[go: up one dir, main page]

JP2011174881A - Capacitance type acceleration sensor - Google Patents

Capacitance type acceleration sensor Download PDF

Info

Publication number
JP2011174881A
JP2011174881A JP2010040700A JP2010040700A JP2011174881A JP 2011174881 A JP2011174881 A JP 2011174881A JP 2010040700 A JP2010040700 A JP 2010040700A JP 2010040700 A JP2010040700 A JP 2010040700A JP 2011174881 A JP2011174881 A JP 2011174881A
Authority
JP
Japan
Prior art keywords
weight body
acceleration sensor
substrate
movable electrode
comb
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010040700A
Other languages
Japanese (ja)
Inventor
Koji Matsushita
浩二 松下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Electronics Co Ltd
Original Assignee
Asahi Kasei Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Electronics Co Ltd filed Critical Asahi Kasei Electronics Co Ltd
Priority to JP2010040700A priority Critical patent/JP2011174881A/en
Publication of JP2011174881A publication Critical patent/JP2011174881A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Micromachines (AREA)
  • Pressure Sensors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a capacitance type acceleration sensor, capable of protecting destruction due to collision between a movable part and a fixed part, when acceleration exceeding an allowable displacement value is added of the movable part. <P>SOLUTION: The capacitance type acceleration sensor includes a displaceable plumb bob 36 arranged on a substrate 35 under a dividing condition, a movable electrode 34 prepared on the plumb bob 36, a fixed electrode 33 prepared to face the movable electrode 34 to detect a change of the capacitance between both the electrodes 33 and 34 based on a displacement of the plumb bob 36. A complementary type ratcher regulating a displacement of the plumb bob 36 in the horizontal direction and a potential fixing device for fixing the potential to the complementary ratcher is prepared to both the plumb bob 36 and the substrate 35. The complementary ratcher includes a through hole 38 arranged on the plumb bob 36 and a locking member 37 arranged on the substrate 35 to be inserted into the through hole 38, so that a contact area at the time of collision is large, thereby preventing destruction due to stress concentration. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、静電容量型加速度センサに関し、より詳細には、表面MEMS(Micro Electro Mechanical Systems)における静電容量型加速度センサで、重錘体の水平方向の変位を規制するに係止手段を設けた静電容量型加速度センサに関する。   The present invention relates to a capacitance-type acceleration sensor, and more particularly, to a capacitance-type acceleration sensor in a surface MEMS (Micro Electro Mechanical Systems), and includes a locking means for regulating horizontal displacement of a weight body. The present invention relates to a capacitive acceleration sensor provided.

一般に、静電容量型加速度センサは、重錘体(おもり)を挟み込むようにして駆動電極と検出電極を配置したものや、重錘体に取り付けられた可動電極と、この可動電極に対向して設けられた固定電極からなるものが知られている。後者の静電容量型加速度センサのように、可動電極と固定電極との距離の変動にともなう容量変化によって、加速度の検出を行うようにしたものは、非常に微少な加速度を測定する場合に、梁部を細く薄く形成して小さな加速度によっても、この梁部が変形するように構成されている。   In general, a capacitive acceleration sensor has a drive electrode and a detection electrode arranged so as to sandwich a weight body (weight), a movable electrode attached to the weight body, and a movable electrode facing the movable electrode. There are known ones comprising fixed electrodes provided. Like the latter capacitive acceleration sensor, the one that detects the acceleration by changing the capacitance accompanying the change in the distance between the movable electrode and the fixed electrode is used to measure very small acceleration. The beam portion is formed to be thin and thin so that the beam portion is deformed even by a small acceleration.

しかしながら、このような加速度センサは、梁部が細く薄いため、極大な加速度を受けた際には梁部の弾性限界を超えてしまい、その結果、梁部が破損してしまうという問題があった。そのため、可動電極の水平方向の変位を規制するストッパーを設ける必要があった。   However, such an acceleration sensor has a problem that since the beam portion is thin and thin, the elastic limit of the beam portion is exceeded when a maximum acceleration is applied, and as a result, the beam portion is damaged. . Therefore, it is necessary to provide a stopper that restricts the displacement of the movable electrode in the horizontal direction.

また、上述した可動電極と固定電極との容量変化によって加速度などの検出を行う静電容量型加速度センサでは、可動電極及び固定電極をエッチング形成した後の乾燥工程において、可動電極と固定電極との間に介在する純水の表面張力によって、可動電極及びこれに対向する固定電極が付着したり、梁部とこれに対向する基板が同様に付着したりすることが問題となっていた。   Further, in the capacitance type acceleration sensor that detects acceleration or the like by changing the capacitance between the movable electrode and the fixed electrode described above, in the drying process after the movable electrode and the fixed electrode are formed by etching, between the movable electrode and the fixed electrode. Due to the surface tension of the pure water interposed between them, the movable electrode and the fixed electrode facing the same adhere to each other, and the beam portion and the substrate facing the same adhere to each other.

また、この乾燥工程以外の時、例えば、梁部のバネ定数により決定される力よりも大きな加速度が発生した場合にも、可動電極が固定電極に引き寄せられ、加速度が小さくなった後にもファンデルワールス力により、可動電極と固定電極とが付着してしまうという問題があった。   Also, at times other than this drying process, for example, when acceleration greater than the force determined by the spring constant of the beam portion is generated, the movable electrode is attracted to the fixed electrode, and even after the acceleration decreases, the van der There was a problem that the movable electrode and the fixed electrode would adhere due to the Waals force.

このような問題を解決するものとして、例えば、特許文献1には、可動電極が固定電極に貼り付くのを防止するために、梁部の側部近傍にストッパーを設けた静電容量型加速度センサが提案されている。   In order to solve such a problem, for example, Patent Document 1 discloses a capacitive acceleration sensor in which a stopper is provided in the vicinity of a side portion of a beam portion in order to prevent the movable electrode from sticking to the fixed electrode. Has been proposed.

図1は、特許文献1に記載されている従来の静電容量型加速度センサの斜視図である。この従来の静電容量型加速度センサにおいて、梁構造体152Aは、基板150から突出する4つのアンカー部150a,150b,150c,150dによって架設されており、基板150の上面において所定間隔隔てた位置に配置されている。アンカー部150aとアンカー部150bとの間には梁部151が架設されており、アンカー部150cとアンカー部150dとの間には梁部152が架設されている。梁部151,152は1つの梁構造体で構成されている。   FIG. 1 is a perspective view of a conventional capacitive acceleration sensor described in Patent Document 1. As shown in FIG. In this conventional capacitive acceleration sensor, the beam structure 152A is constructed by four anchor portions 150a, 150b, 150c, and 150d that protrude from the substrate 150, and is positioned at a predetermined interval on the upper surface of the substrate 150. Is arranged. A beam portion 151 is constructed between the anchor portion 150a and the anchor portion 150b, and a beam portion 152 is constructed between the anchor portion 150c and the anchor portion 150d. The beam portions 151 and 152 are constituted by one beam structure.

また、梁部151に対して、錘部156の反対側には、ストッパー153が配置され、梁部152に対して、錘部156の反対側には、ストッパー154が配置されている。このストッパー153,154に設けられた突出部153b,154bによって、梁構造体152Aの紙面左右方向への移動が規制されている。これらのストッパー153,154は、梁構造体152Aや固定部152Bとは分離して構成されており、アンカー部153a,154aを介して基板1側に固定され、アンカー部150a〜150dを介して梁構造体152Aと電気的に接続されている。   Further, a stopper 153 is disposed on the opposite side of the weight portion 156 with respect to the beam portion 151, and a stopper 154 is disposed on the opposite side of the weight portion 156 with respect to the beam portion 152. The protrusions 153b and 154b provided on the stoppers 153 and 154 restrict the movement of the beam structure 152A in the left-right direction on the paper surface. These stoppers 153 and 154 are configured separately from the beam structure 152A and the fixing portion 152B, are fixed to the substrate 1 side via the anchor portions 153a and 154a, and are fixed to the beam via the anchor portions 150a to 150d. It is electrically connected to the structure 152A.

