[go: up one dir, main page]

JP2011153239A - Luminescent material for organic el, and organic el element using the same - Google Patents

Luminescent material for organic el, and organic el element using the same Download PDF

Info

Publication number
JP2011153239A
JP2011153239A JP2010016081A JP2010016081A JP2011153239A JP 2011153239 A JP2011153239 A JP 2011153239A JP 2010016081 A JP2010016081 A JP 2010016081A JP 2010016081 A JP2010016081 A JP 2010016081A JP 2011153239 A JP2011153239 A JP 2011153239A
Authority
JP
Japan
Prior art keywords
organic
metal
light emitting
compound
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010016081A
Other languages
Japanese (ja)
Other versions
JP5569009B2 (en
Inventor
Haruki Eguchi
晴樹 江口
Kenji Fuchigami
健児 渕上
Kozue Hodozuka
梢 保戸塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2010016081A priority Critical patent/JP5569009B2/en
Publication of JP2011153239A publication Critical patent/JP2011153239A/en
Application granted granted Critical
Publication of JP5569009B2 publication Critical patent/JP5569009B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a luminescent material having high light emission efficiency and a long light emission life that is used for an organic EL element. <P>SOLUTION: The luminescent material for organic EL is a metal salen complex compound, for example, a N, N'-bis(salicylidene)ethylenediamine metal complex represented by the formula below, wherein the metal M is Fe, Cr, Mn, Co, Ni, Mo, Ru, Rh, Pd, W, Re, Os, Ir, Pt, Nd, Sm, Eu or Gd. The metal salen complex of which M is iron emits phosphorescence and gives a blue organic EL element by being doped to the luminescent layer. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、有機EL用発光材料に係わり、詳しくは、青色のリン光を発光する金属錯体に係わり、さらに詳しくは、金属サレン錯体に関するものである。  The present invention relates to a light emitting material for organic EL, and more particularly to a metal complex that emits blue phosphorescence, and more particularly to a metal salen complex.

近年、有機エレクトロルミネッセンス(Organic Electro-Luminescence:有機EL)による発光原理を利用した発光素子や表示デバイスが注目されている。  In recent years, a light emitting element and a display device using a light emission principle by organic electroluminescence (Organic Electro-Luminescence: organic EL) have been attracting attention.

有機EL素子の主要部は発光層であり、発光層に使用される発光材料には、大きく分けて、高分子のものと低分子のものがある。ポリマー分子を用いたものが高分子材料であり、それ以外の分子を用いたものが低分子材料である。   The main part of the organic EL element is a light emitting layer, and light emitting materials used for the light emitting layer are roughly classified into high molecular weight materials and low molecular weight materials. A material using polymer molecules is a high molecular material, and a material using other molecules is a low molecular material.

高分子材料をインクとした印刷技術を利用することによって、大型の有機ELデバイスを安価に製造できることが叫ばれているが、高分子材料の寿命に難があり、現状では、低分子材料が一般的に発光材料として利用されている。   It has been screamed that large-sized organic EL devices can be manufactured at low cost by using printing technology using polymer materials as inks. However, the life of polymer materials is difficult, and currently, low molecular materials are generally used. In particular, it is used as a light emitting material.

真空蒸着によって低分子材料が薄膜化・積層化され、これを発光層として利用した発光デバイスが実用化されている。低分子材料は蛍光材料とりん光材料に大別される。蛍光材料は一重項発光を利用した材料で、光の3原色となる赤・緑・青色とも、コスト・寿命・耐久性・成膜性などに優れた材料である。   Low molecular weight materials have been thinned and laminated by vacuum deposition, and light emitting devices using this as a light emitting layer have been put into practical use. Low molecular materials are roughly classified into fluorescent materials and phosphorescent materials. Fluorescent materials are materials that use singlet light emission, and are excellent in cost, life, durability, film formability, etc. for all three primary colors of red, green, and blue.

一方、りん光材料は三重項発光を利用した材料であり、蛍光材料より十分に発光効率がよいが、寿命、電流増加時の効率低下、精製の困難さ、熱耐性の点に難がある。特に、青色用の材料は、十分実用化には至っていないのが現状である。なお、青色用りん材料として、例えば、特開2006-232784号公報、特開2008-37848号、そして、特開2007-9009号公報等に記載の白金錯体が存在する。   On the other hand, a phosphorescent material is a material using triplet light emission, and has a sufficiently higher light emission efficiency than a fluorescent material, but has a difficulty in life, a decrease in efficiency when current is increased, difficulty in purification, and heat resistance. In particular, blue materials are not yet in practical use. Examples of blue phosphorus materials include platinum complexes described in, for example, JP 2006-232784, JP 2008-37848, and JP 2007-9009.

特開2006-232784号公報JP 2006-232784 特開2008-37848号公報JP 2008-37848 A 特開2007-9009号公報Japanese Unexamined Patent Publication No. 2007-9009

有機ELにおける青色発光に関して、発光材料の発光効率をさらに向上すること、そして、発光材料を長寿命化することが大きな課題となっている。また、青色発光材料にはイリジウム、白金錯体等の限定された材料が使用されており、希少金属を使用しない発光材料が求められている。   With respect to blue light emission in organic EL, it is a major issue to further improve the light emission efficiency of the light emitting material and to extend the life of the light emitting material. Further, limited materials such as iridium and platinum complexes are used for the blue light emitting material, and there is a demand for a light emitting material that does not use a rare metal.

本発明は、有機ELの分野において、新規な発光材料を提供することを目的とするものである。本発明の他の目的は、発光効率が高く、長寿命な青色発光材料を提供することにある。本発明のさらに他の目的は、希少金属を使用しない青色発光材料を提供することにある。本発明のさらに他の目的は、これら発光材料を用いた有機EL素子及び有機ELデバイスを提供することにある。   An object of the present invention is to provide a novel light-emitting material in the field of organic EL. Another object of the present invention is to provide a blue light emitting material having high luminous efficiency and a long lifetime. Still another object of the present invention is to provide a blue light emitting material that does not use a rare metal. Still another object of the present invention is to provide an organic EL element and an organic EL device using these light emitting materials.

前記目的を達成するために本発明は、金属サレン錯体化合物からなる有機EL用発光材料であることを特徴とする。本発明に係る金属サレン錯体化合物の好適な例は、下記(I)、(II)、(III)及び(IV)の少なくとも一つからなるものである。   In order to achieve the above object, the present invention is a light-emitting material for organic EL comprising a metal-salen complex compound. Suitable examples of the metal-salen complex compound according to the present invention include at least one of the following (I), (II), (III) and (IV).


(I)



(I)


N,N’-Bis(salicylidene)ethylenediamine metal

(II)


N, N'-Bis (salicylidene) ethylenediamine metal

(II)


(III)


(III)


(IV)


(IV)


Mは遷移金属、例えば、Fe、Cr、Mn、Co、Ni、Mo、Ru、Rh、Pd、W、Re、Os、Ir、Pt、Nd、Sm、Eu、又は、Gdである。   M is a transition metal, for example, Fe, Cr, Mn, Co, Ni, Mo, Ru, Rh, Pd, W, Re, Os, Ir, Pt, Nd, Sm, Eu, or Gd.

前記金属サレン錯体(Mが鉄である。)は、青色のりん光を発光する。   The metal salen complex (M is iron) emits blue phosphorescence.

さらに、本発明は、発光層が前記金属サレン錯体を含むものである有機EL素子であることを特徴とする。   Furthermore, the present invention is an organic EL device in which the light emitting layer contains the metal-salen complex.

前記発光層は、ホスト化合物に前記金属錯体がゲスト化合物としてドープされたものであってもよい。前記金属錯体は、好ましくは、0.5原子重量%以上5原子重量%以下ドープされている。ホスト化合物としては、例えば、キノリノールアルミニウム錯体(Alq3)がある。   The light emitting layer may be a host compound doped with the metal complex as a guest compound. The metal complex is preferably doped with 0.5 atomic weight% or more and 5 atomic weight% or less. An example of the host compound is quinolinol aluminum complex (Alq3).

さらに、本発明は、前記有機EL素子を備える有機EL発光デバイスであることを特徴とするものである。   Furthermore, this invention is an organic EL light emitting device provided with the said organic EL element, It is characterized by the above-mentioned.

以上説明したように、本発明によれば、有機ELの分野において、新規な発光材料を提供することができる。また、発光効率が高く、長寿命な青色発光材料を提供することができる。さらにまた、希少金属を使用しない青色発光材料を提供することができる。さらに、これら青色発光材料を用いた有機EL素子及び有機ELデバイスを提供することができる。   As described above, according to the present invention, a novel light emitting material can be provided in the field of organic EL. In addition, a blue light-emitting material with high emission efficiency and a long lifetime can be provided. Furthermore, a blue light emitting material that does not use a rare metal can be provided. Furthermore, an organic EL element and an organic EL device using these blue light emitting materials can be provided.

本発明に係わる有機EL素子の実施形態に係る斜視図である。It is a perspective view which concerns on embodiment of the organic EL element concerning this invention. 鉄サレン錯体のフォトルミネッサンスの測定結果を示す特性図である。It is a characteristic view which shows the measurement result of the photoluminescence of an iron salen complex. 有機EL素子のELスペクトルを示す特性図である。It is a characteristic view which shows the EL spectrum of an organic EL element. 有機EL素子のIVL特性(電流電圧照度特性)の第1の測定結果を示す特性図である。It is a characteristic view which shows the 1st measurement result of the IVL characteristic (current voltage illuminance characteristic) of an organic EL element. その第2の測定結果を示す特性図である。It is a characteristic view which shows the 2nd measurement result. その第3の測定結果を示す特性図である。It is a characteristic view which shows the 3rd measurement result. ドープ濃度の異なる素子間のIVL比較を示す特性図である。It is a characteristic view which shows the IVL comparison between the elements in which dope concentrations differ. 鉄サレン錯体がドープされて青色発光を達成する発光層の断面図である。It is sectional drawing of the light emitting layer which an iron salen complex is doped and achieves blue light emission.

図1に、本発明に係わる有機EL素子の斜視図を示す。有機EL素子は、ガラス基板22から、順に、陽極20、正孔注入層18、正孔輸送層16、発光層14、電子輸送層及び電子注入層12、陰極10からなる多層構造を備え、さらに、これらを封止するための封止層を備えている。図1の矢印は、有機ELによる発光の方向を示している。   FIG. 1 is a perspective view of an organic EL element according to the present invention. The organic EL element has a multilayer structure composed of an anode 20, a hole injection layer 18, a hole transport layer 16, a light emitting layer 14, an electron transport layer and an electron injection layer 12, and a cathode 10 in this order from the glass substrate 22. And a sealing layer for sealing them. The arrows in FIG. 1 indicate the direction of light emission by the organic EL.

(1)基板
ガラス基板の他、フレキシブル化を目的としてプラスチック基板が使用される。水分が基板を透過するのを防ぐために、透明プラスチックフィルムにバリア性を持たせている。
(1) Substrate In addition to a glass substrate, a plastic substrate is used for the purpose of flexibility. In order to prevent moisture from permeating the substrate, the transparent plastic film has a barrier property.

(2)陽極
基板の底から発光させる場合、素子内で発生した光を外部に取り出すために80%以上の透明性が要求される。また、陽極から多くの正孔を発光層に注入するために仕事関数が高いものが要求される。ITO (Indium Tin Oxide)透明電極が多用されている。
(2) Anode When light is emitted from the bottom of the substrate, a transparency of 80% or more is required in order to extract the light generated in the element to the outside. In addition, a high work function is required to inject many holes from the anode into the light emitting layer. ITO (Indium Tin Oxide) transparent electrodes are frequently used.

(3)正孔注入層
陽極で発生した正孔を正孔輸送層に注入するものである。高分子材料として、ポリスチレンスルフォン酸(PSS)がドープされたポリエチレンジオキシチオフェン(PEDOT:PSS)が、低分子材料として、フタロシアニン系のCuPc(銅フタロシアニン)が広く用いられている。
(3) Hole injection layer Holes generated at the anode are injected into the hole transport layer. Polyethylenedioxythiophene (PEDOT: PSS) doped with polystyrene sulfonic acid (PSS) is widely used as the polymer material, and phthalocyanine-based CuPc (copper phthalocyanine) is widely used as the low-molecular material.

