[go: up one dir, main page]

JP2011038872A - Mems sensor - Google Patents

Mems sensor Download PDF

Info

Publication number
JP2011038872A
JP2011038872A JP2009185547A JP2009185547A JP2011038872A JP 2011038872 A JP2011038872 A JP 2011038872A JP 2009185547 A JP2009185547 A JP 2009185547A JP 2009185547 A JP2009185547 A JP 2009185547A JP 2011038872 A JP2011038872 A JP 2011038872A
Authority
JP
Japan
Prior art keywords
insulating layer
anchor portion
width dimension
anchor
peripheral side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009185547A
Other languages
Japanese (ja)
Other versions
JP5255536B2 (en
Inventor
Naonobu Okawa
尚信 大川
Hisayuki Yazawa
久幸 矢澤
Kiyoshi Kobayashi
潔 小林
Toru Takahashi
亨 高橋
Toru Miyatake
亨 宮武
Koji Tsukamoto
幸治 塚本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Priority to JP2009185547A priority Critical patent/JP5255536B2/en
Publication of JP2011038872A publication Critical patent/JP2011038872A/en
Application granted granted Critical
Publication of JP5255536B2 publication Critical patent/JP5255536B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Pressure Sensors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a MEMS sensor with its detection accuracy enhanced by reducing a displacement amount of a sensor when stress acts on an anchor, through control of the width size T1 of an insulating layer and the width size T2 of a metallic layer, in particular. <P>SOLUTION: This MEMS sensor has: a first member 11; a second member 12; an intermediate member 13 positioned between the first and second members 11 and 12; the anchor 14 formed on the intermediate member 13 as well as the sensor 15 connected to the anchor 14; the insulating layer 16 interposed between the first member 11 and the anchor 14; and the metallic layer 17 interposed between the second member 12 and the anchor 14. A peripheral side surface of the metallic layer 17 is retreated inside a peripheral side surface of the anchor 14. Assuming that the width size of the insulating layer is T1 and the width size of the metallic layer 17 is T2, T1/T2 is in a range of 1.5-3.3. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、第1部材と第2部材との間にセンサ部及びアンカ部を有する中間部材を有し、前記第1部材とアンカ部間が絶縁層を介して接合され、前記第2部材と前記アンカ部間が金属層を介して接合されて成るMEMSセンサに関する。   The present invention includes an intermediate member having a sensor portion and an anchor portion between a first member and a second member, and the first member and the anchor portion are joined via an insulating layer, and the second member and The present invention relates to a MEMS sensor in which the anchor portions are joined via a metal layer.

図16は従来におけるMEMSセンサの部分拡大縦断面図である。
図16に示すようにMEMSセンサAは、例えばシリコンで形成された第1部材1と、シリコンで形成された第2部材2と、第1部材1と第2部材2の間に位置するシリコンで形成された中間部材3とを有して構成される。
FIG. 16 is a partially enlarged longitudinal sectional view of a conventional MEMS sensor.
As shown in FIG. 16, the MEMS sensor A is made of, for example, a first member 1 made of silicon, a second member 2 made of silicon, and silicon positioned between the first member 1 and the second member 2. The intermediate member 3 is formed.

図16に示すように中間部材3は、アンカ部4とアンカ部4に接続されるセンサ部5とを有して構成されている。アンカ部4は例えば平面形状が四角形状である。図16ではセンサ部5が前記アンカ部4に直接接続されているが、センサ部5とアンカ部4との間に厚さの薄いばね部等が介在する形態でもよい。また図16に示すセンサ部5は例えば静電容量式センサの一方の電極を構成している。   As shown in FIG. 16, the intermediate member 3 includes an anchor portion 4 and a sensor portion 5 connected to the anchor portion 4. The anchor portion 4 has, for example, a quadrangular planar shape. In FIG. 16, the sensor unit 5 is directly connected to the anchor unit 4. However, a thin spring unit or the like may be interposed between the sensor unit 5 and the anchor unit 4. Further, the sensor unit 5 shown in FIG. 16 constitutes one electrode of a capacitive sensor, for example.

図16に示すように、第1部材とアンカ部4との間に絶縁層6が介在している。例えば図16に示す第1部材1、絶縁層6及び中間部材3の積層構造でSOI基板が構成される。   As shown in FIG. 16, the insulating layer 6 is interposed between the first member and the anchor portion 4. For example, the SOI substrate is formed by a laminated structure of the first member 1, the insulating layer 6, and the intermediate member 3 shown in FIG.

また図16に示すように、第2部材2の内側表面2aには絶縁層7が設けられ、前記絶縁層7と前記アンカ部4との間に金属層8が介在している。   As shown in FIG. 16, an insulating layer 7 is provided on the inner surface 2 a of the second member 2, and a metal layer 8 is interposed between the insulating layer 7 and the anchor portion 4.

図示しないが例えば金属層8から絶縁層7の内部にかけて導電層が配線されており、静電容量変化に基づく検出信号を出力できる構造となっている。   Although not shown, for example, a conductive layer is wired from the metal layer 8 to the inside of the insulating layer 7 so that a detection signal based on a change in capacitance can be output.

図16に示すように金属層8の幅寸法T7は、アンカ部4の幅寸法T8に比べて十分に小さく形成されている。これは金属層8とシリコンで形成された各部材との熱膨張係数が大きく異なり、熱応力に基づく変形や剥離等を抑制するためである。   As shown in FIG. 16, the width dimension T <b> 7 of the metal layer 8 is formed sufficiently smaller than the width dimension T <b> 8 of the anchor portion 4. This is because the coefficient of thermal expansion of the metal layer 8 and each member made of silicon are greatly different, and deformation or peeling due to thermal stress is suppressed.

一方、図16に示すように、絶縁層7の幅寸法T9はアンカ部4の幅寸法T8と同等かあるいは、それよりもやや小さく形成される。   On the other hand, as shown in FIG. 16, the width dimension T9 of the insulating layer 7 is formed to be equal to or slightly smaller than the width dimension T8 of the anchor portion 4.

ところで従来では、絶縁層7の幅寸法T9を特に制御しておらず、絶縁層7の幅寸法T9は金属層8の幅寸法T7に比べて十分に大きいサイズであった。   Conventionally, the width dimension T9 of the insulating layer 7 is not particularly controlled, and the width dimension T9 of the insulating layer 7 is sufficiently larger than the width dimension T7 of the metal layer 8.

このため、第1部材1と第2部材2の間に応力が加わったときに、アンカ部4に伝わる応力の分布が第1部材1側からと第2部材2側からとで大きく異なるために前記アンカ部4が変形しやすかった。その結果、アンカ部4に接続されるセンサ部5が撓んで変位量が大きくなり検出精度が低下する問題があった。   For this reason, when stress is applied between the first member 1 and the second member 2, the distribution of stress transmitted to the anchor portion 4 is greatly different from the first member 1 side and the second member 2 side. The anchor portion 4 was easily deformed. As a result, there is a problem in that the sensor unit 5 connected to the anchor unit 4 is bent and the amount of displacement increases and the detection accuracy decreases.

特開平11−186567号公報Japanese Patent Laid-Open No. 11-186567 特開2003−273370号公報JP 2003-273370 A 特開2000−49357号公報JP 2000-49357 A

上記の特許文献1〜3に記載された発明には、第1部材1とアンカ部4間に介在する絶縁層6の幅寸法と、第2部材2とアンカ部4間に介在する金属層8の幅寸法との関係が開示されていない。   In the inventions described in Patent Documents 1 to 3, the width dimension of the insulating layer 6 interposed between the first member 1 and the anchor portion 4 and the metal layer 8 interposed between the second member 2 and the anchor portion 4 are described. The relationship with the width dimension is not disclosed.

そこで本発明は上記従来の課題を解決するためのものであり、特に、絶縁層の幅寸法T1と金属層の幅寸法T2を制御してアンカ部に応力が加わったときのセンサ部の変位量を小さくし、検出精度を向上させることが可能なMEMSセンサを提供することを目的としている。   Accordingly, the present invention is to solve the above-described conventional problems, and in particular, the displacement amount of the sensor portion when stress is applied to the anchor portion by controlling the width dimension T1 of the insulating layer and the width dimension T2 of the metal layer. It is an object of the present invention to provide a MEMS sensor capable of reducing the size and improving the detection accuracy.

本発明におけるMEMSセンサは、
第1部材と、第2部材と、前記第1部材と前記第2部材との間に位置する中間部材と、前記中間部材に形成されたアンカ部及び前記アンカ部に接続されたセンサ部と、前記第1部材及び前記アンカ部間に介在する絶縁層と、前記第2部材及び前記アンカ部間に介在する金属層と、を有し、
前記金属層の外周側面は前記アンカ部の外周側面よりも内側に後退しており、
前記絶縁層の幅寸法をT1、前記金属層の幅寸法をT2としたとき、T1/T2は、1.5以上で3.3以下の範囲内であることを特徴とするものである。
The MEMS sensor in the present invention is
A first member, a second member, an intermediate member positioned between the first member and the second member, an anchor portion formed on the intermediate member, and a sensor portion connected to the anchor portion; An insulating layer interposed between the first member and the anchor portion, and a metal layer interposed between the second member and the anchor portion,
The outer peripheral side surface of the metal layer is receding inward from the outer peripheral side surface of the anchor part,
When the width dimension of the insulating layer is T1 and the width dimension of the metal layer is T2, T1 / T2 is in the range of 1.5 or more and 3.3 or less.

本発明では、前記絶縁層における第1部材とアンカ部間の接合強度を十分に保つことが出来るとともに、第1部材側及び第2部材側からアンカ部に応力が加わったときに、センサ部の変位量を小さくでき、検出精度に優れたMEMSセンサに出来る。   In the present invention, the bonding strength between the first member and the anchor portion in the insulating layer can be sufficiently maintained, and when stress is applied to the anchor portion from the first member side and the second member side, The amount of displacement can be reduced, and a MEMS sensor with excellent detection accuracy can be obtained.

本発明では、前記絶縁層の外周側面は、前記絶縁層の幅寸法がT1から厚さ方向に向けて徐々に小さくなる傾斜面で形成されていることが好ましい。より効果的にアンカ部に加わる応力を分散でき、センサ部の変位量をより小さくできる。   In this invention, it is preferable that the outer peripheral side surface of the said insulating layer is formed in the inclined surface from which the width dimension of the said insulating layer becomes small gradually toward thickness direction from T1. The stress applied to the anchor portion can be more effectively dispersed, and the displacement amount of the sensor portion can be further reduced.

また本発明では、前記絶縁層の幅寸法T1は前記第1部材との接合側にて規定され、前記絶縁層の外周側面は、前記第1部材側から前記アンカ部側に向けて徐々に前記幅寸法が小さくなるように傾斜していることが好ましい。   Further, in the present invention, the width T1 of the insulating layer is defined on the bonding side with the first member, and the outer peripheral side surface of the insulating layer is gradually increased from the first member side toward the anchor portion side. It is preferable to incline so that a width dimension may become small.

また本発明では、前記アンカ部の幅寸法をT3とし、前記絶縁層の外周側面の前記アンカ部の外周側面からの後退量をT4としたとき、(T4/T3)×100(%)は、10%以上25%以下で規定されることが好ましい。これにより前記絶縁層における第1部材とアンカ部間の接合強度を十分に保つことが出来るとともに、第1部材側及び第2部材側からアンカ部に応力が加わったときに、センサ部の変位量をより効果的に小さくできる。特に上記のように、前記絶縁層の外周側面を、前記第1部材側から前記アンカ部側に向けて徐々に前記幅寸法が小さくなるように傾斜させた形態において、T1/T2を3.3以下にし且つ(T4/T3)×100(%)を10%以上に制御することで、センサ部の変位量をより効果的に小さく出来る。   Further, in the present invention, when the width dimension of the anchor portion is T3 and the amount of retreat of the outer peripheral side surface of the insulating layer from the outer peripheral side surface of the anchor portion is T4, (T4 / T3) × 100 (%) is It is preferably specified in the range of 10% to 25%. Accordingly, the bonding strength between the first member and the anchor portion in the insulating layer can be sufficiently maintained, and the amount of displacement of the sensor portion when stress is applied to the anchor portion from the first member side and the second member side. Can be reduced more effectively. In particular, as described above, in the form in which the outer peripheral side surface of the insulating layer is inclined so that the width dimension gradually decreases from the first member side toward the anchor portion side, T1 / T2 is set to 3.3. By controlling (T4 / T3) × 100 (%) to 10% or more, the displacement amount of the sensor unit can be reduced more effectively.

本発明によれば、絶縁層における第1部材とアンカ部間の接合強度を十分に保つことが出来るとともに、第1部材側及び第2部材側からアンカ部に応力が加わったときに、センサ部の変位量を小さくでき、検出精度に優れたMEMSセンサに出来る。   According to the present invention, the bonding strength between the first member and the anchor portion in the insulating layer can be sufficiently maintained, and when the stress is applied to the anchor portion from the first member side and the second member side, the sensor portion Can be reduced, and a MEMS sensor with excellent detection accuracy can be obtained.

第1実施形態におけるMEMSセンサを模式的に示した部分拡大縦断面図、The partial expanded longitudinal cross-sectional view which showed typically the MEMS sensor in 1st Embodiment, 第2実施形態におけるMEMSセンサを模式的に示した部分拡大縦断面図、The partial expanded longitudinal cross-sectional view which showed typically the MEMS sensor in 2nd Embodiment, 第3実施形態におけるMEMSセンサを模式的に示した部分拡大縦断面図、The partial expanded longitudinal cross-sectional view which showed typically the MEMS sensor in 3rd Embodiment, 本実施形態におけるアンカ部、絶縁層、及び金属層の平面図、A plan view of an anchor portion, an insulating layer, and a metal layer in the present embodiment, (a)は図1ないし図3のいずれかの構造を利用したMEMSセンサ(加速度センサ)の平面図、(b)は、(a)のB−B線から切断し矢印方向から見たMEMSセンサの縦断面図、(A) is a plan view of a MEMS sensor (acceleration sensor) using any one of the structures of FIGS. 1 to 3, and (b) is a MEMS sensor cut from the BB line of (a) and viewed from the arrow direction. A longitudinal sectional view of 図1ないし図3のいずれかの構造を利用した図5とは異なるMEMSセンサ(加速度センサ)の平面図、FIG. 5 is a plan view of a MEMS sensor (acceleration sensor) different from FIG. 5 using any one of the structures in FIGS. 図6に示すMEMSセンサの斜視図(可動時)、FIG. 6 is a perspective view (when movable) of the MEMS sensor shown in FIG. 本実施形態における外周側面が傾斜面で形成された絶縁層の製造方法を説明するための工程図(部分拡大縦断面図)、Process drawing (partially enlarged longitudinal sectional view) for explaining a method of manufacturing an insulating layer in which an outer peripheral side surface is formed as an inclined surface in the present embodiment, (a)は実験用サンプル(実施例1)の縦断面図であり、(b)は、(a)の基準状態から応力が加わって検出部が変位した状態を示す縦断面図、(A) is a longitudinal cross-sectional view of an experimental sample (Example 1), (b) is a longitudinal cross-sectional view showing a state in which the detection unit is displaced by applying stress from the reference state of (a), T1/T2と変位量Lとの関係を示すグラフ、A graph showing the relationship between T1 / T2 and displacement L; (T4/T3)×100(%)と変位量Lとの関係を示すグラフ、A graph showing the relationship between (T4 / T3) × 100 (%) and the displacement L; 図9とは異なって絶縁層の外周側面を傾斜させた実験用サンプル(実施例2、実施例3)の縦断面図、Unlike FIG. 9, the longitudinal cross-sectional view of the experimental sample (Example 2, Example 3) which inclined the outer peripheral side surface of the insulating layer, 実施例1、実施例2及び実施例3におけるT1/T2と変位量Lとの関係を示すグラフ、A graph showing the relationship between T1 / T2 and displacement amount L in Example 1, Example 2 and Example 3, 実施例1、実施例2及び実施例3における(T4/T3)×100(%)と変位量Lとの関係を示すグラフ、A graph showing the relationship between (T4 / T3) × 100 (%) and displacement amount L in Example 1, Example 2 and Example 3, 第1部材とアンカ部間に介在する絶縁層の形状を示すTEM写真、A TEM photograph showing the shape of the insulating layer interposed between the first member and the anchor part, 従来におけるMEMSセンサの部分拡大縦断面図。The partial expanded longitudinal cross-sectional view of the conventional MEMS sensor.

図1ないし図3に示す各図は本実施形態におけるMEMSセンサを模式的に示した部分拡大断面図である。   1 to 3 are partially enlarged cross-sectional views schematically showing the MEMS sensor according to the present embodiment.

図1に示す第1実施形態のMEMSセンサ10は、第1部材(支持基材)11と、第2部材(キャップ基材)12と、前記第1部材11と前記第2部材12間に介在する中間部材(機能層)13との積層構造で構成される。   A MEMS sensor 10 according to the first embodiment shown in FIG. 1 includes a first member (support base material) 11, a second member (cap base material) 12, and the first member 11 and the second member 12. It is comprised by the laminated structure with the intermediate member (functional layer) 13 to do.

第1部材11、第2部材12及び中間部材13はいずれもシリコンで形成される。第1部材11及び第2部材12は例えば平板状で形成されている。   The first member 11, the second member 12, and the intermediate member 13 are all formed of silicon. The first member 11 and the second member 12 are formed in a flat plate shape, for example.

図1に示すように、中間部材13にはアンカ部14と、前記アンカ部14に接続されるセンサ部15とを有して構成される。図1に示すように前記センサ部15は前記アンカ部14に直接接続された構成でもよいし、あるいは前記センサ部15とアンカ部14との間に薄い厚さで形成されたばね部等が介在する形態であってもよい。   As shown in FIG. 1, the intermediate member 13 includes an anchor portion 14 and a sensor portion 15 connected to the anchor portion 14. As shown in FIG. 1, the sensor unit 15 may be configured to be directly connected to the anchor unit 14, or a spring unit or the like formed with a small thickness is interposed between the sensor unit 15 and the anchor unit 14. Form may be sufficient.

図1に示すようにアンカ部14に接続されたセンサ部15は、例えば静電容量式における一方の電極を構成している。   As shown in FIG. 1, the sensor unit 15 connected to the anchor unit 14 constitutes one electrode in, for example, a capacitance type.

図1に示すように、第1部材11とアンカ部14との間には絶縁層16が介在している。絶縁層16は例えば酸化シリコンである。第1部材11、絶縁層16及び中間部材13にてSOI基板を構成することが出来る。   As shown in FIG. 1, an insulating layer 16 is interposed between the first member 11 and the anchor portion 14. The insulating layer 16 is, for example, silicon oxide. The first member 11, the insulating layer 16, and the intermediate member 13 can constitute an SOI substrate.

また図1に示すように第2部材12の内側表面には絶縁層18が形成され、前記絶縁層18とアンカ部14との間に金属層17が形成されている。   As shown in FIG. 1, an insulating layer 18 is formed on the inner surface of the second member 12, and a metal layer 17 is formed between the insulating layer 18 and the anchor portion 14.

前記金属層17は、例えば、アンカ部14側に形成された第1金属層と、第2部材12側に形成された第2金属層とが共晶接合あるいは拡散接合されて成り、材料の組み合わせとしては、アルミニウム−ゲルマニウム、アルミニウム−亜鉛、金−シリコン、金−インジウム、金−ゲルマニウム、金−錫などがある。   The metal layer 17 is formed by, for example, eutectic bonding or diffusion bonding of a first metal layer formed on the anchor portion 14 side and a second metal layer formed on the second member 12 side, and a combination of materials. Examples thereof include aluminum-germanium, aluminum-zinc, gold-silicon, gold-indium, gold-germanium, and gold-tin.

また図示しない配線部が金属層17との接続位置から絶縁層18内部や表面に形成されており、MEMSセンサ10の外枠位置に、引き回された前記配線部と電気的に接続される電極パッドが露出して設けられている。この電極パッドから検出信号を取り出すことが出来る。   Further, a wiring portion (not shown) is formed in the insulating layer 18 or on the surface from the connection position with the metal layer 17, and is an electrode electrically connected to the wiring portion routed to the outer frame position of the MEMS sensor 10. The pad is exposed. A detection signal can be extracted from this electrode pad.

図1に示すように、絶縁層16及び金属層17はセンサ部15と対向する位置には形成されておらず、センサ部15と第1部材11間、及びセンサ部15と第2部材12間には空間が形成されている。   As shown in FIG. 1, the insulating layer 16 and the metal layer 17 are not formed at positions facing the sensor unit 15, and are between the sensor unit 15 and the first member 11 and between the sensor unit 15 and the second member 12. There is a space.

図1及び図4(アンカ部、絶縁層16及び金属層17の平面図であり、絶縁層16及び金属層17の形状を点線で示した)に示すように、絶縁層16の外周側面16a、及び、金属層17の外周側面17aは共にアンカ部14の外周側面14aよりも内側に後退している。   As shown in FIG. 1 and FIG. 4 (plan view of the anchor portion, the insulating layer 16 and the metal layer 17, and the shapes of the insulating layer 16 and the metal layer 17 are indicated by dotted lines), the outer peripheral side surface 16 a of the insulating layer 16, And both the outer peripheral side surfaces 17a of the metal layer 17 are set back inside the outer peripheral side surface 14a of the anchor portion 14.

図1,図4に示すように、絶縁層16の幅寸法はT1であり、金属層17の幅寸法はT2であり、アンカ部14の幅寸法はT3である。そして、アンカ部14の外周側面14aから見た前記絶縁層16の外周側面16aの後退量はT4である。ここで、図4では、各外周側面16aの後退量T4は、アンカ部14の各外周側面14aから略一定であるが、後退量T4が場所によって違うような場合、例えば、最大後退量と、最小後退量との平均値で後退量T4を示すことが出来る。   As shown in FIGS. 1 and 4, the width dimension of the insulating layer 16 is T1, the width dimension of the metal layer 17 is T2, and the width dimension of the anchor portion 14 is T3. And the retraction amount of the outer peripheral side surface 16a of the said insulating layer 16 seen from the outer peripheral side surface 14a of the anchor part 14 is T4. Here, in FIG. 4, the retraction amount T4 of each outer peripheral side surface 16a is substantially constant from each outer peripheral side surface 14a of the anchor portion 14, but when the retraction amount T4 varies depending on the location, for example, the maximum retraction amount, The reverse amount T4 can be indicated by an average value with the minimum reverse amount.

図4に示すように、アンカ部14及び絶縁層16の平面形状は矩形状、特に図4では正方形で示されている。また金属層17の平面形状は円形状で形成されている。アンカ部14、絶縁層16及び金属層17の平面形状は図4に示すものに限定されない。   As shown in FIG. 4, the planar shape of the anchor portion 14 and the insulating layer 16 is a rectangular shape, and in particular, a square shape is shown in FIG. 4. The planar shape of the metal layer 17 is a circular shape. The planar shapes of the anchor portion 14, the insulating layer 16, and the metal layer 17 are not limited to those shown in FIG.

また、幅寸法T1〜T3は例えば、次のようにして規定される。正方形で形成される場合、幅寸法は一辺の長さで規定される。また辺の長さが異なる長方形である場合、幅寸法は、短辺と長辺との平均で規定される。あるいは円形で形成される場合、幅寸法は直径で規定される。また楕円形で形成される場合、幅寸法は長軸と短軸との平均で規定される。これら以外の形状で形成される場合、例えば図4に示すX1−X2方向の長さ寸法と、X1−X2方向に直交するY1−Y2方向の長さ寸法との平均値で規定される。X1−X2方向及びY1−Y2方向はMEMSセンサ10の外形が矩形状であれば、各辺方向に倣う。または、図1のようにアンカ部14に接続されるセンサ部15の延出方向に向って切断したときに現れる断面形状にて、幅寸法T1〜T3を規定することも出来る。あるいは、長軸と短軸との平均で幅寸法T1〜T3を規定することが出来る。   Further, the width dimensions T1 to T3 are defined as follows, for example. When formed in a square, the width dimension is defined by the length of one side. In the case of rectangles having different side lengths, the width dimension is defined by the average of the short side and the long side. Alternatively, when formed in a circle, the width dimension is defined by the diameter. When formed in an elliptical shape, the width dimension is defined by the average of the major axis and the minor axis. When formed in a shape other than these, for example, it is defined by an average value of the length dimension in the X1-X2 direction shown in FIG. 4 and the length dimension in the Y1-Y2 direction orthogonal to the X1-X2 direction. The X1-X2 direction and the Y1-Y2 direction follow each side direction if the outer shape of the MEMS sensor 10 is rectangular. Alternatively, the width dimensions T1 to T3 can be defined by a cross-sectional shape that appears when the sensor unit 15 connected to the anchor unit 14 is cut in the extending direction as illustrated in FIG. Alternatively, the width dimensions T1 to T3 can be defined by the average of the major axis and the minor axis.

本実施形態では、金属層17の幅寸法T2に対する絶縁層16の幅寸法T1の比(T1/T2)が、1.5以上で3.3以下の範囲内に規定されている。   In the present embodiment, the ratio (T1 / T2) of the width dimension T1 of the insulating layer 16 to the width dimension T2 of the metal layer 17 is defined within the range of 1.5 or more and 3.3 or less.

本実施形態では、図1に示すように、金属層17の外周側面17aをアンカ部14の外周側面14aから後退させ、金属層17の幅寸法T2を十分に小さいサイズで形成している。これにより、金属層17とアンカ部14及び金属層17と第2部材12との間で熱膨張差が大きくても熱応力に基づく歪みや変形を抑制できる。   In this embodiment, as shown in FIG. 1, the outer peripheral side surface 17a of the metal layer 17 is retreated from the outer peripheral side surface 14a of the anchor portion 14, and the width dimension T2 of the metal layer 17 is formed with a sufficiently small size. Thereby, even if there is a large difference in thermal expansion between the metal layer 17 and the anchor portion 14 and between the metal layer 17 and the second member 12, distortion and deformation based on thermal stress can be suppressed.

さらに本実施形態では、上記のように比(T1/T2)を、3.3以下に設定した。これにより、製造工程や使用環境による部材間の熱歪みや曲げ応力等、第1部材11と第2部材12間に応力が加わったときに第1部材11側からアンカ部14に伝わる応力の分布と、第2部材12側からアンカ部14に伝わる応力の分布との差(応力の偏り)を小さくできる。したがってアンカ部14に応力が加わった場合でも、アンカ部14の変形を抑制できるためアンカ部14に接続されたセンサ部15の変位量を従来に比べて小さくすることができる。よって従来に比べて検出精度に優れたMEMSセンサ10にできる。なお変位量は、アンカ部14に加わる応力がゼロであると仮定した場合を基準状態とし、アンカ部14に応力が加わったときに、前記基準状態からのセンサ部15の最大撓み量にて規定できる。   Furthermore, in the present embodiment, the ratio (T1 / T2) is set to 3.3 or less as described above. Accordingly, the distribution of stress transmitted from the first member 11 side to the anchor portion 14 when stress is applied between the first member 11 and the second member 12, such as thermal strain and bending stress between the members due to the manufacturing process and use environment. And the difference (stress deviation) between the distribution of stress transmitted from the second member 12 side to the anchor portion 14 can be reduced. Therefore, even when stress is applied to the anchor portion 14, the deformation of the anchor portion 14 can be suppressed, so that the displacement amount of the sensor portion 15 connected to the anchor portion 14 can be reduced as compared with the conventional case. Therefore, the MEMS sensor 10 having excellent detection accuracy as compared with the prior art can be obtained. The amount of displacement is defined by the maximum deflection amount of the sensor unit 15 from the reference state when the stress applied to the anchor portion 14 is assumed to be zero when the stress applied to the anchor portion 14 is zero. it can.

また本実施形態では、比(T1/T2)を1.5以上に設定したことで、絶縁層16を介して接合される第1部材11とアンカ部14間の接合強度を十分に保つことが出来る。また、絶縁層16は例えばエッチングによりその周囲の不要な絶縁層を除去して成るものであるため、絶縁層16の形状や形成位置は、アンカ部14及びアンカ部14に接続されるセンサ部15の大きさや形状、形成場所、エッチング時間、エッチング環境等によりばらつきやすい。したがって絶縁層16の幅寸法T1をあまり小さく設定しすぎると、図4に示す平面視にて金属層17の全域が絶縁層16の領域内に包含されず、平面視にて、金属層17と絶縁層16とが互いにずれた位置に関係になりやすい。すると、第1部材11側及び第2部材12側からアンカ部14に加わる応力バランスが悪くなる。後述の実験に示すように比(T1/T2)を小さくすることでセンサ部15の変位量を小さくできるが、T1を小さくしすぎると逆にセンサ部15の変位量を効果的に小さくできなくなる。したがって平面視にて、金属層17の全域が絶縁層16の領域内に包含されるように製造マージンを考慮してT1/T2の下限値を1.5に設定した。   In the present embodiment, the ratio (T1 / T2) is set to 1.5 or more, so that the bonding strength between the first member 11 and the anchor portion 14 bonded through the insulating layer 16 can be sufficiently maintained. I can do it. Further, since the insulating layer 16 is formed by removing unnecessary insulating layers around the insulating layer 16 by etching, for example, the shape and forming position of the insulating layer 16 are the anchor portion 14 and the sensor portion 15 connected to the anchor portion 14. It tends to vary depending on the size, shape, formation location, etching time, etching environment, and the like. Therefore, if the width T1 of the insulating layer 16 is set too small, the entire region of the metal layer 17 is not included in the region of the insulating layer 16 in a plan view shown in FIG. The insulating layer 16 is likely to be in a position shifted from each other. Then, the stress balance applied to the anchor portion 14 from the first member 11 side and the second member 12 side is deteriorated. As shown in the experiment described later, the displacement amount of the sensor unit 15 can be reduced by reducing the ratio (T1 / T2). However, if T1 is too small, the displacement amount of the sensor unit 15 cannot be effectively reduced. . Therefore, in plan view, the lower limit value of T1 / T2 is set to 1.5 in consideration of the manufacturing margin so that the entire region of the metal layer 17 is included in the region of the insulating layer 16.

また、比(T1/T2)を1.5以上に設定したことで、共晶接合あるいは拡散接合を適切に行うことができる。すなわち、比(T1/T2)が大きくなると、それだけ絶縁層16の幅寸法T1と金属層17の幅寸法T2との幅寸法差が大きくなる。そして、金属層17を共晶接合あるいは拡散接合させる際に圧力を加えたとき、前記幅寸法差が大きければ、多少、各部材間のアライメントがずれても、前記圧力を金属層17に十分に加えることができ、安定した接合を行うことができる。よって良好な電気的接続を得ることができ、電気的に安定した接合構造を得ることが出来る。   Further, by setting the ratio (T1 / T2) to 1.5 or more, eutectic bonding or diffusion bonding can be appropriately performed. That is, as the ratio (T1 / T2) increases, the width dimension difference between the width dimension T1 of the insulating layer 16 and the width dimension T2 of the metal layer 17 increases accordingly. When the pressure is applied when the metal layer 17 is eutectic bonded or diffusion bonded, if the width dimension difference is large, the pressure is sufficiently applied to the metal layer 17 even if the alignment between the members is somewhat shifted. Can be added, and stable bonding can be performed. Therefore, good electrical connection can be obtained, and an electrically stable joint structure can be obtained.

また図2に示す第2実施形態及び図3に示す第3実施形態では、絶縁層16の外周側面16aが傾斜している。図2、図3においても図1と同様に、比(T1/T2)は1.5以上で3.3以下に規定されている。   In the second embodiment shown in FIG. 2 and the third embodiment shown in FIG. 3, the outer peripheral side surface 16a of the insulating layer 16 is inclined. 2 and 3, the ratio (T1 / T2) is defined as 1.5 or more and 3.3 or less, as in FIG.

図2に示す第2実施形態では、絶縁層16の幅寸法T1は、第1部材11との接合側にて規定される。そして前記絶縁層16の外周側面16aは、第1部材11側からアンカ部14に向うにしたがって徐々に絶縁層16の幅寸法が小さくなるように傾斜している。   In the second embodiment shown in FIG. 2, the width dimension T <b> 1 of the insulating layer 16 is defined on the bonding side with the first member 11. The outer peripheral side surface 16 a of the insulating layer 16 is inclined so that the width dimension of the insulating layer 16 gradually decreases from the first member 11 side toward the anchor portion 14.

また図3に示す第3実施形態では、絶縁層16の幅寸法T1は、アンカ部14との接合側にて規定される。そして前記絶縁層16の外周側面16aは、アンカ部14側から第1部材11に向うにしたがって徐々に絶縁層16の幅寸法が小さくなるように傾斜している。   In the third embodiment shown in FIG. 3, the width dimension T <b> 1 of the insulating layer 16 is defined on the joint side with the anchor portion 14. The outer peripheral side surface 16 a of the insulating layer 16 is inclined so that the width dimension of the insulating layer 16 gradually decreases from the anchor portion 14 side toward the first member 11.

図2,図3に示すように、絶縁層16の外周側面16aを傾斜面で形成することで、第1部材11側から絶縁層16を介してアンカ部14に加えられる応力を効果的に分散でき、より効果的にセンサ部15の変位量を小さくできることが後述する実験によりわかっている。   As shown in FIGS. 2 and 3, by forming the outer peripheral side surface 16a of the insulating layer 16 with an inclined surface, the stress applied to the anchor portion 14 from the first member 11 side through the insulating layer 16 is effectively dispersed. It is possible to reduce the amount of displacement of the sensor unit 15 more effectively, and it is known from experiments described later.

また、アンカ部14の幅寸法T3に対する絶縁層16の後退量T4の比((T4/T3)×100(%))が、10%以上25%以下であることが好適である。特に、図2に示す実施形態において、比(T1/T2)を3.3以下にし且つ比((T4/T3)×100(%))を10%以上とすることで、図1、図3の実施形態に比べて、より効果的にセンサ部15の変位量を小さくできることが後述する実験よりわかっている。なお、第1部材11とアンカ部14間の接合強度を考慮して、比((T4/T3)×100(%))の上限値を25%に設定した。   Moreover, it is preferable that the ratio ((T4 / T3) × 100 (%)) of the retraction amount T4 of the insulating layer 16 to the width dimension T3 of the anchor portion 14 is 10% or more and 25% or less. In particular, in the embodiment shown in FIG. 2, the ratio (T1 / T2) is set to 3.3 or lower and the ratio ((T4 / T3) × 100 (%)) is set to 10% or higher. It is known from the experiment described later that the displacement amount of the sensor unit 15 can be reduced more effectively than the embodiment. The upper limit of the ratio ((T4 / T3) × 100 (%)) was set to 25% in consideration of the bonding strength between the first member 11 and the anchor portion 14.

具体的数値を例示する。絶縁層16の幅寸法T1は、15〜75μm程度である。金属層17の幅寸法T2は、10〜40μm程度である。またアンカ部14の幅寸法T3は、30〜80μm程度である。また、後退量T4は、1〜10μm程度である。   Specific numerical values will be exemplified. The width dimension T1 of the insulating layer 16 is about 15 to 75 μm. The width dimension T2 of the metal layer 17 is about 10 to 40 μm. The width T3 of the anchor portion 14 is about 30 to 80 μm. Further, the retraction amount T4 is about 1 to 10 μm.

図1ないし図3に示す本実施形態の構造は、図5や図6に示すMEMSセンサに適用される。   The structure of this embodiment shown in FIGS. 1 to 3 is applied to the MEMS sensor shown in FIGS.

