insufficient at the header and the refrigerant passage pipe fitting portion, resulting in poor brazing. In particular, when a refrigerant passage pipe made of a conventional pure aluminum alloy or an alloy to which Cu is added is used, brazing failure occurs. On the other hand, when the refrigerant passage pipe is made of the aluminum alloy of the present invention, the refrigerant passage pipe and the header can be used even when the header material having the same amount of brazing material as that of the conventional alloy refrigerant passage pipe is used. There is no brazing failure at the fitting part of the material. This is because the Al—Mn-based precipitates exist on the surface of the aluminum alloy for refrigerant passage pipes of the present invention, which becomes resistance, and pure aluminum-based alloy, which is a conventional alloy for refrigerant passage pipes, and Cu are added thereto. Compared with the alloy, the wetting and spreading of the liquid phase brazing on the surface can be suppressed, and the brazing of the header material can be suppressed from flowing along the surface of the refrigerant passage tube to the fin joint. Furthermore, in the present invention, a mixture containing Si powder and fluoride-based flux is applied to the surface of the refrigerant passage tube and joined to the fin material, so that compared with the case where conventional Zn spraying is applied to the surface of the refrigerant passage tube. The Zn concentration of the fin material joint fillet can be kept low. Therefore, preferential corrosion of the fin joint fillet can be suppressed, and fin peeling can be suppressed.
本発明のアルミニウム合金製熱交換器のフィンを構成するアルミニウム合金における合金成分の意義および限定理由について説明する。
Zn:
本発明においては、冷媒通路管にSi粉末とフッ化物系フラックス粉末の混合物を塗布し、Znを含有するフィンを組み付けてろう付けすると、ろう付け中にフィン表面からZnが蒸発し冷媒通路管表面に付着し、付着したZnは冷媒通路管の板厚方向に拡散して、冷媒通路管の表層部に濃度勾配をもつZn拡散層を形成する。このZn拡散層が冷媒通路管の表層電位を卑化して、板厚方向に対して表層が卑で深部が貴となる電位勾配を形成し、このため、冷媒通路管は表層が犠牲陽極となって深部を陰極防食することができ、腐食による貫通を抑制することができる。フィンから蒸発し冷媒通路管に付着するZn量は、組み合わせるフィンの形状により影響を受ける。冷媒通路管表面からフィン表面までの距離が短い場合は、長い場合と比べてより多くのZnが付着する。このことから、効率よくZnを冷媒通路管に付着させるには、コルゲート形状のフィンを使用するのより好ましい。コルゲート形状のフィンを使用する場合、そのフィンピッチおよびフィン高さにより、冷媒通路管に付着するZn量が異なる。
The significance and reasons for limitation of the alloy components in the aluminum alloy constituting the fin of the aluminum alloy heat exchanger of the present invention will be described.
Zn:
In the present invention, when a mixture of Si powder and fluoride-based flux powder is applied to the refrigerant passage tube and the fin containing Zn is assembled and brazed, Zn evaporates from the fin surface during brazing and the surface of the refrigerant passage tube The adhered Zn diffuses in the thickness direction of the refrigerant passage tube to form a Zn diffusion layer having a concentration gradient in the surface layer portion of the refrigerant passage tube. This Zn diffusion layer lowers the surface potential of the refrigerant passage tube, and forms a potential gradient in which the surface layer is base and the deep portion is noble with respect to the plate thickness direction. Thus, the deep portion can be cathodic-proofed and penetration due to corrosion can be suppressed. The amount of Zn evaporated from the fins and adhering to the refrigerant passage tube is affected by the shape of the fins to be combined. When the distance from the surface of the refrigerant passage tube to the fin surface is short, more Zn is deposited than when the distance is long. Therefore, it is more preferable to use corrugated fins in order to efficiently attach Zn to the refrigerant passage tube. When corrugated fins are used, the amount of Zn attached to the refrigerant passage tube varies depending on the fin pitch and fin height.
フィンを構成するアルミニウム合金における好ましいZn含有量は0.3〜4.0%の範囲であり、Zn量が0.3%未満では、可能な限りフィンピッチを小さくしたりフィン高さを低くしても、冷媒通路管表面に付着するZn量は僅かであり、また冷媒通路管表面に予め塗布したSi粉末がろう付け中に冷媒通路管の板厚方向に拡散することによる冷媒通路管表層の電位貴化効果もあり、冷媒通路管表層の十分な電位卑化効果が期待できない。フィンのZn量が4.0%を超えると、通常熱交換器として使用されるフィン形状であれば、冷媒通路管に付着するZn量は十分なものになるが、フィン自体の電位も著しく卑化しフィンの自己耐食性が低下するとともに、フィンと冷媒通路管との電位差が大きくなり、常時高導電率の液体に曝されるような使用環境においては、アノードとなるフィンが早期に腐食消耗してしまう。フィンのさらに好ましいZnの含有範囲は0.5〜2.5%である。 The preferable Zn content in the aluminum alloy constituting the fin is in the range of 0.3 to 4.0%. When the Zn content is less than 0.3%, the fin pitch is made as small as possible or the fin height is made low. However, the amount of Zn adhering to the surface of the refrigerant passage tube is small, and the surface of the refrigerant passage tube is formed by diffusion of the Si powder previously applied to the surface of the refrigerant passage tube in the thickness direction of the refrigerant passage tube during brazing. There is also a potential nobleening effect, and a sufficient potential lowering effect on the surface of the refrigerant passage tube cannot be expected. If the amount of Zn in the fin exceeds 4.0%, the amount of Zn adhering to the refrigerant passage tube will be sufficient if the fin shape is normally used as a heat exchanger, but the potential of the fin itself is extremely low. In the use environment where the fins and self-corrosion resistance decrease, the potential difference between the fins and the refrigerant passage pipe increases, and the liquid is constantly exposed to high conductivity liquid, the anode fins are quickly corroded and consumed. End up. The more preferable Zn content range of the fin is 0.5 to 2.5%.