(4)正孔輸送層
正孔輸送層は、正孔注入層から注入された正孔を発光層に輸送する。適切なイオン化ポテンシャルと正孔移動度を有することが必要であり、トリフェニアルアミン誘導体が広く使用されている。
(4) Hole transport layer The hole transport layer transports holes injected from the hole injection layer to the light emitting layer. It is necessary to have an appropriate ionization potential and hole mobility, and triphenylamine derivatives are widely used.

(5)発光層
発光ホスト材料、及び、発光色素であるドーピング材料は、陽極および陰極から注入されたホールおよび電子の再結合中心として機能する。また、発光層におけるホスト材料への発光色素のドーピングは、高い発光効率を得ると共に発光波長を変換させる。
(5) Light-Emitting Layer The light-emitting host material and the doping material that is a light-emitting dye function as recombination centers for holes and electrons injected from the anode and the cathode. In addition, doping the luminescent dye into the host material in the luminescent layer obtains high luminous efficiency and converts the emission wavelength.

発光層は、電荷注入のための適切なエネルギーレベルを持ち、化学的安定性や耐熱性に優れ、均質なアモルファス薄膜によって形成されることが求められる。また、発光色の種類や色純度が優れていることや発光効率の高いことが求められている。   The light emitting layer is required to have an appropriate energy level for charge injection, to be excellent in chemical stability and heat resistance, and to be formed of a homogeneous amorphous thin film. In addition, it is required that the type of light emission color and color purity are excellent and that the light emission efficiency is high.

発光層は既述の金属サレン錯体を正孔輸送層に蒸着するか、あるいは金属サレン錯体をホスト化合物と伴に正孔輸送層に蒸着するかによって製造される。   The light emitting layer is produced by depositing the metal salen complex described above on the hole transport layer or by depositing the metal salen complex together with the host compound on the hole transport layer.

(6)電子輸送層
電子輸送層としては、キノリノールアルミニウム錯体Alq3、オキサジアゾール誘導体、トリアゾール誘導体、バソフェナントロリン誘導体、シロール誘導体などが利用されている。
(6) Electron transport layer As the electron transport layer, quinolinol aluminum complex Alq3, oxadiazole derivatives, triazole derivatives, bathophenanthroline derivatives, silole derivatives, and the like are used.

(7)電子注入層
正孔注入層と同様の目的で、電子の注入効率を高めるため、陰極界面にLiやCs等のアルカリ金属をドープした層を設けることが行われている。
(7) Electron Injection Layer For the same purpose as the hole injection layer, a layer doped with an alkali metal such as Li or Cs is provided at the cathode interface in order to increase electron injection efficiency.

(8)陰極
陰極材料として、電子を注入しやすいように低仕事関数の金属であるアルカリ土類金属やアルカリ金属が使用される。Al、Mg,Agの共蒸着膜、LiFまたはLi20の薄膜蒸着膜の上にAlを蒸着した積層電極等が利用される。高分子系ではCaまたはBaとAlの積層膜が利用される。
(8) Cathode As the cathode material, an alkaline earth metal or alkali metal, which is a low work function metal, is used so that electrons can be easily injected. A laminated electrode in which Al is deposited on an Al, Mg, Ag co-deposited film, a LiF or Li20 thin film deposited film, or the like is used. In the polymer system, a laminated film of Ca or Ba and Al is used.

(9)封止
有機化合物や陰極材料は水分や酸素と反応することがあり、陰極材料の酸化や有機材料との界面からの剥離などによりダークスポットが生じる原因となる。その防止のため、素子を金属の封止缶やガラスとエポキシなどで封止する。金属の封止缶を使った場合、缶内部に乾燥窒素を充填したり、乾燥剤(ゲッター)を封入することが行われている。
(9) Sealing An organic compound or a cathode material may react with moisture or oxygen, which causes dark spots due to oxidation of the cathode material or peeling from the interface with the organic material. In order to prevent this, the element is sealed with a metal sealing can or glass and epoxy. When a metal sealed can is used, the inside of the can is filled with dry nitrogen or a desiccant (getter) is sealed.

(1)金属サレン錯体(鉄サレン錯体)の合成

(1) Synthesis of metal salen complex (iron salen complex)

鉄サレン錯体




Complex A


Step 1:
Iron salen complex




Complex A


Step 1:

4-nitrophenol (25g, 0.18mol)、hexamethylene tetramine (25g, 0.18mol)、polyphosphoric acid (200ml)の混合物を1時間100℃で攪拌した。その後、その混合物を500mlの酢酸エチルと1Lの水の中に入れ、完全に溶解するまで攪拌した。さらにその溶液に400mlの酢酸エチルを追加で加えたところその溶液は2つの相に分離し、水の相を取り除き、残りの化合物を塩性溶剤で2回洗浄し、無水MgSO4で乾燥させた結果、compound 2が17g(収率57%)合成できた。   A mixture of 4-nitrophenol (25 g, 0.18 mol), hexamethylene tetramine (25 g, 0.18 mol), and polyphosphoric acid (200 ml) was stirred at 100 ° C. for 1 hour. The mixture was then taken up in 500 ml ethyl acetate and 1 L water and stirred until completely dissolved. When 400 ml of ethyl acetate was added to the solution, the solution was separated into two phases, the water phase was removed, and the remaining compound was washed twice with a salt solvent and dried over anhydrous MgSO4. , Compound 2 could be synthesized in an amount of 17 g (yield 57%).