図5(a)はMEMSセンサ(加速度センサ)の平面図、図5(b)は、図5(a)のB−B線から切断し矢印方向から見たMEMSセンサの縦断面図、である。なお図5(a)の平面図は、第1部材11を透視して示した。   FIG. 5A is a plan view of the MEMS sensor (acceleration sensor), and FIG. 5B is a longitudinal sectional view of the MEMS sensor taken along the line BB in FIG. 5A and viewed from the arrow direction. . The plan view of FIG. 5A shows the first member 11 seen through.

図5に示すMEMSセンサは、例えば、X方向が長辺でY方向が短辺の長方形状である。   The MEMS sensor shown in FIG. 5 has, for example, a rectangular shape with long sides in the X direction and short sides in the Y direction.

図5(a)に示すように、中間部材13には、周囲領域に枠体層21が形成されており、前記枠体層21の内部がセンサ部の形成領域となっている。図5(a)では枠体層21を斜線で示している。   As shown in FIG. 5A, the intermediate member 13 is formed with a frame layer 21 in the peripheral region, and the inside of the frame layer 21 is a sensor region forming region. In FIG. 5A, the frame body layer 21 is indicated by oblique lines.

図5(a)に示すように、中間部材13には前記枠体層21の内側にセンサ部の外形を規定する第1の穴26と第2の穴27および第3の穴28が形成されており、それぞれの穴26,27,28は、枠体層21を厚さ方向に貫通している。   As shown in FIG. 5A, the intermediate member 13 is formed with a first hole 26, a second hole 27, and a third hole 28 that define the outer shape of the sensor portion inside the frame body layer 21. Each hole 26, 27, 28 penetrates the frame layer 21 in the thickness direction.

第1部材11と枠体層21との対面部では、枠状の絶縁層16が形成されている。
図5(a)(b)に示すように、枠体層21と第2部材12の対向面に形成された絶縁層18との間では金属層17により、センサ部の周囲を封止している。
A frame-shaped insulating layer 16 is formed at the facing portion between the first member 11 and the frame body layer 21.
As shown in FIGS. 5A and 5B, the periphery of the sensor unit is sealed by the metal layer 17 between the frame layer 21 and the insulating layer 18 formed on the opposing surface of the second member 12. Yes.

図5(a)に示すように各穴26,27,28の内部が、センサ部36,37,38となっている。   As shown in FIG. 5A, the insides of the holes 26, 27, and 28 are sensor portions 36, 37, and 38, respectively.

そして、図5(a)(b)に示すように、各穴26,27,28内には複数のアンカ部14が形成されており、アンカ部14に接続されて各センサ部36,37,38が形成されている。   5 (a) and 5 (b), a plurality of anchor portions 14 are formed in the holes 26, 27, and 28, and are connected to the anchor portions 14 to be connected to the sensor portions 36, 37, 38 is formed.

例えば図5に示すMEMSセンサは、第1のセンサ部36に設けられた第1の可動部41の動作により、第1部材11の基板面と直交する向きのZ方向の加速度を検知できる。可動部41は、ばね部や梁部を介してY1−Y2方向に対向する各アンカ部14,14に接続されている。またX1−X2方向に対向する各アンカ部14,14からは固定部51,53が延出形成されている。可動部41と固定部51,53とが対向する部分は櫛歯状電極構造となっており、可動部41がZ方向に移動したときに静電容量が変化することで、可動部41の移動量や加速度を検知することが出来る。また、第2のセンサ部37に設けられた第2の可動部42の動作により、第1部材11の基板面と平行なY方向の加速度を検知でき、第3のセンサ部38に設けられた第3の可動部43の動作によりZ方向とY方向に直交するX方向の加速度を検知できる。   For example, the MEMS sensor shown in FIG. 5 can detect the acceleration in the Z direction in the direction orthogonal to the substrate surface of the first member 11 by the operation of the first movable unit 41 provided in the first sensor unit 36. The movable part 41 is connected to each anchor part 14 and 14 facing in the Y1-Y2 direction via a spring part or a beam part. Further, fixed portions 51 and 53 are formed to extend from the respective anchor portions 14 and 14 facing in the X1-X2 direction. The portion where the movable portion 41 and the fixed portions 51 and 53 are opposed has a comb-like electrode structure, and the capacitance changes when the movable portion 41 moves in the Z direction, so that the movable portion 41 moves. The amount and acceleration can be detected. Further, the acceleration of the first member 11 in the Y direction parallel to the substrate surface of the first member 11 can be detected by the operation of the second movable portion 42 provided in the second sensor portion 37, and provided in the third sensor portion 38. By the operation of the third movable portion 43, the acceleration in the X direction orthogonal to the Z direction and the Y direction can be detected.

図6、図7に示すMEMSセンサは、第1の可動部60と第2の可動部61とが高さ方向であって互いに逆方向に移動するようにアンカ部14を介して支持された構造である。   The MEMS sensor shown in FIGS. 6 and 7 has a structure in which the first movable part 60 and the second movable part 61 are supported via the anchor part 14 so as to move in the height direction and in opposite directions. It is.

なお図6、図7では、中間部材13のみを図示し、その上下に位置する第1部材11、第2部材12、絶縁層16及び金属層17を省略したが、図1ないし図3で説明した条件により、図6,図7に示す中間部材13と第1部材11及び第2部材12とが絶縁層16及び金属層17を介して接合されている。   6 and 7, only the intermediate member 13 is illustrated, and the first member 11, the second member 12, the insulating layer 16, and the metal layer 17 located above and below the illustration are omitted, but are described with reference to FIGS. 1 to 3. 6 and 7 are joined to the first member 11 and the second member 12 through the insulating layer 16 and the metal layer 17.

図8には、図2、図3に示すように、絶縁層16の外周側面16aを傾斜面で形成するときの製造方法を示す。   FIG. 8 shows a manufacturing method when the outer peripheral side surface 16a of the insulating layer 16 is formed as an inclined surface as shown in FIGS.

図8(a)に示す工程では、シリコンで形成された第1部材11の表面11aを熱酸化して第1部材11の表面11aに第1絶縁層(SiO2)71を形成する。一方、シリコンで形成された中間部材13の表面13aを自然酸化させて中間部材13の表面13aに第2絶縁層(SiOx)72を形成する。これにより第1部材11には密な膜である第1絶縁層71が形成され、中間部材13には疎な膜である第2絶縁層72が形成される。 8A, the surface 11a of the first member 11 made of silicon is thermally oxidized to form a first insulating layer (SiO 2 ) 71 on the surface 11a of the first member 11. On the other hand, the surface 13 a of the intermediate member 13 made of silicon is naturally oxidized to form a second insulating layer (SiOx) 72 on the surface 13 a of the intermediate member 13. As a result, a first insulating layer 71 that is a dense film is formed on the first member 11, and a second insulating layer 72 that is a sparse film is formed on the intermediate member 13.

次に図8(b)の工程では、第1部材11と中間部材13とを接合する。例えば第1部材11と中間部材13間を、フュージョン接合、常温接合できる。   Next, in the step of FIG. 8B, the first member 11 and the intermediate member 13 are joined. For example, the first member 11 and the intermediate member 13 can be fusion bonded or room temperature bonded.

次に図8(c)の工程では、第1部材11及び中間部材13の外形をエッチングや研磨工程で整える。図8(c)に示すように、中間部材13にはアンカ部14及びセンサ部15等を形成する。   Next, in the process of FIG. 8C, the outer shapes of the first member 11 and the intermediate member 13 are adjusted by an etching or polishing process. As shown in FIG. 8C, the intermediate member 13 is formed with an anchor portion 14, a sensor portion 15 and the like.

次に図8(d)の工程では、第1部材11と中間部材13間のうち、アンカ部14と第1部材11との間に絶縁層16が介在し、それ以外の領域が空間となるように、第1絶縁層71及び第2絶縁層72をウエットエッチングやドライエッチングによる等方性エッチングにて除去する。このとき、センサ部15と第1部材11間に介在する第1絶縁層71及び第2絶縁層72がエッチングされやすいようにセンサ部15には微細孔が多数設けられ、微細孔を通してエッチング液やガスがセンサ部15と第1部材11間の第1絶縁層71及び第2絶縁層72にまで到達できるようになっている。   Next, in the step of FIG. 8D, the insulating layer 16 is interposed between the anchor portion 14 and the first member 11 between the first member 11 and the intermediate member 13, and the other region becomes a space. As described above, the first insulating layer 71 and the second insulating layer 72 are removed by isotropic etching using wet etching or dry etching. At this time, the sensor unit 15 is provided with a number of fine holes so that the first insulating layer 71 and the second insulating layer 72 interposed between the sensor unit 15 and the first member 11 are easily etched. The gas can reach the first insulating layer 71 and the second insulating layer 72 between the sensor unit 15 and the first member 11.

例えばHFガスを用いて選択的に第1絶縁層71及び第2絶縁層72をエッチングする。このとき、密な膜である第1絶縁層71のエッチングレートは疎な膜である第2絶縁層72のエッチングレートに比べて遅いため、第1絶縁層71と第2絶縁層72とが一様にエッチングされず図8(d)に示すように、絶縁層16の外周側面16aが傾斜面に形成される。図8(d)では、密な膜である第1絶縁層71が第1部材11側に、疎な膜である第2絶縁層72がアンカ部14側に設けられているので、図8(d)に示すように外周側面16aは、絶縁層16の幅寸法T1が、第1部材11側からアンカ部14にかけて徐々に小さくなる傾斜面となっている。したがって第1絶縁層71を疎な膜で、第2絶縁層72を密な膜で形成すれば図8(d)とは外周側面16aの傾斜方向を逆向きに形成出来る。   For example, the first insulating layer 71 and the second insulating layer 72 are selectively etched using HF gas. At this time, since the etching rate of the first insulating layer 71 which is a dense film is slower than the etching rate of the second insulating layer 72 which is a sparse film, the first insulating layer 71 and the second insulating layer 72 are equal to each other. As shown in FIG. 8D, the outer peripheral side surface 16a of the insulating layer 16 is formed on an inclined surface. In FIG. 8D, the first insulating layer 71 which is a dense film is provided on the first member 11 side, and the second insulating layer 72 which is a sparse film is provided on the anchor portion 14 side. As shown in d), the outer peripheral side surface 16a is an inclined surface in which the width dimension T1 of the insulating layer 16 gradually decreases from the first member 11 side to the anchor portion 14. Therefore, if the first insulating layer 71 is formed of a sparse film and the second insulating layer 72 is formed of a dense film, the inclined direction of the outer peripheral side surface 16a can be formed opposite to that shown in FIG.

なお本実施形態におけるMEMSセンサは加速度センサ、ジャイロセンサ、衝撃センサ等の物理量センサに好ましく適用される。またセンサ部検出原理も静電容量式に限定されるものではない。   Note that the MEMS sensor in this embodiment is preferably applied to a physical quantity sensor such as an acceleration sensor, a gyro sensor, or an impact sensor. Also, the sensor unit detection principle is not limited to the capacitance type.

図9(a)はシミュレーション実験におけるMEMSセンサの実験用サンプルの縦断面図である。   FIG. 9A is a longitudinal sectional view of an experimental sample of the MEMS sensor in the simulation experiment.

図9(a)に示すように、第1部材81と第2部材82との間に中間部材83を介在させ、第1部材81、第2部材82及び中間部材83をいずれもシリコンで形成した。図9(a)に示すように、中間部材83を、アンカ部83aと、アンカ部83aから一体となって一方向に延出する変位検出部83bとで構成した。   As shown in FIG. 9A, an intermediate member 83 is interposed between the first member 81 and the second member 82, and the first member 81, the second member 82, and the intermediate member 83 are all formed of silicon. . As shown in FIG. 9A, the intermediate member 83 includes an anchor portion 83a and a displacement detection portion 83b that extends integrally from the anchor portion 83a in one direction.

また図9(a)に示すようにアンカ部83aと第1部材81との間にSiO2からなる絶縁層84を介在させて、アンカ部83aと第1部材81間を接合した。 Further, as shown in FIG. 9A, the anchor portion 83 a and the first member 81 are joined by interposing an insulating layer 84 made of SiO 2 between the anchor portion 83 a and the first member 81.

また図9(a)に示すように、第2部材82の内側表面にはSiO2から成る絶縁層86が設けられ、絶縁層86とアンカ部83aとの間にAlから成る金属層85を介在させ、アンカ部83aと第2部材82間を接合した。 Further, as shown in FIG. 9A, an insulating layer 86 made of SiO 2 is provided on the inner surface of the second member 82, and a metal layer 85 made of Al is interposed between the insulating layer 86 and the anchor portion 83a. The anchor portion 83a and the second member 82 are joined.

ここで、シリコンのヤング率は178.00GPa、ポアソン比は0.170、Alのヤング率は70.30GPa、ポアソン比は0.350、SiO2のヤング率は71.00GPa、ポアソン比は0.300であった。 Here, the Young's modulus of silicon is 178.00 GPa, the Poisson's ratio is 0.170, the Young's modulus of Al is 70.30 GPa, the Poisson's ratio is 0.350, the Young's modulus of SiO 2 is 71.00 GPa, and the Poisson's ratio is 0.00. 300.

また第1部材81の厚さ寸法H1は100μmで、第2部材82の厚さ寸法H2は100μmで、中間部材83の厚さ寸法H3は20μmであった。また、絶縁層84の厚さ寸法H4は1.5μmで、金属層85の厚さ寸法H5は0.5μmであった。   The thickness dimension H1 of the first member 81 was 100 μm, the thickness dimension H2 of the second member 82 was 100 μm, and the thickness dimension H3 of the intermediate member 83 was 20 μm. In addition, the thickness dimension H4 of the insulating layer 84 was 1.5 μm, and the thickness dimension H5 of the metal layer 85 was 0.5 μm.

実験では、金属層85の幅寸法T2(直径)を20μmに固定し、前記絶縁層84の幅寸法T1(一辺の長さ)を55〜70μmの範囲内で変化させてなる複数の実験用サンプルを用意した。なお各実験用サンプルでは、金属層85の中心と絶縁層84の中心とを厚み方向に一致させている。そして、各実験用サンプルに対して、第1部材81側からアンカ部83a方向に向けて、第2部材82側からアンカ部83a方向に向けて夫々10MPaの圧力を加えた。   In the experiment, a plurality of experimental samples obtained by fixing the width dimension T2 (diameter) of the metal layer 85 to 20 μm and changing the width dimension T1 (length of one side) of the insulating layer 84 within a range of 55 to 70 μm. Prepared. In each experimental sample, the center of the metal layer 85 and the center of the insulating layer 84 are aligned in the thickness direction. Then, a pressure of 10 MPa was applied to each experimental sample from the first member 81 side toward the anchor portion 83a and from the second member 82 side toward the anchor portion 83a.

そして上記のように圧力を加えることで図9(b)に示すように変位検出部83bが変位したときの変位量Lを測定した。なお図9(b)では、視覚的にわかりやすくするため変位検出部83bの変位量を実験より得られた寸法比に比べて大きく図示した。一方向に延びる変位検出部83bの長さ寸法を280μmに設定した。また変位量Lは図9(a)に示すように応力が加わっていない基準状態から、図9(b)のように応力が加わったときの変位検出部83bの最大撓み量で規定した。   And the displacement amount L when the displacement detection part 83b displaced as shown in FIG.9 (b) by applying a pressure as mentioned above was measured. In FIG. 9B, the displacement amount of the displacement detector 83b is shown larger than the dimensional ratio obtained from the experiment in order to make it visually easy to understand. The length dimension of the displacement detector 83b extending in one direction was set to 280 μm. Further, the displacement amount L is defined by the maximum deflection amount of the displacement detector 83b when the stress is applied as shown in FIG. 9B from the reference state where the stress is not applied as shown in FIG. 9A.

図10は、T1/T2と変位量Lとの関係を示すグラフである。図10に示すようにT1/T2が大きくなると徐々に変位量Lが大きくなっていくが、T1/T2が3.3付近になると変位量Lの傾きが緩やかになり始めることがわかった。   FIG. 10 is a graph showing the relationship between T1 / T2 and the displacement L. As shown in FIG. 10, the displacement amount L gradually increases as T1 / T2 increases, but it has been found that the gradient of the displacement amount L begins to become gentle when T1 / T2 approaches 3.3.

そこで本実施例ではT1/T2を3.3以下に設定した。なお好ましくはT1/T2を3.00以下に設定した。図10に示すようにT1/T2は小さいほど変位量Lを小さくできて好適である。しかしながらT1/T2が小さくなるほど絶縁層84の幅寸法T1が小さくなっていき、第1部材81とアンカ部83a間の接合強度が低下する。また、絶縁層84はエッチングによりその周囲の不要な絶縁層を除去して成るものであるため、絶縁層84の形状や形成位置は、アンカ部83a及びアンカ部83aに接続されるセンサ部の大きさや形状、形成場所、エッチング時間、エッチング環境等によりばらつきやすい。したがって絶縁層84の幅寸法T1をあまり小さくしすぎると、平面視にて金属層85の全域が絶縁層84の領域内に包含されず、前記金属層85と前記絶縁層84とが互いにずれて配置されやすい。すると、アンカ部83aの上下面から加わる応力バランスが悪くなり、変位量Lを効果的に小さくすることができない。したがってT1/T2の下限値を1.5に設定した。   Therefore, in this embodiment, T1 / T2 is set to 3.3 or less. Preferably, T1 / T2 is set to 3.00 or less. As shown in FIG. 10, the smaller T1 / T2, the smaller the displacement amount L, which is preferable. However, as T1 / T2 decreases, the width dimension T1 of the insulating layer 84 decreases, and the bonding strength between the first member 81 and the anchor portion 83a decreases. Further, since the insulating layer 84 is formed by removing unnecessary insulating layers around the insulating layer 84, the shape and position of the insulating layer 84 are the size of the anchor portion 83a and the sensor portion connected to the anchor portion 83a. It tends to vary depending on the sheath shape, formation location, etching time, etching environment, and the like. Therefore, if the width dimension T1 of the insulating layer 84 is too small, the entire region of the metal layer 85 is not included in the region of the insulating layer 84 in plan view, and the metal layer 85 and the insulating layer 84 are displaced from each other. Easy to place. Then, the stress balance applied from the upper and lower surfaces of the anchor portion 83a is deteriorated, and the displacement L cannot be effectively reduced. Therefore, the lower limit value of T1 / T2 was set to 1.5.