Mn:
Mnはフィン材の強度を高める。Mnの好ましい含有量は0.8〜1.7%の範囲である。0.8%未満ではその効果が小さく、1.7%を超えると、鋳造時に巨大晶出物が生成し健全なフィン材の製造が困難となる。Mnのより好ましい含有範囲は0.6〜1.5%である。
Mn:
Mn increases the strength of the fin material. A preferable content of Mn is in the range of 0.8 to 1.7%. If it is less than 0.8%, the effect is small, and if it exceeds 1.7%, giant crystals are produced during casting, making it difficult to produce a sound fin material. A more preferable content range of Mn is 0.6 to 1.5%.
Si、Fe、Cu、Mg、Cr、Zr、Ti:
Siはフィン材の強度性を向上させる。Siの好ましい含有量は0.2〜0.6%の範囲である。0.2%未満ではその効果が小さく、0.6%を超えるとフィン材の融点が低下し、ろう付け加熱時に局部溶融が生じ易くなる。
Si, Fe, Cu, Mg, Cr, Zr, Ti:
Si improves the strength of the fin material. A preferable content of Si is in the range of 0.2 to 0.6%. If it is less than 0.2%, the effect is small, and if it exceeds 0.6%, the melting point of the fin material is lowered, and local melting is likely to occur during brazing heating.
Feは強度を向上させる。Feの好ましい含有量は0.1〜0.7%の範囲である。0.1%未満ではその効果が小さく、0.7%を超えるとAl−Fe系の貴な化合物の量が増えるため、フィン材の自己耐食性が低下する。 Fe improves the strength. The preferable content of Fe is in the range of 0.1 to 0.7%. If the content is less than 0.1%, the effect is small. If the content exceeds 0.7%, the amount of the Al—Fe noble compound increases, so that the self-corrosion resistance of the fin material decreases.
Mgはフィン材の強度を向上させる。Mgの好ましい含有量は0.05〜0.3%の範囲である。0.05%未満ではその効果が小さく、0.3%を超えて含有すると、フッ化物系フラックスを用いて不活性ガス雰囲気中で加熱ろう付けする場合、ろう付け時にMgがフッ化物系フラックスと反応してMgのフッ化物が生成し、ろう付け性を低下するとともにろう付け部の外観がわるくなる。Mgのより好ましい含有範囲は0.05〜0.15%である。 Mg improves the strength of the fin material. A preferable content of Mg is in the range of 0.05 to 0.3%. If the content is less than 0.05%, the effect is small, and if the content exceeds 0.3%, when heat brazing in an inert gas atmosphere using a fluoride-based flux, Mg becomes a fluoride-based flux during brazing. It reacts to produce Mg fluoride, which lowers the brazing property and makes the appearance of the brazed part unclear. A more preferable content range of Mg is 0.05 to 0.15%.
Cuは強度を向上させる。Cuの好ましい含有量は0.5%以下の範囲である。0.5%を超えて含有すると、フィン材の電位が貴になり、冷媒通路管の耐食性を阻害する。またフィン材の自己耐食性も低下する。 Cu improves the strength. A preferable content of Cu is in the range of 0.5% or less. If the content exceeds 0.5%, the potential of the fin material becomes noble, and the corrosion resistance of the refrigerant passage tube is impaired. In addition, the self-corrosion resistance of the fin material also decreases.
CrおよびZrは、ろう付け後の結晶粒径を粗大にさせ、ろう付け加熱途中におけるフィンの座屈を低減させる効果がある。CrおよびZrの好ましい含有量はいずれも0.3%以下の範囲である。いずれも0.3%を越えて含有すると、鋳造時に巨大晶出物が生成し、健全なフィン材の製造が困難となる。 Cr and Zr have the effect of making the crystal grain size after brazing coarse and reducing the buckling of fins during brazing heating. The preferable contents of Cr and Zr are both in the range of 0.3% or less. When both contain more than 0.3%, a giant crystallized product is produced at the time of casting, which makes it difficult to produce a sound fin material.
Tiは高濃度の領域と低濃度の領域を形成し、これらの領域が材料の肉厚方向に交互に層状に分布し、Tiが低濃度の領域は高濃度の領域に比べて優先的に腐食するために、腐食形態が層状になり肉厚方向への腐食の進行が抑制される。これにより耐孔食性および耐粒界腐食性が向上する。さらに、Ti添加により常温および高温での強度が向上する。Tiの好ましい含有量は0.3%以下の範囲であり、0.3%を越えて含有すると、鋳造時に巨大晶出物が生成し、健全なフィン材の製造が困難となる。 Ti forms a high-concentration region and a low-concentration region, and these regions are distributed alternately in the thickness direction of the material, and the Ti-concentration region corrodes preferentially over the high-concentration region. Therefore, the corrosion form becomes layered, and the progress of corrosion in the thickness direction is suppressed. This improves pitting corrosion resistance and intergranular corrosion resistance. Further, the addition of Ti improves the strength at normal temperature and high temperature. The preferable content of Ti is in the range of 0.3% or less. If the content exceeds 0.3%, a giant crystallized product is generated at the time of casting, which makes it difficult to produce a sound fin material.
In、Sn:
In、Snは、微量の添加によってフィン材の電位を卑にし、冷媒通路管に対する犠牲陽極効果を発揮し、冷媒通路管の孔食の発生を防止する。InおよびSnの好ましい含有量はいずれも0.001〜0.10%の範囲であり、いずれも0.001%未満ではその効果が小さく、0.10%を越えるとフィン材の自己耐食性が低下する。
In, Sn:
In and Sn lower the potential of the fin material by adding a small amount, exert a sacrificial anode effect on the refrigerant passage tube, and prevent pitting corrosion of the refrigerant passage tube. The preferred contents of In and Sn are both in the range of 0.001 to 0.10%, and if both are less than 0.001%, the effect is small, and if it exceeds 0.10%, the self-corrosion resistance of the fin material decreases. To do.
フィン材の製造方法は、一般的には、半連続鋳造により鋳塊を作製し、熱間圧延−冷間圧延−中間焼鈍−冷間圧延によるものが一般的であるが、中間焼鈍は省略することもできる。また、連続鋳造圧延により溶湯から直接熱延板を作製し、冷間圧延により製造する方法も可能である。 Generally, the fin material is produced by semi-continuous casting to produce an ingot, and hot rolling-cold rolling-intermediate annealing-cold rolling is generally used, but intermediate annealing is omitted. You can also. Moreover, the method of producing a hot-rolled sheet directly from a molten metal by continuous casting rolling, and manufacturing by cold rolling is also possible.
本発明の熱交換器は、前記の組成をそなえた冷媒通路管およびフィン材を組み付け、常法によりろう付けにより製造することができ、その製造方法は特に限定されない。本発明の熱交換器用は良好な耐食性を有しており、例えば厳しい腐食環境にある自動車に搭載されても良好な耐久性を発揮することができる。冷媒通路管を構成するアルミニウム合金の均質化処理における加熱方法や加熱炉の構造などについてもとくに限定されない。また、冷媒通路管を構成するアルミニウム押出材の押出形状もとくに限定されることはなく、その用途、例えば熱交換器の形状などに応じて押出形状が選定される。押出に際しては、材料の押出性が良好であるので、ホロー形状の多孔ダイを用いて良好に押出することも可能である。例えば、熱交換器用の冷媒通路管は熱交換器用部品として使用するに際し、他部材(例えばフィン材やヘッダ材)と組み付けて、通常はろう付けにより接合するが、ろう付けに際しての雰囲気や加熱温度、時間についてはとくに限定されるものではなく、ろう付け方法もとくに限定されない。 The heat exchanger of the present invention can be manufactured by assembling the refrigerant passage tube having the above composition and the fin material and brazing by a conventional method, and the manufacturing method is not particularly limited. The heat exchanger of the present invention has good corrosion resistance, and can exhibit good durability even when mounted on an automobile in a severe corrosive environment, for example. There is no particular limitation on the heating method and the structure of the heating furnace in the homogenization treatment of the aluminum alloy constituting the refrigerant passage tube. Moreover, the extrusion shape of the aluminum extrusion material which comprises a refrigerant path pipe | tube is not specifically limited, The extrusion shape is selected according to the use, for example, the shape of a heat exchanger. In extruding, since the extrudability of the material is good, it is possible to extrude well using a hollow porous die. For example, when a refrigerant passage tube for a heat exchanger is used as a heat exchanger component, it is assembled with other members (for example, fin material or header material) and is usually joined by brazing, but the atmosphere and heating temperature during brazing. The time is not particularly limited, and the brazing method is not particularly limited.
冷媒通路管用アルミニウム合金押出材を作製するために、表1に示す組成を有するアルミニウム合金(合金A〜L)、表2に示す組成を有するアルミニウム合金(合金M〜T)のビレットを造塊した。合金Tは従来合金として一般的に広く使用されているものである。これらのビレットを用いて、以下の試験1、2、3を実施した。なお、表2において、本発明の条件を外れたものには下線を付した In order to produce aluminum alloy extruded materials for refrigerant passage tubes, billets of aluminum alloys (alloys A to L) having the compositions shown in Table 1 and aluminum alloys (alloys MT) having the compositions shown in Table 2 were ingoted. . The alloy T is generally widely used as a conventional alloy. The following tests 1, 2, and 3 were carried out using these billets. In Table 2, those outside the conditions of the present invention are underlined.
(試験1)
造塊されたビレットを600℃で10h均質化処理した後、多穴管に熱間押出加工した。その際、押出時の限界押出速度比(合金Tの限界押出速度に対する相対比)を調査した。その結果を表3および表4に示す。限界押出速度比が1.0を超えるものは押出性良好(○)、1.0未満のものは押出性不良(×)と評価した。
(Test 1)
The ingot billet was homogenized at 600 ° C. for 10 hours, and then hot extruded into a multi-hole tube. At that time, the limit extrusion speed ratio at the time of extrusion (relative ratio with respect to the limit extrusion speed of the alloy T) was investigated. The results are shown in Tables 3 and 4. Those having a limit extrusion speed ratio exceeding 1.0 were evaluated as having good extrudability (◯), and those having less than 1.0 were evaluated as having poor extrudability (x).
(試験2)
試験1で押出加工した多穴管について、ろう付け加熱を実施した。加熱条件は窒素ガス雰囲気中で平均50℃/minの昇温速度で600℃まで加熱し、3分保持後に室温まで降温した。その後、常温で引張試験を実施した。引張強さを表3および表4に示す。引張強さが合金Tの引張強さを超えるものはろう付け後強度特性良好(○)とし、合金Tの引張強さ未満のものはろう付け後強度特性不良(×)と評価した。
(Test 2)
The multi-hole tube extruded in Test 1 was brazed and heated. The heating conditions were heating to 600 ° C. at a rate of temperature increase of 50 ° C./min on average in a nitrogen gas atmosphere, holding the temperature for 3 minutes, and then cooling to room temperature. Thereafter, a tensile test was performed at room temperature. Tables 3 and 4 show the tensile strength. When the tensile strength exceeded that of the alloy T, the strength property after brazing was good (◯), and when the tensile strength was less than the tensile strength of the alloy T, the strength property after brazing was evaluated as poor (×).
(試験3)
アルミニウム合金CおよびDのビレットについて、表5および表6に示す条件で均質化処理を行った後、同様に多穴管に熱間押出加工し、限界速度比(合金Tの限界押出速度に対する相対比)を調査した。昇温速度は50℃/h、第一段熱処理と第二段熱処理を連続で行う場合の降温速度は25℃/h、第二段熱処理終了後の降温速度は炉出放冷とした。限界速度比の調査結果を表5および表6に示す。限界押出速度比が1.0を超えるものは押出性良好(○)、1.0未満のものは押出性不良(×)と評価した。
(Test 3)
The billets of aluminum alloys C and D were homogenized under the conditions shown in Table 5 and Table 6, and then hot-extruded into a multi-hole tube in the same manner, and the critical speed ratio (relative to the critical extrusion speed of alloy T) Ratio). The temperature increase rate was 50 ° C./h, the temperature decrease rate when the first-stage heat treatment and the second-stage heat treatment were continuously performed was 25 ° C./h, and the temperature decrease rate after the completion of the second-stage heat treatment was left in the furnace. Tables 5 and 6 show the results of investigation of the limit speed ratio. Those having a limit extrusion speed ratio exceeding 1.0 were evaluated as having good extrudability (◯), and those having less than 1.0 were evaluated as having poor extrudability (x).
表3〜4に示すように、本発明に従う冷媒通路用アルミニウム合金A〜Lは、押出特性およびろう付け特性の両方において優れた結果を示した。これに対して、本発明の条件を外れる冷媒通路用アルミニウム合金M〜Sは、押出特性、ろう付け特性のいずれかにおいて劣っていた。 As shown in Tables 3 to 4, the refrigerant passage aluminum alloys A to L according to the present invention showed excellent results in both extrusion characteristics and brazing characteristics. On the other hand, the aluminum alloy MS for refrigerant passages outside the conditions of the present invention was inferior in either extrusion characteristics or brazing characteristics.
また、本発明に従う冷媒通路用アルミニウム合金C、Dを用いて表5、表6に示す条件で均質化処理を行ったものについては、本発明に従う条件(表5に示す条件)で均質化処理を行った場合には押出特性が優れていたが、本発明の条件を外れる条件で均質化処理を行った場合には押出特性が劣っていた。 Moreover, about what performed the homogenization process on the conditions shown in Table 5 and Table 6 using the aluminum alloys C and D for refrigerant paths according to this invention, the homogenization process on the conditions (condition shown in Table 5) according to this invention However, the extrusion characteristics were inferior when the homogenization treatment was performed under conditions outside the conditions of the present invention.
つぎに、フィン材用アルミニウム合金として、表7に示す組成を有するアルミニウム合金(合金a〜l)、表8に示す組成を有するアルミニウム合金(合金m〜x)のスラブを造塊した。造塊されたスラブについて、所定の均質化処理、熱間圧延、冷間圧延を行って0.1mm厚さのフィン材に仕上げた後、表9および表10に示す寸法にコルゲート加工を施し、前記冷媒通路用アルミニウム合金押出多穴管(表9および表10には合金として表示する)と、前記コルゲート加工を施したフィン(表9および表10にはフィン材合金として表示する)とを表9および表10に示すように組み合わせて、ろう付けを行い、熱交換器コアを作製した。なお、表7、表8において、本発明の条件を外れたものには下線を付した。 Next, slabs of aluminum alloys (alloys a to l) having the compositions shown in Table 7 and aluminum alloys (alloys mx) having the compositions shown in Table 8 were ingoted as the aluminum alloy for the fin material. About the ingot slab, after performing a predetermined homogenization treatment, hot rolling, cold rolling to finish a fin material with a thickness of 0.1 mm, corrugation is performed on the dimensions shown in Table 9 and Table 10, The aluminum channel extruded multi-hole tube for refrigerant passage (shown as an alloy in Tables 9 and 10) and the corrugated fin (shown as a fin material alloy in Tables 9 and 10) 9 and Table 10 were combined and brazed to produce a heat exchanger core. In Tables 7 and 8, those outside the conditions of the present invention are underlined.
熱交換器コアの作製状況について、不具合なく作製できたものをコア作製状況良好(○)、不具合が生じたものをコア作製状況不良(×)と評価し、その結果を表9および表10に示す。なお、押出多穴管の均質化処理は本発明に従って、600℃で10時間保持の条件で行い、押出後の多穴管の表面には最大粒子径が20μmのSi粉末とノコロックフラックスを質量比で25:75に混合した混合粉末に、バインダを加えた塗装剤を予め15.5g/m2塗装した。バインダの質量は塗装剤全体の20%となるよう添加した。ろう付け加熱条件は、窒素ガス雰囲気中で平均50℃/minの昇温速度にて600℃まで加熱し、3分保持後に室温まで降温する条件で行った。作製した熱交換器コアを用いて、以下の試験4、5、6を実施した。 Regarding the production status of the heat exchanger core, those that could be produced without any defects were evaluated as good core production status (◯), and those with defects were evaluated as poor core production status (×), and the results are shown in Table 9 and Table 10. Show. In addition, the homogenization treatment of the extruded multi-hole tube is performed under the condition of holding at 600 ° C. for 10 hours in accordance with the present invention. A coating agent obtained by adding a binder to the mixed powder mixed at a ratio of 25:75 was previously applied at 15.5 g / m 2 . The mass of the binder was added so as to be 20% of the entire coating agent. Brazing heating conditions were carried out under the conditions of heating to 600 ° C. at a temperature rising rate of 50 ° C./min on average in a nitrogen gas atmosphere, and lowering to room temperature after holding for 3 minutes. The following tests 4, 5, and 6 were carried out using the produced heat exchanger core.
(試験4)
熱交換器コアについて、高温使用を模擬して150℃で120時間の熱処理を施した後に、ISO11846 method Bに規定される方法で粒界腐食試験を実施した。その結果を表11および表12に示す。
(Test 4)
The heat exchanger core was subjected to heat treatment at 150 ° C. for 120 hours simulating high temperature use, and then subjected to intergranular corrosion test by the method specified in ISO11846 method B. The results are shown in Table 11 and Table 12.
(試験5)
熱交換器コアの冷媒通路管表面のZn濃度、Zn拡散深さ、表面と深部の電位および表面と深部との電位差、フィン材の電位、冷媒通路管表面とフィン材の電位差、冷媒通路管深部とフィン材の電位差を測定した。冷媒通路管表面のZn濃度、Zn拡散深さは、コアの断面を樹脂埋めし、肉厚方向にEPMA線分析した結果から求めた。Zn拡散深さは、Zn濃度が0.01%となった深さとした。電位は、冷媒通路管表面とフィン材はろう付け後そのままの表面を、冷媒通路管深部は表面から150μmの深さまで面削し、Zn拡散の及んでいない部位を測定した。測定は、酢酸でpH3に調製した5%NaCl水溶液中に24時間浸漬して行い、10時間以降の安定した測定値の平均を採用した。なお、参照電極は飽和カロメル電極を用いた。結果を表13および表14に示す。
(Test 5)
Zn concentration on the surface of the refrigerant passage tube of the heat exchanger core, Zn diffusion depth, surface-to-depth potential and surface-to-depth potential difference, fin material potential, refrigerant passage tube surface to fin material potential difference, refrigerant passage tube deep And the potential difference between the fin material was measured. The Zn concentration on the surface of the refrigerant passage tube and the Zn diffusion depth were determined from the results of EPMA line analysis in the thickness direction after filling the cross section of the core with resin. The Zn diffusion depth was a depth at which the Zn concentration became 0.01%. The electric potential was measured by grinding the surface of the refrigerant passage tube and the fin material as they were after brazing, the deep portion of the refrigerant passage tube from the surface to a depth of 150 μm, and the portion where Zn diffusion did not reach. The measurement was performed by immersing in a 5% NaCl aqueous solution adjusted to pH 3 with acetic acid for 24 hours, and the average of stable measurement values after 10 hours was adopted. A saturated calomel electrode was used as the reference electrode. The results are shown in Table 13 and Table 14.
(試験6)
熱交換器コアについて、ASTM−G85−Annex A3に規定されるSWAAT試験とCCT試験をそれぞれ1000h実施した。CCT試験は、酢酸でpH3に調整した5%食塩水を試験液とし、雰囲気温度35℃で2時間噴霧した後、雰囲気温度60℃で4時間乾燥させ、その後に95%RH以上の相対湿度で雰囲気温度50℃で2時間湿潤するサイクルを繰り返した。試験後の冷媒通路管(チューブ)の最大腐食深さおよびフィンの腐食状況を表15および表16に示す。冷媒通路管の最大腐食深さは、0.05mm以下のものを◎、0.05mmを超え0.10mm以下のものを○、0.10mmを超え0.20mm以下のものを△、0.20mmを超えるものを×と評価した。フィンの腐食については、ほとんどなしを◎、軽微を○、中程度を△、顕著を×と評価した。
(Test 6)
About the heat exchanger core, the SWAAT test and CCT test prescribed | regulated to ASTM-G85-Annex A3 were each implemented for 1000 h. In the CCT test, 5% saline adjusted to pH 3 with acetic acid is used as a test solution, sprayed at an ambient temperature of 35 ° C. for 2 hours, dried at an ambient temperature of 60 ° C. for 4 hours, and then at a relative humidity of 95% RH or higher. The cycle of wetting for 2 hours at an ambient temperature of 50 ° C. was repeated. Tables 15 and 16 show the maximum corrosion depth of the refrigerant passage tube (tube) after the test and the corrosion state of the fins. The maximum corrosion depth of the refrigerant passage tube is 0.05 mm or less, ◯, 0.05 mm to 0.10 mm or less, 0.10 mm to 0.20 mm or less, Δ, 0.20 mm. Those that exceeded were evaluated as x. As for the corrosion of the fins, almost none was evaluated as ◎, minor was evaluated as ○, intermediate was evaluated as Δ, and remarkable was evaluated as ×.
本発明に従って作製された熱交換器コア1〜24においては粒界腐食は認められなかったが、熱交換器コアのうち、冷媒通路用アルミニウム合金としてCuを含有する合金Tを用いた熱交換器コア38〜43においては粒界腐食が顕著に発生した。 Although no intergranular corrosion was observed in the heat exchanger cores 1 to 24 produced according to the present invention, among the heat exchanger cores, a heat exchanger using an alloy T containing Cu as an aluminum alloy for the refrigerant passage. Intergranular corrosion occurred remarkably in the cores 38 to 43.
本発明に従って作製された熱交換器コア1〜24においては、冷媒通路管表層部に十分なZn拡散層が形成されており、このため冷媒通路管表面が深部に対して卑な電位となり、冷媒通路管表面と深部の電位差は95〜100mVであった。またフィン材の電位も冷媒通路管深部に対して卑になっていた。これに対して、本発明の条件を外れた条件で作製された熱交換器コア25〜43においては、冷媒通路管表層部に十分なZn拡散層が形成されていない場合があり、その場合は冷媒通路管表面と深部で十分な電位差が得られなかった。また十分なZn拡散層が形成されていても、冷媒通路用アルミニウム合金としてCuを含有する合金Tを用いた熱交換器コア38〜43では、Znの電位卑化効果が相殺され、冷媒通路管表面が深部に対して同等かあるいはわずかに卑な電位となっていた。 In the heat exchanger cores 1 to 24 manufactured according to the present invention, a sufficient Zn diffusion layer is formed on the surface portion of the refrigerant passage tube, so that the surface of the refrigerant passage tube has a base potential with respect to the deep portion, and the refrigerant The potential difference between the surface of the passage tube and the deep portion was 95 to 100 mV. In addition, the potential of the fin material is also low with respect to the deep part of the refrigerant passage tube. On the other hand, in the heat exchanger cores 25 to 43 manufactured under conditions outside the conditions of the present invention, there may be cases where a sufficient Zn diffusion layer is not formed in the refrigerant passage tube surface layer portion, in which case A sufficient potential difference could not be obtained between the surface of the refrigerant passage tube and the deep part. In addition, even if a sufficient Zn diffusion layer is formed, the potential lowering effect of Zn is offset in the heat exchanger cores 38 to 43 using the alloy T containing Cu as the aluminum alloy for the refrigerant passage. The surface had the same or slightly lower potential than the deep part.
SWAAT試験においては、本発明に従って作製された熱交換器コア1〜24は、いずれも冷媒通路管表面と深部で十分な電位差が得られていたため、最大腐食深さは浅く優れた耐食性を示した。また、SWAAT試験ではフィンの犠牲陽極効果が得られるため、冷媒通路管表面とフィン材との電位差によりフィン材の腐食消耗に差が生じるが、本発明に従って作製された熱交換器コア1〜24の場合、いずれも適正な電位差となりフィン材の腐食はほとんど無しか軽微なものであった。 In the SWAAT test, all of the heat exchanger cores 1 to 24 produced according to the present invention had a sufficient potential difference between the surface of the refrigerant passage tube and the deep portion, and thus the maximum corrosion depth was shallow and excellent corrosion resistance was exhibited. . In addition, since the sacrificial anode effect of the fin is obtained in the SWAAT test, a difference in the corrosion consumption of the fin material occurs due to the potential difference between the surface of the refrigerant passage tube and the fin material, but the heat exchanger cores 1 to 24 manufactured according to the present invention are used. In all cases, the potential difference was appropriate and the fin material was hardly or slightly corroded.
これに対して、本発明の条件を外れた条件で作製された熱交換器コア25〜43においては、冷媒通路管表面と深部で十分な電位差が得られていないか、あるいはフィン材の電位が冷媒通路管深部より貴になっている熱交換器コア25、37〜43は冷媒通路管の最大腐食深さが深かった。熱交換器コア31については、フィン材としてCu量が多いアルミニウム合金sを使用したため、フィンの電位が冷媒通路管の電位よりも卑となり、冷媒通路管の最大腐食深さが深くなった。フィン材については、フィン材の電位が冷媒通路管の電位より著しく卑となるコア35,36、38、39、40、42、43、フィン材としてZn量、Fe量、Cu量が多いアルミニウム合金n、q、sを用いたコア26、29、31のフィンは自己耐食性の劣るものとなり腐食が顕著であった。 On the other hand, in the heat exchanger cores 25 to 43 manufactured under conditions other than the conditions of the present invention, a sufficient potential difference between the surface of the refrigerant passage tube and the deep portion is not obtained, or the potential of the fin material is In the heat exchanger cores 25 and 37 to 43 that are noble from the deep part of the refrigerant passage pipe, the maximum corrosion depth of the refrigerant passage pipe was deep. About the heat exchanger core 31, since the aluminum alloy s with a large amount of Cu was used as the fin material, the potential of the fin was lower than the potential of the refrigerant passage tube, and the maximum corrosion depth of the refrigerant passage tube was deepened. As for the fin material, the core 35, 36, 38, 39, 40, 42, 43 in which the potential of the fin material is significantly lower than the potential of the refrigerant passage tube, and the aluminum alloy having a large amount of Zn, Fe, and Cu as the fin material The fins of the cores 26, 29, and 31 using n, q, and s were inferior in self-corrosion resistance, and corrosion was remarkable.
CCT試験においては、乾燥過程が入ることにより実環境に近い評価となるが、逆にフィンの犠牲陽極効果が得難いにもかかわらず、本発明に従って作製された熱交換器コア1〜24においては、冷媒通路管表面と深部で十分な電位差が得られているため、冷媒通路管の最大腐食深さは浅くSWAAT試験同様優れた耐食性を示した。フィン材の腐食もほとんどみられなかった。 In the CCT test, it becomes an evaluation close to the actual environment by entering the drying process, but conversely, despite the difficulty of obtaining the sacrificial anode effect of the fins, in the heat exchanger cores 1 to 24 manufactured according to the present invention, Since a sufficient potential difference was obtained between the surface of the refrigerant passage tube and the deep portion, the maximum corrosion depth of the refrigerant passage tube was shallow and showed excellent corrosion resistance as in the SWAAT test. There was almost no corrosion of the fin material.
これに対して、本発明の条件を外れた条件で作製された熱交換器コア25〜43においては、冷媒通路管の表面と深部の電位差が不十分であったものが冷媒通路管の最大腐食深さが深かった。フィン材の腐食に関してはSWAAT試験の結果と同傾向であった。また、熱交換器コア25〜43のうち、コア27、28、30、32〜34は耐食性評価結果が良好であったが、表12に示すように熱交換器コア作製時に不具合が生じたものであった。 On the other hand, in the heat exchanger cores 25 to 43 produced under conditions other than the conditions of the present invention, the maximum corrosion of the refrigerant passage tube is caused by insufficient potential difference between the surface and the deep portion of the refrigerant passage tube. The depth was deep. Regarding the corrosion of the fin material, the tendency was the same as the result of the SWAAT test. In addition, among the heat exchanger cores 25 to 43, the cores 27, 28, 30, and 32 to 34 had good corrosion resistance evaluation results, but as shown in Table 12, problems occurred when the heat exchanger core was produced. Met.
Claims (9)
Priority Applications (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2009149519A JP2011007383A (en) | 2009-06-24 | 2009-06-24 | Aluminum alloy heat exchanger and method for manufacturing refrigerant passage pipe used for the same |
| PCT/JP2010/060440 WO2010150728A1 (en) | 2009-06-24 | 2010-06-21 | Heat exchanger made from aluminum alloy, and process for production of coolant passage tube for use in the heat exchanger |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2009149519A JP2011007383A (en) | 2009-06-24 | 2009-06-24 | Aluminum alloy heat exchanger and method for manufacturing refrigerant passage pipe used for the same |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JP2011007383A true JP2011007383A (en) | 2011-01-13 |
Family
ID=43386497
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2009149519A Pending JP2011007383A (en) | 2009-06-24 | 2009-06-24 | Aluminum alloy heat exchanger and method for manufacturing refrigerant passage pipe used for the same |
Country Status (2)
| Country | Link |
|---|---|
| JP (1) | JP2011007383A (en) |
| WO (1) | WO2010150728A1 (en) |
Cited By (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2014020722A1 (en) * | 2012-08-01 | 2014-02-06 | 古河スカイ株式会社 | Process for producing aluminum alloy tube having sacrificial anticorrosion layer and joining layer |
| CN104246417A (en) * | 2012-04-13 | 2014-12-24 | 株式会社Uacj | Heat exchange tube attached with aluminum alloy inner groove |
| JP2017036895A (en) * | 2015-08-12 | 2017-02-16 | 三菱アルミニウム株式会社 | Aluminum alloy tube for heat exchanger |
| JP2017060989A (en) * | 2015-09-25 | 2017-03-30 | 三菱アルミニウム株式会社 | Aluminum alloy tube for heat exchanger |
| WO2023021915A1 (en) * | 2021-08-16 | 2023-02-23 | 株式会社Uacj | Aluminum alloy extruded tube and heat exchanger |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2004084060A (en) * | 2002-06-24 | 2004-03-18 | Denso Corp | Aluminum alloy fin material for heat exchanger and heat exchanger obtained by assembling the fin material |
| JP2008208416A (en) * | 2007-02-26 | 2008-09-11 | Furukawa Sky Kk | Aluminum alloy extrusions used in natural refrigerant heat exchangers |
| JP2009058167A (en) * | 2007-08-31 | 2009-03-19 | Mitsubishi Alum Co Ltd | Aluminum heat exchanger using tube having superior corrosion resistance and its manufacturing method |
-
2009
- 2009-06-24 JP JP2009149519A patent/JP2011007383A/en active Pending
-
2010
- 2010-06-21 WO PCT/JP2010/060440 patent/WO2010150728A1/en active Application Filing
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2004084060A (en) * | 2002-06-24 | 2004-03-18 | Denso Corp | Aluminum alloy fin material for heat exchanger and heat exchanger obtained by assembling the fin material |
| JP2008208416A (en) * | 2007-02-26 | 2008-09-11 | Furukawa Sky Kk | Aluminum alloy extrusions used in natural refrigerant heat exchangers |
| JP2009058167A (en) * | 2007-08-31 | 2009-03-19 | Mitsubishi Alum Co Ltd | Aluminum heat exchanger using tube having superior corrosion resistance and its manufacturing method |
Cited By (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN104246417A (en) * | 2012-04-13 | 2014-12-24 | 株式会社Uacj | Heat exchange tube attached with aluminum alloy inner groove |
| WO2014020722A1 (en) * | 2012-08-01 | 2014-02-06 | 古河スカイ株式会社 | Process for producing aluminum alloy tube having sacrificial anticorrosion layer and joining layer |
| JPWO2014020722A1 (en) * | 2012-08-01 | 2016-07-11 | 株式会社Uacj | Method for manufacturing aluminum alloy tube having sacrificial anticorrosive layer and bonding layer |
| US9631878B2 (en) | 2012-08-01 | 2017-04-25 | Uacj Corporation | Process for producing aluminum alloy tube having sacrificial anticorrosion layer and joining layer |
| JP2017036895A (en) * | 2015-08-12 | 2017-02-16 | 三菱アルミニウム株式会社 | Aluminum alloy tube for heat exchanger |
| JP2017060989A (en) * | 2015-09-25 | 2017-03-30 | 三菱アルミニウム株式会社 | Aluminum alloy tube for heat exchanger |
| WO2023021915A1 (en) * | 2021-08-16 | 2023-02-23 | 株式会社Uacj | Aluminum alloy extruded tube and heat exchanger |
Also Published As
| Publication number | Publication date |
|---|---|
| WO2010150728A1 (en) | 2010-12-29 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP5610714B2 (en) | Aluminum alloy heat exchanger | |
| JP5750237B2 (en) | Method for producing aluminum alloy heat exchanger | |
| JP5614829B2 (en) | Aluminum alloy heat exchanger | |
| JP5670100B2 (en) | Method for producing aluminum alloy heat exchanger | |
| JP5429858B2 (en) | Aluminum alloy clad material for heat exchanger and manufacturing method thereof | |
| JP5302751B2 (en) | Aluminum alloy clad material for heat exchanger | |
| CN105940129B (en) | Aluminum alloy heat exchanger | |
| CN108699637B (en) | Manufacturing method of aluminum alloy brazing sheet | |
| JP5632140B2 (en) | Aluminum alloy automotive heat exchanger and method of manufacturing the same | |
| JP6474589B2 (en) | Aluminum alloy clad material for heat exchanger | |
| JP2011007383A (en) | Aluminum alloy heat exchanger and method for manufacturing refrigerant passage pipe used for the same | |
| JP5498213B2 (en) | Aluminum alloy clad material for high-strength heat exchangers with excellent brazeability | |
| JP5632175B2 (en) | Aluminum alloy clad material and heat exchanger for high-strength heat exchangers with excellent brazing properties | |
| JP3876180B2 (en) | Aluminum alloy three-layer clad material | |
| JP2006045603A (en) | Aluminum alloy extruded tube material for natural refrigerant heat exchangers | |
| JPH04194597A (en) | Heat exchanger excellent in corrosion resistance and heat transfer characteristics | |
| JP2002146461A (en) | Aluminum alloy extrusion tube for heat exchanger having excellent corrosion resistance |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120316 |
|
| A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130311 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130528 |
|
| A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20131023 |
|
| A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20131030 |