このような構成により、梁構造体152Aが移動しても、可動電極157が固定電極158に付着しないようになっている。つまり、可動電極が固定電極に貼り付くのを防止するための突起部が設けられており、静電気力によって可動電極が固定電極に吸い寄せられても、突起部が先に接触するので、突起部がない場合に比べて固定電極に接触する面積が小さくなり、可動電極が固定電極に貼り付きにくくなっている。   With such a configuration, the movable electrode 157 does not adhere to the fixed electrode 158 even when the beam structure 152A moves. In other words, a protrusion is provided to prevent the movable electrode from sticking to the fixed electrode, and even if the movable electrode is attracted to the fixed electrode by electrostatic force, the protrusion comes into contact first, so the protrusion Compared with the case where there is not, the area which contacts a fixed electrode becomes small, and the movable electrode becomes difficult to stick to a fixed electrode.

また、特許文献2に記載されている従来の半導体加速度センサは、ピエゾ抵抗体を用いた半導体加速度センサであって、カバー板が配置されている一表面側の重錘部上に、この重錘部がカバー板に貼り付くのを防止するための突起部が設けられているので、陽極接合時の静電気力によって重錘部がカバー板に吸い寄せられても、突起部がカバー板に接触するので、突起部がない場合に比べてカバー板に接触する面積が小さくなり、重錘部がカバー板に貼り付きにくくなっている。この特許文献2には、静電容量を利用した加速度センサにも利用できることが記載されている。   Further, the conventional semiconductor acceleration sensor described in Patent Document 2 is a semiconductor acceleration sensor using a piezoresistor, and the weight is placed on the weight portion on the one surface side where the cover plate is arranged. Since the projection is provided to prevent the part from sticking to the cover plate, even if the weight is attracted to the cover plate by electrostatic force during anodic bonding, the projection will contact the cover plate. Compared with the case where there is no protrusion, the area in contact with the cover plate is reduced, and the weight portion is less likely to stick to the cover plate. This patent document 2 describes that the present invention can also be used for an acceleration sensor using electrostatic capacitance.

また、半導体結晶のピエゾ抵抗効果を利用した加速度センサにおいて、重錘体(おもり)に貫通孔を開けて、この貫通孔に棒を通して重錘体の変位を制限するようにした加速度センサが提案されている。   In addition, an acceleration sensor using the piezoresistive effect of a semiconductor crystal has been proposed in which a through hole is formed in the weight body (weight), and the displacement of the weight body is limited by passing a rod through the through hole. ing.

図2は、特許文献3に記載されている従来の加速度センサの斜視図である。この従来の加速度センサにおいて、ステム11上に設けられた棒状のストッパー12を重り13に開けた貫通孔にクイアランスを保って挿入してあるので、過大な力が加わってもX軸方向の重り13の変位を防止することができ、センサチップ14の破損を防止することができる。   FIG. 2 is a perspective view of a conventional acceleration sensor described in Patent Document 3. As shown in FIG. In this conventional acceleration sensor, a rod-like stopper 12 provided on the stem 11 is inserted into a through hole opened in the weight 13 while maintaining a qualance. Therefore, even if an excessive force is applied, the weight 13 in the X-axis direction is inserted. Displacement of the sensor chip 14 can be prevented, and damage to the sensor chip 14 can be prevented.

また、特許文献4に記載の従来の静電容量型加速度センサは、折り曲げ梁タイプのものにおいて、梁部から錘部の方向に突出するバンパー(ストッパー)を設け、さらに梁部と錘部との間隔を可動電極と固定電極との間隔よりも小さくすることで、可動電極と固定電極との付着を防止するようにしている。   In addition, the conventional capacitive acceleration sensor described in Patent Document 4 is a bent beam type sensor, and is provided with a bumper (stopper) that protrudes from the beam portion toward the weight portion. By making the interval smaller than the interval between the movable electrode and the fixed electrode, adhesion between the movable electrode and the fixed electrode is prevented.

また、特許文献5に記載の従来の静電容量型加速度センサは、外部加速度に応答して移動する可動プレートがフィンガを有し、このフィンガが、基板に取り付けられたフィンガに容量的に結合されていて、移動停止部を用いて、可動プレート上のフィンガが基板上のフィンガと衝突する前に、可動プレートを停止させるものである。この移動停止部は、基板の表面と接触する第1部分と、この第1部分の上に位置する第2部分とから成る円形をしており、可動プレートは、移動停止部の第2部分と同じ物質で、かつ移動停止部と同じ厚さを有しているものである。したがって、本発明のような支柱構造を有していない。   Further, in the conventional capacitive acceleration sensor described in Patent Document 5, a movable plate that moves in response to external acceleration has a finger, and this finger is capacitively coupled to a finger attached to a substrate. Then, the movable plate is stopped before the fingers on the movable plate collide with the fingers on the substrate by using the movement stop unit. The movement stop portion has a circular shape including a first portion that contacts the surface of the substrate and a second portion located on the first portion, and the movable plate includes a second portion of the movement stop portion. The same material and the same thickness as the movement stop. Therefore, it does not have a support structure like the present invention.

特開平11−230985号公報JP-A-11-230985 特開2008−070284号公報JP 2008-070284 A 特開平4−194666号公報JP-A-4-194666 米国特許第5,542,295号明細書US Pat. No. 5,542,295 特開平11−68122号公報JP 11-68122 A

しかしながら、上述した静電容量型加速度センサにおいては、ストッパーとして機能する突起物という構造形状から、外部から印加された加速度により可動部が回転運動を起こして突起物と可動部が衝突した場合、ストッパーとして作用する面積が限られるため、可動部やストッパーに応力集中が起きて破壊に至るという問題があった。   However, in the above-described capacitance type acceleration sensor, when the movable part causes a rotational movement due to the acceleration applied from the outside due to the structure shape of the protrusion functioning as a stopper, the stopper and the movable part collide with each other. Since the area that acts as a limit is limited, there is a problem that stress concentration occurs in the movable part and the stopper, resulting in destruction.

一般的に、被衝突物に衝撃力Fが加わる場合、被衝突物の衝突時の破損や破壊は、衝撃荷重Fによる衝撃応力σが被衝突物の弾性限界を超えるために起こる。衝突時の接触面積をAとすると、衝撃力による単位面積当たりの衝撃応力σはσ=F/Aとなるため、衝突時に接触する面積が大きい方が衝撃応力は小さくなる。したがって、衝突時の接触面積を大きくすることで被衝突物に与える衝撃応力を小さくし、被害を抑えることが可能になる。   In general, when an impact force F is applied to an impacted object, the collision or damage of the impacted object occurs because the impact stress σ due to the impact load F exceeds the elastic limit of the impacted object. Assuming that the contact area at the time of collision is A, the impact stress σ per unit area due to the impact force is σ = F / A. Therefore, the larger the area in contact at the time of collision, the smaller the impact stress. Therefore, by increasing the contact area at the time of collision, it is possible to reduce the impact stress applied to the colliding object and suppress damage.

本発明は、このような問題に鑑みてなされたもので、その目的とするところは、衝突の状態によらず接触面積が一定なストッパー構造を提供し、可動部の許容変位量を超える加速度に対して可動部と固定部の衝突による破壊が起こりにくい静電容量型加速度センサを提供することにある。   The present invention has been made in view of such a problem, and an object of the present invention is to provide a stopper structure having a constant contact area regardless of the state of collision, and to achieve acceleration exceeding the allowable displacement amount of the movable part. On the other hand, it is an object of the present invention to provide a capacitance type acceleration sensor that is unlikely to break due to a collision between a movable part and a fixed part.