また、比(T1/T2)を1.5以上に設定したことで、共晶接合あるいは拡散接合を適切に行うことができる。すなわち、比(T1/T2)が大きくなると、それだけ絶縁層16の幅寸法T1と金属層17の幅寸法T2との幅寸法差が大きくなる。そして、金属層17を共晶接合あるいは拡散接合させる際に圧力を加えたとき、前記幅寸法差が大きければ、多少、各部材間のアライメントがずれても、前記圧力を金属層17に十分に加えることができ、安定した接合を行うことができる。よって良好な電気的接続を得ることができ、電気的に安定した接合構造を得ることが出来る。   Further, by setting the ratio (T1 / T2) to 1.5 or more, eutectic bonding or diffusion bonding can be appropriately performed. That is, as the ratio (T1 / T2) increases, the width dimension difference between the width dimension T1 of the insulating layer 16 and the width dimension T2 of the metal layer 17 increases accordingly. When the pressure is applied when the metal layer 17 is eutectic bonded or diffusion bonded, if the width dimension difference is large, the pressure is sufficiently applied to the metal layer 17 even if the alignment between the members is somewhat shifted. Can be added, and stable bonding can be performed. Therefore, good electrical connection can be obtained, and an electrically stable joint structure can be obtained.

次にアンカ部83aの幅寸法T3を、20μmに統一し、後退量T4を変化させて、アンカ部83aの幅寸法T3に対する絶縁層84の外周側面84aの後退量T4の比((T4/T3)×100(%))と、変位検出部83bの変位量Lとの関係を測定した。その実験結果が図11に示されている。図11に示すように比((T4/T3)×100(%))が10%以上になると変位量Lを効果的に小さくできることがわかった。なお比((T4/T3)×100(%))は15%以上であることがより好ましい。   Next, the width dimension T3 of the anchor portion 83a is unified to 20 μm, and the receding amount T4 is changed so that the ratio of the receding amount T4 of the outer peripheral side surface 84a of the insulating layer 84 to the width dimension T3 of the anchor portion 83a ((T4 / T3 ) × 100 (%)) and the displacement amount L of the displacement detector 83b were measured. The experimental results are shown in FIG. As shown in FIG. 11, it was found that the displacement L can be effectively reduced when the ratio ((T4 / T3) × 100 (%)) is 10% or more. The ratio ((T4 / T3) × 100 (%)) is more preferably 15% or more.

続いて図12(a)(b)に示すように、第1部材81とアンカ部83aとの間に介在する絶縁層84の外周側面84aを傾斜面に形成した。図12(a)では、第1部材81側からアンカ部83aに向うにしたがって徐々に絶縁層84の幅寸法が広がるように外周側面84aを傾斜させ、図12(b)では、第1部材81側からアンカ部83aに向うにしたがって徐々に絶縁層84の幅寸法が小さくなるように外周側面84aを傾斜させた。図12(a)(b)の双方において、金属層85の幅寸法T2と対比される絶縁層84の幅寸法T1を幅広側で規定する。また実験では、絶縁層84の外周側面84aの傾斜寸法(削り込み量)T6を4μmに統一した。そのほかの寸法については図9(a)と同様とした。   Subsequently, as shown in FIGS. 12A and 12B, the outer peripheral side surface 84a of the insulating layer 84 interposed between the first member 81 and the anchor portion 83a was formed on an inclined surface. In FIG. 12A, the outer peripheral side surface 84a is inclined so that the width dimension of the insulating layer 84 gradually increases from the first member 81 side toward the anchor portion 83a. In FIG. The outer peripheral side surface 84a was inclined so that the width dimension of the insulating layer 84 gradually decreased from the side toward the anchor portion 83a. In both FIGS. 12A and 12B, the width dimension T1 of the insulating layer 84, which is compared with the width dimension T2 of the metal layer 85, is defined on the wide side. In the experiment, the inclination dimension (the amount of cutting) T6 of the outer peripheral side surface 84a of the insulating layer 84 was unified to 4 μm. Other dimensions were the same as those in FIG.

図13は、図9(a)に示す実施例1、図12(a)に示す実施例2、及び図12(b)に示す実施例3における比(T1/T2)と変位量Lとの関係を示すグラフである。   FIG. 13 shows the ratio (T1 / T2) and displacement amount L in Example 1 shown in FIG. 9A, Example 2 shown in FIG. 12A, and Example 3 shown in FIG. It is a graph which shows a relationship.

図13に示すように、いずれの実施例も比(T1/T2)を3.3以下に設定すると変位量Lを効果的に小さくできることがわかった。また、絶縁層84の外周側面84aを傾斜させた実施例2及び実施例3では実施例1に比べて同じ比(T1/T2)でも変位量Lを効果的に小さくできることがわかった。このように絶縁層84に傾斜を設けることで変位量Lを小さくできるのは、傾斜を設けた分、絶縁層84を更に削り込んでいることと、傾斜によりアンカ部83aに加わる応力をより効果的に分散できるためであると考えられる。   As shown in FIG. 13, it was found that the displacement amount L can be effectively reduced when the ratio (T1 / T2) is set to 3.3 or less in any of the examples. In addition, it was found that the displacement amount L can be effectively reduced even in the same ratio (T1 / T2) in Example 2 and Example 3 in which the outer peripheral side surface 84a of the insulating layer 84 is inclined as compared with Example 1. Thus, the amount of displacement L can be reduced by providing an inclination to the insulating layer 84 because the insulating layer 84 is further shaved and the stress applied to the anchor portion 83a by the inclination is more effective. It is thought that this is because it can be dispersed.

また図14は、実施例1、実施例2及び実施例3における比((T4/T3)×100(%))と変位量Lとの関係を示すグラフである。   FIG. 14 is a graph showing the relationship between the ratio ((T4 / T3) × 100 (%)) and the displacement L in Example 1, Example 2, and Example 3.

図14に示すように、どの実施例においても比((T4/T3)×100(%))を10%以上に設定することで変位量Lを効果的に小さくできることがわかった。   As shown in FIG. 14, it was found that the displacement amount L can be effectively reduced by setting the ratio ((T4 / T3) × 100 (%)) to 10% or more in any of the examples.

また、図13,図14に示すように、絶縁層84の外周側面84aを傾斜面とした実施例2と実施例3のうち、第1部材81側で幅寸法T1を規定し、幅寸法を第1部材81側からアンカ部83aに向けて徐々に小さくした絶縁層84を備える実施例3のほうが変位量Lをより効果的に小さくできることがわかった。よって、実施例3の形態において、比(T1/T2)を3.3以下に設定し且つ比((T4/T3)×100(%))を10%以上に設定すれば、より効果的に変位量Lを小さくできることがわかった。   Further, as shown in FIGS. 13 and 14, in Example 2 and Example 3 in which the outer peripheral side surface 84a of the insulating layer 84 is an inclined surface, the width dimension T1 is defined on the first member 81 side, and the width dimension is determined. It has been found that the displacement amount L can be reduced more effectively in Example 3 including the insulating layer 84 that is gradually reduced from the first member 81 side toward the anchor portion 83a. Therefore, in the embodiment 3, if the ratio (T1 / T2) is set to 3.3 or less and the ratio ((T4 / T3) × 100 (%)) is set to 10% or more, it is more effective. It was found that the displacement amount L can be reduced.

図15(a)は、第1部材の内側表面に熱酸化(1000℃程度で熱酸化)による密な膜である絶縁層(SiO2)を形成し、中間部材の内側表面に自然酸化による疎な膜である絶縁層(SiOX)を形成し、HFガスを用いて不要な絶縁層を除去したときに残された絶縁層の断面写真である。図15(b)は、図15(a)と異なって疎な膜を形成せずに熱酸化による絶縁層を第1部材と中間部材間に介在させ、HFガスを用いて不要な絶縁層を除去したときに残された絶縁層の断面写真である。図15(c)は、図15(a)の膜構成と逆であり、すなわち第1部材の内側表面に自然酸化による疎な膜である絶縁層を形成し、中間部材の内側表面に熱酸化による密な膜である絶縁層を形成し、HFガスを用いて不要な絶縁層を除去したときに残された絶縁層の断面写真である。 FIG. 15A shows an insulating layer (SiO 2 ), which is a dense film formed by thermal oxidation (thermal oxidation at about 1000 ° C.) on the inner surface of the first member, and is loosened by natural oxidation on the inner surface of the intermediate member. forming a film in which an insulating layer (SiO X), a cross-sectional photograph of the remaining insulating layer when removing the unnecessary insulating layer using HF gas. FIG. 15B differs from FIG. 15A in that an insulating layer formed by thermal oxidation is interposed between the first member and the intermediate member without forming a sparse film, and an unnecessary insulating layer is formed using HF gas. It is a cross-sectional photograph of the insulating layer left when removed. FIG. 15C is the reverse of the film configuration of FIG. 15A, that is, an insulating layer that is a sparse film formed by natural oxidation is formed on the inner surface of the first member, and thermal oxidation is performed on the inner surface of the intermediate member. 4 is a cross-sectional photograph of an insulating layer left when an insulating layer which is a dense film is formed and an unnecessary insulating layer is removed using HF gas.