Step 2:
Step 2:

Compound 2 (17g, 0.10mol) compound 2 (17g, 0.10mol), acetic anhydride (200ml), H2SO4 (少々)を室温で1時間攪拌させた。得られた溶液は、氷水(2L)の中に0.5時間混ぜ、加水分解を行った。得られた溶液をフィルターにかけ、大気中で乾燥させたところ白い粉末状のものが得られた。酢酸エチルを含む溶液を使ってその粉末を再結晶化させたところ、24gのCompound 3(収率76%)の白い結晶を得ることができた。 Compound 2 (17 g, 0.10 mol) Compound 2 (17 g, 0.10 mol), acetic anhydride (200 ml) and H 2 SO 4 (a little) were stirred at room temperature for 1 hour. The resulting solution was hydrolyzed by mixing in ice water (2 L) for 0.5 hour. The obtained solution was filtered and dried in the air to obtain a white powder. When the powder was recrystallized using a solution containing ethyl acetate, 24 g of Compound 3 (yield 76%) of white crystals could be obtained.

Step 3:
Step 3:

compound 3 (24g, 77mmolとメタノール(500ml)に10%のパラジウムを担持したカーボン(2.4g)の混合物を一晩 1.5気圧の水素還元雰囲気で還元した。終了後、フィルターでろ過したところ茶色油状のcompound 4 (21g)が合成できた。   Compound 3 (24 g, 77 mmol and a mixture of carbon (2.4 g) supporting 10% palladium in methanol (500 ml) was reduced overnight in a hydrogen reducing atmosphere at 1.5 atmospheres. Compound 4 (21g) was synthesized.

Step 4, 5:
Step 4, 5:

無水ジクロメタン(DCM) (200ml)にcompound 4 (21g, 75mmol), di(tert-butyl) dicarbonate (18g, 82mmol)を窒素雰囲気で一晩攪拌した。得られた溶液を真空中で蒸発させた後、メタノール(100ml)で溶解させた。その後、水酸化ナトリウム(15g, 374mmol)と水(50ml)を加え、5時間還流させた。その後冷却し、フィルターでろ過し、水で洗浄後、真空中て乾燥させたところ茶色化合物がえられた。得られた化合物は、シリカジェルを使ったフラッシュクロマトグラフィーを2回行うことで、10gのcompound 6(収率58%)が得られた。   Compound 4 (21 g, 75 mmol) and di (tert-butyl) dicarbonate (18 g, 82 mmol) were stirred in anhydrous dichloromethane (DCM) (200 ml) overnight in a nitrogen atmosphere. The resulting solution was evaporated in vacuo and then dissolved with methanol (100 ml). Thereafter, sodium hydroxide (15 g, 374 mmol) and water (50 ml) were added and refluxed for 5 hours. Thereafter, the mixture was cooled, filtered through a filter, washed with water, and then dried in vacuo to obtain a brown compound. The obtained compound was subjected to flash chromatography using silica gel twice to obtain 10 g of compound 6 (yield 58%).

Step 6:
Step 6:

無水エタノール400mlの中にcompound 6 (10g, 42mmol)を入れ、加熱しながら還流させ、無水エタノール20mlにエチレンジアミン(1.3g, 21mmol)を0.5時間攪拌しながら数滴加えた。そして、その混合溶液を氷の容器に入れて冷却し15分間かき混ぜた。その後、200mlのエタノールで洗浄しフィルターをかけ、真空で乾燥させたところcompound 7が8.5g (収率82%)で合成できた。   Compound 6 (10 g, 42 mmol) was placed in 400 ml of absolute ethanol, refluxed with heating, and ethylenediamine (1.3 g, 21 mmol) was added to 20 ml of absolute ethanol with stirring for several hours with a few drops. The mixed solution was cooled in an ice container and stirred for 15 minutes. Thereafter, it was washed with 200 ml of ethanol, filtered, and dried under vacuum. Compound 7 was synthesized in 8.5 g (yield 82%).

Step 7:
Step 7:

無水メタノール(50ml)の中にcompound 7 (8.2g, 16mmol)、triethylamine (22ml, 160mmol)をいれ、10mlメタノールの中にFeCl3(2.7g, 16mmol)を加えた溶液を窒素雰囲気下で混合した。室温窒素雰囲気で1時間混合したところ茶色の化合物が得られた。その後、真空中で乾燥させた。得られた化合物はジクロロメタン400mlで希釈し、塩性溶液で2回洗浄し、Na2SO4で乾燥させ、真空中で乾燥させたところcomplex Aが得られた。得られた化合物はジエチルエーテルとパラフィンの溶液中で再結晶させ高速液化クロマトグラフィーで測定したところ純度95%以上のcomplex A(鉄サレン錯体)5.7g(収率62%)を得た。 Compound 7 (8.2 g, 16 mmol) and triethylamine (22 ml, 160 mmol) in anhydrous methanol (50 ml) were added, and a solution of FeCl 3 (2.7 g, 16 mmol) in 10 ml methanol was mixed under a nitrogen atmosphere. . When mixed for 1 hour in a nitrogen atmosphere at room temperature, a brown compound was obtained. Then, it was dried in vacuum. The obtained compound was diluted with 400 ml of dichloromethane, washed twice with a salt solution, dried with Na2SO4, and dried in vacuo to obtain complex A. The obtained compound was recrystallized in a solution of diethyl ether and paraffin and measured by high performance liquefaction chromatography to obtain 5.7 g of complex A (iron-salen complex) having a purity of 95% or more (yield 62%).

同様に、化学式(II)の化合物の合成は、Khairul I. Ansari, James D. Grant, Getachew A. Woldemarian, Sahba Kasiri and Subhrangsu S. Mandal, ‘Iron(III)-salen complexes wigth less DNA cleavage activity exhibit more efficient apoptosis in MCF7 cells’, Org. Biomol. Chem. 7(2009) 926-932、あるいは、Sheila M. Crawford, ‘The ultra-violet and visible spectra of some transition metal chelates with N, N’-bis-(o-hydroxybenzylidene)ethylenediamine and N, N’-bis-(o-hydroxybenzylidene)-o-phenylenediamine and related compounds’, Spectrochimica Acta, 19 (1963) 255-270を参照することによって可能である。 Similarly, the synthesis of the compound of formula (II) is performed by Khairul I. Ansari, James D. Grant, Getachew A. Woldemarian, Sahba Kasiri and Subhrangsu S. Mandal, 'Iron (III) -salen complexes wigth less DNA cleavage activity exhibitor. more efficient apoptosis in MCF7 cells ', Org. Biomol. Chem. 7 (2009) 926-932, or Sheila M. Crawford,' The ultra-violet and visible spectra of some transition metal chelates with N, N'-bis- This is possible by referring to (o-hydroxybenzylidene) ethylenediamine and N, N'-bis- (o-hydroxybenzylidene) -o-phenylenediamine and related compounds', Spectrochimica Acta, 19 (1963) 255-270.

さらに、化学式(III)の化合物の合成は、
G. V. Panova, N. K. Vikulova and V. M. Potapov, ‘Stereochemistry of Four-coordinate Chelate Compounds of Schiff Bases and Their Analogues’, Russian Chemical Reviews, 49 (1980) 655-667、Alexander V. Wiznycia, John Desper and Chistopher J. Levy, ‘Monohelical Iron(II) and Zinc(II) Complexes of a (1R, 2R)-Cyclohexyl Salen Ligand with Benz[a]anthryl Sidearms’, Inorganic Chemistry 45 (2006) 10034-10036を参照することによって可能である。
Furthermore, the synthesis of the compound of formula (III)
GV Panova, NK Vikulova and VM Potapov, 'Stereochemistry of Four-coordinate Chelate Compounds of Schiff Bases and Their Analogues', Russian Chemical Reviews, 49 (1980) 655-667, Alexander V. Wiznycia, John Desper and Chistopher J. Levy, It is possible by referring to 'Monohelical Iron (II) and Zinc (II) Complexes of a (1R, 2R) -Cyclohexyl Salen Ligand with Benz [a] anthryl Sidearms', Inorganic Chemistry 45 (2006) 10034-10036.

さらにまた、化学式(IV)の化合物の合成は、G. V. Panova, N. K. Vikulova and V. M. Potapov, ‘Stereochemistry of Four-coordinate Chelate Compounds of Schiff Bases and Their Analogues’, Russian Chemical Reviews, 49 (1980) 655-667を参照することによって可能である。   Furthermore, the synthesis of the compound of formula (IV) is described in GV Panova, NK Vikulova and VM Potapov, 'Stereochemistry of Four-coordinate Chelate Compounds of Schiff Bases and Their Analogues', Russian Chemical Reviews, 49 (1980) 655-667. It is possible by reference.

鉄サレンの発光試験(化学式(I))
まず初めに鉄サレン錯体をクロロホルム溶液に濃度250mg/mlで溶解した。その後、ドイツJETI社製SPECBOS1201Mの装置を用いてフォトルミネッサンスの測定を行った。図2に示す様に、下記のとおり光の波長が280nmから480nmで発光スペクトルがみられた。これを、450nmから600nmで発光がみられるキノリノールアルミニウム錯体Alq3からなるホスト化合物に原子重量1%、そして原子重量5%混合することにより緑から青へ発光させる実験を行った。
Luminescence test of iron salen (chemical formula (I))
First, the iron-salen complex was dissolved in a chloroform solution at a concentration of 250 mg / ml. Thereafter, photoluminescence was measured using a SPECBOS1201M apparatus manufactured by JETI of Germany. As shown in FIG. 2, an emission spectrum was observed at a light wavelength of 280 nm to 480 nm as follows. An experiment was conducted to emit light from green to blue by mixing 1% atomic weight and 5% atomic weight with a host compound composed of a quinolinol aluminum complex Alq3 that emits light at 450 nm to 600 nm.

(2)有機EL素子の作製・電気及び光学特性評価
a.有機EL素子の作製条件
ITO基板の洗浄プロセスは次の用にした。ITO洗浄環境は、クラス1000のクリーンルーム内に設置されているクラス100のクリーンブースで行うこととした。
洗浄に用いた溶媒は、イソプロピルアルコール(IPA)、有機アルカリ水溶液、超純水(18MΩ,TOC:〜10ppb)を用いた。洗浄のため超音波洗浄機(使用周波数は40kHzと950kHz)、UVオゾン洗浄機を用いた。
(2) Manufacture of organic EL elements, electrical and optical characteristics evaluation Manufacturing conditions for organic EL devices
The ITO substrate cleaning process was as follows. The ITO cleaning environment was performed in a class 100 clean booth installed in a class 1000 clean room.
As the solvent used for washing, isopropyl alcohol (IPA), an organic alkali aqueous solution, and ultrapure water (18 MΩ, TOC: ˜10 ppb) were used. For cleaning, an ultrasonic washer (frequency used was 40 kHz and 950 kHz) and a UV ozone washer were used.

真空チャンバー内で、原料化合物を加熱し蒸発させる真空蒸着法で行った。蒸着プロセスの条件は、真空度(1〜2×10-4Pa)である。
最初に、ITO膜を準備し、そのITO膜上に、蒸着膜速度0.1〜0.2nm/secで、正孔注入層である2−TNATAを30nm膜厚で製膜した。その後、原料を2-TNATAからNPDに変更して2-TNATA膜の上に正孔輸送層としてNPDを蒸着膜速度0.1〜0.2nm/secで50nm製膜した。その後、原料をNPDからAlq3と鉄サレンを混合したものに変更し同じく蒸着膜速度0.1〜0.2nm/secで30nmの膜厚で発光層として製膜した。
This was performed by a vacuum deposition method in which the raw material compound was heated and evaporated in a vacuum chamber. The conditions for the vapor deposition process are the degree of vacuum (1-2 × 10 −4 Pa).
First, an ITO film was prepared, and 2-TNATA, which is a hole injection layer, was formed to a thickness of 30 nm on the ITO film at a deposition film speed of 0.1 to 0.2 nm / sec. Thereafter, the raw material was changed from 2-TNATA to NPD, and NPD was deposited on the 2-TNATA film as a hole transport layer at a deposition film speed of 0.1 to 0.2 nm / sec. Thereafter, the raw material was changed from NPD to a mixture of Alq3 and iron salen, and a film was formed as a light emitting layer with a film thickness of 30 nm at a vapor deposition film rate of 0.1 to 0.2 nm / sec.

次に、原料をAlq3単独に変更し、Alq3を蒸着膜速度0.1〜0.2nm/secで30nmの膜厚で同じく電子輸送層として製膜した。その後、原料をLiFに変更し蒸着膜厚速度0.01nm/sec、膜厚0.8nmで電子注入層として製膜した。最後に電極材としてアルミニウムを蒸着膜速度0.1〜0.2nm/secで150nmの膜厚で製膜した。   Next, the raw material was changed to Alq3 alone, and Alq3 was formed as an electron transport layer with a film thickness of 30 nm at a deposition film speed of 0.1 to 0.2 nm / sec. Thereafter, the raw material was changed to LiF, and a film was formed as an electron injection layer at a deposition film thickness rate of 0.01 nm / sec and a film thickness of 0.8 nm. Finally, aluminum was deposited as an electrode material with a film thickness of 150 nm at a deposition film speed of 0.1 to 0.2 nm / sec.

有機ELの構造は、次の3パターンとした。
(1)ITO/2-TNATA(30nm)/NPD(50nm)/鉄サレン0%@Alq3(30nm)/
Alq3(30nm)/LiF(0.8nm)/Al(150nm)
(2)ITO/2-TNATA(30nm)/NPD(50nm)/鉄サレン1%@Alq3(30nm)/
Alq3(30nm)/LiF(0.8nm)/Al(150nm)
(3)ITO/2-TNATA(30nm)/NPD(50nm)/鉄サレン5%@Alq3(30nm)/
Alq3(30nm)/LiF(0.8nm)/Al(150nm)
発光面積を2.0×2.0mm2とした。
The organic EL structure has the following three patterns.
(1) ITO / 2-TNATA (30nm) / NPD (50nm) / Selenium 0% @ Alq3 (30nm) /
Alq3 (30nm) / LiF (0.8nm) / Al (150nm)
(2) ITO / 2-TNATA (30nm) / NPD (50nm) / iron salen 1% @ Alq3 (30nm) /
Alq3 (30nm) / LiF (0.8nm) / Al (150nm)
(3) ITO / 2-TNATA (30nm) / NPD (50nm) / Salen 5% @ Alq3 (30nm) /
Alq3 (30nm) / LiF (0.8nm) / Al (150nm)
The light emitting area was 2.0 × 2.0 mm 2 .

b.発光試験
封止をグローブボックス内(H2OとO2は10ppm未満)で行い。UV硬化はガラス製封止缶張り合わせ後、グローボックス外に取り出して実施した。硬化温度は80℃、硬化時間は3時間とした。素子内に導入した乾燥剤(ゲッター)はCaO系のダイニック製10mm角のものを用い、シール用の接着剤はスリーボンド製UV硬化エポキシ樹脂を用いた。
b. Luminescence test Sealed in a glove box (H 2 O and O 2 are less than 10 ppm). UV curing was carried out by sticking out a glass sealing can and taking it out of the glow box. The curing temperature was 80 ° C. and the curing time was 3 hours. The desiccant (getter) introduced into the device was a CaO-based Dynic 10 mm square, and the adhesive for sealing was a three-bond UV curable epoxy resin.

光表面を顕微鏡で拡大観察したところ、ドープ濃度0%の素子ではダークスポットのない良好な発光が得られた。1%の素子では細かいダークスポットが発光表面全体に見られた。5%の素子についても写真撮影をおこなったが、発光はしたものの写真が撮影できるほどの光量が得られず、下記のようにブラックアウトした画像となった。   When the optical surface was magnified and observed with a microscope, good light emission without dark spots was obtained with an element having a doping concentration of 0%. In the 1% device, fine dark spots were seen on the entire light emitting surface. Although 5% of the elements were photographed, the light was emitted but the amount of light was not enough to capture a photograph, resulting in a blackout image as follows.

c.ELスペクトル測定
今回作製した構造(1)〜(3)の素子におけるELスペクトル(@5mA)を図3に示す。(3)の素子については、測定に発光強度が足りなかったため駆動電流を13mAまで上げて行っているが、それでも強度不足であり、S/Nが若干悪いスペクトルになっている。また、ドープ濃度が上がるにつれ、ELスペクトルがブルーシフトすることが確認できた。
c. EL Spectrum Measurement FIG. 3 shows the EL spectrum (@ 5 mA) in the devices of the structures (1) to (3) produced this time. For the element (3), since the emission intensity was insufficient for the measurement, the drive current was increased to 13 mA, but the intensity was still insufficient and the S / N spectrum was slightly worse. It was also confirmed that the EL spectrum blue-shifted as the doping concentration increased.

d.電流・電圧・輝度(IVL)特性評価
作製した構成(1)〜(3)の素子についてIVL特性(電流電圧照度特性)の測定を行った。電圧、電流の測定はソースメジャーユニット横河電気製GS610を用いた。輝度計はトプコン社製のBM-9をもちいた。電流、電圧、輝度の自動測定制御ソフトはシステムハウスサンライズ製 W32-G610IVL2-Rを用いた。今回、各構造の素子を3基板分作製しており、各基板で良好な発光表面を有する素子を1つ選びIVL測定を行った。評価数(N)をそれぞれの素子について“3”とした。(1)の結果を図4に示し、(2)の結果を図5に示し、(6)の結果を図6に示す。
d. Evaluation of Current / Voltage / Luminance (IVL) Characteristics IVL characteristics (current / voltage illuminance characteristics) were measured for the fabricated elements (1) to (3). For the measurement of voltage and current, a source measure unit GS610 made by Yokogawa Electric was used. The luminance meter used BM-9 made by Topcon. W32-G610IVL2-R manufactured by System House Sunrise was used as the automatic measurement control software for current, voltage, and brightness. In this time, devices with each structure were prepared for three substrates, and one device having a good light emitting surface was selected for each substrate, and IVL measurement was performed. The evaluation number (N) was set to “3” for each element. The result of (1) is shown in FIG. 4, the result of (2) is shown in FIG. 5, and the result of (6) is shown in FIG.

e.ドープ濃度の異なる素子間のIVL比較 (最大値比較)
これを図7に示す。各材料の測定結果を代表とする各グラフは、N=3の測定値の中でも電流効率-電流密度特性において最大値を取るものを選定した。
e. IVL comparison between devices with different doping concentrations (maximum value comparison)
This is shown in FIG. For each graph representing the measurement results of each material, the graph showing the maximum value in the current efficiency-current density characteristics was selected from among the measured values of N = 3.

以上のとおり、図4乃至図7に示すとおり、発光層であるAlq3に鉄サレン錯体を加えることにより青色で発光する有機EL素子を提供することが可能となる。   As described above, as shown in FIGS. 4 to 7, an organic EL element that emits blue light can be provided by adding an iron-salen complex to Alq3 that is a light-emitting layer.

(3)本有機ELの寿命について
標記有機ELを作製してから3ヶ月経過後、電流、電圧、輝度の再測定を行ったが劣化は認められなかった。
(3) Life of the organic EL The current, voltage and luminance were measured again after 3 months from the production of the title organic EL, but no deterioration was observed.

(4)他の化合物の発光の可能性について
化学式(I)の鉄サレン錯体は、図8に示す発光層にドープしてブルーシフトした結果、青色発光を達成したものである。ブルーシフトさせるにはHOMO (Highest Occupied Molecular Orbital)が-3.90 eV〜-4.50 eV、LUMO(Lowest Occupied Molecular Orbital)が -3.4 eV〜-3.0 eVであることが好ましい。よい。
(4) Possibility of light emission of other compounds The iron-salen complex of the chemical formula (I) achieves blue light emission as a result of being blue-shifted by doping into the light-emitting layer shown in FIG. For blue shift, HOMO (Highest Occupied Molecular Orbital) is preferably −3.90 eV to −4.50 eV, and LUMO (Lowest Occupied Molecular Orbital) is preferably −3.4 eV to −3.0 eV. Good.

化学式(II)乃至(IV)について、化合物(I)と同様に検討したところ、青色の有機EL発光が可能であることが分かった。(I)、(II)、(III)、(IV)のHOMOとLUMOをアクセルリス社のDMol3を使って計算したところ、その結果は以下の通りであった。   The chemical formulas (II) to (IV) were examined in the same manner as the compound (I), and it was found that blue organic EL light emission was possible. When HOMO and LUMO of (I), (II), (III), and (IV) were calculated using DMol3 of Accelrys, the results were as follows.

化合物(I)
HOMO -3.991 eV
LUMO -3.320 eV

化合物(II)
HOMO -4.495 eV
LUMO -3.012 eV

化合物(III)
HOMO -4.195 eV
LUMO -3.165 eV

化合物 (IV)
HOMO -4.134 eV
LUMO -3.325 eV
化学式(II)、(III)、(IV)のHOMOとLUMOはブルーシフトの要件を満たしているので化学式(I)同様、有機ELの添加剤として用いることが可能であることが分かった。
Compound (I)
HOMO -3.991 eV
LUMO -3.320 eV

Compound (II)
HOMO -4.495 eV
LUMO -3.012 eV

Compound (III)
HOMO -4.195 eV
LUMO -3.165 eV

Compound (IV)
HOMO -4.134 eV
LUMO -3.325 eV
Since HOMO and LUMO of the chemical formulas (II), (III), and (IV) satisfy the requirements for blue shift, it was found that they can be used as additives for organic EL as in the chemical formula (I).

Claims (9)

金属サレン錯体化合物からなる有機EL用発光材料。   A light emitting material for organic EL comprising a metal-salen complex compound. 前記金属サレン錯体化合部が下記(I)、(II)、(III)及び(IV)の少なくとも一つからなる、請求項1記載の有機EL用発光材料。

(I)



N,N’-Bis(salicylidene)ethylenediamine metal

(II)



(III)


(IV)




MはFe、Cr、Mn、Co、Ni、Mo、Ru、Rh、Pd、W、Re、Os、Ir、Pt、Nd、Sm、Eu、又は、Gdである。
The light-emitting material for organic EL according to claim 1, wherein the metal-salen complex combination part is composed of at least one of the following (I), (II), (III) and (IV).

(I)



N, N'-Bis (salicylidene) ethylenediamine metal

(II)



(III)


(IV)




M is Fe, Cr, Mn, Co, Ni, Mo, Ru, Rh, Pd, W, Re, Os, Ir, Pt, Nd, Sm, Eu, or Gd.
前記金属サレン錯体(Mが鉄である。)は、青色のりん光を発光する請求項2記載の有機EL用発光材料。   The light emitting material for organic EL according to claim 2, wherein the metal-salen complex (M is iron) emits blue phosphorescence. 発光層が請求項1乃至3の何れか1項記載の金属サレン錯体を含むものである有機EL素子。   The organic electroluminescent element in which a light emitting layer contains the metal salen complex of any one of Claims 1 thru | or 3. 前記発光層がホスト化合物に前記金属錯体がゲスト化合物としてドープされたものである請求項4記載の有機EL素子。   The organic EL device according to claim 4, wherein the light emitting layer is a host compound doped with the metal complex as a guest compound. 前記金属サレン錯体が0.5原子重量%以上5原子重量%以下ドープされている請求項5記載の有機EL素子。   The organic EL device according to claim 5, wherein the metal-salen complex is doped with 0.5 atomic weight% or more and 5 atomic weight% or less. 請求項4乃至7の何れか一項記載の有機EL素子を備える有機EL発光デバイス。   An organic EL light-emitting device comprising the organic EL element according to claim 4. HOMO (Highest Occupied Molecular Orbital)が-3.90 eV〜-4.50 eVである、請求項1記載の有機EL用発光材料。   The light emitting material for organic EL of Claim 1 whose HOMO (Highest Occupied Molecular Orbital) is -3.90 eV --4.50 eV. LUMO(Lowest Occupied Molecular Orbital)が -3.4 eV〜-3.0 eVである、請求項1又は8記載の有機EL用発光材料。   The light emitting material for organic EL according to claim 1 or 8, wherein LUMO (Lowest Occupied Molecular Orbital) is -3.4 eV to -3.0 eV.
JP2010016081A 2010-01-27 2010-01-27 Luminescent material for organic EL and organic EL element using the same Expired - Fee Related JP5569009B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010016081A JP5569009B2 (en) 2010-01-27 2010-01-27 Luminescent material for organic EL and organic EL element using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010016081A JP5569009B2 (en) 2010-01-27 2010-01-27 Luminescent material for organic EL and organic EL element using the same

Publications (2)

Publication Number Publication Date
JP2011153239A true JP2011153239A (en) 2011-08-11
JP5569009B2 JP5569009B2 (en) 2014-08-13

Family

ID=44539433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010016081A Expired - Fee Related JP5569009B2 (en) 2010-01-27 2010-01-27 Luminescent material for organic EL and organic EL element using the same

Country Status (1)

Country Link
JP (1) JP5569009B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013014997A1 (en) * 2011-07-26 2013-01-31 株式会社Ihi Auto-magnetic metal salen complex compound
WO2013061724A1 (en) * 2011-10-27 2013-05-02 株式会社Ihi Radical inhibitor
JP5554408B2 (en) * 2010-06-01 2014-07-23 株式会社Ihi Fluorescent dye material and method of using the same
CN105601671A (en) * 2015-12-17 2016-05-25 华东师范大学 Organic solid metal light-emitting material and preparation method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004256612A (en) * 2003-02-25 2004-09-16 Hitachi Maxell Ltd Red light emitting material and organic electroluminescence device having the material
JP2004331508A (en) * 2003-04-30 2004-11-25 Takasago Internatl Corp Platinum complex
JP2005310733A (en) * 2003-06-02 2005-11-04 Fuji Photo Film Co Ltd Organic electroluminescent element and complex compound
US7361415B2 (en) * 2004-04-16 2008-04-22 The University Of Hong Kong System and method for producing light with organic light-emitting devices
JP2010059103A (en) * 2008-09-04 2010-03-18 Univ Of Tokyo Metal complex compound
CN101717369A (en) * 2009-11-23 2010-06-02 四川大学 Method for preparing arylamine by catalysis in aqueous phase

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004256612A (en) * 2003-02-25 2004-09-16 Hitachi Maxell Ltd Red light emitting material and organic electroluminescence device having the material
JP2004331508A (en) * 2003-04-30 2004-11-25 Takasago Internatl Corp Platinum complex
JP2005310733A (en) * 2003-06-02 2005-11-04 Fuji Photo Film Co Ltd Organic electroluminescent element and complex compound
US7361415B2 (en) * 2004-04-16 2008-04-22 The University Of Hong Kong System and method for producing light with organic light-emitting devices
JP2010059103A (en) * 2008-09-04 2010-03-18 Univ Of Tokyo Metal complex compound
CN101717369A (en) * 2009-11-23 2010-06-02 四川大学 Method for preparing arylamine by catalysis in aqueous phase

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5554408B2 (en) * 2010-06-01 2014-07-23 株式会社Ihi Fluorescent dye material and method of using the same
WO2013014997A1 (en) * 2011-07-26 2013-01-31 株式会社Ihi Auto-magnetic metal salen complex compound
US9592219B2 (en) 2011-07-26 2017-03-14 Ihi Corporation Self-magnetic metal-salen complex compound
WO2013061724A1 (en) * 2011-10-27 2013-05-02 株式会社Ihi Radical inhibitor
JP2013095760A (en) * 2011-10-27 2013-05-20 Ihi Corp Radical inhibitor
US9434880B2 (en) 2011-10-27 2016-09-06 Ihi Corporation Radical inhibitor
CN105601671A (en) * 2015-12-17 2016-05-25 华东师范大学 Organic solid metal light-emitting material and preparation method

Also Published As

Publication number Publication date
JP5569009B2 (en) 2014-08-13

Similar Documents

Publication Publication Date Title
Kanagaraj et al. Small molecules in light‐emitting electrochemical cells: promising light‐emitting materials
KR102125584B1 (en) Extended oled operational lifetime through phosphorescent dopant profile management
CN101743650B (en) Organic Light Emitting Device and Display Device
CN1649886A (en) Electroluminescent material
KR101170251B1 (en) Organic light-emitting diode, display and illuminating device
JP2003264086A (en) Organic electroluminescence element
JP5242648B2 (en) Novel compound and organic electroluminescent element, display device and lighting device using the same
JP5391427B2 (en) White organic electroluminescent device and method for manufacturing the same
He et al. Efficient solution-processed electrophosphorescent devices using ionic iridium complexes as the dopants
Dumur et al. Light-emitting electrochemical cells based on a solution-processed multilayered device and an anionic iridium (III) complex
JP5569009B2 (en) Luminescent material for organic EL and organic EL element using the same
Zhu et al. Efficient saturated red electrophosphorescence by using solution-processed 1-phenylisoquinoline-based iridium phosphors with peripheral functional encapsulation
TWI400988B (en) Organic electroluminescent elements
JP5330429B2 (en) Organic electroluminescent element, display device and lighting device
JP2011181498A (en) Organic electroluminescent element, method for producing same, and device for producing same
CN102603809B (en) Novel compound and organic light-emitting diode, display and illuminating device using the compound
Keawin et al. Oligoarylenes end-capped with carbazol-N-yl-carbazole as color tunable light-emitting and hole-transporting materials for solution-processed OLEDs
JP2007308376A (en) Fluorene compound and organic EL device
JP5178795B2 (en) Novel compound and organic electroluminescent element, display device and lighting device using the same
CN1930922A (en) Organic electroluminescent device, method of manufacturing the same, and organic solution
CN102610761A (en) Organic light-emitting diode, display and illuminating device
JP2022115839A (en) Organic electroluminescence device and organic electroluminescence lighting using novel 1,10-phenanthroline compound
JP5361821B2 (en) Novel compound and organic electroluminescent element, display device and lighting device using the same
CN102484213A (en) Organic light-emitting diode luminaires
KR101752692B1 (en) Silane derivative as host materials for blue phosphorescence organic light-emitting diodes and blue phosphorescence organic light-emitting diodes using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130605

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130611

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140317

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140527

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140609

LAPS Cancellation because of no payment of annual fees