本発明は、このような目的を達成するためになされたもので、請求項1に記載の発明は、基板上に離間状態で配置された変位可能な重錘体と、該重錘体に設けられた可動電極と、該可動電極に対向して配置された固定電極とを備え、前記両電極間の静電容量の変化を前記重錘体の変位に基づいて加速度を検出する静電容量型加速度センサにおいて、前記重錘体と前記基板の双方に前記重錘体の水平方向の変位を規制する相補型係止手段と、該相補型係止手段に電位を固定するための電位固定手段とを設けたことを特徴とする。   The present invention has been made to achieve such an object, and the invention according to claim 1 provides a displaceable weight body disposed on a substrate in a separated state, and the weight body. And a fixed electrode disposed opposite to the movable electrode, and detecting a change in capacitance between the electrodes based on a displacement of the weight body. In the acceleration sensor, complementary locking means for restricting horizontal displacement of the weight body on both the weight body and the substrate, and potential fixing means for fixing a potential to the complementary locking means, Is provided.

また、請求項2に記載の発明は、請求項1に記載の発明において、前記相補型係止手段が、前記重錘体に設けられた穴又は貫通孔と、前記基板上に設けられ、前記穴又は貫通孔に挿入する係止部材とからなることを特徴とする。   The invention according to claim 2 is the invention according to claim 1, wherein the complementary locking means is provided on a hole or a through hole provided in the weight body and on the substrate, It consists of a locking member inserted into a hole or a through hole.

また、請求項3に記載の発明は、請求項2に記載の発明において、前記穴又は貫通孔を前記重錘体の端部周辺に設けたことを特徴とする。   According to a third aspect of the present invention, in the second aspect of the present invention, the hole or the through hole is provided around the end of the weight body.

また、請求項4に記載の発明は、請求項2又は3に記載の発明において、前記重錘体に前記穴又は貫通孔を複数設けたことを特徴とする。   The invention according to claim 4 is the invention according to claim 2 or 3, wherein a plurality of the holes or through holes are provided in the weight body.

また、請求項5に記載の発明は、請求項2,3又は4に記載の発明において、前記係止部材が、棒状部材であることを特徴とする。   The invention according to claim 5 is the invention according to claim 2, 3 or 4, wherein the locking member is a rod-shaped member.

また、請求項6に記載の発明は、請求項1乃至5のいずれかに記載の発明において、前記重錘体が、前記基板上に設けられた支柱部材に梁部材を介して取り付けられており、前記電位固定手段が、前記係止部材と前記支柱部材と前記基板に配線された導線であることを特徴とする。   The invention according to claim 6 is the invention according to any one of claims 1 to 5, wherein the weight body is attached to a support member provided on the substrate via a beam member. The potential fixing means is a conducting wire wired to the locking member, the support member, and the substrate.

また、請求項7に記載の発明は、基板上に離間状態で配置された変位可能な重錘体と、該重錘体に設けられた可動電極と、該可動電極に対向して配置された固定電極と、前記基板上に設けられ、前記重錘体の周辺を取り囲む固定部材とを備え、前記両電極間の静電容量の変化を前記重錘体の変位に基づいて加速度を検出する静電容量型加速度センサにおいて、前記重錘体と前記固定部材の双方に前記重錘体の水平方向の変位を規制する相補型係止手段を設けたことを特徴とする。   According to a seventh aspect of the present invention, there is provided a displaceable weight body arranged on the substrate in a separated state, a movable electrode provided on the weight body, and a face facing the movable electrode. A static electrode is provided that includes a fixed electrode and a fixing member that is provided on the substrate and surrounds the periphery of the weight body, and detects a change in capacitance between the electrodes based on a displacement of the weight body. The capacitive acceleration sensor is characterized in that complementary locking means for restricting a horizontal displacement of the weight body is provided on both the weight body and the fixing member.

また、請求項8に記載の発明は、請求項7に記載の発明において、前記相補型係止手段が、前記重錘体の縁端部に設けられた第1の突起部と、前記固定部材に設けられ空隙部とからなることを特徴とする。   The invention according to claim 8 is the invention according to claim 7, wherein the complementary locking means includes a first protrusion provided at an edge of the weight body, and the fixing member. It is characterized by comprising a void portion.

また、請求項9に記載の発明は、請求項7に記載の発明において、前記相補型係止手段が、前記重錘体の縁端部に設けられた第2の突起部と、該第2の突起部に対向して前記固定部材に設けられた第1の溝部とからなることを特徴とする。   The invention according to claim 9 is the invention according to claim 7, wherein the complementary locking means includes a second protrusion provided at an edge of the weight body, and the second protrusion. And a first groove portion provided in the fixing member so as to face the protruding portion.

また、請求項10に記載の発明は、請求項7に記載の発明において、前記相補型係止手段が、前記重錘体の縁端部に設けられた第2の溝部と、該第2の溝部に対向して前記固定部材に設けられた第3の突起部とからなることを特徴とする。   The invention according to claim 10 is the invention according to claim 7, wherein the complementary locking means includes a second groove provided at an edge of the weight body, and the second groove. It consists of the 3rd projection part provided in the said fixing member facing the groove part.

また、請求項11に記載の発明は、請求項8,9又は10に記載の発明において、前記突起部及び前記溝部の形状が、円弧状であることを特徴とする。   The invention described in claim 11 is characterized in that, in the invention described in claim 8, 9 or 10, the shapes of the protrusion and the groove are arcuate.

また、請求項12に記載の発明は、請求項7乃至11のいずれかに記載の発明において、前記重錘体が、前記基板上に設けられた支柱部材に梁部材を介して取り付けられていることを特徴とする。   The invention according to claim 12 is the invention according to any one of claims 7 to 11, wherein the weight body is attached to a support member provided on the substrate via a beam member. It is characterized by that.

また、請求項13に記載の発明は、請求項7乃至11のいずれかに記載の発明において、前記可動電極が、複数の薄板状の櫛型可動電極で、前記固定電極が、前記櫛型可動電極に対向してそれぞれ配置された複数の薄板状の櫛型固定電極であることを特徴とする。   The invention according to claim 13 is the invention according to any one of claims 7 to 11, wherein the movable electrode is a plurality of thin plate-shaped comb movable electrodes, and the fixed electrode is the comb movable. A plurality of thin plate-like comb-shaped fixed electrodes respectively disposed opposite to the electrodes.

また、請求項14に記載の発明は、請求項13に記載の発明において、前記櫛型可動電極が、前記重錘体の変位方向であるX軸方向に対してY軸方向の両側に設けられているとともに、前記櫛型固定電極が、前記櫛型可動電極に対向して配置されていることを特徴とする。   The invention according to claim 14 is the invention according to claim 13, wherein the comb-shaped movable electrodes are provided on both sides in the Y-axis direction with respect to the X-axis direction which is the displacement direction of the weight body. And the comb-shaped fixed electrode is arranged to face the comb-shaped movable electrode.

また、請求項15に記載の発明は、請求項13又は14に記載の発明において、前記櫛型固定電極が、前記櫛型可動電極を挟み込むようにした一対の櫛型固定電極であることを特徴とする。   The invention according to claim 15 is the invention according to claim 13 or 14, wherein the comb-shaped fixed electrode is a pair of comb-shaped fixed electrodes sandwiching the comb-shaped movable electrode. And

本発明によれば、重錘体と基板の双方、又は重錘体と固定部材の双方に重錘体の水平方向の変位を規制する相補型係止手段を設けて、衝突の方向によらず可動部と固定部の接触面積が一定なストッパー構造を提供したので、可動部が必要以上に変位するのを防止することができる。また、突起構造に対して応力集中が緩和されるため、重錘体や可動電極、梁部などの可動部と、固定電極などの固定部の破壊を防止することができる。   According to the present invention, the complementary locking means for restricting the horizontal displacement of the weight body is provided on both the weight body and the substrate, or on both the weight body and the fixing member, so that regardless of the direction of the collision. Since the stopper structure in which the contact area between the movable part and the fixed part is constant is provided, it is possible to prevent the movable part from being displaced more than necessary. In addition, since stress concentration is reduced with respect to the protrusion structure, it is possible to prevent the movable portion such as the weight body, the movable electrode, and the beam portion, and the fixed portion such as the fixed electrode from being broken.

特許文献1に記載されている従来の加速度センサの斜視図である。It is a perspective view of the conventional acceleration sensor described in patent document 1. FIG. 特許文献3に記載されている従来の加速度センサの斜視図である。It is a perspective view of the conventional acceleration sensor indicated in patent documents 3. (a),(b)は、本発明に係る静電容量型加速度センサの実施例1を説明するための構成図で、(a)は上面図、(b)は(a)のA−A断面図である。(A), (b) is a block diagram for demonstrating Example 1 of the capacitive acceleration sensor based on this invention, (a) is a top view, (b) is AA of (a). It is sectional drawing. (a),(b)は、本発明に係る静電容量型加速度センサの実施例2を説明するための構成図で、(a)は上面図、(b)は(a)のA−A断面図である。(A), (b) is a block diagram for demonstrating Example 2 of the capacitive acceleration sensor based on this invention, (a) is a top view, (b) is AA of (a). It is sectional drawing. 本発明に係る静電容量型加速度センサの実施例3を説明するための構成図である。It is a block diagram for demonstrating Example 3 of the capacitive acceleration sensor which concerns on this invention. 本発明に係る静電容量型加速度センサの実施例4を説明するための構成図である。It is a block diagram for demonstrating Example 4 of the capacitive acceleration sensor which concerns on this invention. 本発明に係る静電容量型加速度センサの実施例5を説明するための構成図である。It is a block diagram for demonstrating Example 5 of the capacitive acceleration sensor which concerns on this invention.

以下、図面を参照して本発明の各実施例について説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図3(a),(b)は、本発明に係る静電容量型加速度センサの実施例1を説明するための構成図で、図3(a)は上面図、図3(b)は図3(a)のA−A断面図である。   FIGS. 3A and 3B are configuration diagrams for explaining the first embodiment of the capacitive acceleration sensor according to the present invention. FIG. 3A is a top view and FIG. 3B is a diagram. It is AA sectional drawing of 3 (a).

本実施例1に係る静電容量型加速度センサは、基板35上に離間状態で配置された変位可能な重錘体36と、この重錘体36に設けられた可動電極34と、この可動電極34に対向して配置された固定電極33とを備え、両電極33,34間の静電容量の変化を重錘体36の変位に基づいて加速度を検出するものである。そして、重錘体36と基板35の双方に重錘体36の水平方向の変位を規制する相補型係止手段と、この相補型係止手段に電位を固定するための電位固定手段とを設けたものである。なお、符号39は基板35上に設けられた固定部材を示している。   The capacitive acceleration sensor according to the first embodiment includes a displaceable weight body 36 disposed on a substrate 35 in a separated state, a movable electrode 34 provided on the weight body 36, and the movable electrode. , And a fixed electrode 33 disposed opposite to the electrode 34, and detects an acceleration based on a displacement of the weight body 36 for a change in capacitance between the electrodes 33, 34. Further, both the weight body 36 and the substrate 35 are provided with complementary locking means for restricting the displacement of the weight body 36 in the horizontal direction and potential fixing means for fixing the potential to the complementary locking means. It is a thing. Reference numeral 39 denotes a fixing member provided on the substrate 35.

相補型係止手段は、重錘体36に設けられた1個の貫通孔38と、基板35上に設けられ、貫通孔38に挿入する1個の係止部材(ストッパー)37とからなっており、この係止部材37は基板35上に立設されている。また、剛性を上げるために係止部材37の全ての上面は、重錘体の厚さに相当する高さを有する、あるいは重錘体の厚さに相当する高さ以上であることも可能である。   The complementary locking means includes one through hole 38 provided in the weight body 36 and one locking member (stopper) 37 provided on the substrate 35 and inserted into the through hole 38. The locking member 37 is erected on the substrate 35. In order to increase the rigidity, all the upper surfaces of the locking members 37 can have a height corresponding to the thickness of the weight body, or can be equal to or higher than the height corresponding to the thickness of the weight body. is there.

また、重錘体36は、基板35上に設けられた支柱部材31a,31bに梁部材32a,32bを介して取り付けられており、電位固定手段は、係止部材37と支柱部材31a,31bと基板35に配線された導線51により構成され、この導線51により、係止部材37と重錘体36を電気的に接続し、係止部材37の電位を重錘体36と同電位にしている。このようにすることにより、係止部材37と重錘体36との間に働くクーロン力を打ち消すことができ、クーロン力による感度の低下を防止することができる。   The weight body 36 is attached to support members 31a and 31b provided on the substrate 35 via beam members 32a and 32b. The potential fixing means includes a locking member 37 and support members 31a and 31b. The conductive wire 51 is wired to the substrate 35. The conductive wire 51 electrically connects the locking member 37 and the weight body 36 so that the potential of the locking member 37 is the same as that of the weight body 36. . By doing in this way, the Coulomb force which acts between the locking member 37 and the weight body 36 can be canceled out, and the decrease in sensitivity due to the Coulomb force can be prevented.

また、貫通孔38は、重錘体36の中央部分に設けられていて、その断面形状は、楕円形でもよいが円形が最適である。また、この係止部材37は、棒状部材であることが望ましく、この棒状部材中には、上述したように、導線51が配線されている。また、重錘体に設けられる貫通孔は、貫通していない穴や溝であっても良く、設ける場所は、重錘体36の中央部分以外の部分に設けてもかまわない。また、係止部材と重錘体との間隔は、可動電極の水平方向の変位による固定電極との衝突をなるべく避けるという観点から、可動電極と固定電極との間隔以下であることが望ましい。   The through-hole 38 is provided in the central portion of the weight body 36, and the cross-sectional shape thereof may be an ellipse, but a circle is optimal. The locking member 37 is preferably a rod-shaped member, and the conductive wire 51 is wired in the rod-shaped member as described above. Further, the through hole provided in the weight body may be a hole or groove that does not penetrate, and the place to be provided may be provided in a portion other than the central portion of the weight body 36. The distance between the locking member and the weight body is preferably equal to or less than the distance between the movable electrode and the fixed electrode from the viewpoint of avoiding collision with the fixed electrode as much as possible due to the horizontal displacement of the movable electrode.

また、静電容量型加速度センサを構成する可動電極34は、複数の薄板状の櫛型可動電極で、固定電極33は、櫛型可動電極に対向してそれぞれ配置された複数の薄板状の櫛型固定電極である。   Further, the movable electrode 34 constituting the capacitive acceleration sensor is a plurality of thin plate-like comb movable electrodes, and the fixed electrode 33 is a plurality of thin plate-like combs disposed respectively facing the comb-like movable electrodes. It is a mold-fixed electrode.

また、櫛型可動電極は、重錘体36の変位方向であるX軸方向に対してY軸方向の両側に設けられているとともに、櫛型固定電極は、櫛型可動電極に対向して配置されている。また、櫛型固定電極は、図示しているように、櫛型可動電極を挟み込むようにした一対の櫛型固定電極で構成されている。   Further, the comb movable electrode is provided on both sides in the Y axis direction with respect to the X axis direction which is the displacement direction of the weight body 36, and the comb fixed electrode is disposed to face the comb movable electrode. Has been. Further, as shown in the figure, the comb-shaped fixed electrode is composed of a pair of comb-shaped fixed electrodes that sandwich the comb-shaped movable electrode.

また、梁部材32a,32bは、重錘体36の水平方向の変位に対して弾性力を持って変位するばね部材である。   Further, the beam members 32 a and 32 b are spring members that are displaced with an elastic force with respect to the horizontal displacement of the weight body 36.

このような構成により、重錘体に貫通孔を設けるとともに、基板上に貫通孔に挿入する係止部材を設けて、重錘体の水平方向の変位を規制するようにしたので、あらゆる方向からの加速度においても接触面積が同じになり、従来のものと比べて可動部と固定部にかかる衝撃応力が小さくなり、重錘体や可動電極、梁部材などの可動部と、固定電極などの固定部の破壊を防止することができる。また、係止部材は、重錘体の厚さに相当する高さあるいはそれ以上の高さを有するため、上述した特許文献5に記載のストッパーよりも、剛性の高いストッパー手段になりうる。   With such a configuration, the weight body is provided with a through hole, and a locking member that is inserted into the through hole is provided on the substrate so as to regulate the horizontal displacement of the weight body. The contact area is the same even in the case of acceleration, and the impact stress applied to the movable part and the fixed part is reduced compared to the conventional one, and the movable part such as the weight, movable electrode, and beam member is fixed to the fixed electrode. The destruction of the part can be prevented. Further, since the locking member has a height corresponding to the thickness of the weight body or a height higher than that, it can be a stopper means having higher rigidity than the stopper described in Patent Document 5 described above.

つまり、静電容量型加速度センサにおいて可動部の許容変位量を超える加速度が加わった時の可動部と固定部の衝突による破壊を防止し、耐衝撃性を向上させることができる。   That is, in the capacitive acceleration sensor, when an acceleration exceeding the allowable displacement amount of the movable part is applied, it is possible to prevent the damage due to the collision between the movable part and the fixed part, and to improve the impact resistance.

また、従来構造ではストッパーは電位が固定されておらず、ストッパーがチャージアップされた場合、可動部とストッパー間にクーロン力が発生していた。このクーロン力は可動部とストッパーの間に引力を発生させるので、可動部の変位を妨げる力として働き、センサの感度低下の原因となっていた。   In the conventional structure, the potential of the stopper is not fixed, and when the stopper is charged up, a Coulomb force is generated between the movable portion and the stopper. Since this Coulomb force generates an attractive force between the movable part and the stopper, it acts as a force that hinders the displacement of the movable part, causing a decrease in the sensitivity of the sensor.

このような問題に対し、本実施例1ではストッパーに貫通孔を設け、ストッパーと可動部を電気的に接続し、ストッパーの電位を可動部と同電位にすることで、ストッパーと可動部の間に働くクーロン力を打ち消す。これにより、クーロン力による感度の低下の問題を解決できる。   In order to solve such a problem, in Example 1, a through hole is provided in the stopper, the stopper and the movable portion are electrically connected, and the potential of the stopper is set to the same potential as that of the movable portion. Counteract the Coulomb force that works on Thereby, the problem of the sensitivity fall by Coulomb force can be solved.

図4(a),(b)は、本発明に係る静電容量型加速度センサの実施例2を説明するための構成図で、図4(a)は上面図、図4(b)は図4(a)のA−A断面図である。なお、図3と同じ機能を有する構成要素には同一に符号を付してある。   4 (a) and 4 (b) are configuration diagrams for explaining a second embodiment of the capacitive acceleration sensor according to the present invention, FIG. 4 (a) is a top view, and FIG. 4 (b) is a diagram. It is AA sectional drawing of 4 (a). Components having the same functions as those in FIG. 3 are denoted by the same reference numerals.

本実施例2に係る静電容量型加速度センサは、重錘体36に貫通孔38a,38bを複数設け、その貫通孔38a,38bに係止部材37a,37bを挿入するようにしたものである。この貫通孔38a,38bは、重錘体の中心に対して対称位置に設けることが望ましい。また、係止部材37a,37bは、重錘体36の厚さに相当する高さあるいはそれ以上の高さを有するため、上述した特許文献5に記載のストッパーよりも、剛性の高いストッパー手段になりうる。また、貫通孔38a,38bを複数設けることにより、さらに可動部と固定部にかかる衝撃応力を小さくすることができ、重錘体36や可動電極34、梁部材32a,32bなどの可動部と、固定電極33などの固定部の破壊を防止することができる。   In the capacitive acceleration sensor according to the second embodiment, a plurality of through holes 38a and 38b are provided in the weight body 36, and locking members 37a and 37b are inserted into the through holes 38a and 38b. . The through holes 38a and 38b are desirably provided at symmetrical positions with respect to the center of the weight body. Moreover, since the locking members 37a and 37b have a height corresponding to the thickness of the weight body 36 or a height higher than that, the stopper members 37a and 37b can be stopper means having higher rigidity than the stopper described in Patent Document 5 described above. Can be. Further, by providing a plurality of through holes 38a, 38b, it is possible to further reduce the impact stress applied to the movable part and the fixed part, and movable parts such as the weight body 36, the movable electrode 34, the beam members 32a, 32b, It is possible to prevent the fixed portion such as the fixed electrode 33 from being broken.

また、上述した実施例1と同様に、ストッパーと可動部を電気的に接続し、ストッパーの電位を可動部と同電位にすることで、ストッパーと可動部の間に働くクーロン力を打ち消し、これにより、クーロン力による感度の低下の問題を解決できる。   Similarly to the first embodiment described above, the stopper and the movable portion are electrically connected, and the potential of the stopper is set to the same potential as that of the movable portion, thereby canceling the Coulomb force acting between the stopper and the movable portion. Thus, the problem of sensitivity reduction due to Coulomb force can be solved.

図5は、本発明に係る静電容量型加速度センサの実施例3を説明するための構成図である。なお、図3と同じ機能を有する構成要素には同一に符号を付してある。   FIG. 5 is a configuration diagram for explaining Example 3 of the capacitive acceleration sensor according to the present invention. Components having the same functions as those in FIG. 3 are denoted by the same reference numerals.

本実施例3に係る静電容量型加速度センサは、基板35上に離間状態で配置された変位可能な重錘体36と、この重錘体36に設けられた可動電極34と、この可動電極34に対向して配置された固定電極33と、基板35上に設けられ、重錘体36の周辺を取り囲む固定部材39とを備え、両電極33,34間の静電容量の変化を重錘体36の変位に基づいて加速度を検出するものである。そして、重錘体36と固定部材39の双方に重錘体36の水平方向の変位を規制する相補型係止手段を設けたものである。   The capacitive acceleration sensor according to the third embodiment includes a displaceable weight body 36 disposed on a substrate 35 in a separated state, a movable electrode 34 provided on the weight body 36, and the movable electrode. 34 and a fixed member 39 provided on the substrate 35 and surrounding the periphery of the weight body 36, and the capacitance change between the electrodes 33 and 34 is weighted. The acceleration is detected based on the displacement of the body 36. Further, both of the weight body 36 and the fixing member 39 are provided with complementary locking means for restricting the displacement of the weight body 36 in the horizontal direction.

この相補型係止手段は、重錘体36の縁端部に設けられた第1の突起部40a乃至40dと、この第1の突起部(凸部)40a乃至40dと固定部材39とを離間する空隙部41a乃至41dとからなっている。第1の突起部40a乃至40dの形状は、重錘体36の厚さ方向に沿って連続して一体的に設けられた断面湾曲状や断面円弧状でも良いし、厚さ方向に間歇的に設けられた断面湾曲状又は断面球面状でも良い。   The complementary locking means separates the first protrusions 40a to 40d provided at the edge of the weight body 36, the first protrusions (projections) 40a to 40d, and the fixing member 39 from each other. The gap portions 41a to 41d are formed. The shape of the first protrusions 40a to 40d may be a cross-sectional curved shape or a circular arc shape continuously and integrally provided along the thickness direction of the weight body 36, or intermittently in the thickness direction. It may be provided with a curved cross section or a spherical cross section.

また、空隙部41a乃至41dの間隔は、可動電極の水平方向の変位による固定電極との衝突を避けるという観点から、可動電極と固定電極との間隔以下であることが望ましい。   In addition, it is desirable that the gaps 41a to 41d have an interval equal to or less than the interval between the movable electrode and the fixed electrode from the viewpoint of avoiding a collision with the fixed electrode due to the horizontal displacement of the movable electrode.

なお、静電容量型加速度センサを構成する可動電極及び固定電極の構成は、上述した実施例1の構成と同様である。   The configuration of the movable electrode and the fixed electrode constituting the capacitive acceleration sensor is the same as that of the first embodiment described above.

このような構成により、可動部である重錘体の縁端部に断面円弧状のストッパーを設けたので、このストッパーによって可動部の水平方向の移動を規制するようにすれば、あらゆる方向からの加速度においても接触面積が同じになり、従来のものに比べて可動部と固定部にかかる衝撃応力が小さくなり、重錘体や可動電極、梁部材などの可動部と、固定電極などの固定部の破壊を防止することができる。   With such a configuration, a stopper having an arcuate cross section is provided at the edge of the weight body, which is a movable part. Therefore, if the movement of the movable part in the horizontal direction is restricted by this stopper, it can be viewed from any direction. Also in acceleration, the contact area is the same, and the impact stress applied to the movable part and the fixed part is smaller than that of the conventional one. The movable part such as the weight, movable electrode, and beam member, and the fixed part such as the fixed electrode Can be prevented.

図6は、本発明に係る静電容量型加速度センサの実施例4を説明するための構成図である。なお、図3と同じ機能を有する構成要素には同一に符号を付してある。   FIG. 6 is a configuration diagram for explaining a fourth embodiment of the capacitive acceleration sensor according to the present invention. Components having the same functions as those in FIG. 3 are denoted by the same reference numerals.

本実施例4に係る静電容量型加速度センサにおける相補型係止手段は、重錘体36の縁端部に設けられた第2の突起部(凸部)42a乃至42dと、この第2の突起部42a乃至42dに対向して固定部材39に設けられた第1の溝部(凹部)43a乃至43dとからなっている。第2の突起部42a乃至42dの形状は、重錘体36の厚さ方向に沿って連続して一体的に設けられた断面湾曲状や断面円弧状でも良いし、厚さ方向に間歇的に設けられた断面湾曲状又は断面球面状でも良い。基本的には、上述した第2の突起部の表面形状に対して、固定部に設けられた第1の溝部は相補的な形状であればよい。   Complementary locking means in the capacitive acceleration sensor according to the fourth embodiment includes second protrusions (convex parts) 42a to 42d provided at the edge of the weight body 36, and the second protrusions 42a to 42d. It consists of first groove portions (concave portions) 43a to 43d provided in the fixing member 39 so as to face the protruding portions 42a to 42d. The shape of the second protrusions 42a to 42d may be a curved cross section or a circular arc shape provided continuously and integrally along the thickness direction of the weight body 36, or intermittently in the thickness direction. It may be provided with a curved cross section or a spherical cross section. Basically, the first groove provided in the fixed portion may be complementary to the surface shape of the second protrusion described above.

また、第2の突起部42a乃至42dと第1の溝部との間隔は、可動電極の水平方向の変位による固定電極との衝突を避けるという観点から、可動電極と固定電極との間隔以下であることが望ましい。   The distance between the second protrusions 42a to 42d and the first groove is not more than the distance between the movable electrode and the fixed electrode from the viewpoint of avoiding a collision with the fixed electrode due to the horizontal displacement of the movable electrode. It is desirable.

また、重錘体36の縁端部に設けられたストッパーと固定部材に設けられた溝との間隔を可動部と固定部との間隔よりも小さくし、かつ可動部と固定部との間隔を可動部の許容変位量より小さくすれば、可動部の許容変位量に至る前に可動部がストッパーに当接するため、それ以上の変位が抑制される。   Further, the distance between the stopper provided at the edge of the weight body 36 and the groove provided in the fixed member is made smaller than the distance between the movable part and the fixed part, and the distance between the movable part and the fixed part is set. If it is smaller than the allowable displacement amount of the movable portion, the movable portion abuts against the stopper before reaching the allowable displacement amount of the movable portion, so that further displacement is suppressed.

また、上述した実施例3における重錘体の形成された断面円弧状の第1の突起部は、空隙部を介して設けられていればよい程度の大きさと形状であればよいが、本実施例4における第2の突起部は、固定部材に設けられた溝部の形状に合わせた形状になるため、第1の突起部よりも大きな形状とすることができ、ストッパー機能を向上させることができる。   In addition, the first protrusion having the circular arc shape in which the weight body is formed in the above-described third embodiment may have a size and a shape as long as it is provided via the gap. Since the 2nd projection part in example 4 becomes the shape according to the shape of the groove part provided in the fixing member, it can be made into a shape larger than the 1st projection part, and can improve a stopper function. .

本実施例4のストッパーにおける円の半径を10μm、可動部と固定部との間隔を2.5μmとし、可動部又は固定部とストッパーとの間隔を2μmとしている。   In the stopper of Example 4, the radius of the circle is 10 μm, the distance between the movable part and the fixed part is 2.5 μm, and the distance between the movable part or the fixed part and the stopper is 2 μm.

このような構成により、梁部材を介して支持部材によって支持されている重錘体と一体化された水平方向の変位を規制する断面形状円弧状のストッパーを形成しているので、従来のものと比較して衝突時の接触面積が大きいため応力集中による破壊を防止することができる。   With such a configuration, a cross-sectional arc-shaped stopper that regulates the horizontal displacement integrated with the weight body supported by the support member via the beam member is formed. In comparison, since the contact area at the time of collision is large, it is possible to prevent breakage due to stress concentration.

図7は、本発明に係る静電容量型加速度センサの実施例5を説明するための構成図である。   FIG. 7 is a configuration diagram for explaining a fifth embodiment of the capacitive acceleration sensor according to the present invention.

本実施例5に係る静電容量型加速度センサにおける相補型係止手段は、重錘体36の縁端部に設けられた第2の溝部(凹部)45a乃至45dと、この第2の溝部45a乃至45dに対向して固定部材39に設けられた第3の突起部(凸部)44a乃至44dとからなっている。つまり、上述した実施例4に対し、本実施例5においてはその相補関係が逆になっている。   The complementary locking means in the capacitive acceleration sensor according to the fifth embodiment includes second groove portions (recess portions) 45a to 45d provided at the edge portion of the weight body 36, and the second groove portion 45a. The third projecting portions (convex portions) 44a to 44d provided on the fixing member 39 so as to oppose each other to 45d. That is, the complementary relationship is reversed in the fifth embodiment with respect to the fourth embodiment described above.

梁部材が構造体を支えるため、その梁部材に応力が集中し易い構造となっているが、その梁部材に介する重錘体に対してその変位量を抑制したため、共振や落下時に生じる大きな衝撃に対して構造体全体の機械的強度が向上する。また、従来の突起構造のようなストッパーに対し、接触面積が大きいのでストッパー自体の機械強度も向上する。   Since the beam member supports the structure, the stress tends to concentrate on the beam member. However, since the displacement amount is suppressed with respect to the weight body via the beam member, a large impact is generated at the time of resonance or dropping. In contrast, the mechanical strength of the entire structure is improved. In addition, the mechanical strength of the stopper itself is improved because the contact area is large compared to a stopper having a conventional protruding structure.

以上、本発明に係る静電容量型加速度センサの各実施例について説明したが、重錘体に貫通孔を開けるものや、重錘体の縁端部に凹凸を設けるものなどを含む重錘体の水平方向の変位を規制する相補型係止手段を設けたので、重錘体や可動電極、梁部などの可動部と、固定電極などの固定部の破壊を防止することができる。   As mentioned above, although each Example of the capacitive acceleration sensor which concerns on this invention was described, weight bodies including what opened a through-hole in a weight body, what provided unevenness in the edge part of a weight body, etc. Since the complementary locking means for restricting the horizontal displacement is provided, it is possible to prevent the movable part such as the weight body, the movable electrode and the beam part and the fixed part such as the fixed electrode from being broken.

また、上述した実施例1,2においては、係止部材は重錘体の厚さに相当する高さ、あるいはそれ以上の高さを有するため、上述した特許文献5に記載のストッパーよりも、剛性の高いストッパー手段になり、かつ係止部材と重錘体との間に働くクーロン力を打ち消すことができ、クーロン力による感度の低下を防止することができる。   In Examples 1 and 2 described above, since the locking member has a height corresponding to the thickness of the weight body, or a height higher than that, than the stopper described in Patent Document 5 described above, It becomes a stopper means with high rigidity, can cancel the Coulomb force acting between the locking member and the weight body, and can prevent a decrease in sensitivity due to the Coulomb force.

11 ステム
12 ストッパー
13 重り
14 センサチップ
21,22 ウェハ
31a,31b 支柱部材
32a,32b 梁部材
33 固定電極
34 可動電極
35 基板
36 重錘体
37,37a,37b 係止部材
38,38a,38b 貫通孔
39 固定部材
40a乃至40d 第1の突起部
41a乃至41d 空隙部
42a乃至42d 第2の突起部
43a乃至43d 第1の溝部
45a乃至45d 第2の溝
44a乃至44d 第3の突起部
45a乃至45d 第2の溝
51 導線
150 基板
150a,150b,150c,150d アンカー部
151,152 梁部
152A 梁構造体
152B 固定部
153,154 ストッパー部
153a,154a アンカー部
153b,154b 突出部
156 錘部
157 可動電極
158 固定電極
11 Stem 12 Stopper 13 Weight 14 Sensor chip 21, 22 Wafer 31a, 31b Post member 32a, 32b Beam member 33 Fixed electrode 34 Movable electrode 35 Substrate 36 Weight body 37, 37a, 37b Locking member 38, 38a, 38b Through hole 39 fixing members 40a to 40d first protrusions 41a to 41d voids 42a to 42d second protrusions 43a to 43d first grooves 45a to 45d second grooves 44a to 44d third protrusions 45a to 45d third Two grooves 51 Conductor 150 Substrate 150a, 150b, 150c, 150d Anchor portion 151, 152 Beam portion 152A Beam structure 152B Fixing portion 153, 154 Stopper portion 153a, 154a Anchor portion 153b, 154b Projection portion 156 Weight portion 157 Movable electrode 158 Fixed electrode

Claims (15)

基板上に離間状態で配置された変位可能な重錘体と、該重錘体に設けられた可動電極と、該可動電極に対向して配置された固定電極とを備え、前記両電極間の静電容量の変化を前記重錘体の変位に基づいて加速度を検出する静電容量型加速度センサにおいて、
前記重錘体と前記基板の双方に前記重錘体の水平方向の変位を規制する相補型係止手段と、該相補型係止手段に電位を固定するための電位固定手段とを設けたことを特徴とする静電容量型加速度センサ。
A displaceable weight body disposed in a separated state on a substrate, a movable electrode provided on the weight body, and a fixed electrode disposed opposite to the movable electrode, and between the two electrodes In a capacitance type acceleration sensor that detects acceleration based on displacement of the weight body in a change in capacitance,
Complementary locking means for restricting horizontal displacement of the weight body and potential fixing means for fixing potential to the complementary locking means are provided on both the weight body and the substrate. Capacitance type acceleration sensor.
前記相補型係止手段が、前記重錘体に設けられた穴又は貫通孔と、前記基板上に設けられ、前記穴又は貫通孔に挿入する係止部材とからなることを特徴とする請求項1に記載の静電容量型加速度センサ。   The complementary locking means includes a hole or a through hole provided in the weight body, and a locking member provided on the substrate and inserted into the hole or the through hole. 2. The capacitive acceleration sensor according to 1. 前記穴又は貫通孔を前記重錘体の端部周辺に設けたことを特徴とする請求項2に記載の静電容量型加速度センサ。   The capacitive acceleration sensor according to claim 2, wherein the hole or the through hole is provided around an end of the weight body. 前記重錘体に前記穴又は貫通孔を複数設けたことを特徴とする請求項2又は3に記載の静電容量型加速度センサ。   4. The capacitive acceleration sensor according to claim 2, wherein a plurality of the holes or through holes are provided in the weight body. 前記係止部材が、棒状部材であることを特徴とする請求項2,3又は4に記載の静電容量型加速度センサ。   The capacitive acceleration sensor according to claim 2, 3 or 4, wherein the locking member is a rod-shaped member. 前記重錘体が、前記基板上に設けられた支柱部材に梁部材を介して取り付けられており、前記電位固定手段が、前記係止部材と前記支柱部材と前記基板に配線された導線であることを特徴とする請求項1乃至5のいずれかに記載の静電容量型加速度センサ。   The weight body is attached to a support member provided on the substrate via a beam member, and the potential fixing means is a lead wire wired to the locking member, the support member, and the substrate. 6. The capacitive acceleration sensor according to claim 1, wherein the capacitance type acceleration sensor is used. 基板上に離間状態で配置された変位可能な重錘体と、該重錘体に設けられた可動電極と、該可動電極に対向して配置された固定電極と、前記基板上に設けられ、前記重錘体の周辺を取り囲む固定部材とを備え、前記両電極間の静電容量の変化を前記重錘体の変位に基づいて加速度を検出する静電容量型加速度センサにおいて、
前記重錘体と前記固定部材の双方に前記重錘体の水平方向の変位を規制する相補型係止手段を設けたことを特徴とする静電容量型加速度センサ。
A displaceable weight body disposed on the substrate in a separated state; a movable electrode disposed on the weight body; a fixed electrode disposed opposite the movable electrode; and provided on the substrate. A capacitance-type acceleration sensor that includes a fixing member that surrounds the periphery of the weight body, and detects an acceleration based on a displacement of the weight body, based on a displacement of the weight body.
A capacitance type acceleration sensor characterized in that complementary locking means for restricting horizontal displacement of the weight body is provided on both the weight body and the fixing member.
前記相補型係止手段が、前記重錘体の縁端部に設けられた第1の突起部と、前記固定部材に設けられ空隙部とからなることを特徴とする請求項7に記載の静電容量型加速度センサ。   The static complementary mechanism according to claim 7, wherein the complementary locking means includes a first protrusion provided at an edge of the weight body and a gap provided in the fixing member. Capacitive acceleration sensor. 前記相補型係止手段が、前記重錘体の縁端部に設けられた第2の突起部と、該第2の突起部に対向して前記固定部材に設けられた第1の溝部とからなることを特徴とする請求項7に記載の静電容量型加速度センサ。   The complementary locking means includes a second protrusion provided at an edge of the weight body, and a first groove provided in the fixing member so as to face the second protrusion. The capacitive acceleration sensor according to claim 7, wherein 前記相補型係止手段が、前記重錘体の縁端部に設けられた第2の溝部と、該第2の溝部に対向して前記固定部材に設けられた第3の突起部とからなることを特徴とする請求項7に記載の静電容量型加速度センサ。   The complementary locking means includes a second groove provided at an edge of the weight body and a third protrusion provided on the fixing member so as to face the second groove. The capacitive acceleration sensor according to claim 7. 前記突起部及び前記溝部の形状が、円弧状であることを特徴とする請求項8,9又は10に記載の静電容量型加速度センサ。   11. The capacitive acceleration sensor according to claim 8, wherein the protrusion and the groove are arcuate. 前記重錘体が、前記基板上に設けられた支柱部材に梁部材を介して取り付けられていることを特徴とする請求項7乃至11のいずれかに記載の静電容量型加速度センサ。   The capacitive acceleration sensor according to claim 7, wherein the weight body is attached to a support member provided on the substrate via a beam member. 前記可動電極が、複数の薄板状の櫛型可動電極で、前記固定電極が、前記櫛型可動電極に対向してそれぞれ配置された複数の薄板状の櫛型固定電極であることを特徴とする請求項1乃至12のいずれかに記載の静電容量型加速度センサ。   The movable electrode is a plurality of thin plate-like comb-shaped movable electrodes, and the fixed electrode is a plurality of thin-plate-like comb-shaped fixed electrodes respectively disposed facing the comb-shaped movable electrode. The capacitive acceleration sensor according to claim 1. 前記櫛型可動電極が、前記重錘体の変位方向であるX軸方向に対してY軸方向の両側に設けられているとともに、前記櫛型固定電極が、前記櫛型可動電極に対向して配置されていることを特徴とする請求項13に記載の静電容量型加速度センサ。   The comb movable electrode is provided on both sides in the Y axis direction with respect to the X axis direction which is a displacement direction of the weight body, and the comb fixed electrode is opposed to the comb movable electrode. The capacitive acceleration sensor according to claim 13, which is arranged. 前記櫛型固定電極が、前記櫛型可動電極を挟み込むようにした一対の櫛型固定電極であることを特徴とする請求項13又は14に記載の静電容量型加速度センサ。   15. The capacitive acceleration sensor according to claim 13 or 14, wherein the comb-shaped fixed electrodes are a pair of comb-shaped fixed electrodes sandwiching the comb-shaped movable electrode.
JP2010040700A 2010-02-25 2010-02-25 Capacitance type acceleration sensor Pending JP2011174881A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010040700A JP2011174881A (en) 2010-02-25 2010-02-25 Capacitance type acceleration sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010040700A JP2011174881A (en) 2010-02-25 2010-02-25 Capacitance type acceleration sensor

Publications (1)

Publication Number Publication Date
JP2011174881A true JP2011174881A (en) 2011-09-08

Family

ID=44687854

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010040700A Pending JP2011174881A (en) 2010-02-25 2010-02-25 Capacitance type acceleration sensor

Country Status (1)

Country Link
JP (1) JP2011174881A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015068686A (en) * 2013-09-27 2015-04-13 三菱電機株式会社 Microdevice and method for manufacturing the same
CN105021177A (en) * 2014-05-01 2015-11-04 精工爱普生株式会社 Functional element, physical quantity sensor, electronic apparatus and mobile entity
CN109425756A (en) * 2017-08-25 2019-03-05 精工爱普生株式会社 Physical quantity transducer, physical quantity sensor device, electronic equipment and moving body

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07183543A (en) * 1993-12-22 1995-07-21 Hitachi Ltd Acceleration sensor
JPH1168122A (en) * 1997-07-30 1999-03-09 Motorola Inc Semiconductor device and method of manufacturing the same
JP2000019198A (en) * 1998-06-29 2000-01-21 Zexel Corp Acceleration sensor
JP2002207048A (en) * 2000-10-20 2002-07-26 Robert Bosch Gmbh Components of micro mechanism
JP2003512627A (en) * 1999-10-15 2003-04-02 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Acceleration sensor
JP2003519797A (en) * 2000-01-13 2003-06-24 ビ−エイイ− システムズ パブリック リミテッド カンパニ− Accelerometer
JP2003344445A (en) * 2002-05-24 2003-12-03 Mitsubishi Electric Corp Inertial force sensor
JP2006064532A (en) * 2004-08-26 2006-03-09 Matsushita Electric Works Ltd Semiconductor acceleration sensor
JP2006184013A (en) * 2004-12-24 2006-07-13 Matsushita Electric Works Ltd Acceleration sensor
JP2007303974A (en) * 2006-05-11 2007-11-22 Univ Nihon Vibration sensor, vibration sensor manufacturing method, pedometer, acceleration sensor, and earthquake detector
JP2008197113A (en) * 2008-03-13 2008-08-28 Matsushita Electric Works Ltd Semiconductor acceleration sensor
JP2008292428A (en) * 2007-05-28 2008-12-04 Panasonic Electric Works Co Ltd Semiconductor sensor

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07183543A (en) * 1993-12-22 1995-07-21 Hitachi Ltd Acceleration sensor
JPH1168122A (en) * 1997-07-30 1999-03-09 Motorola Inc Semiconductor device and method of manufacturing the same
JP2000019198A (en) * 1998-06-29 2000-01-21 Zexel Corp Acceleration sensor
JP2003512627A (en) * 1999-10-15 2003-04-02 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Acceleration sensor
JP2003519797A (en) * 2000-01-13 2003-06-24 ビ−エイイ− システムズ パブリック リミテッド カンパニ− Accelerometer
JP2002207048A (en) * 2000-10-20 2002-07-26 Robert Bosch Gmbh Components of micro mechanism
JP2003344445A (en) * 2002-05-24 2003-12-03 Mitsubishi Electric Corp Inertial force sensor
JP2006064532A (en) * 2004-08-26 2006-03-09 Matsushita Electric Works Ltd Semiconductor acceleration sensor
JP2006184013A (en) * 2004-12-24 2006-07-13 Matsushita Electric Works Ltd Acceleration sensor
JP2007303974A (en) * 2006-05-11 2007-11-22 Univ Nihon Vibration sensor, vibration sensor manufacturing method, pedometer, acceleration sensor, and earthquake detector
JP2008292428A (en) * 2007-05-28 2008-12-04 Panasonic Electric Works Co Ltd Semiconductor sensor
JP2008197113A (en) * 2008-03-13 2008-08-28 Matsushita Electric Works Ltd Semiconductor acceleration sensor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015068686A (en) * 2013-09-27 2015-04-13 三菱電機株式会社 Microdevice and method for manufacturing the same
CN105021177A (en) * 2014-05-01 2015-11-04 精工爱普生株式会社 Functional element, physical quantity sensor, electronic apparatus and mobile entity
JP2015212624A (en) * 2014-05-01 2015-11-26 セイコーエプソン株式会社 Functional element, physical quantity sensor, electronic equipment, and mobile body
TWI659213B (en) * 2014-05-01 2019-05-11 日商精工愛普生股份有限公司 Functional element, physical quantity sensor, electronic apparatus and mobile entity
US10421661B2 (en) 2014-05-01 2019-09-24 Seiko Epson Corporation Functional element, electronic apparatus and mobile entity
CN105021177B (en) * 2014-05-01 2020-03-24 精工爱普生株式会社 Functional element, physical quantity sensor, electronic apparatus, and moving object
CN109425756A (en) * 2017-08-25 2019-03-05 精工爱普生株式会社 Physical quantity transducer, physical quantity sensor device, electronic equipment and moving body

Similar Documents

Publication Publication Date Title
US6923062B2 (en) Sensor
US8555720B2 (en) MEMS device with enhanced resistance to stiction
US8952466B2 (en) Flexible stop for an acceleration sensor
US6360605B1 (en) Micromechanical device
US9869692B2 (en) Micromechanical Z-sensor
CN106062566B (en) Microelectromechanical device with motion limiter
US9316550B2 (en) Shock sensor with bistable mechanism and method of shock detection
KR20150102968A (en) Micro-electromechanical device comprising a mobile mass that can move out-of-plane
JP2007298405A (en) Electrostatic capacity type sensor
TWI653193B (en) A microelectromechanical structure with motion limiter
KR102193337B1 (en) MEMS structure and capacitive sensor, piezoelectric sensor, acoustic sensor with MEMS structure
US9739797B2 (en) Sensor device
JP6067026B2 (en) Micro electro mechanical system (MEMS)
JP2015031692A (en) Mems device enhancement for robust operation upon severe shock and acceleration
JP2012137368A (en) Acceleration sensor
US8516891B2 (en) Multi-stage stopper system for MEMS devices
US20100108478A1 (en) MEMS G-switch device
JP6527801B2 (en) Physical quantity sensor
JP2011174881A (en) Capacitance type acceleration sensor
US10330472B2 (en) Angular velocity acquisition device
JP5292600B2 (en) Acceleration sensor
CN109188012B (en) Honeycomb micro-stop structure
JP2014115080A (en) Physical quantity sensor
CN106030315A (en) MEMS structure with frame
JP6167842B2 (en) Capacitive sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20130130

Free format text: JAPANESE INTERMEDIATE CODE: A621

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20130130

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20130130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130724

A131 Notification of reasons for refusal

Effective date: 20130730

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20130930

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Effective date: 20140513

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20141007

Free format text: JAPANESE INTERMEDIATE CODE: A02