図15(b)での絶縁層の外周側面は略垂直面であるが、図15(a)(c)では、絶縁層の外周側面が傾斜面となった。上記したように疎な膜と密な膜によるエッチングレート差を使用することで絶縁層の外周側面を簡単且つ適切に傾斜面に形成できることがわかった。   The outer peripheral side surface of the insulating layer in FIG. 15B is a substantially vertical surface, but in FIGS. 15A and 15C, the outer peripheral side surface of the insulating layer is an inclined surface. As described above, it was found that the outer peripheral side surface of the insulating layer can be formed on the inclined surface easily and appropriately by using the etching rate difference between the sparse film and the dense film.

10 MEMSセンサ
11、81 第1部材
12、82 第2部材
13、83 中間部材
14、83a アンカ部
14a (アンカ部の)外周側面
15、36、37、38 センサ部
16、18、84、86 絶縁層
16a (絶縁層の)外周側面
17、85 金属層
17a (金属層の)外周側面
21 枠体層
71 第1絶縁層
72 第2絶縁層
83b 変位検出部
10 MEMS sensor 11, 81 First member 12, 82 Second member 13, 83 Intermediate member 14, 83a Anchor portion 14a (anchor portion) outer peripheral side surface 15, 36, 37, 38 Sensor portion 16, 18, 84, 86 Insulation Layer 16a (Insulating layer) outer peripheral side surface 17, 85 Metal layer 17a (Metal layer) outer peripheral side surface 21 Frame layer 71 First insulating layer 72 Second insulating layer 83b Displacement detector

Claims (4)

第1部材と、第2部材と、前記第1部材と前記第2部材との間に位置する中間部材と、前記中間部材に形成されたアンカ部及び前記アンカ部に接続されたセンサ部と、前記第1部材及び前記アンカ部間に介在する絶縁層と、前記第2部材及び前記アンカ部間に介在する金属層と、を有し、
前記金属層の外周側面は前記アンカ部の外周側面よりも内側に後退しており、
前記絶縁層の幅寸法をT1、前記金属層の幅寸法をT2としたとき、T1/T2は、1.5以上で3.3以下の範囲内であることを特徴とするMEMSセンサ。
A first member, a second member, an intermediate member positioned between the first member and the second member, an anchor portion formed on the intermediate member, and a sensor portion connected to the anchor portion; An insulating layer interposed between the first member and the anchor portion, and a metal layer interposed between the second member and the anchor portion,
The outer peripheral side surface of the metal layer is receding inward from the outer peripheral side surface of the anchor part,
The MEMS sensor according to claim 1, wherein T1 / T2 is in a range of 1.5 to 3.3, where T1 is a width dimension of the insulating layer and T2 is a width dimension of the metal layer.
前記絶縁層の外周側面は、前記絶縁層の幅寸法がT1から厚さ方向に向けて徐々に小さくなる傾斜面で形成されている請求項1記載のMEMSセンサ。   The MEMS sensor according to claim 1, wherein the outer peripheral side surface of the insulating layer is formed with an inclined surface in which the width dimension of the insulating layer gradually decreases from T <b> 1 in the thickness direction. 前記絶縁層の幅寸法T1は前記第1部材との接合側にて規定され、前記絶縁層の外周側面は、前記第1部材側から前記アンカ部側に向けて徐々に前記幅寸法が小さくなるように傾斜している請求項2記載のMEMSセンサ。   The width dimension T1 of the insulating layer is defined on the bonding side with the first member, and the width dimension of the outer peripheral side surface of the insulating layer gradually decreases from the first member side toward the anchor portion side. The MEMS sensor according to claim 2, which is inclined as follows. 前記アンカ部の幅寸法をT3とし、前記絶縁層の外周側面の前記アンカ部の外周側面からの後退量をT4としたとき、(T4/T3)×100(%)は、10%以上25%以下の範囲内で規定される請求項1ないし3のいずれか1項に記載のMEMSセンサ。
(T4 / T3) × 100 (%) is 10% or more and 25%, where T3 is the width dimension of the anchor portion and T4 is the receding amount of the outer peripheral side surface of the insulating layer from the outer peripheral side surface of the anchor portion. The MEMS sensor according to any one of claims 1 to 3, which is defined within the following range.
JP2009185547A 2009-08-10 2009-08-10 MEMS sensor Expired - Fee Related JP5255536B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009185547A JP5255536B2 (en) 2009-08-10 2009-08-10 MEMS sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009185547A JP5255536B2 (en) 2009-08-10 2009-08-10 MEMS sensor

Publications (2)

Publication Number Publication Date
JP2011038872A true JP2011038872A (en) 2011-02-24
JP5255536B2 JP5255536B2 (en) 2013-08-07

Family

ID=43766807

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009185547A Expired - Fee Related JP5255536B2 (en) 2009-08-10 2009-08-10 MEMS sensor

Country Status (1)

Country Link
JP (1) JP5255536B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012181030A (en) * 2011-02-28 2012-09-20 Asahi Kasei Electronics Co Ltd Capacitance type acceleration sensor
WO2013008263A1 (en) * 2011-07-08 2013-01-17 株式会社日立製作所 Physical quantity sensor and physical quantity detection method
JP2013250125A (en) * 2012-05-31 2013-12-12 Alps Electric Co Ltd Mems sensor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008229833A (en) * 2007-02-22 2008-10-02 Denso Corp Semiconductor device and manufacturing method thereof
JP2009033091A (en) * 2007-07-02 2009-02-12 Denso Corp Semiconductor device and manufacturing method thereof
WO2010032821A1 (en) * 2008-09-22 2010-03-25 アルプス電気株式会社 Mems sensor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008229833A (en) * 2007-02-22 2008-10-02 Denso Corp Semiconductor device and manufacturing method thereof
JP2009033091A (en) * 2007-07-02 2009-02-12 Denso Corp Semiconductor device and manufacturing method thereof
WO2010032821A1 (en) * 2008-09-22 2010-03-25 アルプス電気株式会社 Mems sensor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012181030A (en) * 2011-02-28 2012-09-20 Asahi Kasei Electronics Co Ltd Capacitance type acceleration sensor
WO2013008263A1 (en) * 2011-07-08 2013-01-17 株式会社日立製作所 Physical quantity sensor and physical quantity detection method
JPWO2013008263A1 (en) * 2011-07-08 2015-02-23 株式会社日立製作所 Physical quantity sensor and physical quantity detection method
JP2013250125A (en) * 2012-05-31 2013-12-12 Alps Electric Co Ltd Mems sensor

Also Published As

Publication number Publication date
JP5255536B2 (en) 2013-08-07

Similar Documents

Publication Publication Date Title
CN107032287B (en) system and method for differential comb drive MEMS
JP2007210083A (en) MEMS device and manufacturing method thereof
JP2010171422A (en) Mems sensor and method of manufacturing the same
JP2008164606A (en) Pressure transducer diaphragm and manufacturing method thereof
JP5790003B2 (en) Accelerometer
JP5175152B2 (en) MEMS sensor
JP2010238921A (en) Mems sensor
JP5255536B2 (en) MEMS sensor
JP5237733B2 (en) MEMS sensor
JP2008039593A (en) Capacitance type acceleration sensor
JP2010194622A (en) Manufacturing method of mems
JP2008039595A (en) Capacitance acceleration sensor
WO2009099123A1 (en) Physical quantity sensor and method of manufacturing same
Nonomura et al. Chip-level warp control of SOI 3-axis accelerometer with the zigzag-shaped Z-electrode
JP5635370B2 (en) Nanosheet transducer
JP5929645B2 (en) Physical quantity sensor
JP6098399B2 (en) Accelerometer
JP2021030310A (en) MEMS element
JP2005345245A (en) Capacitance type dynamic quantity sensor and its manufacturing method
JP2010117247A (en) Mems sensor and method for manufacturing the same
JP2010048700A (en) Mems and method for manufacturing mems
JP2012061528A (en) Nanosheet transducer
JPWO2010104064A1 (en) MEMS sensor
JP6294083B2 (en) Electronics
JP6784565B2 (en) Semiconductor sensor and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120611

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130412

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130416

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130419

R150 Certificate of patent or registration of utility model

Ref document number: 5255536

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160426

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees