[go: up one dir, main page]

JP2011147212A - Snubber circuit for power converter - Google Patents

Snubber circuit for power converter Download PDF

Info

Publication number
JP2011147212A
JP2011147212A JP2010003959A JP2010003959A JP2011147212A JP 2011147212 A JP2011147212 A JP 2011147212A JP 2010003959 A JP2010003959 A JP 2010003959A JP 2010003959 A JP2010003959 A JP 2010003959A JP 2011147212 A JP2011147212 A JP 2011147212A
Authority
JP
Japan
Prior art keywords
parallel
wiring
semiconductor elements
semiconductor element
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010003959A
Other languages
Japanese (ja)
Other versions
JP5482211B2 (en
Inventor
Ayako Ichise
彩子 市瀬
Michio Tamate
道雄 玉手
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Thermo Systems Co Ltd
Original Assignee
Fuji Electric Thermo Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Thermo Systems Co Ltd filed Critical Fuji Electric Thermo Systems Co Ltd
Priority to JP2010003959A priority Critical patent/JP5482211B2/en
Publication of JP2011147212A publication Critical patent/JP2011147212A/en
Application granted granted Critical
Publication of JP5482211B2 publication Critical patent/JP5482211B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Power Conversion In General (AREA)
  • Inverter Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce loss by suppressing the unbalance of a turn-off loss in each semiconductor device even when current unbalance occurs depending upon the length of wiring, concerning a power converter which uses each semiconductor device connected in series as a switching element. <P>SOLUTION: Current unbalance occurs because inductance varies with the length of wiring in such a power converter that expresses wiring inductance 5 by an equivalent circuit as shown in the figure as to only an upper arm in which two semiconductor devices 11 and 12 are connected in parallel. To cope with this, the capacity of a snubber capacitor on the side of shorter wiring length is made larger than that of a snubber capacitor (C<SB>s2</SB>in the figure) on the side of longer wiring length. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

この発明は、電力変換装置で並列接続された半導体素子のターンオフ時のサージ電圧抑制、および損失低減を目的として設けられるスナバ回路に関する。   The present invention relates to a snubber circuit provided for the purpose of suppressing a surge voltage at the time of turn-off of semiconductor elements connected in parallel by a power converter and reducing loss.

誘導性負荷と直列または並列にコンデンサを接続し、LC共振を利用して電力を供給する共振形インバータが、電磁調理器に代表される誘導加熱装置で多用されている。
図3に、フルブリッジ構成の共振形インバータの一般的な例を示す。以下、図3のインバータを電磁調理器に応用した場合について説明する。
電磁調理器は一般に、平板上に巻いた加熱コイルの上面に鍋を配置し、誘導加熱の原理で鍋を加熱する調理器である。この調理器の加熱コイルと鍋は、結合係数の悪いトランスと見なせることから、図示のようなLR直列回路の誘導性負荷4となる。
2. Description of the Related Art Resonant inverters that connect a capacitor in series or in parallel with an inductive load and supply power using LC resonance are often used in induction heating devices represented by electromagnetic cookers.
FIG. 3 shows a general example of a resonant inverter having a full bridge configuration. Hereinafter, the case where the inverter of FIG. 3 is applied to an electromagnetic cooker will be described.
In general, an electromagnetic cooker is a cooker in which a pan is arranged on the upper surface of a heating coil wound on a flat plate and the pan is heated by the principle of induction heating. Since the heating coil and pan of this cooker can be regarded as a transformer with a poor coupling coefficient, it becomes an inductive load 4 of an LR series circuit as shown.

上述のような誘導性負荷4に電力を供給するために、誘導性負荷4と直列に共振コンデンサ6を接続し、インバータを誘導性負荷4と共振コンデンサ6の共振周波数近傍で動作させることで、負荷力率を大きくして電力を供給する。また、負荷の共振周波数よりも共振形インバータの動作周波数を高く設定することで、ソフトスイッチングを実現でき、スイッチング損失を大幅に低減できる特徴を有している。   In order to supply power to the inductive load 4 as described above, a resonant capacitor 6 is connected in series with the inductive load 4 and the inverter is operated near the resonant frequency of the inductive load 4 and the resonant capacitor 6. Increase the load power factor to supply power. Further, by setting the operating frequency of the resonant inverter higher than the resonant frequency of the load, soft switching can be realized and switching loss can be greatly reduced.

図4に図3の動作波形図を示す。
0は負荷電流、i10,i20はそれぞれ半導体素子10,20に流れる電流である。共振形インバータを共振周波数近傍で動作させるため、負荷電流i 0は図4(a)のように、おおよそ正弦波波形となる。このとき、共振形インバータのスイッチング周期がLC共振周期より短く、オン直後の半導体素子電流がダイオードに流れるため、ターンオン損失は発生しない(ゼロ電流スイッチング)。また、半導体素子1,2,10,20と並列にスナバコンデンサ31,32, 310,320を接続することで、ターンオフ時の電圧上昇を抑制し、ターンオフ損失を大幅に低減することができる。
FIG. 4 shows an operation waveform diagram of FIG.
i 0 is a load current, and i 10 and i 20 are currents flowing through the semiconductor elements 10 and 20, respectively. Since the resonant inverter is operated in the vicinity of the resonant frequency, the load current i 0 has a roughly sinusoidal waveform as shown in FIG. At this time, the switching period of the resonant inverter is shorter than the LC resonance period, and the semiconductor element current immediately after turning on flows in the diode, so that no turn-on loss occurs (zero current switching). Further, by connecting the snubber capacitors 31, 32, 310, and 320 in parallel with the semiconductor elements 1, 2, 10, and 20, it is possible to suppress a voltage increase at the time of turn-off and to significantly reduce the turn-off loss.

上記スナバコンデンサを接続した場合の損失低減効果について、以下に詳述する。
負荷として誘導性負荷を用いる共振形インバータ等でスナバ回路を用いる場合の、スイッチングアーム周辺回路を図5に示す。これは、直流の電位差をもつPN間に、スイッチング素子とこれに逆並列に接続したダイオードからなる半導体素子1,2を直列接続し、これらの素子と並列にスナバコンデンサ31,32を接続して構成している。
The loss reduction effect when the snubber capacitor is connected will be described in detail below.
FIG. 5 shows a peripheral circuit of the switching arm in the case where a snubber circuit is used in a resonance type inverter using an inductive load as a load. This is because semiconductor elements 1 and 2 comprising a switching element and a diode connected in reverse parallel to this are connected in series between PNs having a DC potential difference, and snubber capacitors 31 and 32 are connected in parallel with these elements. It is composed.

図5に示す回路で、半導体素子1がターンオフした瞬間の電圧,電流波形を図6に示す。
同図のiは半導体素子1のコレクタ電流、vceは半導体素子1のコレクタ−エミッタ間電圧を示す。スナバコンデンサ31,32がない場合、半導体素子1がターンオフした瞬間のvceは瞬時に上昇するため、電圧,電流波形は図6(a)のようになる。これに対し、スナバコンデンサ31,32を接続すると、半導体素子1がターンオフした瞬間、誘導性負荷4や配線インダクタンスなどに蓄えられていたエネルギーは、スナバコンデンサ31を充電し、スナバコンデンサ32を放電する。その結果、スナバコンデンサ31,32の充放電に伴い、半導体素子1に印加される電圧のdV/dtが図6(b)のように小さくなるため、ターンオフ損失が減少する。
FIG. 6 shows voltage and current waveforms at the moment when the semiconductor element 1 is turned off in the circuit shown in FIG.
In the figure, ic represents the collector current of the semiconductor element 1, and v ce represents the collector-emitter voltage of the semiconductor element 1. If there is no snubber capacitors 31 and 32, v ce moment that the semiconductor device 1 is turned off in order to increase the instantaneous voltage, current waveform is as shown in FIG. 6 (a). On the other hand, when the snubber capacitors 31 and 32 are connected, the energy stored in the inductive load 4 or the wiring inductance at the moment when the semiconductor element 1 is turned off charges the snubber capacitor 31 and discharges the snubber capacitor 32. . As a result, as the snubber capacitors 31 and 32 are charged / discharged, the voltage dV / dt applied to the semiconductor element 1 becomes smaller as shown in FIG. 6B, so that the turn-off loss is reduced.

ところで、パワエレ機器の大容量化に伴い、大電流に対応できるように例えば図7のように、半導体素子を並列接続構成とする場合がある。この場合、スナバコンデンサは一般的に図示のように、各素子に対して同じ大きさのコンデンサを並列接続するか、並列接続した半導体素子全体に対して1つのコンデンサを接続して損失を抑制する。しかし、半導体素子を並列接続すると、各半導体素子までの配線長の違いにより各半導体素子に流れる電流にアンバランスが生じる。この電流アンバランスにより、ターンオフ損失もアンバランスになる。この損失アンバランスの発生原理について、2つの半導体素子を並列に接続した場合を例として、以下に説明する。   By the way, along with the increase in capacity of power electronics devices, there are cases where semiconductor elements are configured in parallel connection as shown in FIG. In this case, as shown in the figure, the snubber capacitor is generally connected in parallel with capacitors of the same size for each element, or one capacitor is connected to the entire semiconductor elements connected in parallel to suppress loss. . However, when semiconductor elements are connected in parallel, the current flowing through each semiconductor element is unbalanced due to the difference in wiring length to each semiconductor element. Due to this current imbalance, turn-off loss is also imbalanced. This loss imbalance generation principle will be described below with reference to an example in which two semiconductor elements are connected in parallel.

図8は図7の上アームのみを拡大し、配線インダクタンス5を等価回路で表わしたものである。いま、2つの半導体素子11,12の性能がほぼ同等の場合、半導体素子12は半導体素子11に比べて配線が長いため、インダクタンスは大きくなる。このため、オン時にそれぞれの半導体素子に流れる電流は、各半導体素子に負荷電流の1/2ずつ流れるのではなく、インダクタンスが小さく従ってインピーダンスが小さい半導体素子11の方に大きい電流が流れる。半導体素子11に並列接続されるスナバコンデンサ311と、半導体素子12に並列接続されるスナバコンデンサ312の容量が同じ場合、ターンオフ時の電圧のdV/dtは図9のようにどちらの素子も同じとなるため、図9(a)に示す、電流の大きい半導体素子11の損失の方が大きくなる。よって、素子温度にばらつきが生じ冷却の信頼性を損ねることになる。   FIG. 8 is an enlarged view of only the upper arm of FIG. 7, and the wiring inductance 5 is represented by an equivalent circuit. If the performances of the two semiconductor elements 11 and 12 are substantially equal, the semiconductor element 12 has a longer wiring than the semiconductor element 11, and therefore the inductance is increased. For this reason, the current flowing through each semiconductor element at the time of turning on does not flow through each semiconductor element by half of the load current, but a larger current flows through the semiconductor element 11 having a small inductance and hence a smaller impedance. If the snubber capacitor 311 connected in parallel to the semiconductor element 11 and the snubber capacitor 312 connected in parallel to the semiconductor element 12 have the same capacity, the voltage dV / dt at turn-off is the same for both elements as shown in FIG. Therefore, the loss of the semiconductor element 11 having a large current shown in FIG. Therefore, the element temperature varies and the cooling reliability is impaired.

上述のような損失アンバランスを低減する方法として、特許文献1では図10のように、例えば半導体素子11と12、13と14のように2個ずつ対にして並列に接続し、さらに対どうしを並列に接続することで、各素子までの配線長を同じにして電流アンバランスを抑制する方法が開示されている。
また、特許文献2では、各半導体素子のゲート電極どうしを接続する導体と、ソース電極どうしを接続する導体とを近接配置し、ゲート−ソース間電圧のばらつきを抑制することで、電流が特定の素子に集中することを防ぎ、電流アンバランスを抑制する方法が提案されている。
As a method for reducing the loss imbalance as described above, in Patent Document 1, as shown in FIG. 10, two semiconductor elements 11 and 12, 13 and 14, for example, are connected in parallel and further connected to each other. Are connected in parallel to make the wiring length to each element the same, thereby suppressing current imbalance.
In Patent Document 2, a conductor that connects the gate electrodes of each semiconductor element and a conductor that connects the source electrodes are arranged close to each other to suppress variations in the gate-source voltage, so that a current can be specified. A method of preventing concentration on the element and suppressing current imbalance has been proposed.

特許第3648954号明細書Japanese Patent No. 3648954 特許第3896940号明細書Japanese Patent No. 3896940

しかしながら、特許文献1の方法では、半導体素子の並列接続数が2の場合に限られるという問題がある。また、実際に半導体素子を基板に実装する場合、他部品の配線の位置関係などにより、特許文献1,2のような配線ができない可能性がある。さらに、複数の半導体素子をモジュール化した部品を用いる場合、端子配置により上記のような配線が困難であったり、モジュール内部の配線の影響などで電流アンバランスが生じたりすることがある。 However, the method of Patent Document 1 has a problem that the number of semiconductor devices connected in parallel is limited to 2 n . Moreover, when actually mounting a semiconductor element on a board | substrate, there exists a possibility that wiring like patent documents 1 and 2 cannot be performed by the positional relationship of the wiring of other components. Further, when using a component in which a plurality of semiconductor elements are modularized, wiring as described above may be difficult due to terminal arrangement, or current imbalance may occur due to the influence of wiring inside the module.

したがって、この発明の課題は、並列接続された各半導体素子について、配線の長短により電流アンバランスが生じた場合でも、各半導体素子のターンオフ損失のアンバランスを抑制しながら損失を低減することにある。   Accordingly, an object of the present invention is to reduce a loss while suppressing an unbalance of a turn-off loss of each semiconductor element even when a current imbalance occurs due to the length of wiring for each semiconductor element connected in parallel. .

このような課題を解決するため、請求項1の発明では、スイッチング素子とこれに逆並列に接続されたダイオードとからなる半導体素子を複数個並列に接続するとともに、この半導体素子のそれぞれと並列にコンデンサを接続してスイッチングアームを形成し、このスイッチングアームを直列接続した直列回路を直流の電位差を持つ二点間に接続し、その直列回路の中間接続点に負荷の一端を接続して電力を供給する電力変換装置において、
前記負荷の一端から前記半導体素子を経て、前記直流の電位差を持つ二点のいずれかに至る線路の配線長が長い方の半導体素子と並列に接続されるコンデンサの静電容量よりも、同じく配線長が短い半導体素子と並列に接続されるコンデンサの静電容量の方を大きくする措置を、直流の電位差を持つ二点のうちの高電位側または低電位側につながる少なくとも一方のスイッチングアームにおいて施すことを特徴とする。
この請求項1の発明では、前記各コンデンサの容量比を、並列接続された各半導体素子に流れる電流値の比に応じて定めることができる(請求項2の発明)。
In order to solve such a problem, in the invention of claim 1, a plurality of semiconductor elements each composed of a switching element and a diode connected in antiparallel thereto are connected in parallel, and in parallel with each of the semiconductor elements. A capacitor is connected to form a switching arm, a series circuit in which the switching arm is connected in series is connected between two points having a DC potential difference, and one end of the load is connected to an intermediate connection point of the series circuit to generate power. In the power converter to be supplied,
Same wiring than the capacitance of the capacitor connected in parallel with the semiconductor element with the longer wiring length of the line from one end of the load through the semiconductor element to one of the two points having the DC potential difference A measure to increase the capacitance of the capacitor connected in parallel with the semiconductor element having a short length is applied to at least one switching arm connected to the high potential side or the low potential side of the two points having a DC potential difference. It is characterized by that.
According to the first aspect of the present invention, the capacitance ratio of the capacitors can be determined according to the ratio of the current values flowing through the semiconductor elements connected in parallel (the second aspect of the invention).

この発明によれば、複数の半導体素子を並列接続する場合、各素子への配線の長短により電流アンバランスが生じる場合でも、各素子のアンバランスを抑制しつつターンオフ損失を低減できる。これにより、各素子温度のばらつきを抑制し、冷却の信頼性を高めることができる。また、配線パターンに関わらず効果を発揮できるため、モジュール型部品など、配線を変更することが困難な場合にも適用可能になるという利点もある。   According to the present invention, when a plurality of semiconductor elements are connected in parallel, even when current imbalance occurs due to the length of wiring to each element, turn-off loss can be reduced while suppressing imbalance of each element. Thereby, the dispersion | variation in each element temperature can be suppressed and the reliability of cooling can be improved. Further, since the effect can be exhibited regardless of the wiring pattern, there is an advantage that it can be applied even when it is difficult to change the wiring, such as a module type part.

この発明の実施の形態を示す回路図。The circuit diagram which shows embodiment of this invention. 図1におけるターンオフ時の電圧・電流波形図。FIG. 2 is a voltage / current waveform diagram at the time of turn-off in FIG. 1. 共振形インバータの一般的な例を示す回路図。The circuit diagram which shows the general example of a resonance type inverter. 図3の動作波形図。FIG. 4 is an operation waveform diagram of FIG. 3. スナバ回路を備えたインバータの従来例を示す回路図。The circuit diagram which shows the prior art example of the inverter provided with the snubber circuit. 図5におけるターンオフ時の電圧・電流波形図。FIG. 6 is a voltage / current waveform diagram at the time of turn-off in FIG. 5. 図5で半導体素子を並列接続した場合を示す回路図。FIG. 6 is a circuit diagram showing a case where semiconductor elements are connected in parallel in FIG. 5. 図7の部分拡大図。The elements on larger scale of FIG. 図7における電圧・電流波形図。FIG. 8 is a voltage / current waveform diagram in FIG. 7. 特許文献1に開示された電流アンバランス低減のための回路図。The circuit diagram for the current imbalance reduction disclosed by patent document 1. FIG.

図1はこの発明の実施の形態を示す回路構成図である。これは、2つの半導体素子を並列接続した図7の上アームのみを拡大し、配線インダクタンス5を等価回路で表わした、図8と同じものと言える。回路構成上は同じであるが、以下の点で相違する。
いま、半導体素子11がオンのときに流れる電流をic1、同じく半導体素子12がオンのときに流れる電流をic2とすると、2つの半導体素子の性能がほぼ同じであれば、配線インダクタンス5の影響により、ic1>ic2となる。
FIG. 1 is a circuit configuration diagram showing an embodiment of the present invention. This can be said to be the same as FIG. 8 in which only the upper arm of FIG. 7 in which two semiconductor elements are connected in parallel is enlarged and the wiring inductance 5 is represented by an equivalent circuit. The circuit configuration is the same, but the following points are different.
If the current flowing when the semiconductor element 11 is on is i c1 and the current flowing when the semiconductor element 12 is on is i c2 , if the performance of the two semiconductor elements is substantially the same, the wiring inductance 5 Due to the influence, i c1 > i c2 .

そこで、各半導体素子に並列に接続したスナバコンデンサ311,312の値を、それぞれの半導体素子に流れるオン時の電流値に応じて決定する。すなわち、流れる電流の小さい半導体素子12のスナバコンデンサ312の容量Cs2に対し、流れる電流の大きい半導体素子11のスナバコンデンサ311の容量Cs1の方をより大きなものへと変更する。
この発明を適用した場合の電圧,電流波形を図2に示す。ターンオフの瞬間、半導体素子11,12に流れていた電流(破線参照)は並列に接続されたコンデンサ311,312に流れ、これらを充電する。一方で、半導体素子11,12に流れていた電流は、或るターンオフ時間をかけて急速に0に近づいていく。
Therefore, the values of the snubber capacitors 311 and 312 connected in parallel to the respective semiconductor elements are determined according to the current value when the semiconductor elements are turned on. That is, the capacity C s1 of the snubber capacitor 311 of the semiconductor element 11 with a large flowing current is changed to a larger one than the capacity C s2 of the snubber capacitor 312 of the semiconductor element 12 with a small flowing current.
FIG. 2 shows voltage and current waveforms when the present invention is applied. At the moment of turn-off, the current (see the broken line) flowing in the semiconductor elements 11 and 12 flows to the capacitors 311 and 312 connected in parallel to charge them. On the other hand, the current flowing through the semiconductor elements 11 and 12 rapidly approaches 0 over a certain turn-off time.

一般に、コンデンサに印加される電圧vは、これに流れる電流をi、コンデンサ容量をCとして、
v=∫idt/C…(1)
で表わされる。従って、図1のスナバコンデンサ311,312の電圧変化率dv/dtは、1/Cに比例(Cに反比例)する。つまり、コンデンサ容量が大きいほど、dv/dtは小さくなる。
In general, the voltage v applied to the capacitor is expressed as follows.
v = ∫idt / C (1)
It is represented by Therefore, the voltage change rate dv / dt of the snubber capacitors 311 and 312 in FIG. 1 is proportional to 1 / C (inversely proportional to C). That is, the larger the capacitor capacity, the smaller the dv / dt.

半導体素子11,12に掛かる電圧はスナバコンデンサ311,312電圧と等しいため、半導体素子11,12の電圧のdv/dtも、スナバコンデンサ311,312の容量が大きいほど小さくなる。また、損失は電圧と電流との積で表わされるため、電流の大きい半導体素子11に掛かる電圧のdv/dtを図2(a)のように小さくすることで、半導体素子11,12のターンオフ損失を同等にすることができる。   Since the voltage applied to the semiconductor elements 11 and 12 is equal to the voltage of the snubber capacitors 311 and 312, the dv / dt of the voltage of the semiconductor elements 11 and 12 decreases as the capacity of the snubber capacitors 311 and 312 increases. Further, since the loss is represented by the product of voltage and current, the turn-off loss of the semiconductor elements 11 and 12 can be reduced by reducing the voltage dv / dt applied to the semiconductor element 11 having a large current as shown in FIG. Can be made equivalent.

次に、スナバコンデンサ容量の具体的な決定方法について説明する。
半導体素子11,12に流れていた電流は、ターンオフとともに並列接続されているスナバコンデンサ311,312に転流し、充電が開始される。このときスナバコンデンサ311,312に流れる電流をそれぞれics1,ics2とすると、スナバコンデンサ311,312に印加される電圧、すなわち半導体素子11,12のコレクタ−エミッタ間電圧vce1,vce2は、次の(2)式のように求められる。
ce1=∫ics1dt/Cs1
ce2=∫ics2dt/Cs2…(2)
Next, a specific method for determining the snubber capacitor capacity will be described.
The current flowing in the semiconductor elements 11 and 12 is commutated to the snubber capacitors 311 and 312 connected in parallel with the turn-off, and charging is started. In this case the current flowing through the snubber capacitor 311, 312, respectively i cs1, i cs2, the voltage applied to the snubber capacitor 311, 312, i.e., the collector of the semiconductor elements 11 and 12 - emitter voltage v ce1, v ce2 is It is calculated as the following equation (2).
v ce1 = ∫i cs1 dt / C s1,
v ce2 = ∫i cs2 dt / C s2 (2)

よって、各半導体素子11,12のターンオフ損失Poff1,Poff2は、
off1=ic1×∫ics1dt/Cs1
off2=ic2×∫ics2dt/Cs2…(3)
と表わせる。ここで、
c1=k・(k:実数)ic2…(4)
であるとすると、スナバコンデンサ311,312に流れる電流は、ターンオフ直前に半導体素子11,12に流れていた電流に依存するので、
cs1=k・ics2…(5)
の関係となる。
Accordingly, turn-off loss P off1, P off2 of the semiconductor elements 11 and 12,
P off1 = i c1 × ∫i cs1 dt / C s1 ,
P off2 = i c2 × ∫i cs2 dt / C s2 ... (3)
It can be expressed as here,
i c1 = k · (k: real number) i c2 (4)
Since the current flowing through the snubber capacitors 311 and 312 depends on the current flowing through the semiconductor elements 11 and 12 immediately before the turn-off,
i cs1 = k · i cs2 (5)
It becomes the relationship.

ターンオフ損失のアンバランスを抑制するには、Poff1=Poff2であれれば良いと考えられるので、上記(3)式から、
c1×∫ics1dt/Cs1=ic2×∫ics2dt/Cs2…(6)
が成立する。この(6)式に上記(4),(5)式の電流の関係を考慮すると、
k・ic2×∫k・ics2dt/Cs1=ic2×∫ics2dt/Cs2…(7)
となる。これより、
s1=k・Cs2…(8)
なる関係が導かれる。
To suppress the unbalance of the turn-off loss, it is considered that it Arere at P off1 = P off2, from equation (3),
i c1 × ∫i cs1 dt / C s1 = i c2 × ∫i cs2 dt / C s2 (6)
Is established. Considering the relationship of the currents in the above equations (4) and (5) to this equation (6),
k · i c2 × ∫k · i cs2 dt / C s1 = i c2 × ∫ i cs2 dt / C s2 (7)
It becomes. Than this,
C s1 = k 2 · C s2 (8)
The following relationship is derived.

すなわち、半導体素子11のオン電流が半導体素子12のオン電流のk倍であるとき、スナバコンデンサ311の容量をスナバコンデンサ312の容量のk倍にすることで、ターンオフ損失をほぼ均等にすることができる。
実際には、メーカの提供するコンデンサの容量は予め定まっているため、k倍となる容量のコンデンサを選ぶことは必ずしも容易ではない。しかし、k倍に最も近い容量のコンデンサとすることで、ターンオフ損失のアンバランスを最低限に抑えることが可能となる。
That is, when the on-current of the semiconductor element 11 is k times the on current of the semiconductor element 12, by the capacitance of the snubber capacitor 311 to the k 2 times the capacitance of the snubber capacitor 312, be substantially equal to the turn-off loss Can do.
In fact, since the previously determined capacity of the capacitor that provides the manufacturer to choose a capacitor of capacitance twice k it is not always easy. However, by the nearest value capacitor doubled k, it is possible to suppress imbalance of turn-off loss to a minimum.

なお、以上ではインバータの高電位側について説明したが、低電位側も同様に構成でき、高電位側,低電位側の双方とも同様の構成にすることができる。また、半導体素子を2つ並列にする場合について説明したが、これに限るものではなく一般的には複数個とすることができる。   In the above description, the high potential side of the inverter has been described. However, the low potential side can be configured in the same manner, and the high potential side and the low potential side can be configured in the same manner. Moreover, although the case where two semiconductor elements are arranged in parallel has been described, the present invention is not limited to this, and a plurality of semiconductor elements can be generally used.

1,2,10,11,12,13,14,20,21,22…半導体素子、31,32,310,311,312,320,321,322…スナバコンデンサ、4…誘導性負荷、5…配線インダクタンス、6…共振コンデンサ。   1,2,10,11,12,13,14,20,21,22 ... semiconductor element, 31,32,310,311,312,320,321,322 ... snubber capacitor, 4 ... inductive load, 5 ... Wiring inductance, 6 ... resonance capacitor.

Claims (2)

スイッチング素子とこれに逆並列に接続されたダイオードとからなる半導体素子を複数個並列に接続するとともに、この半導体素子のそれぞれと並列にコンデンサを接続してスイッチングアームを形成し、このスイッチングアームを直列接続した直列回路を直流の電位差を持つ二点間に接続し、その直列回路の中間接続点に負荷の一端を接続して電力を供給する電力変換装置において、
前記負荷の一端から前記半導体素子を経て、前記直流の電位差を持つ二点のいずれかに至る線路の配線長が長い方の半導体素子と並列に接続されるコンデンサの静電容量よりも、同じく配線長が短い半導体素子と並列に接続されるコンデンサの静電容量の方を大きくする措置を、直流の電位差を持つ二点のうちの高電位側または低電位側につながる少なくとも一方のスイッチングアームにおいて施すことを特徴とする電力変換装置のスナバ回路。
A plurality of semiconductor elements each composed of a switching element and a diode connected in antiparallel to the switching element are connected in parallel, and a capacitor is connected in parallel with each of the semiconductor elements to form a switching arm. The switching arm is connected in series. In the power converter for connecting the connected series circuit between two points having a direct current potential difference and connecting one end of the load to the intermediate connection point of the series circuit to supply power,
Same wiring than the capacitance of the capacitor connected in parallel with the semiconductor element with the longer wiring length of the line from one end of the load through the semiconductor element to one of the two points having the DC potential difference A measure to increase the capacitance of the capacitor connected in parallel with the semiconductor element having a short length is applied to at least one switching arm connected to the high potential side or the low potential side of the two points having a DC potential difference. The snubber circuit of the power converter device characterized by the above-mentioned.
前記各コンデンサの容量比を、並列接続された各半導体素子に流れる電流値の比に応じて定めることを特徴とする請求項1に記載の電力変換装置のスナバ回路。   2. The snubber circuit for a power converter according to claim 1, wherein a capacitance ratio of the capacitors is determined in accordance with a ratio of current values flowing through the semiconductor elements connected in parallel.
JP2010003959A 2010-01-12 2010-01-12 Snubber circuit for power converter Expired - Fee Related JP5482211B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010003959A JP5482211B2 (en) 2010-01-12 2010-01-12 Snubber circuit for power converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010003959A JP5482211B2 (en) 2010-01-12 2010-01-12 Snubber circuit for power converter

Publications (2)

Publication Number Publication Date
JP2011147212A true JP2011147212A (en) 2011-07-28
JP5482211B2 JP5482211B2 (en) 2014-05-07

Family

ID=44461566

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010003959A Expired - Fee Related JP5482211B2 (en) 2010-01-12 2010-01-12 Snubber circuit for power converter

Country Status (1)

Country Link
JP (1) JP5482211B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012228100A (en) * 2011-04-21 2012-11-15 Makoto Saito Electric-motor drive system
US8836080B2 (en) 2012-04-19 2014-09-16 Fuji Electric Co., Ltd. Power semiconductor module
JP7282147B1 (en) 2021-12-01 2023-05-26 三菱電機株式会社 Semiconductor equipment and power conversion equipment

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012228100A (en) * 2011-04-21 2012-11-15 Makoto Saito Electric-motor drive system
US8836080B2 (en) 2012-04-19 2014-09-16 Fuji Electric Co., Ltd. Power semiconductor module
JP7282147B1 (en) 2021-12-01 2023-05-26 三菱電機株式会社 Semiconductor equipment and power conversion equipment
JP2023081422A (en) * 2021-12-01 2023-06-13 三菱電機株式会社 Semiconductor equipment and power conversion equipment
US11901839B2 (en) 2021-12-01 2024-02-13 Mitsubishi Electric Corporation Semiconductor device and power conversion apparatus

Also Published As

Publication number Publication date
JP5482211B2 (en) 2014-05-07

Similar Documents

Publication Publication Date Title
RU2708638C2 (en) Inverter with high specific power
US20150146455A1 (en) Current control for dc-dc converters
EP3305018B1 (en) Power supply apparatus for induction heating
US20180205314A1 (en) High Power Density Inverter (II)
CN110275124B (en) DC Superimposed Ripple Generation Circuit for MMC Sub-Module Capacitor Test
JP6054007B1 (en) Power converter
JP6661002B2 (en) Power converter
RU2355531C2 (en) Arc-welding generator with high power coefficient
CN106575927A (en) Power conversion device
JP2014522231A (en) Inverter with coupling inductance
JP6317516B1 (en) DC smoothing circuit, inverter, and power supply device
JP5482211B2 (en) Snubber circuit for power converter
CN110708779B (en) A dual-frequency induction heating power supply and control method thereof
JP2016197821A (en) Gate drive circuit
JP4783905B2 (en) Zero voltage switching high frequency inverter
JPWO2014128935A1 (en) AC power supply
JP5840514B2 (en) Leakage current suppression circuit
KR100666509B1 (en) Harmonic filter with ON / OFF switching function
JP2004537942A (en) Series power switch bridge with automatic voltage distribution
JPWO2018199223A1 (en) Power supply circuit
JP4983318B2 (en) Electromagnetic cooker
CN104716849A (en) Voltage type quasi-impedance source AC-AC converter
JP6636219B1 (en) Power converter
JP2010193582A (en) Power conversion equipment
WO2018189773A1 (en) Power conversion device

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20121214

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20130422

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20130422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140203

R150 Certificate of patent or registration of utility model

Ref document number: 5482211

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees